
Subtyping and ParametricityGordon Plotkin� Mart��n Abadiy Luca CardelliyAbstractIn this paper we study the interaction of subtypingand parametricity. We describe a logic for a program-ming language with parametric polymorphism and sub-typing. The logic supports the formal de�nition anduse of relational parametricity. We give two modelsfor it, and compare it with other formal systems for thesame language. In particular, we examine the \Penninterpretation" of subtyping as implicit coercion.Without subtyping, parametricity yields, for exam-ple, an encoding of abstract types and of initial alge-bras, with the corresponding proof principles of simu-lation and induction. With subtyping, we obtain par-tially abstract types and certain initial order-sorted al-gebras, and may derive proof principles for them.1 IntroductionA function is polymorphic if it works on inputsof several types. We may distinguish various no-tions of polymorphism, particularly parametric poly-morphism (e.g. [Rey83]) and subtype polymorphism(e.g. [CW85]). These may exist in isolation, as inML [MTH90] or in Amber [Car86], but they can alsointeract, with useful results. For example, a theoryof object-oriented programming has been based on acertain kind of bounded polymorphism (e.g. [CHC90,Bru93]).In this paper we study the interaction of subtyp-ing and parametricity. A polymorphic function maybe said to be parametric in Strachey's sense [Str67,Rey83, PA93] if it can be given by a uniform algo-rithm or program, independently of the type of itsarguments. A semantic de�nition of parametricity isdue to Reynolds [Rey83], who requires instead thatinstances of the polymorphic function at related typesbe related. Reynolds' de�nition has been formalized�Department of Computer Science, University of Edinburgh,King's Buildings, Edinburgh EH9 3JZ, UK. Part of this workwas completed while at Digital Equipment Corporation, Sys-tems Research Center.yDigital Equipment Corporation, Systems Research Center,130 Lytton Avenue, Palo Alto, California 94301, USA.

in previous work [ACC93, PA93]. In this paper weextend the formalization of [PA93] to a programminglanguage with subtyping.A logic serves as the setting for this study. Thislogic can be viewed as an analogue of Scott's LCF, thatis, as a fairly general system for proving properties ofprograms. Here the programs are those of System F�,which is an extension of Girard's System F [Gir72]with subtyping, abstracted from work of Cardelli andWegner [CW85] by Curien and Ghelli [CG92, CG94].Our logic for F� is an extension of the logic for F pre-sented in [PA93]. Beyond its possible use in programveri�cation, the logic provides a language for statingparametricity assumptions and rules for deriving theirconsequences, formally and without reference to par-ticular models.While it remains to consider what might be the ap-propriate general form for parametric models of F�and of our logic, we do construct particular models|indeed two such. The �rst is a parametric per modelcombining the idea of Bruce and Longo [BL90] oftreating subtypes as subpers with that of Bainbridgeet al. [BFSS90] of forcing parametricity into per mod-els of System F. The second is a closed-term model,following an idea of Moggi for System F [Mog86]. Hav-ing at least one non-trivial model, it follows that iftwo terms of the same type can be proved equal inour logic, then they are observationally equivalent.A variant F<: of F� was given by Cardelli etal. [CMMS94]. A weakened version is derivable withinour logic. Both this version and the full F<: yield someof the results associated with parametricity, frequentlywith a limitation to closed terms. Our logic gives theseand other results in full generality, for terms with freevariables. We conjecture that in fact F<: itself is deriv-able within our logic. Indeed we formulate a strongertheory, which may be said to embody Strachey's viewof parametric polymorphism for F�, and conjecturethat it is derivable.We also examine the \Penn interpretation" ofF� [BCGS91], with its view of subtyping as implicitcoercion. This interpretation is based on a transla-tion from F� to F. We show that this translationcan be extended to formulae; theorems of the logic

for F� are translated into theorems of the logic for Fgiven in [PA93]. We consider full-abstraction issuesand show that the translation is not conservative.Parametricity conditions play an important role inthe study of F and of similar languages (e.g. [Rey83,BFSS90, Wad89]). They appear in semantic construc-tions. They yield useful properties of types, for ex-ample that Int = 8X: ((X ! X) ! (X ! X)), thetype of Church integers, is isomorphic to the standardnatural numbers. And they can be exploited in prov-ing properties of polymorphic programs, for examplethat all functions of type 8X: (X ! Int) are constant.These results have interesting analogues for F�. Justas the logic for F o�ers abstract types, initial algebras,and �nal co-algebras, the logic for F� o�ers partiallyabstract types, certain initial order-sorted algebras,and certain �nal order-sorted co-algebras, with corre-sponding proof principles. Further, we can apply thelogic to prove theorems about programs from theirtypes, or \theorems for free," as Wadler calls them.Some of these have an object-oriented
avor, in linewith one of the intended applications of F�.There has been much related work for languageswithout subtyping. However, the combination of para-metricity and subtyping has been little considered. Asmentioned above, System F<: of Cardelli et al. incor-porates a modest notion of parametricity (partly mo-tivated by dinaturality considerations). Ma [Ma92]expresses parametricity for F via a translation into alanguage with subtyping and intersection types. Mafocuses on parametricity in F, not on parametricity inhis target language with subtyping.The next section introduces our logic and some fun-damental results about it. Discussion of its seman-tics appears in section 3. Section 4 treats other theo-ries for F�, including one induced by the Penn inter-pretation. Section 5 provides encodings of extensiblerecords, partially abstract types, and order-sorted al-gebras.2 Basic logicThis section de�nes the logic. In this paper wesometimes reference or borrow from [PA93] for thefragment that corresponds to F. We emphasize thenovelties, which concern subtyping.2.1 Well-formed formulaeThe type expressions and terms are those of F�.The type expressions of F� are like those of F, withthe addition of a largest type Top and a generalization

from quanti�ers to bounded quanti�ers. The terms areextended similarly, with a constant (top) and boundedtype abstractions. Type expressions and terms aregiven by the grammar:Types: A ::= X j A! B j Top j 8X�B: ATerms: t ::= x j �x :A: t j u(t) j top j�X�B: t j t(A)Here X ranges over type variables and x over ordinaryvariables. We use notations such as A[X] to indicatepossible occurrences of variables in expressions, andthen may write, for example, A[B] to represent theresult of substituting B forX inA (avoiding capture ofbound variables). Unbounded binders abbreviate thecorresponding binders with bound Top; so for example8X:A stands for 8X�Top:A. Throughout, expressionsare understood up to �-equivalence.We build formulae from equations and binary rela-tions between terms.Formulae: � ::= (t =A u) j R(t; u) j � � j8x :A: � j 8X�B: � j 8R�A�B: � j?j � ^ j �_ j9x :A: � j 9X�B: � j 9R�A�B: �Here R ranges over relation variables. The equalitysymbol is subscripted with a type expression, the typeof the terms being equated. In F, this expression isunique, and so can be left implicit, but it proves nec-essary in treating subtyping, as we see below. Thebasic constructs are implication (�) and three sorts ofuniversal quanti�cation: over values, over types, andover relations between types (where R�A�B is readas \R is a relation between A and B"). The other con-structs are useful but not altogether necessary. Whenwriting formulae we often make use of evident abbre-viations. While there are primitive notions of subtypeand of bounded type quanti�cation, there is no needfor a corresponding primitive notion for relations.A second-order environment E is a �nite sequenceof type variables with bounds X � A or typings x :Ain which no variable is introduced twice. The typingjudgment E ` t :A and the subtyping judgment E `A�B are de�ned as in [CG92, CG94].To specify the well-formed formulae, we also needrelation environments, which are �nite sequences ofrelational typings R�A�B with no relation variablerepeated. We de�ne a judgment E ` G REnv to as-sert that G is a well-formed relation environment givenE; the judgment holds if whenever R�A�B appearsin G then A and B are well-formed type expressionsgiven E. We de�ne a judgment E;G ` � Prop to as-sert that � is a well-formed formula given E and G.

The rules for atomic formulae are:E ` t :A E ` u :A E ` G REnvE;G ` t =A u PropE ` t :A E ` u :B E ` G REnv R�A� B in GE;G ` R(t; u) PropAmong the other rules we have, for example:E;X � B;G ` � PropE;G ` 8X�B: � Prop E;G;R�A� B ` � PropE;G ` 8R�A�B: � Prop2.2 Relational formulaeNext we introduce relational formulae. They aregiven by the grammar:Relational formulae: � ::= (x :A; y :B): �[x; y]We say that such a � is a relational formula between Aand B, and write ��A�B. We write E;G ` ��A�Bfor the judgment that � is a well-formed relationalformula between A and B given E and G. There isone rule for this judgment:E; x :A; y :B;G ` � PropE;G ` (x :A; y :B): ��A�BFor example, eqA = (x :A; y :A): (x =A y) is a rela-tional formula denoting the equality relation over A.With subtyping, useful, new relations become avail-able, for example a variant of the equality relation isdenoted by (x :A; y :B): (x =B y)�A�B; this is wellformed in any environment where A�B.We sometimes treat a relation variable R�A � Bas the relational formula (x :A; y :B): R(x; y). Also,when � is (x :A; y :B): �[x; y], we sometimes use theabbreviations �(t; u) or t�u for �[t; u]. A relationalformula � can be substituted for a relation variable Rin a formula �[R], yielding �[�]. In particular when �is R(t; u), the result of the substitution is �(t; u).2.3 Operations on relationsIn order to give our axiomatization of parametric-ity, we need to be able to combine relations by expo-nentiation and bounded universal quanti�cation.For ��A�B and �0�A0 �B0, we de�ne (�! �0)�(A! A0)�(B ! B0) to be:(f :A! A0; g :B! B0):8x :A 8y :B: (x�y � f(x)�0g(y))If E;G ` � � A � B and E;G ` �0 � A0 � B0 thenE;G ` (�! �0)� (A! A0)� (B ! B0).

Next, for ��C �D and �0�A� B, we de�ne(8(Y�C;Z�D;R��): �0)� (8Y �C: A) � (8Z�D: B)to be:(y : (8Y�C: A); z : (8Z�D: B)):8Y�C8Z�D8R�Y �Z: (R � � � (yY)�0(zZ))where �1 � �2 stands for 8x : C18y : D1: (�1(x; y) ��2(x; y)), for �1�C1 �D1 and �2�C2 �D2. Supposethat E;G ` ��C�D and E0 ` �0�A�B, where E0is E; Y � C;Z � D;G;R � Y �Z. Then E;G `(8(Y�C;Z�D;R��): �0)� (8Y�C:A)� (8Z�D: B).We can now abbreviate relational formulae by typeexpressions with a certain substitution of relationalformulae for their free variables. If ~X = X1; : : : ; Xn,~B = B1; : : : ; Bn, ~C = C1; : : : ; Cn, and ~� = �1; : : : ; �nwith �i�Bi�Ci, then A[~�]�A[~B]�A[~C] is the resultof substituting ~� for ~X in A[~X]. It is de�ned by cases:� if A is Xi then A[~�] is �i;� if A is A0[~X]! A00[~X] then A[~�] is A0[~�]! A00[~�];� if A is Top then A[~�] is eqTop;� lastly, if A is 8X 0�D[~X]: A0[~X;X0] then A[~�] is8(Y�D[~B]; Z�D[~C]; R�D[~�]): A0[~�;R].If E;G ` �i�Bi�Ci then E;G ` A[~�]�A[~B]�A[~C].For example if A[X] is 8X 0�X: X 0 then A[eqInt] is8(Y�Int ; Z�Int ; R�eqInt): R. The de�nition applieswhen A is closed, when we write A[] for the relationalformula obtained. For example (8X 0�Top: X 0)[] is8(Y�Top; Z�Top; R�eqTop): R.2.4 ConsequenceIt remains to give axiom schemas and rules in orderto de�ne the consequence relation of the logic. Thisrelation is written as � `E;G �, where � is a �niteset of formulae, and all formulae involved are well-formed given E and G. The proof system has threeparts: standard rules for the connectives and quanti-�ers; equational axioms (corresponding to the equa-tional system of [CG94]); and a schema to express re-lational parametricity. We adopt the convention thatif an axiom � is written, what is meant is that thesequent � `E;G � is asserted, provided � and all for-mulae in � are well-formed given E and G.The rules for the connectives and quanti�ers aregiven as usual for natural deduction. Propositionallogic is standard; intuitionistic rules su�ce for our pur-poses, but classical rules are consistent as well. The

rules for predicate logic consist of introduction andelimination rules for each of the quanti�ers, such as:� `E;X�B;G �[X]� `E;G 8X�B: �[X]� `E;G 8X�B: �[X] E ` A � B� `E;G �[A]� `E;G;R�A�B �[R]� `E;G 8R�A�B: �[R]� `E;G 8R�A�B: �[R] E;G ` ��A� B� `E;G �[�]with the usual provisions about variable occurrences.The axioms for equality include a re
exivity axiom,a substitution axiom, two congruence schemas, andsome �-equalities and �-equalities:8X8x :X: (x =X x)8X8Y 8R�X�Y 8x :X8x0 :X8y :Y 8y0 :Y:R(x; y) ^ x =X x0 ^ y =Y y0 � R(x0; y0)(8x :A: t =B u) � (�x :A: t) =A!B (�x :A: u)(8X�B: t =A u) � (�X�B: t) =8X�B: A (�X�B: u)8x :A: ((�x :A: t)x =B t)8X�A: ((�X�A: t)X =B t)8X8Y 8f :X ! Y: ((�x :X: fx) =X!Y f)8f : (8X�A: B): ((�X�A: fX) =8X�A: B f)8x; y :Top: (x =Top y)Parametricity is embodied by an axiom schema:8Y1 : : :8Yn8u : (8X�B: A)[~Y]: u((8X�B: A)[eq~Y])uwhere A has free type variables among X;Y1; : : : ; Ynand B has free type variables among Y1; : : : ; Yn andeq~Y is eqY1 ; : : : ; eqYn . To understand this, it is con-venient to expand the de�nition, obtaining that ifX 0 � B[~Y], X00 � B[~Y], R�X 0 � X 00, R � B[eq~Y],and u : (8X�B: A[~Y]), then u(X 0)A[eq~Y ; R]u(X00).Thus, if one instantiates a polymorphic value u attwo related types X 0 and X 00 then the two values ob-tained u(X 0) and u(X 00) are themselves related. Thisstatement expresses Reynolds' idea of relational para-metricity. It is adapted to a calculus with subtypingby constrainingX0 andX 00 to be subtypes ofB[~Y] andthe relation R between X0 and X00 to be included inB[eq~Y] (which is provably the identity relation on B|see Lemma 1).Note that 8X8x; y :X: (x =Top y) is provable, while8X8x; y :X: (x =X y) is false in any nontrivial model.This explains why the equality relation is indexed bya type.

2.5 Basic lemmasThe basic provable schemas within our logic aregiven by the Identity Extension Lemma, the LogicalRelations Lemma, the Dinaturality Lemma, and theGraph Lemma, following the lines of [PA93].Lemma 1 (Identity Extension Lemma)Let A[~X] have free variables in ~X . It is provable that8u; v :A[~X]: (uA[eq ~X]v � (u =A[~X] v))The following simple version of the Logical Rela-tions Lemma implies a more general one, which doesnot require B and t to be closed:Lemma 2 (Logical Relations Lemma)Suppose t : B where B and t are closed. Then it isprovable without using the parametricity schema thatt B[] t.Types and the functions between them form a cat-egory within our logic, as in [PA93]. In extendingtypes A[~Y ; ~X] to multivariant functors we impose notonly that all occurrences of variables from ~Y are neg-ative and all occurrences of variables from ~X positive,but also that none occur free in any bound; proceed-ing further than this presents a challenge. (In a typeexpression 8Z�C: B the bound C is considered anti-monotonic and the body B monotonic.)Lemma 3 (Dinaturality Lemma)It is provable that:8f :X ! Y: (A[idX ; f]o(�)X = A[f; idY]o(�)Y)where in A[Y;X], Y occurs only negatively, X onlypositively, and neither are free in any bound.In order to state the Graph Lemma, we write htiA;Bfor (x :A; y :B): tx =B y (with x, y not free in t), write�op for (x :A; y :B): y�x (where �� B � A and x, yare not free in t) and consider two relations as equalif they coincide extensionally:Lemma 4 (Graph Lemma)Suppose A[~Y ; ~X] has all its free variables in ~Y ; ~X, thevariables in ~Y occur only negatively, the variables in~X only positively, and none are free in any bound.Then, for distinct ~Y ; ~X; ~Y 0; ~X 0, it is provable that:8~g : ~Y 0 ! ~Y 8~f : ~X ! ~X0: (hA[~g; ~f]i = A[h~giop; h~fi])

3 SemanticsThe categorical semantics of parametric models ofF has been investigated by Hasegawa and by Reynoldsand Ma [Has94, MR92]. The categorical structuresneeded for models of F� have been investigated byPhoa [Pho92]. It remains to combine these investi-gations to provide a general categorical semantics ofparametric models of F�.Fortunately, we do not need a general notion to con-sider particular models. We give ad hoc presentationsof two models, one of partial equivalence relations andanother based on closed terms.For the �rst model, �x a partial combinatory al-gebra and take the types of the model to be the par-tial equivalence relations (pers); these are the sym-metric and transitive relations (over the algebra). Atriple (R;P;Q) is a (::-closed) relation between persP and Q i� R is a binary relation and R = P ;R;Q.We set dom(R;P;Q) = P and cod(R;P;Q) = Q; wesay that (R;P;Q) is a subrelation of (R0; P 0; Q0) andwrite (R;P;Q) � (R0; P 0; Q0) i� R � R0, P � P 0,and Q � Q0; and we write bP for the identity relation(P; P; P) on a per P .Type expressions receive a double interpretation.The �rst interpretation assigns to every type expres-sion A a per T [[A]]� (for � a type environment, map-ping type variables to pers). The second interpre-tation assigns a relation R[[A]]� between T [[A]]domo�and T [[A]]codo� (for � a (semantic) relation environ-ment, mapping relation variables to relations betweenpers). The type interpretation of universal quanti�-cation is: a(T [[8X�B: A]]�)a0 i� (i) a(T [[A]]�fP=Xg)a0for all P � T [[B]]�, and (ii) a(R[[A]]�̂f(R;P;Q)=Xg)aand a0(R[[A]]�̂f(R;P;Q)=Xg)a0 for all (R;P;Q) � R[[B]]�̂ ,where �̂(Y) = d�(Y). For relations, R[[8X�B: A]]� isthe triple (R;P;Q) where P is T [[8X�B: A]]domo�, Qis T [[8X�B: A]]codo�, and aRa0 i� (i) aPa and a0Qa0,and (ii) a(R[[A]]�f(R0;P 0 ;Q0)=Xg)a0 for all (R0; P 0; Q0) �R[[B]]�. Proposition 1 relates the two interpretations:Proposition 1 For all type expressions A and alltype environments �, R[[A]]�̂ = dT [[A]]�.An interpretation of the logic extends the inter-pretation of F�. Formulae are interpreted classically,with type variables ranging over pers, ordinary vari-ables over elements of the domain of the appropri-ate per, and relation variables over relations betweenthe appropriate pers. With this, a relational formula� � A � B can be interpreted as a relation betweenthe pers denoted by A and B. It is straightforward tovalidate all the axioms and rules of inference, except

that the axiom of parametricity needs some work. Forthis Proposition 1 applies. One also needs a \seman-tic substitution lemma" to the e�ect that the relationde�ned by the substitution of relational formulae in atype expression is the same as the relational seman-tics of the type expression in the relation environmentinduced by the relational formulae being substituted.For the second model, we follow the construction ofa closed-term model of System F by Moggi [Mog86].We work with a natural contextual (or observational)equivalence relation 'A, indexed by closed type ex-pressions A. Here, for any closed F� terms t and uof type A, t 'A u holds i� for every closed term c oftype (A! Int), ` ct = 0 : Int holds in the equationalsystem of [CG94] i� ` cu = 0: Int does.We take the types (of the model) to be the closedtype expressions. For any such type A, set TermsA =ft j ` t :Ag and say a relation between two types Aand B is a relation between TermsA and TermsB thatis closed under '. Type and relation environmentsare de�ned as before; (ordinary) environments � aretaken to be maps from (ordinary) variables to closedterms. Type and ordinary environments are extendedto type expressions and terms by substitution. Forany E and G such that E ` G REnv, we take thejudgment �; �; � j= E;G to hold i� ` �(x) : �(A) foreach x :A in E, and ` �(X)��(A) for each X�A inE, and �(R) is a relation between �(A) and �(B) foreach R�A�B in G.Next, for any E, G, and � such that E;G ` � Propand �; �; � j= E;G, we de�ne a satisfaction judgmentE;G j=�;�;� � by induction on the structure of �. Inparticular we set E;G j=�;�;� t =A u i� �(t) 'A �(u).It follows from the following lemma that all the equal-ity axioms are valid (in the now evident sense):Lemma 5 1. Let B and C be closed type expres-sions and let t and u be closed terms of typeB ! C. Then t 'B!C u i� tv 'C uv for allclosed terms v of type B.2. [Ghe90] Let t and u be closed terms of type Top.Then t 'Top u.3. Let 8X�B: A[X] be a closed type expression andlet t and u be closed terms of that type. Thent '8X�B:A[X] u i� tC 'A[C] uC for all closedtype expressions C with C a subtype of B.As the rules of the logic are also valid, the LogicalRelations Lemma holds in this interpretation. Withthat and a semantic substitution lemma, one can ver-ify that the parametricity schema is valid (essentiallybecause all elements of types are de�nable). Thus wehave a second model of our logic.

4 On other systems for F�In this section we relate our logic to other systemsfor F�. These are: the equational system of [CG94];the equational system F<: of [CMMS94]; an equa-tional schema which expresses Strachey's view of para-metric polymorphism (in the context of F�!); and thesystem obtained by combining the Penn interpretationwith parametricity assumptions.4.1 Equations for F�The equational system of [CG94] corresponds to theequational fragment of our logic, less parametricity.Writing E ` t = u :A for provability in this system,we have:Proposition 2 E ` t = u : A i� `E; t =A u isprovable without using the parametricity schema.Using the parametricity schema, we can derive aweakening of the equational system F<:. The di�er-ence between F<: and F� concerns the rule (Eq appl2)of [CMMS94], which in the context of F� is equivalentto the equation:�x : (8X�A: B[X]): xA0=(8X�A: B[X])!C�x : (8X�A: B[X]): xA00assuming an environment E where A0; A00 � A andB[A0]; B[A00] � C hold. The weakening contains in-stead the rule (Eq appl2�+) of [CMMS94], which inthe context of F� is equivalent to the equation:�x : (8X�A: B[X;X]): xA0=(8X�A: B[X;X])!B[A0 ;A00]�x : (8X�A: B[X;X]): xA00where B[X�; X+] is a type expression in which X�occurs only negatively and X+ occurs only positively,and assuming an environment E where A0 � A00 � Aholds. The variant system with the rule (Eq appl2�+)su�ces for the results of [CMMS94]. Derivability inthis system is written as E `�+ t = u :A.Proposition 3 If E `�+ t = u :A then `E; t =A u.The only di�culty in the proof of this result is inthe derivation of (Eq appl2�+) in our logic. Toshow this, take =A0 ;A00 to be the relational formula(x : A0; y : A00): (x =A00 y). Then we have that=A0;A00� eqA, and, by parametricity, for any x in8X�A: B[X;X], (xA0)B[=A0;A00 ;=A0;A00](xA00). ButeqA0 � (=A0;A00) � eqA00 ; so we may use the facts that

if X occurs only positively in a type C[X] and � � �0then C[�] � C[�0], and similarly in the negative case,to get (xA0)B[eqA0 ; eqA00](xA00). The result then fol-lows by the Identity Extension Lemma.Note that this proof is given in the usual infor-malmathematical style rather than presented formallywithin the logic; however, a formal version can easilybe given. We proceed similarly with other arguments.The equation for (Eq appl2) is an instance of a moregeneral schema which asserts all equations t =A u inwhich t and u have the same type erasures, assumingan environment E in which t and u have the sametype A. (The type erasure of a term is the term ofthe untyped �-calculus obtained from it by removingall type expressions in �-abstractions, and all type ab-stractions and applications.) We conjecture that thisschema is derivable in our logic. In [ACC93, PA93]similar conjectures were made for System F and thecorresponding equational schema was argued to ex-press Strachey's view of parametric polymorphism.4.2 The Penn interpretationIn [BCGS91], Breazu-Tannen et al. describe atranslation of an extension of F� to an extension ofF (the Penn interpretation) and prove a coherence re-sult. This work straightforwardly restricts to a trans-lation of F� to F extended with a type Top. Re-placing Top with 8X: (X ! X), we obtain a trans-lation to F. Each type expression A is mapped toan F type expression A?, for example (8X�B: A)?is 8X: ((X ! B?) ! A?), showing how subtypingis modeled by|arbitrary|coercion. Next, each envi-ronment E is mapped to an F environment E?, andfor each proof � of a typing E ` t :A one obtains anF term t� and an F proof of E? ` t� :A?. Accordingto the coherence result, t� is independent of � up toprovable equality, and we can write t? rather than t�.We omit the de�nitions.We now extend this translation, mapping our logicfor F� to the logic for F of [PA93]. To trans-late relation environments, we replace each declara-tion R � A � B by R � A? � B?. To each prov-able sequent E;G ` � Prop we associate a sequentE?;G? ` �? Prop by induction on the structure of�. Here we just give two cases. If � is t =A u thenthe translation is E?;G? ` t? =A? u? Prop whereE? ` t? : A? is the translation of E ` t : A andsimilarly for u. If � is 8X�B: then the transla-tion is E?;G? ` 8X8f : X ! B?: ? Prop whereE?; X; f :X ! B?;G? ` ? Prop is the translation ofE;X � B ` Prop.

Theorem 1 (Translation Theorem)Suppose that the translation of E;G ` � Prop isE?;G? ` �? Prop. If `E;G � is provable in the logicfor F� then `E?;G? �? is provable in the logic for F.Not everything translates well, however. The trans-lation re
ects but does not preserve the contextualequivalence relation ' (de�ned for F as for F�). Itis simple to prove re
ection: that t? 'A? u? impliest 'A u. As to the failure of preservation, set B to be8Y: ((8X�Y: X) ! (8X:(X ! Y) ! X)). There areno closed terms of type B, but there is a closed termof type B?. Now let A be B ! Int , t be �x :B:0, andu be �x :B: 1. Lemma 5 yields t 'A u. On the otherhand, it is easy to see that for some term c, c(t?) is��-equivalent to 0 and c(u?) to 1 and so t? 6'A? u?.This can be viewed as a failure of full abstraction forthe Penn interpretation.In fact, t? and u? will have di�erent denotations inany non-trivial model of F, so any model of F� de�nedby factoring through the Penn interpretation will notbe fully abstract. (Answering a question of Breazu-Tannen, t and u also receive di�erent interpretations inthe parametric per model outlined in section 3 as thereB has the same denotations as Top; so that model isnot fully abstract either.)Further, the translation of the logic is not conser-vative. Speci�cally, take � to be (t =A u � 0 =Int 1).Then �? is provable in the logic for F (even withoutparametricity) but � is not provable in the logic forF� as it is false in the closed-term model given above.We do not know whether the translation is conserva-tive for equations.It is not clear how seriously one should take theseinadequacies of the Penn interpretation. After all, aswe show, the logic for F� is powerful in that it sup-plies all the usual reasoning principles one might ex-pect, and the Translation Theorem implies that thelogic for F is powerful too. On the other hand, it isuncomfortable that via the translation one can provefalse statements (in a certain sense) and it would beinteresting to have a principled extension of the logicfor F� that would refute statements like �.5 DatatypesFinite products and sums, existentials, initial alge-bras, and �nal co-algebras can be treated without sub-typing; see [PA93] for details. Now, in addition, exten-sible record and variant types, bounded existentials,and order-sorted algebras become available. That is,they can be represented as F� types, and the logic

enables us to prove that these F� types have certainexpected properties, for example that two extensiblerecords of a type A are equal if they agree on the �eldsdeclared in A.5.1 Extensible recordsExtensible record types are treated as in [Car92].One �xes an ordered, countably in�nite list of names li(i = 1; 2; : : :) and takes the record type ��l2LAl (whereL is a �nite set of names) to be �i�n+1Bi where n isthe greatest index of any element of L, Bi = Ali (ifli 2 L) and = Top (otherwise). This type is a �niteproduct, categorically.One can de�ne extensible sums analogously. If onehas available a least type Bot (necessarily the initialtype) one can set ��l2LAl = �i�n+1Bi with n as aboveand Bi = Ali (if li 2 L) and = Bot (otherwise). Thisyields a categorical sum. One can get the same e�ectwithout Bot by taking Bi = 8X: ((Ali ! X)! X) (ifli 2 L; X not in Ali) and = 8X: (Top ! X) (other-wise).Records and bounded quanti�cation have been usedin combination to model some aspects of object-oriented programming. Parametricity is useful in un-derstanding the issues involved in this approach toobjects. The �rst example considered seems to havebeen a simple one concerning the type Point of ex-tensible records with integer �elds x and y. (Infor-mally, we write Point as fx; y : Intg, and think ofpoints as objects.) The type 8P�Point : (P ! P)was intended as the type of a program that modi�esthe x and y components of an element of an arbitrarysubtype P of Point , that is, the type of a programthat \moves a point" parametrically for any subtypeof Point . However, Mitchell pointed out that in aper model this type contains only the identity func-tion, hence no value of this type can \move" any-thing in a per model. This can be veri�ed in gen-eral in our logic for F�: if f :8X�A: (X ! X) then8X�A8x :X: (f(X)(x) =X x). To show this, one con-siders a type X and an element x in X, and appliesthe parametricity scheme for 8X�A: (X ! X) to therelational formula (y :X; z :X):y =X z =X x.What should then be the type of a parametricmovefunction? One solution is to use a richer notion ofextensible records. As in [Car92], we write Z"fx; ygto mean that Z is a \record extension" that does notcontain the labels x and y, so that fx; y : Int; Zg is awell-formed record type. Then we take:move : 8Z"fx; yg: (fx; y : Int; Zg ! fx; y : Int; Zg)

that is, the move function takes any extension of therecord type fx; y : Intg with Z and returns a similarextension, possibly modifying x and y. These extensi-ble records can be encoded in F� as shown in [Car92],and so our logic applies to them as well. The encod-ing depends on an enumeration of labels. If we assumethat x and y occur, say, �rst and third in the enumer-ation, then the type of the move function under theencoding is:8X28X4:((Int�X2�Int�X4)! (Int�X2�Int�X4))Now, using parametricity, it is easy to show that8X: (X ! X) is isomorphic to Top, and also that8X: (X ! Y) is isomorphic to Y . From this we maydeduce that 8X: ((X � Y) ! (X � Z)) is isomorphicto Y ! Z. It follows that the type of move is iso-morphic to (Int � Int) ! (Int � Int), and hence canindeed contain a genuine move function.5.2 Partially abstract typesJust as existential types model abstract types[MP85], bounded existential types model a corre-sponding programming construct: partially abstracttypes [CW85]. A partially abstract type is a typewhose representation is left unspeci�ed, but whoseproperties are partially known by virtue of it beinga subtype of a known type. Partially abstract typesare a signi�cant feature of some object-oriented lan-guages that support abstraction [Wir88, Nel91].Formally, bounded existentials can be de�ned frombounded universals:9X�B: A[X] = 8Y: ((8X�B: (A[X]! Y))! Y)Combinators pack and unpack are available:pack :8X�B: (A[X]! 9X�B: A[X])unpack : (9X�B: A[X])! 8Y: ((8X�B: (A[X]! Y))! Y)with packXxY f =Y fXx for any X � B, x : A[X],and f : 8X�B: (A[X] ! Y), and unpack given bythe identity. We have: unpack (packXx)Y f =Y fXx.One has a categorical characterization: for any func-tion f :8X�B: (A[X]! Y) there is a unique functiong : (9X�B: A[X]) ! Y such that for any X � B andx :A[X], fXx =Y g � (packXx). One can also showhow the bounded existential operates on relations. Abounded simulation principle can then be derived. It isa rule for proving equalities between elements of par-tially abstract types: omitting parameters and types

on equalities, for any u; v : 9X�B: A[X], u = v holdsif9X�B; Y�B 9x :A[X]; y :A[Y] 9S�X�Y:S � eqB ^ u = packXx ^ v = packY y ^ xA[S]yThis rule yields representation-independence the-orems for partially abstract types. For example,the type 9X�Point : (X � (Point ! X)) the typeof a package providing an element of an unknownsubtype X of Point and a function from Point toX, is isomorphic to the much less intriguing type9X�Point : (Point � (Point ! Point)), and in turnto Point � (Point ! Point), the type of a pair of aPoint and a function over Point .More generally, one can replace occurrences of anexistentially quanti�ed variable with its bound in apackage interface, provided all its occurrences in theinterface are positive, and none occur freely in abound. This is a consequence of the correspondingstatement for types 8X�B:A[X] with universal quan-ti�ers and negative occurrences. For such a type, (�)B :(8X�B: A[X]) ! A[B] is an isomorphism with in-verse g = �y :A[B]�X�B:A[�](y), where � is the typeinclusion (�x :X: x) :X ! B. That go(�)B is the iden-tity follows from 8z : (8X�B: A[X]): zX =X A[�](zB)which is proved using parametricity with the relationh�iopX;B and then the Graph Lemma. That (�)Bog is theidentity is proved by equational reasoning.5.3 Order-sorted algebrasInitial algebras and �nal co-algebras can be han-dled without subtyping, so for example the initialA[X]-algebra is 8X: ((A[X]! X) ! X). One mightalso imagine bounded initial algebras, setting I tobe �X�B: A[X] when A[B] � B. One wouldlike I � B to hold; however the obvious attempt8X�B: ((A[X]! X)! X) does not work.One can construct a variety of initial order-sortedalgebras [GM92] and �nal order-sorted co-algebras.Let L be a �nite partial order over the set of names(recall section 5.1); for each l 2 L let Al[~X] be a typeexpression with ~X a vector of jLj variables all occur-ring only positively in Al and not in any bound. Thena (formal) order-sorted ~A-algebra ((Bl)l2L; (gl)l2L) isa collection of types Bl (l 2 L) such that Bm � Blif m � l|the carriers of the algebra|and functionsgl :Al[~B]! Bl|the operations of the algebra. For ex-ample, one might have types P and N , with P � N ,and operations succ :N ! P and 0 : 1 ! N . (Thinkof the natural numbers and the positive natural num-bers.) Taking L = f0; 1g with 0 � 1, A0[X0; X1] is X1and A1[X0; X1] is 1.

An order-sorted homomorphism from an order-sorted ~A-algebra ((Bl)l2L; (gl)l2L) to an order-sorted~A-algebra ((B0l)l2L; (g0l)l2L) is a collection of functionshl :Bl ! B0l which respects the operations in the sensethat hlogl =(Al[Bl]!B0l) g0loAl[~h](for l in L) and also respects the sorts, in the sensethat hlo�m;l =(Bm!B0l) �0m;lohm(form � l), where �m;l : Bm ! Bl and �0m;l : B0m ! B0lare the evident type inclusions.One can show that an initial order-sorted alge-bra exists. The idea is to set A�l = ��m�lAl andlet ((Bl)l2L; (gl)l2L) be an initial ~A�-algebra (for lin L), using the well-known extension of the single-sorted case in System F (see for example [PA93]). SetCl = A�l [~B] and take fl to be the composite:Al[~C] Al[~g]! Al[~B] inl! A�l [~B] = Clwhere in l : Al[~B] ! A�l [~B] is the evident injection.Then ((Cl)l2L; (fl)l2L) is the initial order-sorted ~A-algebra.The �nal order-sorted ~A-co-algebra can be similarlyconstructed from the �nal order-sorted ~A�-co-algebra.One would really want to improve these results toallow coherent overloading (as exempli�ed by a + op-eration over both natural numbers and reals). Thiscan perhaps be achieved by extending F� with inter-section types, following Reynolds and Pierce [Pie91,Rey88]. It seems straightforward to extend our logicto handle these constructs.AcknowledgmentsWe bene�ted from discussions with Val Breazu-Tannen, Pierre-Louis Curien, and John Mitchell.References[ACC93] Mart��n Abadi, Luca Cardelli, and Pierre-Louis Curien. Formal parametric polymor-phism. Theoretical Computer Science, 121(1{2):9{58, December 1993.[BCGS91] Val Breazu-Tannen, Thierry Coquand, CarlA. Gunter, and Andre Scedrov. Inheritanceas implicit coercion. Information and Com-putation, 93(1):172{222, July 1991.

[BFSS90] E. S. Bainbridge, Peter J. Freyd, Andre Sce-drov, and Philip J. Scott. Functorial poly-morphism. Theoretical Computer Science,70(1):35{64, January 15 1990. Corrigendumin (3) 71, 10 April 1990, p. 431.[BL90] Kim Bruce and Giuseppe Longo. A modestmodel of records, inheritance and boundedquanti�cation. Information and Computa-tion, 87(1/2):196{240, 1990.[Bru93] Kim Bruce. Safe type checking in a statically-typed object-oriented programming language.In Proceedings of the Twentieth Annual ACMSymposium on the Principles of ProgrammingLanguages, pages 285{298, January 1993.[Car86] Luca Cardelli. Amber. In Guy Cousineau,Pierre-Louis Curien, and Bernard Robinet,editors, Combinators and Functional Pro-gramming Languages, pages 21{47. Springer-Verlag, 1986. Lecture Notes in Computer Sci-ence No. 242.[Car92] Luca Cardelli. Extensible records in a purecalculus of subtyping. In Carl A. Gunter andJohn C. Mitchell, editors, Theoretical Aspectsof Object-oriented Programming: Types, Se-mantics and Language Design. MIT Press, toappear. A preliminary version appeared asSRC Research Report No. 81, 1992.[CG92] Pierre-Louis Curien and Giorgio Ghelli. Co-herence of subsumption, minimum typing andtype-checking in F�. Mathematical Struc-tures in Computer Science, 2(1):55{92, March1992.[CG94] Pierre-Louis Curien and Giorgio Ghelli. De-cidability and con
uence of ��top� reductionin F�. Information and Computation, 94(1{2):57{114, February/March 1994.[CHC90] William R. Cook, Walter L. Hill, and Pe-ter S. Canning. Inheritance is not subtyping.In Seventeenth Annual ACM Symposium onPrinciples of Programming Languages, pages125{135. ACM, January 1990.[CMMS94] Luca Cardelli, Simone Martini, John C.Mitchell, and Andre Scedrov. An extensionof system F with subtyping. Information andComputation, 94(1{2):4{56, February/March1994.[CW85] Luca Cardelli and Peter Wegner. On under-standing types, data abstraction, and poly-morphism. Computing Surveys, 17(4):471{522, December 1985.

[Ghe90] Giorgio Ghelli. Proof-Theoretic Studies abouta Minimal Type System Integrating Inclusionand Parametric Polymorphism. PhD thesis,Universit�a di Pisa, 1990. Report TD-6/90.[Gir72] Jean-Yves Girard. Interpr�etation Fonction-nelle et Elimination des Coupures de l'Arith-m�etique d'Ordre Sup�erieur. Th�ese de doctoratd'�etat, Universit�e Paris VII, June 1972.[GM92] Joseph A. Goguen and Jos�e Meseguer. Order-sorted algebra I: Equational deduction formultiple inheritance, overloading, exceptionsand partial operations. Theoretical ComputerScience, 105(2):217{273, November 1992.[Has94] Ryu Hasegawa. Categorical data typesin parametric polymorphism. MathematicalStructures in Computer Science, 4(1):71{110,March 1994.[Ma92] QingMing Ma. Parametricity as subtyp-ing. In Proceedings of the Nineteenth AnnualACM Symposium on Principles of Program-ming Languages, pages 281{292. ACM, Jan-uary 1992.[Mog86] Eugenio Moggi. The maximum consistenttheory of the second order ��-lambda calcu-lus. Communication in the TYPES electronicforum (types@theory.lcs.mit.edu), July 1986.[MP85] John C. Mitchell and Gordon D. Plotkin. Ab-stract types have existential type. In Pro-ceedings of the Twelfth Annual ACM Sym-posium on Principles of Programming Lan-guages, pages 37{51, 1985.[MR92] QingMing Ma and John C. Reynolds. Types,abstraction, and parametric polymorphism,part 2. In Stephen Brookes, Michael Main,Austin Melton, Michael Mislove, and DavidA. Schmidt, editors, Proceedings of the 1991Mathematical Foundations of ProgrammingSemantics Conference, Lecture Notes in Com-puter Science, Berlin, 1992. Springer-Verlag.To appear.[MTH90] Robin Milner, Mads Tofte, and Robert W.Harper. The De�nition of Standard ML. MITPress, Cambridge, Massachusetts, 1990.[Nel91] Greg Nelson, editor. Systems Programmingin Modula-3. Prentice Hall, 1991.[PA93] Gordon Plotkin and Mart��n Abadi. A logicfor parametric polymorphism. In M. Bezemand J.F. Groote, editors, Typed Lambda Cal-culi and Applications, volume 664 of LectureNotes in Computer Science, pages 361{375.Springer-Verlag, March 1993.

[Pho92] Wesley K. Phoa. Using �brations to under-stand subtypes. In M. P. Fourman, P. T.Johnstone, and A. M. Pitts, editors, Appli-cations of Categories in Computer Science,volume 177 of London Mathematical LectureNote Series, pages 239{254, 1992.[Pie91] Benjamin C. Pierce. Programming with in-tersection types and bounded polymorphism.PhD thesis, Carnegie Mellon University, De-cember 1991.[Rey83] John C. Reynolds. Types, abstraction andparametric polymorphism. In R. E. A. Ma-son, editor, Information Processing 83, pages513{523, Amsterdam, 1983. Elsevier SciencePublishers B.V. (North-Holland).[Rey88] John C. Reynolds. Preliminary design ofthe programming language Forsythe. Techni-cal Report CMU-CS-88-159, Carnegie MellonUniversity, June 1988.[Str67] Christopher Strachey. Fundamental conceptsin programming languages. Unpublishedlecture notes of the International SummerSchool in Computer Programming, Copen-hagen, August 1967.[Wad89] Philip Wadler. Theorems for free! In Func-tional Programming Languages and ComputerArchitecture, pages 347{359. ACM, 1989.[Wir88] Niklaus Wirth. The programming languageOberon. Software|Practice and Experience,18:661{670, 1988.

