Volume I, Number 1 January, 1983

Polymorphnsm A

The ML/LCF/Hope Newsletter *

_:" ~

Contents
Letter from the editors
Robin Milner: How ML evolved
Ravi Sethi: Unambiguous syntax for ML
Luca Cardelli: The functional abstract machine

SERC ML/LCF/Hope meeting at Rutherford Labs
Addenda to the Mailing List

Letter from the Editors

Welcome to the second issue of Polymorphism, which is the first to contain technical
contributions. In this issue, Robin Miiner reports on the histary of the development of LCF
and ML, Ravi Sethi provides an analysis of the syntax of ML as given in "Edinburgh LCF"
(from the standpoint of an LR/1 parser generator like YACC), Luca Cardelli defines his func-
tional abstract machine, which is the basis of his ML compiler, and Chris Wadsworth pro-
vides a report on the November SERC Software Initiative Meeting on LCF/ML/Hope with an
attached position paper by Mike Gordon and Larry Paulson, who were unable to attend the
meeting.

These articles provide a good start, but they also more or less empty the queue of con-
tributions. Future issues will contain installments of a revised manual for VAX ML and a
Hope manual (for Franz Hope?), but we look farward to receiving further "external”" contri-
butions.

By the way, the convention in this newsletter is to use "VAX ML" to refer to Luca
Cardelli’s Pascal implementation for the VAX, rather than "Cardelli ML" as in Wadsworth's
report or "Luca ML" as in Gordon and Paulson’s letter. However, we still face the problem
of distinguishing between the various Lisp based LCF/ML variants from Edinburgh, Gothen-
burg, and INRIA/Cambridge. Any suggestions for a naming scheme?

One suggestion to our European contributors: when using A4 paper, please try to
leave ample top and bottom margins so that the text will fit on the American standard 8.5 x
1l inch (29.6 x 28 cm) sheets when photocopied.

A correction to the list of sites running VAX ML: Chris Wadsworth is not going to be
porting VAX ML to the Perq, but there are rumors that it might be done at Edinburgh.

So long till the next issue, and keep those cards and letters coming!

Luca Cardelli
David MacQueen

Bell Laboratories
Murray Hill, NJ 07974
USA

How ML evolved
Robin Milner, Edinburgh University, November 198c.

ML is one among many functional programming languages. But not many were
designed, as ML was, for a more-or-less specific task. The point of this note
is to summarise the process by which we were guided to ML, as it now is, by the
demands of the task. We (at least I) feel that to find a good metalanguage for
machine assisted proof, which was the task, we could hardly have gone in an
essentially different direction; the task seemed to determine the language - and
even made it turn out to be a general purpose language!

The context in 1974 (when the Edinburgh LCF project began) was our experience
with the Stanford LCF proof assistant, developed there in 1971-72 by Richard
Weyrauch, Malcolm Newey and myself. The development of ML as a metalanguage for
interactive proof was the work of several people; in chronological order they
were (besides me) Malcolm Newey, Lockwood Morris, Michael Gordon, anua
Christopher Wadsworth. Other people, who joined the LCF project after the
language was more-or-less fixed, and used it for proot's, are Avra Cohn, Jacek
Leszezylowski, David Schmidt, Larry Paulson and Brian Monahan. In the following
summary of the development process, the actual logic involved (PPLAMBDA) is
rather irrelevant, and it now seems that the same principles apply to any formal
deductive system.)

Consider the activity of goal-directed proof. If we have a goal A, a logical
formula to be proved, then it is sound to replace it by subgoals B1,...,Bn,
provided we know how to construct, from achievements of all the B, an
achievement of A. We may call any subgoaling method a tactic ; it is a yalid
tactic, then, if it also provides - for each set {Bi} of subgoals produced from
a goal A - a way of extending achievements of the B; into an achievement of A,
and this "way" we call a yalidation. Of course, only valid tactics are useful!

Now, given a fixed repertoire of tactics, a natural proof assistant would be
one which maintains a goal tree , with the user always working at a lear. The
Stanford LCF system was like this. After some subgoaling, the tree might look
thus:

Here, we suppose that the ringed subgoals have (somehuw) been achieved; the
little black boxes sitting at the non-leaf nodes are the validations waiting to
be applied to the (achieved) sons to achieve their fatner. So, after achieving
D2 the proof assistant would collapse the tree to:

Y B,
2

A TN

Clearly, under this rigid discipline of tactical tree walking, the only way
of proving the main goal is to return to the root, ana the only douot that the
theorem has been correctly proved is in the correctness of the bullt-in programs
for the basic repertoire of tactics and for treewalking.

But in 2 more flexible system, a user should at least be allowed to compose
tactics into more powerful ones. For example, he should be allowed to compose
the three tactics which were applied to goals A,B1 and C, to produce the tree of
our first diagram; this composite tactic applied to goal A would yield a flatter

tree
NN
& it D, D, B, : \ j‘{ -
!)
- |
| |
v__’_/_/f \ ‘
: !
Note that the validation produced by the composite tactic is a parcicular

combination of those produced by the separate tactics. (Of course, as in our

first diagrams, some of the subgoals may then be somenow achieved; we have
omitted the rings here).

A

Well, to program this composition the user must be allowed to hold in his
hand as objects (or: be allowed to bind as values to metavariables) both goals
and validations; moreover, to put them together properly already suggests the
need for structure-processing power of the kind found in LISP and other
functional programming languages.

What kind of object is a validation? It is a "way of extenaing the
achievements of subgoals into an achievement of the goal". But an achievement
is (in our case) a proof, or the theorem which is the last step of a proor; So
the validation for a tactic which produces subgoals {Bi} from goal A& could
perhaps be represented by the theorem 0—81:...: an A, and to apply the
validation is perhaps just to apply Modus Ponens repeatedly to this theorem and
the achievements kB1,..,¥-Bn, to produce FA. So perhaps validations are Just
theorems, proved somehow at the time that the tactic is applied?

To see that this is wrong, consider the tactic which converts a goal formula
VxB(x) into a single subgoal formula, B(x) (this is the common method of proving
that something holds for all x by proving that it holds for arbitrarv x).
Acecording to the above suggestions then, the validation should be the theorem
FB(x)> Vx B(x), and there is po such theorem { In fact the validation should
not be a theorem, but a function from theorems to theorems, i.e. a (primitive or
derived) inference rule; in our case, it is the rule of generalisation

FB(x)
GEN F¥xB(x)

(This is why we called the tactic GENTAC)

We immediately see that a tactic i1s a function producing function; when
applied to a goal it produces, as well as a subgoal list, a function which is
the validation. So our metalanguage must express second order functions.

Further:

(1) when the validation function depends (as it may in general) upon the
properties of the goal attacked, these properties will be bound into the
validation at the time of tactic application, ana the natural way of doing this
eritically requires the static binding convention, now normally accepted in
preference to the dynamic binding of LISP. (In Landin's terms, the validation is
a closure, i.e. an expression paired with an envirorment).

(2) Since the user is to be allowed to compose tactics (second order
functions), his compositions will be third order functions; clearly a
metalanguage which expresses functions of arbitrarily high order is the only
natural choice.

(3) Since the user is to be allowed to hold validations (and, in general, any
primitive or derived inference rule) in his hand, it is critically important
that he is only allowed to apply them to theorems, not to otner objects (such as
formulae) which look so like theorems that in a moment of misguided inspiration
he may mistake one for the other! So the metalanguage must be rigorously ityped,
in a way which at least distinguishes theorems from other things.

(4) For a given tactic T, there are usually goals for which it makes no sense
tc apply T (Example: it makes no sense to apply GENTAC to a goal formula which
is not universally quantified). It would be vastly inconvenient to test a goal
by some separate predicate before applying 2 tactic, so the tactic itself must
assume the task of detecting inapplicability, and respond in some suitable way.
But in a typed language, every result of applying a tactic must be a goal list
paired with a validation, and it is irksome to have to construet a correctly
typed but spurious 'result' when the application makes no sense; so the only
alternative in this case is to have no result at all. Hence it is naturar to
have an escape or failure mechanism, under which senseless applications may
avoid producing a result, but instead be detectea for alternatave action. In
LISP this response could be to return the result NIL, for example.

(5) In a conversational typed functional language, it soon appeared
intolerable to have to declare - for example - a new maplist function for
mapping a function over a list, every time a new type of list is to be treated.
Even if the maplist function could possess what Strachey called "parametric
polymorphism" in an early paper, it also appeared intolerable to have to supply
an appropriate type explicitly as a parameter, for each use of this function.
(Perhaps this latter is rendered more acceptable if types can be suitably
abbreviated by names, but note that even simple 1list constructors and
destructors - CONS, CAR, CDR or whatever - would need explicit type parameters!)
So a polymorphic type discipline, with rigorous type checking, emerges as the
most natural solution. Note that it emerges as such on purely practical
considerations; it is a gift from the Gods that this discipline happens to have
a simple semantic theory, and that the type checking has an elegant
implementation based upon unification (Robinson). We only discovered afterwards
that the proper lineage for this type checking is from Curry's functionality,
through Roger Hindley's principal type schemes.

This discussion was somewhat simplified w.r.t. LCF (for example, LCF goals
are not simply logical formulae to be proved). But it is, in essence, the
process by which we arrived almost unavoidably at the metalanguage ML as it now
exists. It shows why ML is a higher order functional programming language with

rigorous polymorphic type discipline and an escape mechamism (and, of course,
static binding).

Perhaps the development of ML has been made to seem too clean and
trouble-free, from the above discussion. There still remain, however, some big
problems and question marks. It is important to mention some of them; in doing

so, we also place ML in context with other languages - both applicative and
imperative.

(1) It 4is natural to recover, within ML, the simple treewalking proo:
methodology with which we started. But this global tree is a cgchanging
structure; as such, it cannot really be implemented without strain in a Purely
applicative language. (Or so it appears to me; this is a challenge to
applicative language devotees who wish to rule out state change completely.) So
ML has an assignment statement!

But this does not sit so easily beside the polymorphic type discipline.
Recent work by Luis Damas (forthcoming Ph.D.) shows that the somewhat over-rigid
treatment of the types of assignable variable in ML (viz. that they may not be
polymorphic) can be relaxed; but the purity and obviousness of the discipline is
inevitably lost.

(2) Even without assignment, the type discipline forced us to adop. a
restrained form of escape mechanism in ML; it is not allowed to escape (or fail)
with a value of arbitrary type, but only with a token. This problem has to do
with the dynamic nature of the escape-trapping mechanism; the trap for each
escape is not textually determined, and it appeared to us most userul that it
should not be so. A clean solution to this problem - probably easier than that
for assignable variables - would be an important development.

(3) ML does not adopt the clausal form of function definition, which is found
so convenient by users of HOPE and PROLOG. How can we get a semantically
rigorous form of this clausal definition, in which the constructor-patterns in
formal parameters can involve not only primitive constructors, but also the
constructors of user-defined abstract types? The problem is to know that these
constructors are constructors, in the sense of being uniquely decomposable (or
else to admit nondeterminism into the language). If I understand Rod Burstall
right, this is partly why HOPE is called HOPE; the answer may eventually become
CLEAR.

(4) ML does pot use lazy evaluation; it calls by value. This was decided for
no other reason than our inability to see the consequences of lazy evaluation
for debugging (remember that we wanted a language which we could use rather than
research into), and the interaction with the assigmment statement, which we kept
in the language for reasons already mentioned. In fact, this sharpens the
challenge mentioned in (1) above; is there a good language in which lazy
evaluation and controllable state-change sit well side-by-side? John Reynolds
has for a 1long time worried about such possible incompatabilities between
applicative and imperative languages (cf. his "Syntactic Control of
Interference", which exposes the problem with great honesty).

Conclusion. I hope this short essay has shown that machine-assistea Proot
provided a beautifully appropriate focus for developing functional programming
and demonstrating its importance. It would be very userul for others to use
this newsletter as a medium for reporting other real exercises in functional
programming, So that a balance is kept between the seductive Ppuricy of
functional languages and the methodology of their use. The remarks above tried
to point out the considerable tension that exists between these two aspects of
programming, and to show that it is not at all trivial to resolve the tension.

Unambiguous syntax for ML

Ravi Sethi

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

ML is a functional language that was designed as part of the Edinburgh
LCF effort. Since several geographically distributed groups are now working
with ML, the need for an unambiguous syntax arises. A machine checked syntax
based on that of the initial Lisp implementation is given. The syntax differs
from that of the Pascal implementation.

November 29, 1982

Unambiguous syntax for ML

Ravi Sethi

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction
“ML is a functional language in the tradition of ISWIM and GEDANKEN [3].”

While ML began as the metalanguage for conducting proofs in Edinburgh LCF, it is a pro-
gramming language in its own right. ML as initially implemented in Lisp is described in [3].
For most practical purposes, the syntax in [3] is perfectly adequate. However, the ambiguities in
it have to be identified and resolved afresh by anyone interested in developments based on it.
Several clarifications and extensions already appear in the Pascal implementation [2]. It appears
that existing syntax analyzers for ML are hand coded, and that grammars characterizing the
languages accepted by these analyzers are not available. It is the purpose of this paper to adapt
the syntax in [3] so that it can be used to generate parsers. As far as possible, ambiguities will be
resolved following [2]. Some comments on the treatment of user defined infix operators appear
in Section 6.

The syntax is described in a form suitable for processing by Yacc [4], the parser generator
distributed with the UNIX™ operating system. Some of Yacc’s conventions will be reviewed here
to make it casicr to read this paper. A terminal symbol in the grammar is either a single charac-
ter enclosed between “‘, e.g. ‘#’, or an identifier declared in 2 %token declaration, e.g.

%¥token ARR BOOL INT

Associativity and precedence of operators (in expressions) can be indicated using %left and
%right as in:

%¥right ARR
¥right ‘e’
%¥right ‘#’

All identifiers on a X1left or Xright line have the same precedence (i.e. binding power) and
associate to the left or right, respectively. Successive %¥1eft and ¥right lines indicate increas-
ing precedence; e.g. ‘#‘ has higher precedence than ‘+’ and ARR.

The notation for syntactic rules is very similar to that introduced by Backus [1]; e.g.

type : type ARR type /« R continuous function «/
! type ‘+’ type /¢« R disjoint sum «/
i type ‘#’ type /¢« R product ./
{ s_type /s simple type «/
1

By convention, rules containing operators will be in order of increasing precedence of the opera-
tors. (Regretfully, this convention is the opposite of the one in [3]). Comments will be enclosed
between /¢ and «/ and a leading L or R in the comment indicates left or right associativity,

respectively.
The machine checked syntax is attached as an appendix. In the body of the paper, we will
relax the assumption that a single character appear between **, e.g. *->* will be allowed.

2. Types
Each object in ML has a type, with the basic types being
basic_type
3 Gl /& type of () «/
{ ’‘bool’
i ‘int’
i ‘token’ /% characters between ‘* «/

The only object of type . “ is the expression * ()’ called empty. (Luca Cardelli points out that
there is a lot of confusion about the names of * () v ‘I3, and “.’. In[2], “()’ is called the
triv value, ‘.’ the triv type, and ‘[]* the nil list.) Integers and booleans are as expected, with
tokens consisting of a sequence of characters enclosed between **.

Given an object of some type, e.g. int, it is possible to apply the type operator 1ist to
define a list of elements of the type, e.g. int list. As suggested by this example, type
operators are postfix, and their syntax is given by the following fragment from [3):

8_type ¢ type_arg ID |

type.arg: s_type /e Bingle type argument «/
P °(° type “,’ ... ‘,’ type °)’

Since s_type can also generate a parenthesized type, the above syntax is ambiguous, since

both productions for type_arg can generate, say (int). The ambiguity can be eliminated

simply by insisting that the second production for type_arg generate two or more types in

parentheses.

3. Declarations

When expressions get large, or when there are common subexpressions, it is convenient to
define subsidiary expressions using the let construct. For example, the following expressions
are equivalent

let z = a+b+c in z ¢« 2z « =
(a+b+c)#(a+bec)s(a+bec)

Subsidiary expressions may also be used to define functions. Note for example the use of a
squaring function in the following expression for b®

let 8q(y) = yay
in 8q (b « gq(b))

In ML, the let part of the above expressions can appear (without the in part) as a declara-
tion. Phrases like z=a+b+c and sq(y)=yey are called bindings. Formal parameters like y and
z are called varstructs.

It is convenient to allow varstructs to have some structure, e. g. pairs make it easier to deal
with functions of two arguments. in additon types can be associated with varstructs as sug-
gested by v:type.

Type constraints using :type lead to an ambiguity that can be illustrated us;ing:
let £ a : type = exp

The syntax in [3] admits the two distinct parses suggested by the parenthesizations

£ (a:type)
(£ a):type

In the former case, type is associated with the argument a, while in the latter case it 1s associ-
ated with the result of applying £ to a.

A similar ambiguiry involving type constraints arises with curried functions like

let g x y = exp
Now add a type constraint for x:

let gx:tys=exp
At this point there is an ambiguity, because (t ¥) is a legal type expression - recall the discus-
sion of type arguments in Section 2.

The ambiguity in the above examples can be resolved by requiring that type constraints be
parenthesized. However, we go further and insist that a varstruct in a function definition be
parenthesized if it is not an identifier. This choice is motivated by examples like

let f a,b = exp
and
£ a,b = exp

According to the syntax in [3], the subexpression £ a,b=exp is parsed differently in declara-
tions and expressions. The reason is that Juxtaposition for function application binds very tightly
in expressions, but in declarations juxtaposition is weaker than operators like ‘,‘. By insisting
that a varstruct in a function definition be parenthesized if it is not an identifier, we treat expres-
sions and declarations uniformly. Incidentally, following [3], the above strings are parsed as:

let f(a,b) = exp
((f a), (b= exp))

The syntax of varstructs uses three nonterminals var1, var2, and var3 to set the pre-
cedence properly. As an aside, the suffix in var3.p, motivated by “plus”, suggests one or
more instances of var3. The additional s in var1.ps suggests one or more instances of var1
separated by ‘;’.

var 1 ¢ var1 ’,’ var1 /+« R pairing &/
! var1 .’ var1 /# R list cons ./
! var2
H

var2 : var2 ‘:’ type /e type constraint ./
{ var3
H

var3 ¢ ID
R E I /e empty varstruct e/
i °(° vart *)’ :
IR LR /% empty list «/
i ‘[’ vari.ps ’)’ /% var1 ‘;’ ... ‘3’ var1l &/
H

vari.ps : var1
{

vari.ps ‘;’ wvar1

Simultaneous bindings are accommodated by the following syntax.

bind1 : bind1 ‘and’ bind2
! bind2

’

bind2 ¢ vart ‘=’ exp1 e gimple binding «/
! ID var3.p ‘=’ exp1 /e function definition &/
{ ID var3.p ‘:’ type ‘=’ exp1
{ °{’ bind1 ‘}’ /e new rule, see section 4 «/
H

var3.p ¢ wvar3

{ var3.p var3
’
Declarations consist of let followed by a binding:

decl ¢ ‘let’ bind1 /% ordinary variables «/
HEN

4. Abstraction and local declarations

In addition to the let construct for subsidiary expressions (mentioned in Section 3), ML
has an equivalent where construct:

let v = e1 in e = e where v = e1

There is no trouble in mixing let and where. It is easy to see that
let v1 = e1 where v2 = e2

can only be parenthesized:
let v1 = (e1 where v2 = e2)

Ambiguity arises when simultaneous bindings using and are allowed. Since where occurs in
expressions while and occurs in bindings, the syntax in [3] says nothing about their relative pre-
cedence. As a result, both of the following expressions are ambiguous:

e where v1 = e1 where v2 = e2 and v3 = e3
let v1 = e1 where v2 = e2 and v3 = e3

The former case is reminiscent of the dangling-else in Algol 60: attaching the and to the nearest
where leads to !

e where v1 = (e1 where v2 = e2 and v3 = e3)

A case can also be made for nor attaching an and to the nearest where. For example, treating
where as 2 more local declaration than let suggests the parenthesization:

“let v1 = (e1 where v2 = e2) and v3 = e3

Since it is difficult to choose between the above possibilities, we restrict the syntax of
where expressions. We follow [2] and resolve the difficulty by not allowing simultaneous bind-
ings in conjunction with where unless they are enclosed between braces {}. (As far is parsing
is concerned, there is no problem if normal parentheses are used instead of braces.)

More precisely, the following syntax will be used:

exp1 ¢ '\’ var3.p ‘.’ exp1 /e lambda abstraction &/
i decl ‘in’ exp1 /e local declaration «/
{ exp2 ’‘where’ bind2 /e let bind2 in exp2 «/
(]
]

Type bindings are handled similiarly.

5. Expressions

With the exception of the *+ operator, all other expression constructs are easy to handle.
Besides its use for addition in expressions, ‘+’ was used for the disjoint sum of types in the
fragment in Section 1. Moreover, the operator is left associative in expressions and right associa-
tive in type expressions.

Yacc provides a mechanism for temporarily overriding the declared precedence of an opera-
tor. The Xprec in the following syntax rule

exp ST
{ exp '+’ exp Xprec PLUS
forces the precedence of ‘+* in this production to be the same as that of PLUS.

The difficulties with *+‘ do not end with the above local precedence declaration. It is not
clear which sense of “+“ is intended in the following expression:

X :te+u

As in [2], t+u will be treated as a domain. This is the reason for the only shift/reduce conflict
in the grammar in the appendices.

The precedence and associativity of operators in [3] and [2] is different. The attached gram-
mar follows [3]. Precedence and associativity in [2] is suggested by:

%nonassoc e

X¥right “a?

%¥right ‘@’

Xleft OR

Xleft ‘&’

Xleft NOT

xleft l-l I>l I<I
Xleft -t et
Xleft WA 34

6. User defined infix operators

ML allows the user to define “any identifier (and certain single characters)” as infix opera-
tors. “Such user defined infixes bind tighter than the infix ‘... > ... ! ..’ but weaker than
‘or’ [3].”

Since Yacc builds parsing tables when the grammar is presented, it is not convenient to add
new infix operators. However, some provisions can be made for user defined infix operators by
adding n new operators INFIX,, - - - ,INFIX,, where n is a large enough constant chosen at
parser construction time. The lexical analyzer can keep a table of identifiers that have been
defined to be infix operators. When an identifier declared to have the same precedence as INFIX,
is recognized, the lexical analyzer returns the token INFIX;, setting the global variable yyilval
to indicate which identifier was seen (as usual). Similar arrangements can be made for single
character infix operators.

Acknowledgements

This paper could not have been written without the help and encouragement of Luca Car-
delli and Dave MacQueen.

References

1. J. W. Backus, “The syntax and semantics of the proposed international algebraic language
of the Zurich ACM-GAMM Conference,” pp. 125-132 in Proc. Intl. Conf. Information Pro-
cessing, Unesco, Paris (1960).

2. L. Cardelli, VAX-ML Manual, Bell Laboratories, Murray Hill NJ (to appear 1983).
3. M.]. Gordon, A.]. Milner, and C. P. Wadsworth, Edinburgh LCF, Lecture Notes in Com-
puter Science 78, Springer-Verlag, Berlin (1979).

4. 5. C. Johnson, “Yacc - yet another compiler compiler,” CSTR 32, Bell Laboratories,
Murray Hill NJ (uly 1975). See the UNIX Programmer’s Manual 2 Section 19 (January
1979)

Nov 29 12:03 1982 plan Page ’

7 & yacc grammar for ml is obtained by including the
files indicated. the inclusion can be done using the
¢ preprocessor (this file is called plan):

/lib/epp -P plan
the resulting grammar has 1 shift/reduce conflict

1 74

#include "tokens"”

Xtoken constant

%Xstart exp01

%%

#include "types"”

#include "declarations”

#include "exp”

Nov 29 10:05 1982 tokens Page 8

g

token names formed by mapping to upper case, e.g. int => INT

e/

Xtoken
%token
¥token
%token

Xtoken
%Xtoken
Xtoken
%Xtoken
%Xtoken
Xtoken
%Xtoken
%token
%Xtoken
Xtoken
Xtoken
%token

/&

precedence in type expressions

&/

%Xright
Xright
%right

/e

ABS ABSRECTYPE ABSTYPE AND BOOL ELSE FAIL PAILWITH

IF IN INT LET LETREC LETREF LETTYPE LOOP
REC REF THEN TOKEN TYPE WHERE WHEREABSRECTYPE
WHEREABSTYPE WHEREREC WHEREREF WHERETYPE WITH

ASS
XX
XBS
COND
ID
LAM
@BS
QQ
STAR
STARO
STAR1
STARID

VL
/&
/&
/e

/e
/s
/&
/&
/e
/&
/8

‘=
11
IN

=>

\

RN

??

&, &%, &S, ,,
«0, 40, ...
«1, «s21, ...
«ID, ««ID, ...

precedence in varstructs and expressions

e/

Xright
X¥nonassoc
Xright
Xright
%nonassoc
Xleft
%right
Xright
X¥nonassoc
%¥nonassoc
Xleft
Xleft
Xleft
Xleft
Xnonassoc

DO
OR
'&'
NOT

l=l

l’l
4 4
4
4 4

e _?

PLUS
l./l

4

UMINUS

/s

/&

R pairing

R list cons

e/
«/
«/
&/

&/
&/
&/
&/
&/
«/
&/

s/

«/

Nov 11 15:21 1982 types Page 2

/e
types
type variables, used to denote the types of
polymorphic functionse, begin with a star
e/
type ¢ type ARR type /% R continuoue function «/
| type ‘+’ type /# R disjoint sum «/
| type ‘#’ type /% R product &/
{ s_type /e Bimple type «/
H
8_type basic_type
type_var
ID /e defined, abstract type &/

type_arg ID
0(0 t}'pe l)l

type_arg: s_type

i ‘(’ type.2pc ‘)’ /u two or more arguments &/
H

type.2pc: type ‘,’ type
i type.2pc ‘,’ type
H

type_var: STAR /s , as, e &/
i STARO /s «0, «s«0, ... &/
{ STAR1 /% 1, es81, ... «/
{ STARID e «ID, «+ID, ... «/
H

basic_type

P /e type of () &/

Nov 29 10:51 1982 declarations Page]

/&
declarations decl

&/

decl ¢ LET bind1 /s
{ LETREP bind1 /s
{ LETREC bind1 /e
{ LETTYPE type_bind1 /s
| ABSTYPE atype_bind1 /s
{ ABSRECTYPE atype_bind1/s
H

/&
bindings bind1, bind2

&/

bind1 ¢ bind1 AND bind2
{ bind2
H

bind2 ¢ var1 ‘=’ exp01 /e
i ID var3.p ‘=’ exp01 /=
i ID var3.p ‘:’ type ‘=’ exp01
i ‘{’ bind1 ’}’ /s
H

var3.p : var3
{ var3.p var3
H

/&
varstructs vari, var2, var3

«/

var1 ¢ var1 ’,’ var9 /% R
| var1 ’.’ var9 /¢ R
i var2
H

var2 ¢ var2 ‘:’ type - /&
i var3
H

var3 ¢ ID
‘ 4 (o 0)] /.

1 °(’ vart ’)’

' 0[0 0]' /8
! °[’ var1.ps]’ /e
H

vari.ps : var1i
{ vari.ps ‘;’ vari
H

/&

type bindings

ordinary variables
assignable variables
recursive functions
defined types
abstract types

e/
e/
&/
e/
&/

recursive abstract types#/

simple binding
function definition

new rule

pairing
list cons

type constraint

empty varstruct

empty list

var1 ‘;’ ‘3’ wvar1

e/
&/

&/

«/
&/

&/

e/

&/
e/

Nov 29 10:51 1982 declarations Page 11

&/

type_bind1
type_bind1 AND type_bind2
type_bind2

type_bind2
ID ‘=’ type

atype_bind1
dummy_arg ID ‘=’ type AND atype_bind1
dummy_arg ID ‘=’ type WITH bind1

atype_bind2
dummy_arg ID ‘=’ type WITH bind2

we oo

dummy_arg
¢ /e« empty &/
| type_var
‘(’ type_var.pc ‘)’

type_var.pc
¢ type_var
| type_var.pc ’,’ type_var

Nev 29 10:05 1982 exp Page 12

/&
&/

exp0 1

exp02

exp03

catches

catch

catchall

expl4

expressions exp01, exp02, ... y expi1

°
.
]
]
[]
]
i
!
{
[]
]
!
]
]
°
1]

©0 wmw oo

LAM var3.p ‘.’
decl IN exp01

exp02 WHERE bind2

exp02 WHEREREF bind2

exp02 WHEREREC bind2

exp02 WHERETYPE type_bind2
exp02 WHEREABSTYPE atype_bind2
exp02 WHEREABSRECTYPE atype_bind2

exp02

exp03 ‘;’ expd2
exp03

exp04 catches

catchall
catch catches

QQ exp11 exp0l4
XX exp11 exp04

/s empty #/
‘?’ exp04
1’ exp04
QBS ID exp0D4
XBS ID expl4

conditional
FAIL

FAILWITH exp05
var1 ASS exp05

conditional

else

exp05

VO ®o oo oo o= 0o

IF exp05 THEN exp05
IF exp05 LOOP exp05

/e
/&
/&
/e
/&

/&

/e
/&

/&
/8

/&
/&

/e
/&
/e
/&

IF exp05 THEN exp05 conditional
IF exp05 LOOP exp05 conditional

else

ELSE exp05
LOOP exp05

exp05 ’,’ exp0S

/& R

R
R
R

LAM = \, abstraction
local declaration

let bind2 in exp02
bind2 derives a string
ending in exp01

sequencing

failure trap and loop

catch all failures

- QQ = ?P?, trap

XX = ||, trap’n iterate

QBS = ?\ID
XBS = |\ID

conditional and loop
failwith ‘fail*
failure with token
ASS = :=, assignment

pairing

&/
«/
«/
e/
«/

&/

e/
&/

&/
&/

&/
&/

&/
&/
&/
«/

e/

Nov 29 10:05 1982 exp Page

exp06

exp07

exp08

exp09

expi0

exp11

DO exp05
exp06

exp07 COND exp06
exp07

exp07 OR exp07
exp07 ‘&’ exp07
NOT exp07

exp07 ‘=’ exp07
exp07 ‘@’ exp0d7
exp07 ‘.’ exp07
exp07 ‘>’ exp0d7
exp07 ‘<’ exp07
exp07 ‘-’ exp07
exp07 ‘+’ exp07
exp07 '/’ exp0d7
exp07 ‘#’ exp07
exp08

‘«’ axpl8
exp09

exp09 ‘:’ type
expi0

expi0 expi1
expi1

ID

constant

*(’ exp01 *)’
l(f I)I

o[p .xp°1 o]o
0[0 l]l

13

*{’ exp06

%Xprec PLUS

VL]

/a
Vs
/&
/e
/s
/&
/&
/&
/e
/e
/&
/&

/&

/&

/&
/s
/e
/e

WWwe WM

ol < < o

‘eval. for side effects

COND = =>

disjunction
conjunction
negation
equality

list append
list cons
greater than
less than
subtraction
PLUS since + iB %Xright
division
multiplication

unary minus

type constraint

function application

variable

equiv. exp01
empty

generates a list
empty list

e/

&/

&/
«/
&/
&/
&/
&/
&/
&/
&/
&/
&/
&/

&/

&/

&/

&/

&/
&/
«/
&/

The Functional Abstract Machine

Luca Cardelli

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

The Functional Abstract Machine (Fam) is a stack machine designed to support functional
languages on large address space computers. It can be considered a SECD machine [1] which has
been optimized to allow very fast function application and the use of true stacks (as opposed to
linked lists).

The machine qualifies to be called functional because it supports functional objects (closures, which
are dynamically allocated and garbage collected), and aims to make function application as fast as,
say, taking the head of a list. All the optimization and support techniques which make application
slower are strictly avoided, while tail recursion and pattern-matching calls are supported. Res-
tricted side effects and arrays are provided, but they are less efficient than one might expect.
Moreover the performance of the proposed garbage collector deteriorates in the presence of large
numbers of updatable objects.

The machine is intended to make compilation from high level languages easy and regular, by pro-
viding a rich and powerful set of operations and an open-ended collection of data types. This rich-
ness of types can also fadilitate portahility, because every type can be independently implemented
in different ways. However the number of machine instructions tends to be high, and in general
there is little concern for minimality.

The instructions of the machine are not supposed to be interpreted, but assembled into machine
code and then executed. This explains why no optimized special-case operations are provided; spe-
cial cases can be easily detected at assembly time.

For efficiency considerations, the abstract machine is not supposed to perform run-time type check-
ing (even if a hardware implementation of it might), and hence it is not type-safe. Moreover, as a
matter of principle, there is no primitive to test the type of an object; the correct application of
machine operations should be guaranteed by typechecking in the source language. Where needed,
the effect of run-time typechecking can be achieved by the use of variant (i.e. tagged) data types.

2. The State

The state of the abstract machine is determined by six pointers, together with their denotations,
and a set of memory locations. The pointers are the Argument Pointer, the Frame Pointer, the
Stack Pointer, the Trap Pointer, the Program Counter and the Environment Pointer. They point to
three independent stacks and, directly or indirectly, to the data heap. The memory takes care of
side-effects in the heap and includes the file system.

The Argument Pointer (AP) points to the top of the Argument Stack (AS), where arguments are
loaded to be passed to functions and results of functions are delivered. This stack is also used to
stare local and temporary values. In all machine operations which take displacements on AS, the
first object on AS is at displacement zero.

The Frame Pointer (FP) points to the current closure (or frame) (FR) consisting of the text of the
currently executed program, and of an environment for the free variables of the program.

N
N

The State

The Program Counter (PC) points to the program to be executed (PR) (which is part of the current
closure).

The Stack Pointer (SP) points to the top of the Renwrn Stack (RS), where program counter and clo-
sure pointer are saved during function calls.

The Trap Pointer (TP) points to the Trap Stack (TS), where trap frames are stored. A trap frame is
a record of the state of the machine, which can be used to resume a previous machine state (side
effects in the heap are not reverted).

The Environment Pointer (EP) also points to AS, and it defines the top level environment of execu-
tion for use in interactive systems. At the beginning of execution, EP is the same as AP, but it
- normally grows because of top level definitions.

The abstract machine assumes the existence of a memory of cells of different sizes. Typical cell
types are: friv, containing the value triv; bool, containing booleans; inf, containing unbounded pre-
dision integers; string, containing character strings; ref, containing updatable pointers (the only
updatable objects in the machine together with arrays); pair, & pair of cells; nil, an empty-list cell;
list, & cell paired with a nil or list cell, used to represent linear lists; record, an n-tuple of cells;
variant, a tagged cell, used to represent disjoint union types; fext, a cell containing executable code;
closure, a function cell consisting of a text cell and a set of cells for the global variables of the text;
array, an efficient representation of lists of refs.

The exact format of these cells is inessential, as long as the primitive operations on them have the
expected properties. The abstract machine does not assume these cells to contain any information
about the type; however the garbage collector will want to know at least about the format of the
cells (different types may have the same storage format) This can be effidently encoded in the
address of a cell. The generic equality operations use this information too.

Stacks and cells contain pointers to other cells, and this convention will be strictly used in the pic-
tures which follow. However in practice cells which are not bigger then a pointer (e.g. bool or
short integer) are stored directly, instead of storing pointers to them. These are called unbaxed
cells, and it must be possible to distinguish them from pointers for the sake of the garbage collector
(e.g. by imposing that every pointer has a value bigger then the value of any unboxed cell). Ref
cells must always be baxed, to guarantee the sharing of side-effects.

3. Operational Semantics

The semantics of the abstract machine is given operationally by state transitions. A machine state is
represented by a tuple:

(AS, RS, FR, PR, TS, ES, M)

some conditions must hold for a tuple to be a valid machine state, and these are mentioned below.
For any stack S (i.e. AS, RS, TS ar ES) we write S.x:t for the operation of pushing a cell x of type
t on the top of S (t may contain type variables a, B, etc.). The empty stack is <> and S.x:tis a
stack iff S is a stack. Moreover S§[n]x:t is a stack which is the same as S, except that the n-th cell

3

from the top contains x of type t; the top cell of S has displacement 0. In case of conflicting substi-
tutions, like §{njx:t{n]x":t’, the rightmost substitution is the valid one.

A tuple (AS, KRS, FR, PR, TS, ES, M) is a machine state only if ES (painted to by EP) is equal to
AS minus some of the top cells of AS.

The frame FR (pointed to by FP) has the form:
closure(text(c,ly, .., 1) X X)t a=B

where c is a sequence of machine operations, ; are literals of c and x; are values for the free vari-
ables of (the source program whose translation is) c. The literals of ¢ are "big constants” like
strings and inner lambda expressions, which occur in (the program whose translation is) c; they are
taken out of the code so that the garbage collector can access them easily. The code ¢ together with
its literals is a text (and a literal can be a text). A text together with its free variables is a closwre.
Every closure implements a function having some type a-.

The program PR (pointed to by PC) is a string of abstract machine operations. The empty pro-
gram is <> and the initial instruction of PR is singled out by writing op(x;:a,,...x e).PR’,
where x; are the parameters of op.

The memory M is a pair of functions:

M = L F: (address - value) X (streamname - stream)

where L are the locations and F is the file system. A tuple (AS, RS, FR, PR, TS, ES, M) is a
machine state only if M defines all the addresses and file names mentioned by the other elements
of the tuple. Stream names are strings, and streams (wlich represent files) are lists of characters
(in terms of abstract machine data structures, characters are 1-character strings). For any stream q
and character c, c.q is the result of prefixing c at the head of q, and q.c is the result of appending
c at the tail of q (we also use s.q and g.s for strings s=c,..c); <> is the empty stream.

Addresses (the formal characterization of ref cells) are, say, integers; values are all the abstract
machine data types, including addresses and stream names but excluding streams. Given an
address a, M(a) = 1(a) is the value contained at that address in L, and M[v/a] = L|v/a] is the
memory which is the same as M, except that 1(a) is the value v. Given a string s, M(s) = F(s) is
the stream with stream name s in F, and M[q/s] = Flg/s] is the memory which is the same as M,
except that F(s) is the stream q. The convention about conflicting substitutions mentioned above
applies.

Every machine operation op(..) implements a state transition, denote by:

(AS, RS, FR, op(x;:a,,...x :a).FR, TS, ES, M) =>
(AS', RS', FR’, PR', TS, ES', M)

In order the make the operation more visible, we normally use the following equivalent notation:

op(x,:ay,...X @)
(AS, RS, FR, “PR, TS, ES, M) =>
(AS, RS, FR', PR, TS', ES’, M)

There may be several state transitions for the same operation, with different starting states. This
allows us to express operations which discriminate on some values present on the stacks (e.g. con-
ditional jumps). There may even be several state transitions for the same operation and the same
starting state, which expresses nondeterministic behaviour (e.g. a random number generatar, ar
simply selecting a new unused address). Conversely, there may be no state transition for some
operation in some state: this means that the machine reached an inconsistent state, and the result
of the operation is unpredictable. Finally there may be no operation to execute (i.e. PR=<>), in
which case the machine stops.

sl

Some operations may fai! on some inputs (e.g. taking the head of an empty list). This is a well
defined situation, and we use the notation:

Op(Xyiey,.. K t0)
(AS, RS, FR, “PR, TS, ES, M) =>
(AS', RS, FR', PR, TS', ES', M")
2op' if p

to indicate that we have a failure with reason 'op’ (a string) when the predicate p is true of the
starting state (AS, RS, FR, “.PR, TS, ES, M), otherwise the normal state transition will happen.
This is only an abbreviation for the following state transitions:

op(x ia,.. X a)
(AS, RS, FR, “PR, TS, ES, M) => (if not p)
(AS', RS', FR', PR', TS', ES', M")

op(x,iay,...x ta)
(AS, RS, FR, “PR, TS, ES, M) => (if p)
(AS.'op’, RS, FR, FailWith().PR, TS, ES, M)

where the FailWith operation, which is executed next, is defined in the section on Trap Opera-
tions.
4. Data Operations

These are operations which transfer data back and forth between the Argument Stack and data
cells. In general they take n arguments (n=0) from the top of AS popping the stack n times, and
push back m results (m=1).

AP AP

7 —des arg 5 A ———> result -

L4

: Op :
—+—> &g, —— result 1

AS n=0, m>0 AS

NN NN
Data Operations

Data operations may fail, and these failures can be trapped. Abstract machine failures are indistin-
guishable from user defined failures (see sections on failures).

The set of abstract machine data types is open ended, and so is the set of data operations. The rest
of this section describes data types and operations which are thought to be commonly useful, but
are often meant as simple suggestions. Some data types are used as arguments to basic machine
operations, and hence must be present in every implementation. They include triv, boal, (short)
int, string, list and closure. Closures are treated in a separate section.

4.1 Triv Opersations

Triv is the type containing the single object triv. There is only one operation on this type, which
constructs and pushes a triv cell on AS.

Triv ()
(AS, RS, FR, “PR, TS, ES, M) =>
(AS.triv, RS, FR, PR, TS, ES, M)

4.2 Boolean Operations

Boolean operations construct and manipulate booleans in the usual ways. Conditional branches
could also be considered boolean operations, but they are described among the control operations.

True ()
(AS, RS, FR, “PR, TS, E§, M) =>
(AS.true, RS, FR, PR, TS, ES, M)

False ()
(AS, RS, FR, “PR, TS, ES, M) =>
(AS.false, RS, FR, PR, TS, ES, M)

Not ()
(AS.b:bool, RS, FR, “.PR, TS, ES, M) =>
(AS.not(b), RS, FR, PR, TS, ES, M)

And ()
(AS.b:bool.b:bool, RS, FR, “.PR, TS, ES, M) =>
(AS.and(b,b"), RS, FR, PR, TS, ES, M)

Or ()
(AS.b:bool.b":bool, RS, FR, “.PR, TS, ES, M) =>
(AS.or(b,b), RS, FR, PR, TS, ES, M)

BoolEq ()
(AS.b:bool.b":bool, RS, FR, “.PR, TS, E§, M) =>
(AS.b=b’, RS, FR, PR, TS, ES, M)

4.3 Integer Operations

Unbounded predision integers are the standard. The operation Divide fails with string ‘divide’
when the denumerator is zero, and Modulo fails with string ‘modulo’ when the second argument is
zero. All the other operations are always defined (actually a ’collect’ failure is generated when the
result of an integer operation overflows the available memory). Short integers are acceptable as a
partial implementation; overflows should then produce failures with strings ‘minus’, 'plus’, "diff’
and 'times’. Real numbers, if implemented, should be a different data type.

Int (n: int)
(AS, RS, FR, “PR, TS, ES, M) =>
(AS.n, RS, FR, PR, TS, ES, M)

Minus ()
(AS.n:int, RS, FR, “.PR, TS, ES, M) =>
(AS.-n, RS, FR, PR, TS, ES, M)
?'minus’ on overflow

Plus ()
(AS.n:int.m:int, RS, FR, “PR, TS, E§, M) =>
(AS.n+m, RS, FR, PR, TS, ES, M)
7'plus’ on overflow

Diff ()
(AS.n:int.m:int, RS, FR, “PR, TS, E§, M) =>
(AS.n—m, RS, FR, PR, TS, ES, M)
2'diff* on overflow

Times ()
(AS.n:int.m:int, RS, FR, “PR, TS, E§, M) =>
(AS.nxm, RS, FR, PR, TS, ES, M)
7'times’ on overflow

Divide ()
(AS.n:int.m:int, RS, FR, “PR, TS, ES, M) =>
(AS.n/m, RS, FR, PR, TS, ES, M)
2'divide’ if m=0

Modulo ()
(AS.n:int.m:int, RS, FR, “PR, TS, ES, M) =>
(AS.mod(n,m), RS, FR, PR, TS, ES, M)
2"modulo’ if m=0

Greater ()
(AS.n:int.m:int, RS, FR, “PR, TS, E§, M) =>
(AS.n>m, RS, FR, PR, TS, ES, M)

Less ()
(AS.n:int.m:int, RS, FR, “PR, TS, ES, M) =>
(AS.n<m, RS, FR, PR, TS, ES, M)

GreaterEq ()
(AS.n:int.m:int, RS, FR, “PR, TS, ES, M) =>
(AS.n=m, RS, FR, PR, TS, ES, M)

LessEq ()
(AS.n:int.m:int, RS, FR, “.PR, TS, E§, M) =>
(AS.nsm, RS, FR, PR, TS, ES, M)

IntEq ()
(AS.n:int.m:int, RS, FR, PR, TS, E§, M) =>
(AS.n=m, RS, FR, PR, TS, ES, M)

4.4 String Operations

Strings are ordered sequences of asdii characters. There is no limitation on their length apart from
the size of the memory, and the Length operation is assumed to take constant time. SubString
extracts a substring from a string, given a starting position (where the first char is position 1) and
a substring size (may fail with 'substring’). Explode converts a string into a list of l-character
strings which are its characters. Implode concatenates a list of strings into a single string. Explode-
Ascii converts a string into a list of numbers which are the Ascii codes for the characters of the
string. ImplodeAscii converts a list of numbers (Ascii codes) into the corresponding string (may fail

.7.

with :imp]odcascii'), IntToString converts an integer into its string represeatation ("—' is used for
negative numbers). StringTolmt converts a string representing a number into that number; between
digits. StringEq compares two strings: they are equal if their length is the same and they contain
the same characters.

Length ()
(AS.s:string, RS, FR, “PR, TS, ES, M) =>
(AS.length(s), RS, FR, PR, TS, ES, M)

SubString ()
(AS.s:string. from:int .size:int, RS, FR, “PR, TS, ES, M) =>
(AS.substring(s,from,size), RS, FR, PR, TS, ES, M)
?'substring’ if from<1 or size <0 or from +size—1>length(s)

Explode ()
(AS.s:string, RS, FR, “PR, TS, ES, M) =>
(AS.slistring list, RS, FR, PR, TS, ES, M)

Implode ()
(AS.sl:string list, RS, FR, . TS, ES, M) =>
(AS.s:string, RS, FR, PR, TS, ES, M)

ExplodeAscii ()
(AS.s:string, RS, FR, PR, TS, ES, M) =
(AS.nLint list, RS, FR, PR, TS, ES, M)

ImplodeAscii ()
(AS.nl:int list, RS, FR, “PR, TS, ES, M) =>
(AS.s:string, RS, FR, PR, TS, ES, M)
?"implodeascii’ if nl contains some n<0 or n>127

IntToString ()
(AS.n:int, RS, FR, “.PR, TS, ES, M) =>
(AS.sstring, RS, FR, PR, TS, ES, M)

StringTolnt ()
(AS.s:string, RS, FR, “PR, TS, ES, M) =>
(AS.niit, RS, FR, PR, TS, ES, M)
'stringtoint’ if s is not a valid int representation

StringEq ()
(AS.s:string.s":string, RS, FR, “PR, TS, ES, M) =>
(ASs=s", RS, FR, PR, TS, ES, M)

4.5 Reference Operations

Reference is the basic side-effectable type, to be used to implement assignable variables, updatable
structures, circular data, call-by-reference, call-by-need, etc. Note that data like pairs, lists etc. are
not assignable: this fact is crudally used by the garbage collector.

A reference is simply an assignable pointer to another cell. Ref builds a reference to an msung
object. Ar extracts the contents of a reference. Assign takes a reference and a value, and assigns
the value as the new content of the reference; the result of the assignment operation is triv. Des-
tRef is like At, but takes two AS displacements: the first ane is where the reference is, and the
second one is where the content of the reference is stored.

Ref ()
(ASx:a, RS, FR, “PR, TS, E§, M) =>
(AS.iaddress, RS, FR, PR, TS, ES, M[x/1))
where | is 8 new address.

At ()
(AS.l:address, RS, FR, “PR, TS, ES, M) =>
(AS.M(), RS, FR, PR, TS, ER, M)

Assign ()
(AS.l:address.x:a, RS, FR, PR, TS, ES, M) =>
(AS.triv, RS, FR, PR, TS, ES, M[x/1])

DestRef (n: int=0, m: int=0)
(AS[n]l:address, RS, FR, “.P§, TS, E§, M) =>
(AS[n]i[m]M(D), RS, FR, PR, TS, ES, M)

Note that, according to the convention on conflicting indexing (see the section on Operational
Semantics), if n=m then the address 1 in AS is overwritten by its contents.

4.6 Pair Operations
A pair cell (x,y) is simply & pair of cells x and y, with a left and a right component.

Pair ()
(AS.x:e.y:B, RS, FR, “PR, TS, ES, M) =>
(AS.(x,y), RS, FR, PR, TS, ES, M)
Left ()
(AS.(x:a,y:B), RS, FR, “.PR, TS, ES§, M) =>
(AS.x, RS, FR, PR, TS, E§, M)

Right ()
(AS.(x:ay:B), RS, FR, “PR, TS, ES, M) =>
(AS.y, RS, FR, PR, TS, ES, M)

DestPair (n: int=0, m: int=0, p: int=0)
(AS[n)(x:a,y:B), RS, FR, “.PR, TS, E§, M) =>
- (AS[n](x,y)[mx[ply. RS, FR, PR, TS, ES, M)

4.7 List Operations

A list cell can be a Nil cell or a Cons cell containing an arbitrary cell (the head of the list) and
another list cell (the tail). Head and Tail fail with 'head’ and 'tail’ on null lists. DestNil takes a list
at some depth on AS and fails with *destnil’ if the list is not null. DestCons takes three AS dis-
placements; the first one must contain a non-null list (otherwise fails with 'destcons’), the second
one is where the head of that list is copied, and the third one is where the tail of that list is copied.
The three displacements may coincide: the first one will be overwritten by the second and third,
and the second ome will be overwritten by the third.

Nil ()
(AS, RS, FR, “PR, TS, ES, M) =>
(AS.nil, RS, FR, PR, TS, ES, M)

Cons ()

(AS.x:a.lia list, RS, FR, “.PR, TS, ES, M) =>
(AS.cons(x,l), RS, FR, PR, TS, ES, M)

Head ()
(AS.L:a list, RS, FR, “PR, TS, ES, M) =>
(AS.head(l), RS, FR, PR, TS, ES, M)
?"head’ if 1=nil

Tail ()
(AS.L:a list, RS, FR, “PR, TS, E§, M) =>
(AS.teil(l), RS, FR, PR, TS, E§, M)
?'tail" if 1=nil

Null ()
(AS.I:a list, RS, FR, “.PR, TS, ES, M) =>
(AS.I=nil, RS, FR, PR, TS, ES, M)

DestNil (n: int=0)
(AS[n)l:a list, RS, FR, “.PR, TS, ES, M) =>
(AS[n]l:a list, RS, FR, PR, TS, ES, M)
?'destnil’ if 1snil

DestCons (n: int=0, m: int=0, p: int=0)
(AS[n]l:a list, RS, FR, “.PR, TS, ES, M) =>
(A S[n]l[m]head(l) [pltail(l), RS, FR, PR, TS, ES, M)
2'destcons’ if I=nil

4.8 Record Operations

Records are tuples of cells (written (fx :al,..,xn:k[s)) with a constant-time field selection operation.
Record builds a record of n fields taken from AS. Field selects a field of a record. DestRecord
takes an AS displacement and a list of n AS displacements (for records of n fields) and distributes
the fields on AS accarding to the displacements. The rightmost displacements overwrite the previ-
ous ones when they caincide.

Record (n: int=0)
(ASx iy Xt RS, FR, “PR, TS, ES, M) =>
ES, M)

(AS.(k...x,), RS, FR, PR, TS,

Field (i: int=1=n)
(AS.(kyay,...xia), RS, FR, “PR, TS, ES, M) =>
(AS.x, RS, FR, PR, TS, E§, M)

DestRecord (n: int=0, [m,: int=0; .. ; m; int=0])
(AS{n](kI:ul,...xp:upb. RS, FR, “PR, TS, ES, M) =>
(ASIn)(Ky....x DIm }x,..[m Jx,, RS, FR, PR, TS, ES, M)

The Field operation is undefined if the index i is out of bound; similarly DestRecord is undefined
if AS[n] is not a record of lenght p. As we already mentioned, it is assumed that these situations
can never arise at run time because of typechecking at the the source program level.

-10 -

4.9 Variant Operations

Variant cells (written [p=x:]) contain a tag a (an integer) and another cell x; they are used to
discriminate among a finite set of possibilities. Variant builds a variant with a given tag, taking
the contents from the stack. As extracts the contents of a variant, provided that the given tag
matches the variant tag (may fail with 'as’). Is tests whether a given tag is the tag of a variant on
the stack. DestVariant is like As, but works at an arbitrary displacement on AS and may fail with
'destvariant’. The Case operation associates a program with each variant tag, by making a
constant-time selection based on the tag of a variant on AS.

Veriant (a: int=1)
(AS.x:a, RS, FR, “PR, TS, E§, M) =>
(AS.[p=x]], RS, FR, PR, TS, ES, M)

As (a: int=1)
(AS.[la'=x:a], RS, FR, “PR, TS, ES, M) =>
(AS.x, RS, FR, PR, TS, ES, M)
?'as’ if a¥a’

Is (a: int=1)
(AS.[la'=x:a], RS, FR, “PR, TE, E§, M) =>
(AS.a=a', RS, FR, PR, TS, ES, M)

DestVariant (a: int=1, n: int=0, m: int=0)
(AS[n][ja’=x:a]l, RS, FR, “PR, TS, ES, M) =>
(AS[n][g'=x[][m]x, RS, FR, PR, TS, ES, M)
?'destvariant’ if a#a’

Case ([c;: a,-B, .., ¢ @ =B
(AS.[la;=x:a,], RS, FR, PR, TS, ES§, M) =>
(ASx, RS, FR, ¢;, TS, ES, M) (with 1sisp)

4.10 Array Operations

Arrays are considered a constant access time implementation of lists of references, and hence are
assignahle. Arrays can be built from lists or by tabulating functions in an interval, and can be
disassembled again into lists. Their LowerBound and Size attributes are also computed in constant
time.

Array takes a lowerbound and a list and makes an array with that lowerbound, whose i-th element
is the i-th element of the list; the size of the array is the length of the list. Tabulate takes a func-
tion f with integer domain, a lowerbound and a size, and makes an array with that size and lower-
bound whose i-th element is £(i), for i ranging from lowerbound to lowerbound+size—1; it fails if
the size is negative. LowerBound takes an array and returns its lowerbound. Size takes an array
and returns its size. Sub takes an array and an index i and returns the value of the i-th element of
the array; it fails if i is out of bounds. Update takes an array, an index i, and a value x and
updates the i-th element of the array by x, returning triv; it fails if i is out of bounds. ArrayToList
takes an array and makes a list of its contents in their order.

Array ()
(AS.Ib:int.e:a list, RS, FR, “PR, TS, ES, M) =>
(AS.array(lb,n,[1,,..,I.D. RS, FR, PR, TS, ES, M[nth(1,e)/1;]..[nth(n.e)/1])
where nth(i,e) is the i-th element of e,
n is the length of e, and I, are new addresses

Tabulate ()

¥l =

(AS.fint-a.lb:int.size:int, RS, FR, “.PR, TS, ES, M) =>
(As,aruy(lb,size,[ll,...ln]), RS, FR, PR, TS, ES, M[f(lb)/lﬂ..[f(lb-#—nizz-l)/l.])

?'tabulate” if size <0

where l' are new addresses

LowerBound ()
(AS.array(lb,sim.[lz....l_]). RS, FR, “PR TS, ES, M) =>
(AS.Ib, RS, FR, PR, TS, ES, M)

Size ()
(AS.array(lb,size,[1;,...I 1), RS, FR, “PR, TS, E§, M) =>
(AS.size, RS, FR, PR, TS, ES, M)

Sub ()
(AS.array(lb,size,[1,,..,]]).i:int, RS, FR, “PR, TS,ES, M) =>
(ASM(,_p.)» RS, FR, PR, TS, ES, M)
?'sub’ if i<Ib or i=lb+size

Update ()
(AS.an’ny(lb,sizz,[ll...,ln]).i:im.x:a. RS, FR, “PR, TS, ES, M) =>
(AS.triv, RS, FR, PR, TS, ES, M[x/1;_p..,])
2'update’ if i<lb or i=Ib +size

ArrayToList ()
(AS.array(lb,size,[1,,...] 1), RS, FR, PR, TS, ES, M) =>
(AS.cons(M(ll)...cons(M(ln) .nil)..), RS, FR, PR, TS, ES, M)

The operation 'array’ used above is the basic allocatar of array objects.

4.11 Equality

There are two general-purpose equality operations, apart from the equality operations on ground
types already described. They are Equal (structural equality) and Isomorphic (structural equality
on possibly drcular data).

Equal checks the structural equality of data, but it diverges on circular data structures. It fails with
string 'equal’ if the structures contain functional objects.

Isomorphic is like Equal, but on circular structures it returns true iff the infinite unfoldings of the
structures are equal. It fails with string ‘isomorphic’ if the structures contain functional objects.

Equal ()
(AS.x:a.y:a, RS, FR, “PR, TS, E§, M) =>
(AS.equal(x,y), RS, FR, PR, TS, ES, M)
2'equal’ if x or y contain closures

Isomorphic ()
(AS.x:a.y:a, RS, FR, “PR, TS, E§, M) =>
(AS.isomorphic(x,y), RS, FR, PR, TS, ES, M)
?'isomorphic’ if x or y contain closures

§. Stack Operations

Stack operations manipulate the argument stack. GetLocal(n) copies the n-th cell from the top of
AS onto AS. Infiare(n,m) inserts n null cells above the m-th cell from the top of AS. Deflate(n,m)
deletes n cells starting from the m-th cell from the top of AS; cells above and below the deleted
area are recompacted. Permute([p,; .. ;p,_;]) permutes the top n cells of AS simultaneously copy-
ing the i-th cell from the top into the pi-t’ix one, for every i in 0..n—1 (py..p,-., must be a permuta-
tion of 0..n—1).

GetLoczl (n: int=0)
(AS[n)x:a, RS, FR, PR, TS, ES, M) =>
(AS[n)x.x, RS, FR, PR, TS, ES, M)

Inflate (n: int=0, m: int=0)
(AS.xg_yiap_y--Xgag RS, FR, “PR, TS, ES, M) =>
(AS.triv, o _,.trive x_...x; RS, FR, PR, TS, ES, M)

Deflate (n: int=0, m: int=0)
(AS.X, ;o 1:%pem—1--%g%s RS, FR, “PR, TS, E§, M) =>
(AS.x,_;.Xp RS, FR, PR, TS, ES, M)

Permute ([p,: int=0=n-1;..;p,_,: int=0sn-1])
(AS.x,_,a,_,.%gaq RS, FR, “PR, TS, ES, M) =>
(AS.xp_l..xpo. RS, FR, PR, TS, ES, M)
An Inflate operation with m=0 pushes n cells on top of AS; similarly Deflate with m=0 pops n
cells from the top of AS.

AP |

7

AP L
Y e G s s]

N SN

GetlLocal

6. Closure Operations

A closure is a data object representing a function; it contains the text of the function and the value
of its free variables. The text of a function is in itself a rather complex structure; it contains a
sequence of instructions in some suitable machine language, and a set of literals which may be
strings or other text cells. Text literals are needed because a function may return another function
which is textually contained in it, and we must be able to extract its text (because of garbage col-
lection problems there can only be pointers fo cells, never pointers pointing inside cells). String
literals are useful when a function contains constant strings in its text. It is not necessary to allo-
cate those strings every time that function is executed; the allocation can be done once at assembly
time, and the strings can be saved in literals to be retrieved later.

Qlosures are created by placing the values for free variables and the text of the function on AS,
and then storing this information in a newly allocated closure cell. Closures for (mutually) recur-
sive functions may contain loops, and are allocated in two steps: dummy closures for a set of mutu-
ally recursive functions are first allocated in the heap, and later on recursive closures are built by

<18

filling the dummy closures. This way the closures may mutually contain pointers to the other
(dummy) closures.

The operations on closures are Closure (which creates a closure with arguments on AS), DumClo-
sure (which allocates an empty closure), RecClosure (which fills in dummy closures), GetGlobal
(which retrieves the value of a free (global) variable) and GetLiteral (which retrieves a literal from
the text of the closure). Moreover the closures Funld (identity function) and FunComp (function
compositions) are provided as primitives (mostly to allow peephole optimizers to optimize
occurrences of Id(x), Comp(f,Id) and Comp(Id,f)).

Funld ()
(AS, RS, FR, “.PR, TS, E§, M) =>
(AS.id, RS, FR, PR, TS, ES, M)

FunComp ()
(AS, RS, FR, “PR, TS, E§, M) =>
(AS.comp, RS, FR, PR, TS, ES, M)

Closure (n: int=0)
(AS.x iy Xt titext, RS, FR, “PR, TS, ES, M) =>
(AS.closure(t,x,,...x), RS, FR, PR, TS, ES, M)

DumClosure (n: int=0)
(AS, RS, FR, “PR, TS, ES§, M) =>
(AS.closure(triv,triv,,.. triv), RS, FR, PR, TS, ES, M)

RecClosure (n: int=0, m: int>n)
(AS.x.:a‘..xl:nl.t:text[m]closure(triv.trivl....triv.),
RS, FR, “PR, TS, ES, M) =>
(AS[m—n-—1]closure(t,x,,..,X,), RS, FR, PR, TS, ES, M)

GetGlobal (n: int=0=<p)
(AS, RS, closure(titext X ay,.. X :e), “PR, TS, ES, M) =>
(AS.x, RS, dosure(t.xo....xp). PR, TS, ES, M)

GetLiteral (n: int=0=p)
(AS, RS, dosure(tex!(c:code,xozuo....xp:ap),..). “PR, TS, ES, M) =>
(AS.x,, RS, dosum(tcxt(c,xo,...xp),..), PR, TS, ES, M)

=44«

AP
text
N
11 S —,\ dosure o text
7
° AP N 1
: -j/ 4 — ©
m :
n
— n30 ~CA .
NN
Closure
closure
_l\ e S 1=
AP . ’ —— °
rd L AS J AS L]
~ 2>0 LN TN n p—
DumClosure
AP > \ fext
1 7
-]
©
-]
n APE
(-] -]
-] [
° closure S : closure
Pl P > S
o i — n>0, m>n 8 1
[-] e | (-]
0y o -]
= - e :
N\ n o M n
recursive environment

RecClosure

18 «

FP 5 closure 5 p—
(-]
A 2
as | o=
/V\ §
FP 5 closure « text
AP s
> = .
-]
AS oy e
[]
H
L NN
GetGlobal
I-'P> closure . text « literals
7 7 °
AP v °
& ° code e
" AS n —_— |
(]
/'_/\ :
n>0
FP dosure text :
literals
AP a —> > =
Vd —al -] -}
4 code ° ,
n — | l
M (-]
e

GetLiteral

=1 =

7. Contral Operations

These are operations affecting the Program Counter or the Stack Pointer. Jump is an unconditional
branch to another point in the same program text. TrueJump and FalseJump are conditional
branches which jump when the top of AS is respectively true and false; otherwise the normal exe-
cution flow continues.

Function application is split into three operations: SaveFrame (which saves the calling closure on
RS), ApplFrame (which saves the calling program counter on RS, and activates the called closure
sitting on the top of AS by making it the one pointed by FP and by setting PC at its entry point)
and RestFrame (which restores the calling closure from RS). This means that SaveFrame and Rest-
Frame are inverses and can be cancelled out in multiple (curried) applications. The called closure
uses Return to restore the calling program counter and return to the calling function (where a
RestFrame is normally executed). The sequence SaveFrame, ApplFrame, RestFrame, Return can
be optimized to TailApply, which uses a jump to pass control to the called function (there is no
point in going back to the calling function because this would immediately execute a Return). The
advantage of TailApply is that the control stack does not grow, hence iteration can be programmed
by (tail) recursion without any penality. Return and TailApply also incorporate a Deflate opera-
tion, and hence take two arguments for deflating n cells below the m cell from the top of AS.

Jump (c: code)
(AS, RS, FR, “PR, TS, ES, M) =>
(AS, RS, FR, ¢, TS, ES, M)

TrueJump (c: code)
(AS.true, RS, FR, “PR, TS, ES, M) =>
(AS, RS, FR, ¢, TS, ES, M)
(AS.false, RS, FR, “.PR, TS, ES, M) =>
(AS, RS, FR, PR, TS, ES, M)

FalseJump (c: code)
(AS.false, RS, FR, “PR, TS, ES, M) =>
(AS, RS, FR, ¢, TS, ES, M)
(AS.true, RS, FR, “PR, TS, ES, M) =>
(AS, RS, FR, PR, TS, ES, M)

SaveFrame ()
(AS, RS, FR, “.PR, TS, ES, M) =>
(AS, RS.FR, FR, PR, TS, ES, M)

ApplFrame ()
(AS.x:a.closure(text(c:code,..),..):a=B, RS, FR, “PR, TS, ES, M) =>
(AS.x, RS.PR, closure(text(c,..),..), ¢, TS, ES, M)

RestFrame ()
(AS, RS.FR', FR, “.PR, TS, ES, M) =>
(AS, RS, FR', PR, TS, ES, M)

Return (n: int=0, m: int=0)
(AS.X, . m—1:® 4. m-1--Xp%g, RS.c:c0de, FR, “.PR, TS, ES, M) =>
(AS.x,_;.-Xg, RS, FR, ¢, TS, ES, M)

TeilApply (n: int=0, m: int=0)
(AS.x"__lza“-_l..xt;ao.dosum(text(c:wde,..)...):a-B. RS, FR, “.PR, TS, ES, M) =>
(AS.xg_;.-%g, RS, closure(text(c,..),..), ¢, TS, ES, M)

FP . dosure A
2 text
= > env
BN
\ cosure B
LN
 — env
a
AS
L NN

N

«17 -

closure A

closure A FP . dosure B

text

env

7

[

RestFrame

RS
NN
SaveFrame
text
FP closure A < text
7
SP
7 = env ¢ PC
PN
FP S closure B « text ,PC
rd R
env
ApplFrame
FP . dosurs A
text < text
env SP env

- 18 -

AN

AP |
7 | res
1 FP . dosure B
° N
° 7
[
n env
|85
n>0
S) closure A < text FP> closure B .
AP SP 7 4
N
> res 4 env éLC env
RS
f/‘és/\\ TN
Return
AP
> T >¢:lcssu11=B « text PP> closure A « text
a 7 7
1 env env
-]
°
"5 PC
n N\
AS
/’\/\-\
n>0
FP 5 cdosure B . text ,PC
AP N 7 N
“ L2 env
AS
VN

TailApply

-19 -

8. Trap Operations

The FailWith operation takes a string and generates a failure with that string as failure reason. The
failure can be trapped by a previously executed Trap or TrapList instruction, which saved the state
of the machine (except the heap) at a failure recovery point.

Trap saves AP, FP, SP and a PC, corresponding to the failure handler, on the trap stack TS
together with a flag meaning that all failures will be trapped. TrapList takes a list of strings and
saves AP, FP, SP and the PC of the handler on TS, together with the list of strings which is used
to selectively trap failures. UnTrap reverts the effect of the most recent Trap or TrapList. Fail-
With takes a string s and searches the trap stack from the top for a Trap block or a TrapList block
with a list of strings containing s. If one is found, the corresponding state of the machine (AP, FP,
SP, PC) is restored and the Trap or TrapList block and all the ones above it are removed. If no
matching trap is found, the message 'Failure: ’ followed by the failure string is printed on the stan-
dard output stream, and the machine stops.

Trap (c: code)
(Asn RS. FR. A.PR, TS, ES, M) =>
(AS, RS, FR, PR, TS.(all,c,RS,FR,AS), ES, M)

TrapList (c:code)
(AS.slistring list, RS, FR, “.PR, TS, E§, M) =>
(AS, RS, FR, PR, TS.(only(sD),c,RS,FR,AS), ES, M)

UnTrap (c: code)
(AS, RS, FR, “PR, TS.(all,c,RS' FR',AS), ES, M) =>
(AS, RS, FR, ¢, TS, ES, M)
(AS, RS, FR, “.PR, TS.(only(sD),c,RS',FR',AS), ES, M) =>
(AS, RS, FR, ¢, TS, ES, M)

FailWith

(AS.s:string, RS, FR, “.PR, TS.(x,PR',RS',FR",AS").., ES, M) =>
(AS's, RS, FR’, PR, TS, ES, M)
where (x,..) is the first trap block from the top of TS
such that x=all or x=only(sl) and s is contained in sl.

(AS.s:string, RS, FR, “PR, TS.(x,PR',RS",FR",AS8").., E§, M) =>
(AS.printfailure(s), RS, FR, <>, <>, E§, M)
if there is no trap block satisfying the above condition.

text

W

N

S
(e

N— NN
Trap
& > FP closure
oy g','é ' > N text
£ PC
IP
AS RS env == S —
/’-v\\ /f\/\\

W

”’EEE T“‘:‘” "“jf;sz

-21-

v

UnTrap

Taps
= _1Ic
TS
NN

J fjf n.@
i . g
m ki m
R IE ik
M, m ﬁle _Hv Bl
2 § EX
o — ol
8 2 M gl 2 M
J S 2l

Fail With

9. Input-output

Input-output is done on streams. A stream is like a queue; characters can be read from one end
and written on the other end. Reads are destructive, and they wait indefinitely on an empty
stream for some character to be written. In what follows, a "file” is a character file on disk which
has a "file name"; a "stream"” is an abstract machine object (it is a pair of file descriptors, one open
for input and the other ane open for output).

Streams are associated with file names in the operating system. A copy of an existing stream can
be associated with a file name by the PurStream operation which takes a string (the file name) and
a stream and returns triv. The stream is unaffected by this operation. A failure with string
‘putstream’ occurs if the association cannot be carried out.

The operation GetStream takes a string (a file name) and returns a new stream whose initial con-
tent is the content of the corresponding file. It fails with string 'getstream’ if the stream is not
available (e.g. the file name syntax is wrong, or the file is locked). If no file exists with that file
name, a new empty stream is returned (hence, empty files and streams are indistinguishable from
non-existing ones). The same file name can be requested several times; every time a new indepen-
dent stream is generated.

The standard terminal streams are obtained by GetStream(’input’), GetStream(’output’) and
GetStream("error’); note that these are streams, hence it is possible to write on input (what is writ-
ten will then be read back) and to read from output (output is generally empty).

ListStreams returns a list of the non-empty streams associated to names, as a list of strings (file
names).

Reads and writes on streams do not affect the files they were generated from by GetStream. Con-
versely, a PutStream operation on a file does not affect the streams which have been extracted
from that file; it only affects the result of a succeeding GetStream. Multiplexed read and multi-
plexed write operations can be obtained by passing the same stream to several readers and writers
respectively (i.e. to different parts of a program).

The operation NewStream returns a new empty stream. It accounts for temporary (unnamed) files.
A stream-filename association can be removed by reassociating an empty stream with that file
name.

The operation CopyStream creates a stream B which is a copy of the current state of the stream A.
Reads and writes on A will not affect reads and writes on B, and vice versa. The stream A is not
affected.

Input operations are destructive; the characters read are removed from the stream. InChar reads a
single character from a stream. InString takes a stream and a string of terminator characters and
reads a sequence of characters until one of the terminators is found. Inlnt reads an integer from a
stream (which should start with a digit, or with *—’ immediately followed by a digit), stopping
before the first non-digit character; it fails with string ‘inint’ if it cannot read an integer. EmptyS-
tream tests far the empty stream; the input operations do not fail on empty streams: they wait inde-
finitely for something to be written on the stream. All the input operations are unbuffered, e.g.
when reading from termina) all editing and control characters are not interpreted.

Output operations are constructive; the characters written are appended to the end of the stream.
OutChar writes a single character at the end of a stream. OwutString writes a whole string. Owtlnt
writes an integer (preceded by *—’ if negative). All the write operations are unbuffered; the effect
of buffered output can be obtained by OutString.

Refer back to the operational semantics section for clarifications about how streams are contained
in the memory M.

PutStream ()
(AS.s"string.s:streamname, RS, FR, “.PR, TS, ES, M[q:stream/s]) =>
(AS.triv, RS, FR, PR, TS, ES, Mla/s][q/s’])
?'putstream’ on any /O error

GetStream ()

(AS.s:string, RS, FR, “.PR, TS, ES, Miq:stream/s]) =>
(AS.s"streamname, RS, FR, PR, TS, ES, M[a/s][q/s'])
where §' is &8 new stream name.

(AS.s:string, RS, FR, “PR, TS, ES, M) =>
(AS.s:streamname, RS, FR, PR, TS, ES, M[<>/5))
where s is not defined in M.

?'getstream’ on any IO error

ListStreams ()

(AS, RS, FR, “PR, TS, ES, M) =>
(AS.liststreams(M), RS, FR, PR, TS, ES, M)
where liststreams(M) is the list of all the strings s
such that s is a stream name in M and M(s)#<>.

?'liststreams’ on any I/O error

NewStream ()

(AS, RS, FR, “.PR, TS, ES, M) =>
(AS.s:istreamname, RS, FR, PR, TS, ES, M[<>/])
where s is 8 new stream name.

?'newstream’ on any /O error

CopyStream ()

(AS.s:streamname, RS, FR, “.PR, TS, ES, M[q:stream/s]) =>
(AS.s"streamname, RS, FR, PR, TS, ES, Mlqg/s]q/s'])
where §' is 8 new stream name.

?'copystream’ on any IO error

EmptyStream ()
(AS.s:streamname, RS, FR, “.PR, TS, ES, Mlq:stream/s]) =>
(AS.q=<>, RS, FR, PR, TS, ES, Miq/s])
2'emptystream’ on any /O error

InChar ()
(AS.s:streamname, RS, FR, “.PR, TS, ES, M[c.q:stream/s]) =>
(AS.cstring, RS, FR, PR, TS, ES, M[q/s])
?'inchar’ on any I/O error

InString ()
(AS.s:streamname. s":string, RS, FR, “PR, TS, ES, M[cl..c-.q:meam/s]) =>
(AS.c,..c,_,string, RS, FR, PR, TS, ES, Mlc,.q/s])
where [N (n=1) is the first of the ¢ to be & member of s'.
?'instring’ on any I/O error

Inlnt ()
(AS.s:streamname, RS, FR, “.PR, TS, ES, M[cl..c_.q:stmm/s]) =>
(AS.stringtoint(c,..c,_,),
RS, FR, PR, TS, ES, Mlc .q/s])
where c_ is the first of the ¢, not to be part
of a valid int representation, or a trailing blank (n=1).
?'inint’ on any /O error, or if ¢,..c,_, is not & valid int representation.

OutChar ()
(AS.s:streamname.c:string, RS, FR, “.PR, TS, ES, M[q:string/s]) =>

-2 -

(AS.triv, RS, FR, PR, TS, ES, Mlq.c/s])
Youtchar’ on any I/O error, or if length(c) #1

OutString ()
(AS.s:streamname.s"string, RS, FR, “.PR, TS, ES, Mq:stream/s]) =>
(AS.triv, RS, FR, PR, TS, ES, Mlq.5'/s])
7'outstring’ on any /O error

Outlnt ()
(AS.s:streamname. n:int, RS, FR, “PR, TS, ES, M[q:stream/s]) =>
(AS.triv, RS, FR, PR, TS, ES, M[q.inttostring(n)/s])

In order to model user interaction, and in general other processes which act on the file system, we
add some state transitions which happen nondeterministically and change the file system:

(AS, RS, FR, PR, TS, ES, M[s".q:stream/s:streamname]) =>
(AS, RS, FR, PR, TS, ES, Mig/s))
FR

(AS, RS, FR, PR, TS, ES, M[q:stream/s:streamname]) =>
(AS, RS, FR, PR, TS, ES, M(q.s'/s])

(AS, RS, FR, PR, TS, ES, M) =>
(AS, RS, FR, PR, TS, ES, M[q:stream/s:streamname])

The first transition models an external process which reads from a stream, the second one a pro-
cess which writes on a stream, and the third one a process which creates, deletes, replaces or
renames a Stream.

VO errors can be treated by taking the predicate "on any VO error” above to be constantly true,
i.e. an VO error may unpredictably happen at any time.

10. Other operations

Start initializes the abstract machine. It takes three parameters: ES, which is the initial environ-
ment containing all the predefined values and functions; M, containing values for all the locations
mentioned by EP, and the initial file system; and a closure which is the program to execute (by
convention the start closure takes a triv argument). The initial M must contain a stream called
‘input’ and a stream called "output’, which are normally attached to the user terminal. These stan-
dard streams can be obtained normally by GetStream, and all the stream operations are valid,
including writing on input, reading from output and performing PutStream and CopyStream on
them.

Stop terminates the execution. Normally the value on the top of AS after a Stop is the final result
of the computation.

There is a notion of top-level environment which is implemented by EP (environment pointer),
pointing to the argument stack AS. EP always points to some point of AS below AP, and AP
never descends below EP. The operation Define rises EP to incorporate more values in the top-
level environment.

Collect takes any value (which can be used as a garbage collector parameter, if any) and provokes
a garbage collection, returning triv.

Skip has no effect.

Import takes a stream which is assumed fo contain an executable, fully relocatable piece of code.
That code is blindly converted into a closure with no global values, and the closure is returned on
AS. Import can operate on programs produced by foreign systems.

Export takes a stream and a closure, and saves the closure in the stream, so that it can be reloaded

=0

by Import. This is to implement separate compilation, and the exported closure is not expected to
be runnable outside the Fam system.

StandAlone takes a stream and a closure, and saves the closure in the stream, together with all the
environment needed to support the closure (e.g. the global variables and the run time system).
The file produced can be executed independently of the Fam system. The input parameter accepted
by a stand-alone function is installation-dependent; it can be for example a list of strings (e.g.
options) passed by the operating system.

Dump saves the current state of the Fam system (file system excluded) in a stream and continues
normal execution. A dump file can then be executed, reactivating the system at the ‘instant’ of

dump.

Start (ES: stack,
MIq:stream/'input "][q":stream/output']: memory,
closure(text(c:code,..)..): triv=c)
(<>, <>, =, <>, <>, <>, <>) =>
(ES.triv, <>, closure(text(c:code,..)..), ¢, <>, ES, M)
where M defines the addresses and stream names mentioned by ES.

Stop ()
(AS, RS, FR, “PR, TS, ES, M) =>
(AS, RS, FR, <>, TS, ES, M)

Define ()
(AS, RS, FR, “PR, TS, ES, M) =>
(AS, RS, FR, PR, TS, AS, M)

Collect ()
(AS.x:a, RS, FR, “.PR, TS, ES, >
(AS.collect(x), RS, FR, PR, TS, ES, M)

Skip ()
(AS, RS, FR, “PR, TS, ES, M) =>
(AS, RS, FR, PR, TS, ES, M)

Import ()
(AS.s:streamname, RS, FR, ".PR, TS, ES§, M) =>
(AS.import(M(s)), RS, FR, PR, TS, ES, M)
?'import’ on any I/O error.

Export ()
(AS.s:streamname. f:a-pB, RS, FR, “.PR, TS, ES, M) =>
(AS.triv, RS, FR, PR, TS, ES, M[M(s).export(f)/s])
?'export’ on any /O error.

StandAlone ()
(AS.s:streamname. f:a-f, RS, FR, “PR, TS, E§, M) =>
(AS.triv, RS, FR, PR, TS, ES, M[M(s).standalone(f)/s])
?'standalone’ on any I/O error.

Dump ()
(AS.s:streamname, RS, FR, “PR, TS, ES, M) =>
(AS.triv, RS, FR, PR, TS, ES,
M[M(s).dump(AS,RS,FR PR, TS,ES,M)/s])
7'dump’ on any /O error.

11. Garbage Callection

This section describes a garbage collection algorithm for languages with a low percentage of side-
effectable data. The algorithm is due to Lieberman and Hewitt [3] for a much more general situa-
tion. The assumption of working with semi-applicative languages confers simplicity and elegance to
the algorithm. :

The basic idea is that of a copying garbage collector: there are two equal data areas called spaces
of which only ome is active at any given time (we don’t consider here incremental garbage collec-
tion). When one space is full, it is copied into the other space by following the reachable painters.
This copying operation can be done simply by a recursive procedure if we are not short of space,
otherwise by a well known pointer-reversing technique which runs in constant space. Care must be
taken to copy correctly circular and shared structure. Finally we swap the spaces.

Copying garbage collection is appealing because the time spent in copying only depends on the
amount of active data, not on the size of the spaces; together with recursive copying this amounts
to a very fast collection. Moreover the data is automatically compacted during copying, reducing
the rate of page faults in virtual memory systems.

The problem with copying collectors it that they need a very large address space. The two-spaces
algorithm 'wastes’ 50% of the memory.

The algorithm proposed by Hewitt and Licberman generalizes copying collectors to n spaces (of
which only one is 'wasted’ for copying the other ones in turn), in such a way that not all the
memory has to be searched in general when copying a little part of it. This can work only under
assumptions about which spaces contain pointers to which other spaces. These assumptions must be
preserved during allocation and collection.

It turns out that the assumptions hinted at above are much easier to verify in applicative languages.
We obtain a garbage collector which can work on extremely large collections of data with only a
limited working area. Moreover some areas can be collected moare often then others, so that
'stable’ data tends to migrate towards rarely collected areas while 'volatile’ data is quickly
reclaimed.

Here is an overview of the algorithm. The basic observation is that, most of the times, recently
allocated data point to previously allocated data because it has been built on top of it. We refer to
this fact by saying that pointers generally point to the past. There are two exceptions which have to
be treated spedially: recursive functions (which may contain environment loops) and references
(which may paint to the future after an assignment).

The available space is (dynamically) partitioned into a 'monotonic’ area containing data which only
points to its past, and a 'paradoxical’ area which may contain pointers to the future. The paradoxi-
cal area is used to allocate recursive closures and references, and it is assumed to be relatively
small.

At some paint during the execution of a program we may decide that garbage collection is needed.
Let us consider the monotonic area first. We split the monotonic area arbitrarily in three contigu-
ous sections, called past, present and future. The idea is to copy the 'present’ space only, given a
big enough buffer to contain it; past and/or future may be empty. We start following the reachable
pointers. If some data is in the future we keep following it without copying it. If it is in the present
space we copy it like in the normal copying garbage collectar. If it is in the past we even stop fol-
lowing the pointers because we pretend that they cannot lead us back to the present (actually they
might, going through the paradoxical area, but the past will be on average rather big and we do
not want to search it all). In the paradoxical area we also stop following pointers because we treat
this area separately in the second phase of collection.

So, our target is to find out all the reachable pointers pointing to the present, and up to now we
have found all those coming from the future and from the present itself, and we know that there
are no pointers coming directly from the past. But there may be painters in the paradoxical area
pointing to the present, which are only reachable from the past. On the assumption that the past is
on average much bigger than the paradoxical area, it is more convenient to search that area rather
then the past. But we cannot do this by following reachable pointers, because we have chosen not

.77 -

to follow same pointers. Hence we must scan the whole paradoxical area for pointers to the
present, and take the conservative view that all those pointers are reachable. This scanning process
is called scavenging. When we find a pointer to the present we proceed copying and following the
painters as before.

Finally we have a copy of the present, and we must substitute it for the old present; this can be
done by maintaining a linked list of the pages in the monotonic area in monotonic order (this is the
reason why we could split neatly past present and future at the beginning).

We still have to describe how to collect the paradoxical area. This is done quite simply by follow-
ing the reachable pointers everywhere in both areas, copying when we find something in the para-
doxical area. In other words, we consider the paradoxical area as present, and the monotonic area
as future with no past. This is a heavy operation because involves searching the whole memory:
again the paradoxical area should be small and stable, so that it can be collected infrequently.

The general strategy is then to collect very frequently the extreme future, which presumably con-
tains very dynamic data, and less and less frequently as we move towards the past, which comes to
contain more and more stable data because of compactification (to ensure this migration of stable
data we have to alternatively collect overlapping presents). This should be intermixed with the col-
lection of the paradoxical area. Some simple adaptive scheme is probably the best way of imple-
menting this strategy.

12. Compilation Hints

Here are some suggestions about how to compile high-level language expressions into Fam opera-
tions. There is a translation function °[| [’ from expressions to Fam programs, for example '[3]]
=> Int(3)’ means that the expression '3’ is translated into the Fam operation "Int(3)’.

Primitive operations (like '+') which have a corresponding Fam machine operation are translated
by translating their arguments left to right, and then suffixing the appropriate Fam operation:

(bp(arg,,...arg)l) =>
(lerg,] . [lerg,l [bpl

Variables are converted to a GetLocal or GetGlobal operation, depending on where they are
defined; strings are converted to GetLiteral:

[|..x..y.. 'string".. J] =>
.. GetLocal(n) .. GetGlobal(m) .. GetLiteral(p) ..

Function applications are translated by translating the argument, the function and then appending
the three parts of the apply operation:

[K(a)] =>
[lfl [} SaveFrame ApplFrame RestFrame

Functions are compiled into sequences of operations which, at run time, build closures. First all the
global variables of the function are collected from the appropriate environments (we informally use
Get(x) for GetLocal or GetGlobal with the appropriate displacement), then the text of the function
is fetched by GetLiteral, and finally a Closure is generated.

Mx. .x..y..% . [=>
Get(y) Get(z)
GetLiteral(text([| .. x .. y .. 's' .. [Return(1,1),'s"))
Closure(2)

Recursive functions involve DumClosure and RecClosure. Here is the compilation of two mutually

recursive functions f and g:

(etrecf= . g.andg=_.f. [=>
DumClosure(1) DumClosure(1)
GetLocal(0) GetLiteral(text([| .. g .. [Return(1))) RecClosure(1, 1)
GetLocal(0) GetLiteral(text([] .. f .. [Return(1))) RecClosure(1,0)

Here is how to use trap operations. 'A ? B’ is a program which starts evaluating A’ and if no
failure occurs B is ignored; however if a failure occurs in A then the "exception handler” B is exe-
cuted. 'A ? B’ is compiled by setting a Trap which in case of failure produces a jump to labell
(hence executing B); if no failure occurs in A the execution reaches the UnTrap operations which
undoes the trap and jumps to label2 (hence ignoring B). Failures are produced by the Failwith
operation or by exceptions arising from primitive operations (e.g. divide by 2e10).

[lA ? B} =>
Trap(label1) [|A}] UnTrap(label2) label1:[[B]] label2:

13. Concrete Syntax
This section defines a textual syntax for abstract machine programs; this is essentially an assembly
language for Fam.
The syntactic notation is as follows: '

strings between quotes " are terminals;

identifiers are non-terminals;

juxtaposition is syntactic concatenation;

’|' is syntactic alternative;

‘[] is the empty string;

’[...] is zero or one times (i.e. optionally) * ... ";

{ ...)Jn’ is n or more times °’ ... * (default n=0);

" .../ = }n' means n (default 0) or more times ’..." separated by ’---’;
Parentheses °(...)’ are used for precedence.

Digit ::= O[1R[3KkISK7BP

LabelChar ::= <any printable character different from space,
newline, tab and ':'>

StringChar ::= <any printable character different from ",
or an escape sequence starting with \'>

Int ::= Digit | Digit Int
String ::= """ {StringChar} "
Label ::= {LabelChar}
Program ::= "[' {Instruction / "'} 'T’
Instruction ::= Operation | Label ;" Instruction
Operation ::=

‘Getlocal' Integer

| Inflate’ Integer °,’ Integer
| Deflate’ Integer °,’ Integer

| Permute’ '[* {Intsger / "'} T’
| Tav’

| True'

| "Faise'

| Not*

[*And’

| ‘Or

| Xor*

| ‘BoolEq’

| ‘Int' Integer

| ‘Minus'

| "Plus’

| Diff"

| “Times’

| ‘Divide'

| Modulo’

| ‘Greater’

| Less’

| ‘GreaterEq"

| LessEq’

| IntEq’

| *String® String

| "Length’

| *SubString’

| "Explode’

| Tmplode’

| "ExplodeA scii’

| ImplodeAscii’

| IntToString'

| *StringTolnt’

| *StringEq’

| Ref’

| ‘At

| ‘Assign’

| DestRef Integer °," Integer
| "Pair’

| Left’

| Right’

| ‘DestPair’ Integer *," Integer °,’ Integer
| Nil*

| *Cons’

| Head'

| “Tail’

| Null*

| "DestNil’ Integer

| 'DestCons’ Integer °,’ Integer °,' Integer
| "Record" Integer

| ‘Field' Integer

| DestRecord’ Integer *,* *[* {Integer / %'} '
| "Variant' Integer

| 'As’ Integer

| 'Is* Integer’

| DestVariant’ Integer °,’ Integer °,’ Integer
| ‘Case’ [* {Label / %'})’

| 'Array’

| "Tabulate'

| "LowerBound'

| 'Size’

| *Sub’

| Update’

| *ArrayToList’

| 'Equal’

| 'Isomorphic’

| 1d*

| *Comp’

| "Text' Label

| *Closure’ Integer

| DumClosure’ Integer
| RecClosure’ Integer *," Integer
| ‘GetGlobal' Integer
| ‘Jump’ Label

| "TrueJump"® Label

| "FalseJump® Label

| 'SaveFrame'

| "RestFrame’

| 'ApplFrame’

| Return’ Integer *,’ Integer
| "TailApply' Integer °," Integer
| "Trap’

| "TrapList’

| ‘UnTrap'

| "FailWith®

| ‘PutStream’

| ‘GetStream’

| "ListStreams’

| EmptyStream*

| ‘CopyStream’

| "EndStream’

| InChas’

| ‘InString’

| "InInt’

| ‘OutChar’

| 'OutString’

| ‘*Outlnt’

| *Start’

| *Stop’

| Define’

| *Collect’

| *Skip*

| Tmport’

| Export’

| *Stand A lone’

| Dump’

Notel: String and Text are converted to GetLiteral by the assembler.
Note2: Escape sequences far Strings:

\z 0 nul

-« 31 -

\x 4 eot

\b 8 backspace

\t 9 tab

\n 10 newl ine

\r 13 carriage return

\e 27 escape

\f 28 form feed

\d 127 del

\'<> <> mod 64 control<c> for any printable <c>
\<c> <> <¢c> for any other printable <c>

Note3: Comments can be introduced within curly brackets *{’ and '}, and they can be nested.

14. Abstract Syntax

It may be useful to be able to generate and manipulate Fam code from a language built on top of
the Fam, e.g in order to write an optimizer. This section contains a representation of Fam code in
terms of Fam data structures.

FamCode = FamOp list

FamQOp =
[[GetLocal: (Dispt: int);
Inflate: (Size: int; Displ: int);
Deflate: ([Size: int; Displ: int};
Permute: (Permutation: int list));
Triv;
True;
False;
Not;
And;
Or;
Xor;
BoolEq;
Int: (IInteger: int);
Minus;
Plus;
Diff;
Times;
Divide;
Modulo;
Grater;
Less;
GreaterEq;
LessEq;
IntEq;
String: ([String: string));
Length;
SubString;
Explode;
Implode;
ExplodeA scii;
Implode Ascii;
IntToString;
StringTolnt;

SrringEq;
Ref;

At

Assign;
DestRef:
Pair;

Left;

Right;
DestPair:
Nil;

Cons;
Head;

Tail;

Null;
DestNil:
DestCons:
Record:
Field:
DestRecord:
Variant:

As:

Is:
DestVariant:
Case:
Array;
Tabulate;
LowerBound;
Size;

Sub;
Update;
ArrayToList;
Equal;
Isomorphic;
1d;

Comp;
Text:
Closure:
DumClosure:
RecClosure:
GetGlobal:
Jump:
TrueJump:
FalseJump:
SaveFrame;
RestFrame;
ApplFrame;
Return:
TailApply:
Trap;
TrapList;
UnTrap;
FailWith;
PutStream;
GetStream;

(RefDispl: int; AtDispl: int};

(PairDispl: int; LeftDispl: int; RightDispl: int]);

(ListDispl: int)

(Size: int);
(FieldNumber:

(RecordDispl: int; FieldDispls: int list});

(ListDispl: int; HeadDispl: int; TailDispl: int});

int);

(CaseNumber: int);
(CaseNumber: int});
(CaseNumber: int));

(CaseNumber: int; VariantDispl: int; AsDispl:
(ICases: FamCode list);

(Text: FamCode);

(lSize: int);
(Size: int);

(iSize: int; Displ: int};

(FRDispl: int);

([Target: FamCode);
([Target: FamCode);
([Target: FamCode);

(Size: int; Displ: int);

(Size: int; Displ

: int);

int));

-33.

ListStreams;
EmptyStream;
CopyStream;
EndStream;
InChar;
InString;
Inlnt;
OutChar;
OutString;
Outlnt;
Start;

Stop;

Define;
Collect;
Skip;
Import;
Export;
StandAlone;
Dump;

15. VAX Data Formats

Comments to the pictures. Each segment "+——+" is one byte. The symbol "*" below a data struc-
ture represents the location pointed by pointers to that structure; fields preceding " are only used
during garbage collection and are inaccessible to the Fam operations (and hence to the user).
Unboxed data is kept on the stack, or in the place of pointers in other data structures; unboxed
data does not require storage allocation. Pointers can be distinguished from unboxed data as the
former are > 64K. There are automatic conversions between Smallintegers and Bigintegers, so
that the Fam operations only see the type Integer.

Triv

0 (triv) (unboxed)
Boolean

0 (false) (unboxed)

1 (true) (unboxed)
Smalllnteger

—32768 .. +32767 (unboxed)

- 34 -

T T T T e

Biginteger

(z=1)

Pair

List

(unboxed)

(emptylist)

0

-
(=]
ouy
—
>
-
)
ga
ovt
e
(]
O «
> O
=t b
B o
=
o
B&
o
J..IJ-
LunLl

Record

(unboxed)

(nullrecord)

e L L T I I I R I R

Variant

+

-+

+ 9
(o]

o T

--

Reference

B e

| A |

B e s

String

I n IC1] Ga| (m=0)
ettt ... +—+

Array

e At
|LowerBound | n | Item1 | | Itemn | (n=0) .
ettt ., , F—t—t—t—+F
Text

Attt (n=1)

| n | Literals |Cl] [Ca] (") when pointed fraom a Closure
+—tp—tp—tp—t——f—t—ort ... +—+ Literals may be Nil or point

") to Literals

Literals

e peepeepe——t , , . +——t—+—+ (x_zl)

| n | Literal 1 | | Literal n | Literal may be a Text,
+—t—tp——p—p—p—orv , ., +—+—+—+—+ & String or a Biglnteger
Closure

| n | Text | Global 1 | | Global n | (n=0)
—t—t—t—t— +—+—+—+—+ Text points

- to a Text

References

[1] P.J.Landin: "The Mechanical Evaluation of Expressions”, Computer Journal, Vol. 6, No. 4,
1964, pp. 308-320. '

[2] G.D.Plotkin: "A Structural Approach to Operational Semantics”, Internal Report DAIMI FN-
19, Computer Science Department, Aarhus University, September 1981.

[3] HLieberman, C.Hewitt: "A Real Time Garbage Collector Based on the Lifetime of Objects”,
AL Memo No. 569A, October 1981.

SCIENCE AND ENGINEERING RESEARCH COUNCIL
RUTHERFORD APPLETON LABORATORY

COMPUTING DIVISION

SOFTWARE TECHNOLOGY INITIATIVE

ML, LCF, and HOPE
Meeting at RAL on 17 November 1982

Present:

R
C
R
R
J
M
K
D
A
B
M
J
J
J
S
C
A
J
R
D

W Witty, RAL (Chairman)

P Wadsworth, RAL (Notes)
Milner, Edinburgh

M Burstall, Edinburgn

Scott, Edinburgh

Hennessey, Edinburgh
Mitcnell, Edinburgh

Senmidt, Edinburghn

Mycroft, Edinburgh

Sufrin, Oxford

Raskovsky, Oxford

Hughes, Oxford

Darlington, Imperial College
Cunningham, Imperial College
Zappacosta, Imperial College
Jones, Manchester

Wills, Manchnester

Welsh, UMIST

Gallimore, UMIST

Coleman, UMIST

Apologies for absence were received from

IHL.XRNR QX

Gordon and Paulson nad sent written comments for the meeting, a copy

Gordon, Cambridge
Paulson, Cambridge

A R Hoare, Oxford

Hanna, Kent

Cramer, Imperial College
Pyle, York

Boot, NCC

which is appended to tnese notes.

-1 -

of

1. INTRODUCTION

RWW welcomed participants. The meeting was the first of many ne hoped
to organise under the SERC's Software Technology Initiative (STI) in
which researcners in particular areas are brought together to identify
common needs and goals and to provide guidance to the STI on how best to
exploit tneir researcn achievements.

CPW explained the packground to tnis meeting. The SERC's 3oftware Tech-
nology Panel has already reviewed favourably several proposals for the
furtner exploitation of ML, LCF, and HOPE, and is keen to see that the
right decisions are taken now botn to meet the needs of particular
researcn projects and to propagate knowledge and availability of thnese
systems to the wider community. There is particular interest in mount-
ing versions on the TCL PERQ since PERQs running Unix will be widely
available in the SERC community snortly. The Panel also felt there is a
specific need for a tutorial on ML, LCF, and HOPE.

>. REVIEW OF ML, LCF, AND HOPE
2.1 Background

CPW characterised ML, LCF, and HOPE for discussion purposes as being at
the centre of an area of research activity that can be distinguished as
typed functional programming, derived from Landin's ISWIM (not itself
typed).

ML is an ISWIM-style nigher order functional programming language Wwhose
distinctive features are

(a) a polymorpnic type discipline, with compile-time type checking,
and

(b) a facility for abstract type modules.

LCF is an application and extension of ML as a programming metalanguage
for conducting proofs in a particular object logic (called PPLAMBDA) .
The LCF proof style relies heavily on the use of higher order functions,
for goal-directed proof via tactics. The logic is embedded in ML as
particular data types term, form, and thm with relevant primitives
(abstract syntax constructors and destructors on terms and formulae,
axioms and inference rules as operations producing theorems), with quo-
tations providing a concrete syntax for input. A nieararcnical filing
system for theories of the logic is an important practical component of
the system, to store useful theorems in tneory files for later
retrieval.

HOPE may be viewed as ML without assignment (a deliberate design choice)
with additional features:

(a) pattern matching with respect to data constructors,

(b) overloading of variable meanings (different meanings for thne
same symbol at different types),

for some years yet.

J Darlington outlined work at Imperial and Westfield Colleges. The
ALICE project at Imperial is building a programming environment centred
around HOPE, including a transformation component based on the idess of
the LCF metalanguage (tactics and simplification). ALICE includes a
Compiler Target Language, CTL. Compilers written in HOPE producing
ALICE CTL code have been implemented for both HOPE and PROLOG. ALICE
CTL is quite different to Cardelli's AM and uses the technique of grapn
reduction in its implementation. In the medium term a fast interpreter
for CTL would be needed, possibly microcoded. All the work at Imperial
is being done on the Edinburgh DEC10. S Eisenbach (Westfield College)
is producing HOPE compilers and run-time systems targetted at 16-bit
micros. There is close liaison between Edinburgh and Imperial to main-
tain compatability of HOPE languages.

There was some discussion about the merits of propagating two 1languages
(HOPE and ML). R Milner summarised the general view tnat HOPE and ML
represent two points in a spectrum of possible (typed) functional
languages. Differing aims had led to different compromises in tne
design of the two languages and both should continue to be developed.
The ultimate functional 1language could not be envisaged yet - variety
and experimentation, ratner than standardisation, were needed at thnis
stage.

5. TUTORIALS on ML, LCF, HOPE

The meeting welcomed the suggestion that a tutorial be held to propagate
knowledge of ML, LCF, and HOPE, and discussed the form this should take.

It was felt that LCF per se was a specialised interest and should be
separated from the general concepts embodied in ML and HOPE. It was
also felt inadvisable to attempt to use two languages in the same
tutorial.

Accordingly it is recommended that tnree separate tutorials be nheld, one
each on ML and HOPE with a further tutorial on LCF. Each should be at
least two days with approximately half the time spent on practical work.
Summer 1983 is the suggested date, since it is reasonable to expect the
PERQ implementations to be up and running by then. (If backup arrange-
ments should prove necessary, access to the VAX implementations was tne
preferred alternative since these are the versions that will become
widely available on the PERQ.)

Edinburgh and Imperial College offered to act as nost sites.

-
1

comMPU
LRARBORATORY

University of Comzridge

3 November 1882

First, we would like to apologize thct we cannot attend the meeting, and
hore that this letter will convey our views. The parographs ore numbered in
correspondence to the Agenda.

2. Gerord Huet (of INRIA) has ported the DEC-1B implementetion of LCF to
Fultics MeclLisp, cleaned up the code, ond mode It portoble over the Maclisp
femily. He end Lorry Poulson hove careed to mointein ¢ common source file.
Some modules hove been entirely rewritten. In particulor:

Gerord hos rewritten the theory pockoge for greoter efficiency,

flexibility, and robustness. He plons to ollow complex hterarchies
of theories, and theories thot can be shored by several users. We hope
thot recent work by Sannelle and Burstall will ellow us to incorporaote

ideas from the specification langucge, CLERR.

Lerry hos instolled o pretty=-printer, and rewritten all the code for
menipuleting PPLAMBDA objects. He heos extended PPLAMBDAR to include
cdisjunction, existentiol gueontifiers, and predicates.

Gercrc ond Larry hove extended the ML-to-Lisp tronslotor so that the

Lisp code it generctes con be giuven tc the Lisp compiler. Compiling

the code meckes 1t run severc!l times foster, and cllows 1t tc be re-locded
cimost instontoneously, since the slow parser ond type-checker are not
invokegd. Compiled code occupies much lass storege when looded.

This LCF is running on INRIA’s Multics system (in Moclisp), and ct
Combridge’s URX/Unix system (in Fronz Lisp). MWe would |ike to bring 1t up
orn Edinburagh’s URX/UMS (Freonz Lisp), ond on the Edinburgh DEC-18 (MoclLisp or
Ruteers Lisp), if people there ore interested ond willing to halp.

Further system work may hove to woit, since our reol goel is to use LCF, not
tc develop i1t.

The Goteborg group hos extended the LCF system in different directions,
including an improved top=level and o new logic, Moertin=Lof’'s Intuitionistic
Type Theory. Lerry will be in Goteborg on the dote of this SERC meeting,
and hopes to find ¢ common ground with their efforts. Though they ere also
using Fronz Lisp under UAX/Unix, the two Lisp sources ore incompotible.

Z. Luca Cordelli’s ML sustem should be mode availible on PERQs. His
lenguege 1s guite different from the ML i1n LCF. It is perheps too berogue,
but has conugnient doto structures and more flexible declorations. Its
reference voriables moy provoke controversy, but are more powerful than
those in ML. A further plus is the speed of its compiied code.

However, we feel it is too early to consider implementing LCF in Luce’s ML.
Luce’ s system 1s unsupported ond provides neo input/output. Althouah LCF is
portly implemented in ML, this code would need extensive editing to run
under Luce’s sustem. The Lisp code may be impossible to re-write. Even if
the porting succeeded, it would ba yet enother implementetion of LCF to
mointein.

We fee! thot the best woy to mount LCF on to the PERQ is to first mount
Lisp, then use the existing Lisp implentation of LCF. We hear that
Cornegie-Mel lon University has implemented o system called Spice Lisp on
PERC's. This is on implementotion of Common Lisp, which is compatible with
Moclisp and shouid occept our suystem with [ittie cheonge. Furthermore, Lisp
15 useful 1n its own right, ond will moke PERQ's more attractive to AI
reseacrchers.

(¢) dynamic data structures (possibly "infinite") through lazy
evaluation.

Currently, HOPE lacks a mechanism for trapping exceptions/failures.
Pattern matching and the use of equations to define functions give HOPE
a quite distinct character compared to ML that makes it more suitable
for program specification and transformation.

2.2 Implementations

2.2.1 LCF/ML

(2) DEC10/TOPS10 in Stanford Lisp, since ported to Rutgers Lisp
(Edinburghn).

(b) Multics system in MacLisp family (INRIA).

(e) VAX Unix in Franz Lisp (Cambridge), with an extended logic
including disjunction and existential quantification.

(d) VAX Unix in Franz Lisp (Goteborg, Sweden), witn a completely new
object logic - Martin Lof's Intuitionistic Type Theory.

Cambridge(c) and INRIA(b) are maintaining common source files by using
only the MacLisp subset of Franz Lisp.

2.2.2 Cardelli ML

A second version of ML only (called Cardelli ML for these notes) without
tne LCF object logic nas been developed by L Cardelli (Bell Labs). Tnis
has named records and sums (variants), a reference operator for arbi-
trary types, and more flexible declarations and data abstraction con-
structs (sufficient to encode those of LCF ML).

Cardelli ML is implemented in Pascal under VAX VMS, since ported to VAX
Unix. This produces code for an Abstract Macnine (called Cardelli AM
for these notes). Cardelli AM is implemented in VAX assembler.

2:2.3 HOPE
(a) DEC10/TOPS10 in POP2 and in PROLOG (Edinburgh).

(b) VAX Unix in Franz Lisp, compiling HOPE to Cardelli AM, witn Lisp
interpreter for Cardelli AM (from D MacQueen, Bell Labs).

(¢) Part of ALICE project at Imperial College (see section 4 below).

3. PORTING TO THE PERQ

Users would increasingly find the restriction to linear text for I/0 a
limiting factor 1in the existing implementations of ML, LCF, and HOPE .
The more sophisticated forms of interaction possible with the PERQ
(pointing, menu selection, windows, etc) make it a natural vehicle for
tne further development of all these systems.

It was noted that steps are already in hand to mount Franz Lisp under
PERQ Unix, through the Lisp support team of R Rae in Edinburgn AI. It
was decided that the best way to mount LCF and HOPE on the PERQ is
therefore to port their existing Franz Lisp implementations from VAX
Unix. This should not require more than a few days work once Franz Lisp
is running under PERQ Unix. For LCF it will be essential that Franz
Lisp on the PERQ includes the DUMPLISP operation for saving core images.

Several research projects (Hanna, Hennessey/Mitcnell, Sufrin) had =
separate and more immediate need for ML on the PERQ witnout the LCF
logic. Ideally this should be as efficient as possible, thougn R Milner
suggested, with general agreement, that the initial requirement is for
an ML workbench that is pleasant to use so that people can get into it
quickly. It was felt that such an ML system would also be more suitable
for dissemination of ML to a wider community.

Cardelli ML could be used as a starting point. It was easier to use
than LCF ML and considerably faster in its compiled code, thougn
currently it lacked a supporting environment. Porting to tne PERQ would
require

(a) an interpreter or code generator for Cardelli AM,
(b) a garbage collector, and
(c) possible changes due to differences in Pascal dialect.

It was estimated that this would involve two man-monthns of work.

B Sufrin suggested that the medium term requirement for a fast implemen-
tation be met by microcoding Cardelli's AM when the 16K writeable con-
trol store is available for PERQ. (This would also be useful as a tar-
get machine for HOPE - see section 4 below.) RWW commented tnat where
there was a clearly felt need SERC funds can be generated through tne
STI to pay ICL to do the work. A complete specification of Cardelli's
AM to commercial standards would be needed to put the proposal to ICL.

RWW would pursue the question of porting Cardelli ML to the PERQ witn
the two research projects that had indicated a willingness to do some of
the work (Hennessey/Mitchell, Sufrin). :

Extending Cardelli ML to full LCF was not considered worthwnile. It wacs
felt better to keep Franz Lisp as a common base for LCF on VAX and on
PERQ.

4, DEVELOPMENT OF HOPE

R Burstall described briefly current work witn HOPE at Edinburgnh. Exam-
ples from the category theory approach to program specification are
being worked on - approximately 100 pages had now been programmed in
HOPE. Extensions to HOPE for better modularity, and a mechanism for
handling exceptions, are being considered. Current implementations were
slow and would need to be improved. Edinburgh were considering either
proceeding via Spice Lisp or seeking a microcoded version of Cardelli's
AM. It was noted, however, that Spice Lisp would not be a viable route

- Y -

4. "ke hecue nct used HAOPE ourselves, but are imp-essed with the longuage’s
desier ond stronaly encourcae more development. HOPE hos the seme generol
cim cs ML, but 1s simpier ond cleoner. MWe would !tke to see some of David
Jurne~'s '0ecs i1nco~porated (not necessorily normel order evoluetion),

cend o fecst implementction using the technigques developed by Luce end others.
Evertuoily, HOPL couls become ¢ lenguoge for building systems | ike LCF.

We would |ike to see reseorch into the roles of fatlure trepping,
input/output, ossigneble vericbles, and mormal order eveolusction tn such
lornguoges.

We hope someone will work on debugging tools fer HOPE and ML. Their
polumerphism mokes it herd to write debugsers, becouse there is no type
informction et run=time ond only pertial informotion et compile=time.

€. We ore mot fomilier with this work but would be interested fn leerning
more obout i1t.

E. We fovor o tutoriel on HOPE aend ML. It must toke plece where there ore

meny terminols running these |anguoges, for no one can understond whot
poiymorphism is really about without personally tuping in function
definitions. Recent extensions to LCF, discussed below, ore bringing it
closer to conventiono! logics and moking 1t eastier to vnderstond. We will
require a few months to discover the consegquences of thaese extensions, and
suggest thet nmo LCF tutoriacl be held before then.

7. Lorry Poulson is interested tn performing structural induction in LCF.
He hos extended the logic with disjunction ond existential guentifiers, in
order to ollow recursive structures to be axiomatized directly, rether than
through domoin equotions. Such axiom systems ore simpler ond more naotural
thon the previous constructions thaot used |ifting and cooclesced sums. He
plans tc ocutomote the construction of theories of recursive structures,
including (when applicoble) proof thet o domoin is flet ond construction of
its theory of equaolity. In perticuler, this would focilitote compiler
proofs, since it would ocutomotically construct the theory of © laonguoge’'s
abstroct syntax. He has formalized part of Mannc ond Waldinger’s proof of
the Unificaotion Algorithm, and plons to continue this.

Mike plans to octtempt some non-triviel digital suystem correctness proofs fin
oen extension of PPLAMBDA contcining terms denoting segquential maechinas,
together with inference rules bosed on the lows of 5CCS. Some simple
examples hove olrecdy been done tn o prototype implemantetion, and thea
approoch seems promising.

Mike has o student interested in comporing ond (perhaps) combining functional
end logical programming. One possibility is to provide ¢ mechcnism for
deducing consequences of PPLAMBDA theorems with o very efficient derived
inference rule bosed on Prolog. The generol idec is to approoch the

ideo! of Program=Logic+Control by experimenting with PPLAMBEDR es the logic
and ML ¢s control.

Dove Mztthews ot Combridge is developing @ high performonce system
programming |onaucge, called Poiy, which is derived from Pascal ond Russell.
It is beginning to look @ lot like ML, and it is hoped to eventuoally unify
the two approoches. Poly miaht be o source of ideos for extending the ML
<ype discipline, it might olso be ¢ good progremming languege for future LCF
implementotions. At present it is not cleor whether continued SERC support

for Dove will be forthcoming.

Lorry Poulison

Mhah 2 €. W)

Mike Gordon

Addenda to the Mailing List

Hans Boehm
Campurer Scence Department, FR-35
Sieg Hall
University of Washington
Seattle, WA 98195
USA

Corrado Bohm
Istituto Matematico G. Castelnuovo
Universita’ di Roma
Piazzale Aldo Moro 5
00185 Roma
Italy

Alex Borghida

Dept. of Computer Science

Hill Center

Rutgers University

New Brunswick, NJ 08903
UsSA

John Darlington

Dept. of Computing

Imperial College of Science
and Technology

180 Queens Gate

London SW7 2BZ

England

James Donahue
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
USA

Gerard Huet

INRIA

P.O. Box 105

Domain de Voluceau

Rocquencourt

78150 Le Chesnay
France

Tel 3-9549020

Finn V. Jensen
Institue of Electronic Systems
Aarlborg University Center
Aarlborg

Denmark

Richard B. Kieburtz
Dept of Computer Science and Eng.
The Oregon Graduate Center
19600 NW Walker Road
Beaverton, Oregon 97006

USA
Tel 503-645-1121

Mike Levy

Dept. of Computer Science
Univ. of Victoria

Box 1700

Victoria, B. C. VBW 2Y2
Canada

Tel 604477-6911 x 4757

Lockwood Morris
School of Computer and
Information Scence

Syracuse University

313 Link Hall

Syracuse, NY 13210
USA

Tel 315-423-2368

Gordon Plotkin
Room NE43-837
MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA (R139
USA

Nick Rothwell

Computing Laboratory

Claremont Tower

University of Newcastle Upon Tyne
Newrastle Upon Tyne NE1 7RU

Peter Wegner
Dept. of Computer Scence
Brown University
BOX 1910
Providence, RI 02912
UsA

