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I n t r o d u c t i o n  
Abstract types are a well known and effective way of structuring programs. The basic ide~ 

of information hiding can however conflict with the need to store data for long periods of time, ar 

make it accessible to different activities. In particular a typechecker must be able to recognize fl 

occurrence of the same abstract type during different activations, and must enforce the privacy, 

data representations. 

To achieve this, the persistent storage of data must preserve type information, and mu 

respect type abstraction. The use of type abstractions in the presence of persistent storage require 

that abstract types be made persistent as well. Under these conditions, we can preserve ty[ 

security across distinct activations of the typechecker. 

The following is a brief account of how various models of abstraction and persisten¢ 

interacL We start by sketching a simple polymorphic language and its types and showing variot 

ways of modeling type abstraction in such a language. We then discuss some basic notior 

underlying persistent storage of typed objects, such as the intern and extem primitive and 

special type dynamic, and describe three persistence strategies. Finally we discuss the partieul~ 

problem of persistent abstract types. 

Values and T y p e s  

We will base our discussion on a stmple polymorphic language in the tradition ofML [Milnq 

84] and Amber [Cardelli 84]. The simplified language we have in mind is closely related to 

language SOL [Mitchell and Plotkin 85], variants of which are described in [Reynolds 85] an 

[CardeUi and Wegner 85]. 

The basis of this language is a slightly sugared applied lambda calculus that is adequate fc 

expressing certain kinds of ~;~lue~: T~t[:~e~ar~tations are added to the basic expressions m such 

, way that one cc'~ s~tically determine a type for each expression. This type is a structur; 
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characterization of the value denoted by the expression. Types are viewed as meta-level terms in a 

type language designed to express certain structural properties of values. Types are not values, but 

can be interpreted semantically as sets of values. 

A value may have many types, and correspondingly a value expression can be typed in 

several ways. For example, the "type-free" expression Xx. x is the basis for the following 

type-annotated versions, each of which has a different type: 

Lx:int. x :int ~ int 

Xx:bool. x : bool  ~ 13oo1 

At. Xx:t. x :V t . t  ~ t  

These type annotations do not affect the value computed by the expression (the identity 

function in this case), they only help to characterize the structure of that value. The last type is a 

polymorphic type, which expresses the fact that the basic expression ~ .  x can have many types, 

namely all instances of the type schema t ~ t. 

Language of types 
The class of type expressions is defined by the following abstract syntax: 

int I b o o l l  . . . I t  l a x  e Icr + o 1 ~  ~ a I V t . ~  (t) 

Types are structural, i.e. types are equivalent ff their term structure matches (modulo change 

of bound type variables). Certain types are atomic in that they have no internal structure and match 

only themselves. The atomic types include certain primitive types such as int and bool, and also the 

abstract types discussed below. 

A closed value expression (i.e. one that contains no free occurrences of unbound or 

lambda-bound variables and therefore denotes a particular value) must have a type that is a closed 

type expression, i.e. its type may not contain free type variables. 

Existential types and packages 
Following SOL [Mitchell Plotldn 85] we will introduce type abstraction through the notion of 

existentially quantified types. We introduce a new class of existentially quantified type 

expressions: ~ ~ . ~ 
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Roughly speaking, a value has type 3 t. o(t) if it has type cr(x) for some particular type z. An 

expression having existential type 3 t. er(t) must specify a particular type x as a witness for the 

existential type quantifier, and an expression having the type oIx). We use the following syntax: 

pack [ t= z; e: o(t) ] : 3 t. o(t) (1) 

Such expressions (and their values) will be called packages. In order to establish the typing 

(1) it is necessary and sufficient to establish 

e : c~) 

The type x is called the representation type and the expression e defines the interpretation of 

the type t. The expression e typically denotes a tuple of values and functions through which we are 

allowed to create and manipulate values of the representation type. The existential type 3 t. o(0 is 

called the interface or signature of the package, which in turn is called an implementation of  the 

interface. Matching of existential types is also structural (modulo renaming of bound variables). 

The only way to make use of a package is to open it in a limited scope consisting of  an 

expression: 

open A as t,v in e (where A: 3 s. o(s)) 

The treatment of the binding of  t will differ according to the model of  abstraction we adopt, as 

explained in the next section. 

P a c k a g e s  a n d  a b s t r a c t i o n  

There are several alternative ways of  treating the type component of a package, and these 

alternative treatments lead to different styles of type abstraction. 

The transparent witness model 

One approach, adopted for modules in ML [MacQueen 85], is to view the representation type 

simply as an accessible component of  the package. For instance, if P = pack [t = int x int; ...] then 

within (open P as t, v in ... ), t would be equivalent to inl x int. In other words, the type component 

of  a package is not at all hidden or "abstract". In this model, type abstraction is achieved by lambda 

abstraction with respect to a formal (therefore abstract) package variable. 

The hypothetical witness model 
A second approach is that of SOL, also adopted in [Reynolds 85] and [CardeUi Wegner 85]. 
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In SOL, the type component of a package (called a data algebra) is treated as purely "hypothetical", 

despite the fact that it is quite explicitly defined in the package expression• 

In this model, (open P as t, v in ... ) declares the names t and v to represent the (hypothetical) 

type component  and interpretation of  the package A during evaluation of the body expression. 

Within this scope, the witness variable t is treated as a new atomic type, and this type is not allowed 

to appear in the type of the open expression since the binding of t has no significance outside of it. 

This means that the type component of the package has no meaningful permanent identity; it 

can never be related to any other type except within the local scope of an open expression. Thus 

we refer to the type component as being hypothetical, indicating an even stronger constraint on its 

use than that implied by the conventional meaning of type abstraction, where the type retains its 

identity even though its structure is hidden. 

One advantage of this very restrictive approach is that an existential type is just an ordinary 

type, and correspondingly, packages are just ordinary values that can be manipulated in all the 

usual ways, such as being defined by conditional expressions and serving as arguments and results 

of  ordinary functions. 

The abstract witness model 

The third approach is a compromise between the previous two and we could characterize it 

by saying that the type component of  the package is real but "abstract". Given P = pack [t = x; ...] we 

can refer to the witness type of  P, but it is treated as an atomic type unique to the package P, and 

not as an abbreviation for the representation type x. Under this interpretation, we will refer to a 

package as an abstraction, and to its type component as an abstract type. Abstract types can appear 

(as atomic elements) in other type expressions, including the type of  the body of  an open 

expression. If  we want to continue to view packages as values and existential types as ordinary 

types in this model, the distinction between types and values becomes blurred and we have to 

impose some rather ad hoc constraints to preserve static type checking. For instance, if A,B: 3 t. ~(t) 

and we define 

C = if b t h e n  A e lse  B 

then we will probably require that the witness type of  C does not match either the witness of  A or 

of  B. 

The problem of  persistent abstractions in this model is more interesting, because the use of 

one abstraction in defining another can give rise to dependencies that need to be preserved when 

values and abstractions are made persistent. 

< 
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Intern and Extern 
A value in main memory can be made persistent [Atkinson et al. 83] by an extern operation 

which writes it to persistent memory. Such a value can then be recovered by a symmetrical Intern 

operation on it. Extern and intern preserve the structure of data, including sharing and circularities. 

Given a value A, Intern(extern(A)) should return a value B which is at least isomorphic, modulo 

relocation, to A, and depending on the implementation of intern-extern can be A itself. 

The precise way in which external values and internal values are related can change, 

according to the persistence model one adopts; a few alternatives will be sketched later. 

Independently of these different models, the basic idea is to be able to transfer arbitrary objects 

from main to persistent storage and back. 

We assume we can intern-extern any value in memory, including programs and types. This 

allows us to make both types and values persistenL This ability to intern-extern values and types 

uniformly is useful in situations where values and types are mixed, as is the case for dynamic 

values, described in the next section. 

Intern and extern can be implemented to work on basic storage formats, like strings and 

arrays. Values and types can then be built out of the same storage formats, so that intern-extem are 

not aware of what they are manipulating, and can work uniformly on values and types. 

D y n a m i c s  

What is the type of an object returned by intern? This may be difficult to determine statically, 

as intern can read objects of any kind. Intern and extern primitives can be safely embedded in a 

strongly typed system by the use of dynatrdc objects [CardeUi 84]. The intuition is that an object of 

type dynamic is dynamically typechecked in the context of an otherwise statically typed language. 

An object of type dynamic is a pair consisting of a type and an object of that type. Hence a 

dynamic object is self-describing, and can be manipulated, stored and retrieved without the usual 

restrictions imposed by static typechecking. A dynamic object is created by the syntax: 

dynamie(x,e) : dynamic 

A dynamic object can be coerced to a given, statically known, type by: 

c o e r c e  d t o  ~ : 

If the specified type x matches the internal type of the dynamic, then the corresponding value 

is returned, stripped of the type. Otherwise a run-time type error is generated. 

As dynamic objects are self-describing, they are well suited to be exported to persistent 

storage. They also allow us to preserve strong typing in situations where static typing is 
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impossible, as when data has a longer life span than activations of the compiler performing 

typechecking. 

I d e n t i f i c a t i o n s  a n d  H a n d l e s  

Identifications provide an unambiguous way of telling whether two objects are the s a m e  

object. Identifications are made unique across all systems and users which may refer to them, 

usually by encoding their time and place of creation within them. 

An identified object is an object permanently associated with an identification. At the time of 

creation of  the identified object, a new identification is also created for it. The identification part of 

an identified object can be read and compared with other identifications, but cannot be modified. 

Distinct identifications will be used (a) to mark external forms of abstract data types, and (b) 

to mark all objects, in those models of  persistent store which rely on persistent identKiers (PIDs). 

Handles are names interpreted through an external persistent environment that maps them to 

external forms of  persistent objects. For example, if a persistent object is stored in a file, then the 

file name may be used as its handle. 

P e r s i s t e n c e  S t r a t e g i e s  

We are going to sketch here three different persistence models, which correspond to three 

different semantics for intern-extern. In the simplest model, intern-extern work on individual 

values. In a more elaborate model,  they work on the database as a whole. Finally, they 

synchronize access to a shared database. 

The fetch-store model 

In the first scenario, persistent memory is just backup storage for ephemeral structures. The 

association between internal and external objects is mediated by a handles, e.g. explicit file names. 

Extern makes a copy of  an ephemeral object in persistent storage, associating it with a 

handle. Many calls to extern on the same object and different handles will make many independent 

copies. Calls of  extern on two objects which share a substructure will duplicate the substructure. 

Intern, given a handle, makes a copy of the persistent object in ephemeral storage. Many 

calls to intern on the same handle will make independent copies. Sharing is only preserved within 

persistent objects, not across them. 

The load-dump model 

In the second scenario, we assume the user has exclusive access to the persistent storage, 

Ephemeral memory is used as a cache for persistent storage. A one-to-one association between 

internal and external objects is maintained though the use of  PIDs. Each object is identified by a 

PID, both in persistent and in ephemeral storage. 
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Extern makes a copy of  an ephemeral object in persistent storage. All calls to extern on the 

same object will produce the same persistent object. Calls of  extem on two objects which share a 

subobject will preserve the sharing of the subobject, as the common subobject has its own PID. 

Intern makes a copy of a persistent object in ephemeral storage. All calls to intern on the same PID 

will give the same object. Sharing of subobjects is preserved. 

If intem-extern are automatically called when needed, this achieves the semantics of loading 

the whole database at the beginning of execution, and dumping the whole database at the end. 

Intern-extern are only used to load and dump the database incrementally. 

This strategy is analogous to virtual memory, where virtual addresses play the role of PIDs. 

The lock-commit model 

In the third scenario, ephemeral memory is a cache for shared persistent storage with 

concurrent access. Intern-extern can no longer be fully automatic, because other users or processes 

may be affected. 

Intern-extern work as in the previous case, through PIDs. Intelrn-extern must  be explicit 

again, as in the first scenario, to control the synchronization aspects. Intern may be made to 

correspond to lock and extern to commit. 

The load-dump model of persistence is the simplest one, conceptually, as intern-extem are 

automatically performed. Unfortunately it does not scale up to concurrent access (lock-commit), 

for wtfich we need explicit intem-extem operations. This seems to be a point in favor of  fetch-store 

with respect to load-dump, because the former is compatible with lock-commit. 

P e r s i s t e n t  A b s t r a c t i o n s  
Under the hypothetical witness model, packages are not distinguished from other values and 

the witness type has no permanent identity, so the usual treatment of  intern and extern for dynamic 

values applies to packages as well. Hence we will deal hereafter with the abstract witness model; it 

appears that the transparent model can be treated in a similar fashion. 

The load-dump model of persistent storage behaves exactly like a single programming 

session, and nothing special has to be done to provide persistent abstractions or values. Use of 

dynamics and the need for persistently identifying abstract types rises primarily in the fetch-store 

model, and in the more general lock-commit model. Hence we shall concenlrate here on the latter 

models. 

An abstraction consists of: 

(1) an identified object representing the abstract type, 

(2) a tuple of  operations (the interpretation), and 

I 
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(3) the interface specification. 

Optionally the representation type itself may be included for debugging purposes. 

(1) and (2) constitute the abstraction proper, which implements the interface (3). The 

interface is expressed as an existential type, i.e. it is a structural type not involving the abstract 

type. These components  are all that is needed for manipulating objects and typechecking 

expressions of  that type. 

There is an analogy between an abstraction and its interface and dynamic objects. A dynamic 

object can be considered as having the interface: 3t. t. However the type component of  a dynamic 

object is not abstract, since it can be inspected by the coerce statement and matched against a 

contextual type. 

An extern operation on an abstraction moves all the above pieces of information to persistent 

storage. Extern could be an explicit operation, or it could be automatically performed every time a 

new abstraction is declared. 

One should make sure that an abstraction is made persistent before making objects of  its type 

persistent To guarantee this, abstractions might automatically become persistent at the time of their 

creation. This policy requires that a handle be automatically generated for each abstraction. 

When externing an object of  an abstract type we create a dependency between (a) the object 

and (b) the abstraction which carries the abstract type and the operations which are supposed to 

work on that object. When we intern such an object, the corresponding abstraction must also be 

fetched, to provide a context supporting the use of  the abstract object. 

For example, 

signature  S = 31. or(t) 

abstract ion A = coerce  (intern "abstraction") to S 

value a = open A as t,p in coerce  (intern "object") to t 

As a more complex example, we can parameterize with respect to an abstraction and a handle: 

hAbs:Sig. Zx:handle.  

open Abs as t,p in 

pack [t'=t; (coerce (intern x) t o  t x ( tAint))  : t' x (t'--~int)] 

: Sig --~ handle ~ ~ ' .  t' x (t'-.~int) 

Here the target type of  the coercion is determined dynamically, as it must be extracted from the 



abstraction parameter. The resulting type of the function does not depend on it, because pack 

abstracts it away by existential quantification. The resulting package is a new abstraction, which is 

independent of the original parameter abstraction and therefore must be self-sufficient. 

We may want to extern an object whose type involves an abstract type, e.g. a function 

having abstract types as parameters and results. Such an object is necessarily associated with the 

abstraction because the abstract type occurs in its type, and its full use may require the presence of 

the abstraction. Hence the abstraction itself should be persistent and should be interned along with 

the object that depends on it~ 

C o n c l u s i o n s  

We have discussed several models of persistence and abstraction. The main idea is that of 

preserving the identity of abstract types by giving them persistent identifications. This can be 

achieved in slightly different ways in the different schemes of persistence and abstraction. We have 

mainly dealt with the combination of the abstract witness model of packages with the load-fetch 

model of persistence. 
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