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1. Introduction
This draft has many purposes. The principal one is to serve as working documentation

for the Quest project, which involves investigations in type theory, typechecking
algorithms, compilation techniques, and run-time systems. The main components of this
document are, or will be, the following.

An introduction to higher-order type system.
A reference manual for the Quest programming language.
A tutorial for using the Quest system.
A description of the implementation.
Documentation for libraries and utilities.

This is not intended to be a terse reference manual or a formal specification of the
language. Many details are left to the intuition of the reader. We hope this will improve
over time.

This document is supposed to reflect the true state of the system as implemented, except
where explicitly noted. If not, please let me know.

Paragraph icons
The following markers are used as guides through the sea of paragraphs.

$ If you read this, you will learn about a temporary inconsistency in the
manual, or a temporary restriction in the implemented system.
Eventually, these paragraphs will go away.

+ If you read this, you will learn additional details about some topic.
If you do not, it should not hurt you too badly.

* If you read this, you will learn some detail that you probably need
to know in order to use the system.

, If you read this, you will learn some detail that will help you making
a better use of the language. If you do not, you may miss good
 opportunities.

- This marks an exercise for the reader (no answers provided).

. This indicates input given to the system.
 ‡ This indicates output produced by the system.
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2. System tutorial
The Quest language is implemented as an interactive compiler. This means that the

system behaves very much like an interpreter for the unwitting user. The user inputs a
phrase in order to evaluate an expression or to establish a binding; then the system
produces an answer. In between, the system parses, statically scopes, typechecks,
translates and executes the request.

Large Quest programs are kept in files, and are normally organized in interfaces and
modules. These components can be separately compiled, then linked, and even saved as
stand-alone programs. All this can be done interactively, or without ever entering the
interactive environment. In the latter mode of usage, the system behaves more like a
traditional compiler and linker.

This dual implementation approach has influence on the language design; Quest must
strike a compromise between being a good interactive language for small programs, and a
good batch language for large programs. The two view complement each other. Any
complete interaction typescript is a legal Quest program, and can be saved and converted to
a module (with minor syntactic changes). Conversely, every interface and module can be
entered interactively.

The level of interaction at which a user enters a phrase and receives an answer is called
the top level of the system.

* One reaches the top-level by typing “Quest” at a shell (assuming everything is set
up properly).

The following notation is used to illustrate the top-level interaction: user input is
preceded by a “.” sign ; system output is preceded by a “‡” sign. The output portions are
occasionally omitted when they are obvious.

Once at the top-level, we can for example bind a value to a variable, and then use that
variable in an expression.

* User input is always terminated by a semicolon.)

. let a = 3;
 ‡ let a:Int = 3

. a+4;
 ‡ 7 : Int

The keyword let is used for introducing value variables, other forms of bindings will be
explained as they arise.

As a general convention, lower-case keywords and identifiers (possibly with internal
capitalization) relate to values, while capitalized keywords and identifiers, such as Int,
relate to types.

Simple functions are defined and used as follows, where let rec must be used for
recursive functions. Lexical and syntactic details are explained later, but many simple facts
can be guessed by examining these examples.
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. let average(a:Int b:Int):Int = {a+b}/2;
 ‡ let average:All(a:Int b:Int):Int = <fun>

. average(3 5);
 ‡ 4 : Int

. let rec fact(n:Int):Int =
if n is 0 then 1 else n*fact(n-1) end;

 ‡ let fact:All(n:Int):Int = <fun>

. fact(5);
 ‡ 120 : Int

Tuples of values with named components can be formed as follows:

. let t =
tuple

let a = 3
let b = true

end;
 ‡ let t : Tuple a:Int b:Bool end Int =

tuple let a = 3 let b = true end

. t.a;
 ‡ 3 : Int

* Sequences of Quest top-level phrases can be stored in files that by convention have
extension “.qst”. Suppose “foo.qst” contains the first two phrases in this section, then
loading that file will produce the corresponding answers:

. load "foo.qst";
 ‡ let a:Int = 3

7 : Int

Loadable files can contain arbitrary top-level commands, including load.  Files of top-level
commands shoul be used only temporarily or not at all. Quest source files normally contain
interfaces and modules.

Interfaces and modules are the approved way of organizing Quest programs. A new
interface named A and prescribing two variables x and y can be entered at the top-level by
typing the following (interface names, being type names, are by convention capitalized):

. interface A
export

x:Bool
y:Int

end;
 ‡ (saving interface A)



May 12, 1994 Page 6

The interface is compiled and saved. A module a implementing this interface can then
be entered by typing the following (module names, being value names, are by convention
lower-case):

. module a:A
export

let x = true
let y = 3

end;

* The inner part of a module is a sequence of phrases exactly as they could be entered
at the top level, except that they are not terminated by semicolons; a single semicolon
terminates the whole module.

The effect of evaluating a module expression is that the relevant interfaces are loaded,
then the module is compiled and saved.

 ‡ (loading interface A)

(saving module a)

(saving module info a)

Compiled interfaces and modules can be used in the same or a different session. To use
a module at the top level one must link it into the system. This is achieved by importing the
module at the top-level, along with its interface:

. import a:A
 ‡ (loading Interface A)

(loading module a)

(linking module a)

The relevant compiled components are loaded and linked. (Some of the above messages
may be missing if the corresponding components are already loaded.)

The effect of this import statement is that an identifier called a is now defined at the top
level, as well as a type identifier called A. Imported interfaces and modules are accessible
as tuple types and tuples:

. :A; (* What is the type A? *)
 ‡ :Tuple x:Bool y:Int end :: TYPE

. a; (* What is the value a? *)
 ‡ tuple let x = true let y = 3 end : A

. a.x; (* What is the x component of module a? *)
 ‡ true : Int

A more direct way to get access to the contents of a module is to open it; this is exactly like
import, but in addition all the identifiers declared in the module interface become defined at
the top level:
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. open a:A
 ‡ let x:Bool = true

let y:Int = 3

. x;
 ‡ true : Bool

Opening a module is sort of rude; it is provided only for interactive convenience, and is
available only at the top level.

An import clause similar to the one shown above can be used in an interface or module
to import other interfaces and modules. Interfaces and modules must be compiled after the
interfaces they import, but not necessarily after the modules they import. If this rule is
violated, a version-checking error is generated; for example if we redefine the interface A
above:

. interface A
export

x:Int
y:Bool

end;
 ‡ (saving interface A)

and then we import module a without recompiling it, we get:

. import a:A
 ‡ Error: old module a imports new interface A

+ The system maintains a load-set of loaded interfaces and modules, which contains
at most one version of each. Attempting to import a component which is already loaded,
will cause the existing version from the load-set to be used. Whenever an interface is
recompiled, it and all the interfaces and modules that depend on it are flushed from the
load-set. Similarly, when a module is recompiled, it and all the modules that depend on it
are flushed.

* Interfaces and modules are usually stored in individual files, rather than typed at the
top-level. Interfaces are stored in files of the same name as the interface and extension
“.spec” Modules are stored in files of the same name as the module and extension “.impl”.
Both are terminated by semicolons.

* Interfaces and modules stored in files can be compiled either by entering “Quest <
file” at the shell, or by entering “load "file";” at the top-level. Compiled interfaces have
extension “.spec.x” and compiled modules have extension “.impl.x”. Finally, the extension
".xtrn" is reserved for generic binary data.

+ At start-up, the system loads a file called "Library.qst". The contents of this file
may change, but it normally contains commands to pre-link library interfaces (many of the
ones listed in appendix), and commands to set system flags. Top-level definitions and load
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commands must not be added to this file. $ A different mechanism will be provided for
user customization.

$ The top level phrase “command"..";” gives access to a set of system flags. Type
“command"";” for help, and do not use what you do not understand.

$ Garbage collection is not yet implemented: compile large modules and interfaces in
separate sessions, if needed.

3. The big picture
In this section we describe a very general type system characterized by a three-level

structure of entities. This structure has driven many of the design decisions made in Quest.
If you find this section confusing, you should go directly to the next section to examine

concrete examples.

3.1. Kinds, types, and values
Ordinary languages distinguish between values and types. We can say that in this case

there are two levels of entities; values inhabit Level 0, while types inhabit Level 1.
Quest adds a third level above types; this is called the level of kinds, or Level 2.  Kinds

are the "types" of types, that is they are collections of types, just like types are collections
of values. The collection of all types is the kind TYPE (which is not a type). We use a:A to
say that a value a has a type A, and A::K to say that a type A has a kind K.

In common languages, two levels are sufficient since the type level is relatively simple.
Types are generated by ground types such as integers, and by operators such as function
space and cartesian product. Moreover, there is normally only one (implicit) kind, the kind
of all types, so that a general notion of kinds is not necessary.

Types in Quest have a much richer structure, including type variables, type operators,
and a notion of type computation. In fact, the Quest type level is itself a very expressive l-
calculus, as opposed to a simple algebra of type operators. Moreover, this l-calculus is
“typed”, where the “types” here are the kinds, since we are one level “higher” than normal.
This should become clearer by the end of this section.

The level structure we adopt is shown in the level diagram. Values are at Level 0. At
Level 1 we have types, intended as sets of values, and also type operators, intended as
functions mapping types to types (e.g. the List type operator is a function mapping the type
Int to the type of lists of integer). At Level 2 we have kinds which are the “types” of types
and operators; intuitively kinds are either sets of types or sets of operators.

In more detail, at the value level we have basic values, such as 3; (higher-order)
functions, such as fun(x:A)x; polymorphic functions, such as fun(A::TYPE)fun(x:A)x;
pairs of values, such as pair 3 true end; and packages of types and values, such as pair Let
A=Int let x:A=3 end.

Note that already at the value level types are intimately mixed with values, and not just
as specifications of value components: polymorphic functions take types as arguments, and
packages have types as components. This does not mean that types are first-class entities
which can play a role in value computations, but it does mean that types are not as neatly
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separated from values as one might expect.
At the type level we find, first of all, the types of values. So we have basic types, such

as Int; function types, such as All(x:A)A (functions from A to A, usually written A->A);
polymorphic types, such as All(A::TYPE)All(x:A)A; pair types, such as Pair x:Int y:Bool
end; and abstract types, such as Pair A::TYPE x:A end.

At the type level we also find operators, which are functions from types to types (and
from operators to operators, etc.) but which are not types themselves. For example
Fun(A::TYPE)All(x:A)A is an operator that given a type A returns the type All(x:A)A.
Another example is the parametric List operator, which given the type Int produces the type
List(Int) of integer lists.

Level 0

Types

KINDS

Operators

values

Level 1

Level 2

TYPE ALL(A::TYPE)TYPE POWER(B)

Int
All(A::TYPE)All(x:A)A
Pair A::TYPE x:A end

Fun(A::TYPE)All(x:A)A

A B<:

3
fun(A::TYPE)fun(x:A)x

pair Let A=Int let x=3 end a

At the kind level we have the kind of all types, TYPE, and the kinds of operators, such
as ALL(A::TYPE)TYPE, which is the kind of List.

The right-hand side of the level diagram illustrates subtyping. At the type level we have
a subtyping relation, written A<:B (A is a subtype of B); if a value has type A, then it also
has type B. At the kind level we have the POWER kinds for subtyping; if B is a type, then
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POWER(B) is the kind of all subtypes of B, in particular we have B::POWER(B).
Moreover, if A<:B then A::POWER(B), and we identify these two notions.

We also have a relation of subkind, written <:: (never actually used in programs), such
that if A<:B then POWER(A)<::POWER(B), and also POWER(A)<::TYPE (the latter
means that the collection of subtypes of A is contained in the collection of all types).

A structure such as the one in the level diagram is characterized by the quantifiers it
incorporates. (These are deeply related to the quantifiers of logic [Martin-Löf 80], but we
shall not discuss this connection here.) A quantifier is intended as a type construction that
binds variables. There are four possible universal quantifiers (classifying function-like
objects) and four possible existential quantifiers (classifying pair-like objects). These basic
quantifiers are binary: they involve a variable ranging over a first type or kind in the scope
of a second type or kind. The number four above comes from all the possible type/kind
combinations of such binary operators; the following examples should make this clear.

In our level structure we have three universal quantifiers (two flavors of All plus ALL),
and two existential quantifiers (two flavors of Pair, of which only one appears in the
diagram):

• All(x:A)B
This is the type of functions from values in A to values in B, where A and B are types. The
variable x can appear in B only in special circumstances, so this is normally equivalent to
the function space A->B. Sample element: fun(x:Int)x.

• All(X::K)B
This is the type of functions from types in K to values in B, where K is a kind, B is a type,
and X may occur in B. Sample element: fun(A::TYPE)fun(x:A)x.

• ALL(X::K)L
This is the kind of functions from types in K to types in L, where K and L are kinds, and
X may occur in L. Sample element: Fun(A::TYPE)A.

• Pair x:A y:B end
This is the type of pairs of values in A and values in B, where A and B are types. The
variable x can appear in B only in special circumstances, so this is normally equivalent to
the cartesian product A#B. Sample element: pair let x=true let y=3 end.

• Pair X::K y:B end:
This is the type of pairs of types in K and values in B, where K is a kind, B is a type, and
X may occur in B. Sample element: pair let X=Int let y:X=3 end.

For symmetry, we could add a third existential quantifier PAIR X::K Y::L end (a kind),
but this turns out not to be very useful. There are very specific reasons for not admitting the
other two possible quantifiers (the kind of functions from values to types, and the kind of
pairs of values and types, where the types may depend on the values) or the unrestricted
forms of All(x:A)B and Pair x:A y:B end where x may occur in B. These quantifiers
make compilation very problematic, and they are very regretfully but deliberately omitted.

Before proceeding, we should summarize and clarify our notation.

NOTATION
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• We use lower case identifiers (with internal capitalization for compound names) for Level
0, capitalized identifiers for Level 1, and all caps for Level 2. For example, let introduces
values, Let introduces types, and DEF introduces kinds.

• We use the Courier font for programs, Courier Bold for some program keywords, and
Courier Italic for program meta-variables. In particular: x,y,z range over value variables;
a,b,c range over value terms; X,Y,Z range over type (or operator) variables; A,B,C range
over type (or operator) terms; U,V,W range over kind variables; K,L,M range over kind
terms. Note that this does not apply to program (non-meta) variables: for example, we
often use A (Roman) as a type variable.

• We use a:A to say that a value a has a type A;  A::K to say that a type A has a kind K;
A<:B to say that A is a subtype of B;  and K<::L to say that K is a subkind of L.

These conventions have already been used implicitly in this section, and will be used
heavily hereafter.

3.2. Signatures and bindings
The quantifiers we have examined in the previous section are all binary; they compose

two types or kinds to produce a new type or kind. In programming languages it is much
more convenient to use n-ary quantifiers, so that we can easily express functions of n
arguments and tuples of n components. N-ary quantifiers are achieved through the notions
of signatures and bindings [Burstall Lampson 84].

A signature is a (possibly empty) ordered association of kinds to type variables, and of
types to value variables, where all the variables have distinct names. For example:

A::TYPE  a:A  f:All(x:A)Int
This is a signature declaring a type variable, a value variable of that type, and a value
variable denoting a function from objects of that type to integer. Note that signatures
introduce variables from left to right, and such variables can be mentioned after their
introduction.

A binding is a (possibly empty) ordered association of types to type variables and
values to value variables, where all the variables have distinct names, for example:

Let A::TYPE = Int
let a:A = 3
let f:All(x:A)Int = fun(x:Int)x+1

This is a binding associating the type Int and the values 3 and fun(x:Int)x+1 with the
appropriate variables. Bindings introduce variables from left to right; for example a could
be used in the body of f. In some cases it is desirable to omit the variables and their related
type information; the binding above then reduces to:

:Int  3  fun(x:Int)x+1
The colon in front of Int is to tell a parser, or a human, that a type is about to follow. Such
prefix colons are found in contexts where either a type or a value is expected; they are not
needed where only types are expected.

We can now convert our binary quantifiers to n-ary quantifiers as follows, where S is a
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signature and A is a type (and pairs become tuples):

n-ary universals: All(S)A
n-ary existentials: Tuple S end

NOTATION

• We use S as a meta-variable ranging over signatures, and D as a meta-variable ranging
over bindings.

• The following abbreviations will be used extensively for components of signatures and
bindings, where Si are signatures, L is a kind, B is a type and b is a value:

Signatures:
x1,..,xn:B for x1:B..xn:B
X1,..,Xn::L for X1::L..Xn::L
x(S1)..(Sn):B for x:All(S1)..All(Sn)B
X(S1)..(Sn)::L for X::ALL(S1)..ALL(Sn)L

Bindings:
let x(S1)..(Sn):B=b for let x=fun(S1)..fun(Sn):B b
Let X(S1)..(Sn)::L=B for Let X=Fun(S1)..Fun(Sn)::L B

Signatures and bindings can be used in many different places in a language, and hence
make the syntax more uniform. The positions where signatures and bindings appear in a
surrounding context are here shown underlined; note the use of some of the abbreviations
just introduced:

Signatures in bindings:
Let A::TYPE=Int  let a:A=3  let f(x:A):Int=x+1

Signatures in formal parameters:
let f(A::TYPE a:A f(x:A):Int):Int = ...
let f( ):Int = ...

Signatures in types:
All(A::TYPE a:A f(x:A):Int) A
All( ) A
Tuple A::TYPE a:A f(x:A):Int end
Tuple   end

Signatures in interfaces:
interface I
import m1:I1 m2:I2
export

A::TYPE
a:A



May 12, 1994 Page 13

f(x:A):Int
end

Bindings at the top-level:
Let A::TYPE=Int;  let a:A=3;  let f(x:A):Int=x+1;
:Int;  3;  fun(x:Int) x+1;
 ;

Bindings in actual parameters:
f(Let A::TYPE=Int  let a:A=3  let f(x:A):Int=x+1)
f(:Int  3  fun(x:Int) x+1)
f( )

Bindings in tuples:
tuple Let A::TYPE=Int let a:A=3 let f(x:A):Int=x+1 end
tuple :Int  3  fun(x:Int) x+1 end
tuple   end

Bindings in modules:
module m:I
import m1:I1 m2:I2
export

Let A::TYPE=Int
let a:A=3
let f(x:A):Int=x+1

end

Interfaces and modules will be discussed later.

4. Language overview
The design principles and ideas we have discussed so far, as well as some yet to be

discussed, are incorporated in the Quest programming language. Quest (a quasi-acronym
for Quantifiers and Subtypes) illustrates many fundamental concepts of typing in
programming, and how they can be concretely embedded and integrated in a single
language.

The three major sections to follow deal with: a) the kind of types, including basic types,
various structured types, polymorphism, abstract types, recursive types, dynamic types,
mutable types and exception types; b) the kinds of operators, including parametric,
recursive, and higher-order type operators; and c) the kinds of subtypes, including
subtyping and bounded quantification. Then follow two sections on programming with
modules and interfaces, seen as values and types respectively, and a short section on
system programming from the point of view of typing violations.

The main unifying concepts in Quest are those of type quantification and subtypes.
However, a number of important type constructions do not fall neatly in these classes (e.g.
mutable type and exceptions types), and they are added on the side. The important point is
that they do not perturb the existing structure too much.
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Here is a brief, general, and allusive overview of Quest characteristics; a gradual
introduction begins in the next section.

+ Quest has three levels of entities: 1) values, 2) types and operators, 3) kinds. Types
classify values, and kinds classify types and type operators. Kinds are needed because the
type level is unusually rich.

, Explicit type quantification (universal and existential) encompasses parametric
polymorphism and abstract types. Quantification is possible not just over types (as in
ordinary polymorphic languages) but also over type operators and over the subtypes of a
given type.

, Subtyping is defined inductively on all type constructions (e.g. including higher-
order functions and abstract types). Subtyping on tuple types, whose components are
ordered, provides a form of single inheritance by allowing a tuple to be viewed as a
truncated version of itself with fewer final components.

, There are user-definable higher-order type operators and computations at the type
level. The typechecker includes a normal-order typed l-calculus evaluator (where the
"types" here are actually the kinds).

, A generalized correspondence principle is adopted, based on the notions of
signatures and bindings. Landin proposed a correspondence between declarations and
formal parameters. Burstall and Lampson proposed a correspondence between interfaces
and declarations, and between parametric modules and functions [Burstall Lampson 84]. In
Quest there is a correspondence between declarations, formal parameters, and interfaces, all
based on a common syntax, and between definitions, actual parameters, and modules, also
based on a common syntax.

+ Evaluation is deterministic, left-to-right, applicative-order. That is, functions are
evaluated before their arguments, the arguments are evaluated left to right, and the function
bodies are evaluated after their arguments. In records and tuples, the components are
evaluated left to right, etc.  Conditionals, cases, loops, etc. evaluate only what is
determined by their particular flow of control. All entities are explicitly initialized.

+ The general flavor of the language is that of an interactive, compiled, strongly-
typed, applicative-order, expression-based language with first-class higher-order functions
and imperative features. Type annotations are used rather heavily, in line with existing
programming-in-the-large languages.

+ In viewing signatures and bindings in terms of quantifiers, it is natural to expect
alpha-conversion (the renaming of bound variables) to hold. Alpha-conversion would
however allow signatures to match each other independently of the names of their
components; this is routine for signatures in functions but very strange indeed for
signatures in tuples, and it would create too many "accidental" matches in large software
systems. Hence, Quest signatures and bindings must match by component name (and of
course by component order and type).  Some negative aspects of this choice are avoided by
allowing component names in signatures and bindings to be omitted; omitted names match
any name for the purpose of typechecking, and therefore provide a weak form of alpha-
conversion.

, Limited type inference is provided. First of all, the result type of a function or
expression is automatically deduced from the types of the components of such expression;
for example the type of let-bound variables can be deduced. By limited type inference we
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mean that it is possible to omit some of the type information that normally would be
required for type deduction (in the above sense). It works as follows. The type of each
program variable must be explicitly provided (or be deduceable), and type parameters must
be explicitly listed; such information is not subject to inference. However, type applications
(instatiations of polymorphic functions to particular types) can "often" be omitted, when the
context is sufficiently informative. For example, a polymorphic cons function can be used
as cons(:Int 3 tail), or (by inference from the types of 3 and tail) cons(3 tail). Similarly; the
polymorphic nil value can be used as cons(3 nil(:Int)), or (by inference from the type
required by this instance of cons) cons(3 nil()). The parentheses after nil are still needed
because nil by itself denotes a polymorphic constant. Note also that, in isolation, nil() does
not express enough information to decide "which" nil we are talking about.

We conclude this section with some further notes about Quest syntax.
+ Comments are enclosed in "(*" and "*)" and can be nested. A comment is lexically

equivalent to a blank. Quotes (') enclose character literals, and double quotes (") enclose
string literals.

* Curly brackets "{" and "}" are used for grouping value, type, and kind expressions
(e.g. to force operator precedence). Parentheses "(" and ")" are used in formal and actual
parameter lists, that is for function declarations, definitions and applications.

* The syntax has virtually no commas or semicolons. Commas are used only in lists
of identifiers, and semicolons are used only to terminate top-level sentences, or whole
modules. Otherwise, blank space is used. Indentation is not required for disambiguation,
but it greatly improves readability because of the absence of normal separators. The
resulting syntax is still easy to parse because of widespread use of initial and final
keywords.

+ There are two lexical classes of identifiers: alphanumeric (letters and numerals
starting with a letter) and symbolic (built out of !@#$%&*_+=-|\`:<>/?). Reserved
keywords belonging to either lexical class are not considered identifiers. Alphanumeric
identifiers are never used in infix position (e.g. f(x y), but not  x f y). Symbolic identifiers
are always infix, but can also be used as prefix or stand-alone (e.g. x+y, +(x y), or {+}).

, New infix operators can be declared freely (e.g. let *+(x,y,z:Int):Int = x*{y+z}).
, New listfix operators can be introduced. The primitive listfix operator is array of a1

.. an  end.  In addition, any function of input signature Array(A), e.g.
sum(summands:Array(Int))Int,  can be used as a listfix operator by writing  sum of a1 .. an
end.  More precisely,  f of .. end  is read as an abbreviation for f(array of .. end). By
interaction with the type inference features, this works also for polymorphic functions of
input signature X::TYPE x:Array(X), etc.

* There is no declaration of infix status. (It is not needed because of the strict lexical
conventions.) There is no declaration of infix precedence. All infix operators, including the
built-in ones, have the same precedence and are right-associative. This decision has been
made because it is difficult to specify the relative precedence of operators in a meaningful
way, and because it is equally difficult to remember or guess the relative precedence of
operators when new infixes can be introduced.

* There is no overloading of literals or operators, not even built-in ones. For
example, 2 is an integer, 2.0 is a real, + is integer plus, and ++ is real plus.

+ The style conventions we adopt are as follows. Value identifiers (including function
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names and module names) are in lower case, with internal capitalization for compound
names. Type identifiers (including interface names) are capitalized. Kind identifiers are all
caps. Keywords are capitalized in roughly the same way (e.g. "Tuple..end" is a tuple type,
and "tuple..end" is a tuple value). Flow-control keywords (such as "begin..end" and
"if..then..else..end") are in lower case. Keywords are pretty-printed in boldface, and
comments in italics.

+ The infix : sign means "has type". The infix :: sign means "has kind". The infix <:
sign means "is subtype of".

* The = sign is used to associate identifiers with values, types, and kinds. The = sign
is not used as the boolean test for equality: the constructs  x is y  and  x isnot y  are used
instead.

+ The := sign is used as the assignment operator.
* If a module, e.g. list, implements a single type, or has a main type, that type is

simply called T, as in list.T.
$ Bug: open comments may span across file boundaries and leave you in a

responsless state at the top level. In doubt, try "*);".

5. The kind of types
The kind of types is the only kind that is supported by ordinary programming

languages such as Pascal. Hence, this section will include many familiar programming
constructs. However, we also find some relatively unusual programming features, namely
polymorphism and abstract types in their full generality.

Basic types should cause no surprise. Function types use the general notion of
signatures (universally quantified) to represent explicit polymorphism. Tuple types
similarly use general signatures (existentially quantified) to represent abstract types.
Another quantifier, summation of signatures over a finite set, accounts for the familiar
disjoint union types. Infinite summation of signatures over types corresponds to dynamic
typechecking and supports persistent data. Recursive types allow the construction of lists
and trees. Mutable types (assignable variables and fields, and arrays) have to be handled
carefully to maintain type soundness. Finally, exception types take care of exceptions.

5.1. Basic and built-in types
The basic types are Ok, Bool, Char, String, Int, Real, Array, and Exception. In a

language with modules there is, in principle, no need for basic types because new basic
types can be introduced by external interfaces (some of which may be known to the
compiler, so that they are implemented efficiently). However, it is nice to have direct
syntactic support for some commonly used constants and operators; this is the real reason
for having special types designated "basic" (this need could perhaps be eliminated if the
language supported syntactic extensions).

Types that are not basic but are defined in interfaces known to the compiler, are called
built-in. The respective modules and interfaces are also called built-in. Examples of built-in
interfaces are Reader, Writer, and Dynamic, described in the Appendix. Other built-in
interfaces can also be defined as needed by implementations.

Ok
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Ok is the type with a single constant ok and no operations. This type is sometimes
called void or unit in other languages, and is used in expression-based languages as the
type of expressions that are not really meant to have any value (e.g. assignment
statements).

Bool
Bool is the type with constants true and false. Boolean operations are the infix \/ (or)

and /\ (and), and the function not; they evaluate all their arguments. The equality or
inequality of two values is given by the forms  x is y  and  x isnot y, which return a
boolean. This is-ness predicate is defined as ordinary equality for Ok, Bool, Char, Int, and
Real, and as "same memory location" for all the other types including String. Abstract
types should always define their own equality operation in their interface.

A basic programming construct based on booleans is the conditional:

. if true then 3 else 4 end;
 ‡ 3 : Int

The conditional can take many forms. It may or may not have the then and else branches
(missing branches have value ok and type Ok), and additional elsif branches can be
cascaded.

Two other conditional constructs are provided:

a andif b same as: if a then b else false end
a orif b same as: if a then true else b end

These are useful to express complex boolean conditions when not all subconditions should
be evaluated. For example, assuming a,n, and m are defined:

. if {n isnot 0} andif {{m/n}>0} then a:=m
elsif {n is 0} orif {m<0} then a:=0
end;

 ‡ ok : Ok

This conditional never causes division by zero.

Char
Char is the type of Ascii characters, such as 'a', which are syntactically enclosed in

single quotes.
+ Backslash can be used to insert some special characters within character quotes: \n

is newline, \t is tab, \b is backspace, \f is form feed, \' is single quote, and \\ is backslash;
backslash followed by any other character is equivalent to that character.

Operations on characters are provided through a built-in module ascii of built-in
interface Ascii (this is written ascii:Ascii).

+ Incidentally, this is an example of how to organize basic operations into interfaces
in order not to clutter the language: one might forget that char is an Ascii operation and
confuse it with a variable or function, but on seeing ascii.char the meaning should be
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obvious.

String
String is the type of strings of Ascii characters, such as "abc", enclosed in double

quotes.
+ As with characters, backslash can be used to insert some special characters within

string quotes: \n is newline, \t is tab, \b is backspace, \f is form feed, \" is double quote,
and \\ is backslash; backslash followed by any other character is equivalent to that
character.

The operations on strings are provided through a built-in module string:StringOp, but
there is also a predefined infix operator  <>  for string concatenation:

. let s1="concat" and s2="enate";
 ‡ let s1:String = "concat"

let s2:String = "enate"

. s1 <> s2;
 ‡ "concatenate" : String

 This example also illustrates simultaneous bindings, separated by and.
+ Another library module conv:Conv contains routines for converting various

quantities to strings; this is useful for printing.

Int
Int is the type of integer numbers. Negative numbers are prefixed by a tilde, like ~3.

The integer operators are the infix +, -, *, /, % (modulo), <, >, <=, and >=.

Real
$ Beware, very little attention has been put into making reals really work.
Real is the type of floating point numbers. Real constants are formed by an integer, a

dot, a positive integer, and optionally an exponent part, as in 3.2 or ~5.1E~4.
$ Exponential notation is not implemented.
* Reals are only single-precision in this implementation; this is not expected to

change.
The real operators are the infix ++, --, **, //, ^^ (exponent), <<, >>, <<=, and >>=.

. 2.8 ++ 3.4;
 ‡ 6.2: Real

* There is no overloading between integer and real operations. Conversions and other
operations are provided through the built-in module real:RealOp

$ Exponent is not implemented. There is a built-in trigonometry interface trig:Trig,
but not much of it is implemented.

Others
Arrays, exceptions, readers, writers, and dynamics are discussed in later sections, or in

the Appendix.
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5.2. Function types
Function types are normally realized, implicitly or explicitly, by an "arrow" operator

requiring a domain and a range type. Here we adopt an operator (actually, a quantifier)
requiring a domain signature; this is more general because the signature may introduce type
variables, which can then occur in the range type.

A function type has the form:

All(S)A

This is the type of functions with parameters of signature S and result of type A:

fun(S):A b or, abbreviated fun(S)b

Depending on the form of S and A, functions can be simple, higher order (if S or A contain
function types), or polymorphic (if S introduces type variables).

+ The result type A must not have any free value-variables that are bound in S.

Simple functions
Here is a simple function declaration:

. let succ = fun(a:Int):Int a+1;
 ‡ let succ(a:Int):Int = <fun>

. succ(3);
 ‡ 4 : Int

As discussed earlier, these declarations are usually abbreviated as follows:

. let succ(a:Int):Int = a+1;
 ‡ let succ(a:Int):Int = <fun>

Here is a function of two arguments; when applied it can take two simple arguments, or
any binding of the correct form:

. let plus(a:Int b:Int):Int = a+b;
 ‡ let plus(a:Int b:Int):Int = <fun>

. plus(3 4);
 ‡ 7 : Int

. plus(let a=3 let b=a+1);
 ‡ 7 : Int

Recursive functions are defined by a let rec binding:

. let rec fact(n:Int):Int =
  if n is 0 then 1 else n*fact(n-1) end;

 ‡ let fact(n:Int):Int = <fun>
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Simultaneous recursion is achieved by let rec followed by multiple bindings separated by
and. All the entities in a recursive definition must syntactically be constructors, that is
functions, tuples, or other explicit data structures, but not function applications, tuple
selections, or other operations.

$ The only constructors currently allowed are functions.

Higher-order functions
There is not much to say about higher-order functions, except that they are allowed:

. let double(f(a:Int):Int)(a:Int):Int = f(f(a));
 ‡ let double(f(a:Int):Int)(a:Int):Int = <fun>

. let succ2 = double(succ);
 ‡ let succ2(a:Int):Int = <fun>

. succ2(3);
 ‡ 5 : Int

Note that a function body may contain non-local identifiers (such as f in the body of
double), and these identifiers are retrieved in the appropriate, statically determined scope.

- Define function composition for integer functions.

Polymorphic functions
Polymorphic functions are functions that have types as parameters, and that can later be

instantiated to specific types. Here is the polymorphic identity function:

. let id(A::TYPE)(a:A):A = a;
 ‡ let id(A::TYPE)(a:A):A = <fun>

. id(:Int)(3);
 ‡ 3 : Int

$ There is automatic inference of type parameters. (Expand.)

The identity function can be instantiated in many interesting ways. First, it can be
instantiated to a simple type, like Int to obtain the integer identity:

. let intId = id(:Int);
 ‡ let intId(a:Int):Int = <fun>

It can be applied to the integer identity by first providing its type, the integer endomorphism
type:

. Let IntEndo = All(a:Int)Int;
 ‡ Let IntEndo::TYPE = All(a:Int)Int

. id(:IntEndo)(intId);
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 ‡ <fun> : All(a:Int)Int

+ It can even be applied to itself by first providing its own type:

. Let Endo = All(A::TYPE)All(a:A)A;
 ‡ Let Endo::TYPE = All(A::TYPE)All(a:A)A

. id(:Endo)(id);
 ‡ <fun> : All(A::TYPE)All(a:A)A

Type systems that allow polymorphic functions to be applied to their own types are called
impredicative. The semantics of such systems is delicate, but no paradox is necessarily
involved.

- Define polymorphic function composition.

Polymorphic functions are often curried in their type parameter, as we have done so
far, so that they can be conveniently instantiated. However, this is not a requirement; we
could also define the polymorphic identity as follows:

. let id2(A::TYPE a:A):A = a;
 ‡ let id2(A::TYPE a:A):A = <fun>

. id2(:Int 3);
 ‡ 3 : Int

A slightly more interesting polymorphic function is twice, which can double the effect
of any function (including itself):

. let twice(A::TYPE)(f(a:A):A)(a:A):A = f(f(a));
 ‡ let twice(A::TYPE)(f(a:A):A)(a:A):A = <fun>

. let succ2 = twice(:IntEndo)(succ);
 ‡ let succ2(a:Int):Int = <fun>

- Write a typed version of the untyped term d2 = fun(x)x(x), by inserting additional
type information where needed. Can one do this for d3 = fun(x)x(x(x))? What about
d2(d2)?

5.3. Tuple types
Tuple types are normally intended as iterated applications of the cartesian product

operator. Our tuple types are formed from signatures; this is more general because
signatures can introduce type variables which may occur in the following signature
components. These tuple types can be interpreted as iterated existential quantifiers.

A tuple type has the form:

Tuple S end
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This is the type of tuples containing bindings D of signature S:

tuple D end

Depending on the form of S, we can have a simple tuple type or an abstract type (if S
introduces type variables).

+ Value-variables declared in S may appear in the types and kinds of S. Note that
these variables are not free in S.

Simple tuples
A simple tuple is an ordered collection of values. These values can be provided without

names:

. tuple 3 4 "five" end;
 ‡ tuple 3 4 "five" end : Tuple :Int :Int :String end

Then one way to extract such values is to pass the tuple to a function that provides names
for the components in its input signature. But frequently, tuple components are named:

. let t: Tuple a:Int b:String end =
tuple

let a = 3
and b = "four"

end;
 ‡ let t:Tuple a:Int b:String end = tuple let a=3 let b="four" end

Then the tuple components can be extracted by name via the dot notation:

. t.b;
 ‡ "four": String

Note that a tuple may contain an arbitrary binding, including function definitions, recursive
definitions, etc. An empty tuple type is the same as the Ok type, and the empty tuple is the
same as ok.

Abstract tuples
An abstract type is obtained by a tuple type which contains a type and a set of constants

and operations over that type.

. Let T = Tuple A::TYPE a:A f(x:A):Int end;
 ‡ Let T::TYPE = Tuple A::TYPE a:A f(x:A):Int end

This abstract type can be implemented by providing a type, a value of that type, and an
operation from that type to Int:

. let t1:T =
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tuple
Let A::TYPE = Int
let a:A = 0
let f(x:A):Int = x+1

end;
 ‡ let t1:T =

tuple

Let A::TYPE=<Hidden>

let a:A=<hidden>

let f(x:A):Int=<fun>

end

Abstract types and their values are not printed, in order to maintain the privacy implicit in
the notion of type abstraction. Functions are not printed because they are compiled and their
source code might not be easily available.

An abstract type can be implemented in many different ways; here is another
implementation:

. let t2:T =
tuple

Let A::TYPE = Bool
let a:A = false
let f(x:A):Int = if x then 0 else 1 end

end;
 ‡ let t2:T =

tuple

Let A::TYPE=<Hidden>

let a:A=<hidden>

let f(x:A):Int=<fun>

end

What makes type T abstract? Abstraction is produced by the rule for extracting types
and values from the tuples above: the identity of the type is never revealed, and values of
that type are never shown:

. :t1.A;
 ‡ :t1.A :: TYPE

. t1.a;
 ‡ <hidden> : t1.A

Moreover, an abstract type does not match its own representation:

. t1.a + 1;
 ‡ Type Error: t1.A is not a subtype of Int

Although the representation type must remain unknown, it is still possible to perform
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useful computations:

. t1.f(t1.a);
 ‡ 1 : Int

But attempts to mix two different implementations of an abstract type produce errors:

. t1.f(t2.a);
 ‡ Type Error: t2.A is not a subtype of t1.A

This fails because it cannot be determined that t1 and t2 are the same implementation of T;
in fact in this example they are really different implementations whose interaction would be
meaningless.

+ An abstract type can even be implemented as "itself":

. let t3:T =
tuple

Let A::TYPE = T
let a:A = t2
let f(x:A):Int = x.f(x.a)

end;

This is another instance of impredicativity where a value of an abstract type can contain its
own type as a component.

- Define Booleans as an abstract type and write implementations in terms of integers,
characters, or both. How can you emulate a conditional?

5.4. Option types
Option types model the usual disjoint union or variant record types; no unusual features

are present here. An option type represents a choice between a finite set of signatures;
objects having an option type come with a tag indicating the choice they represent. More
precisely, an option type is an ordered named collection of signatures, where the names are
distinct.

An object of an option type, or option, is a tuple consisting of a tag and a binding. An
option of tag x and binding D has an option type T provided that T has a tag x with an
associated signature S, and the binding D has signature S.

. Let T =
Option

a
b with x:Bool end
c with x,y:String end

end;
. let aOption =

option a of T end;
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. let bOption =
option b of T with let x = true end;

. let cOption =
option c of T with "xString" "yString" end;

Since the choices in an option type are ordered, there is an operator ordinal(o) returning
the 0-based ordinal number of an option as determined by its tag. Note that the tag
component of an option can never be modified.

 Conversely, an option can be created from an ordinal number as option ordinal(n) of T
.. end, where n is determined at run-time; this form is allowed only when all the branches
of an option type have the same signature. $ This is not implemented.

The option tag can be tested by the  ?  operator (see examples below).
The option contents can be extracted via the  !  operator. This may fail (at run-time) if

the wrong tag is specified. If successful, the result is a tuple  whose first component is the
ordinal of the option.

. aOption?a;
 ‡ true : Bool

. bOption?a;
 ‡ false : Bool

. bOption!a;
 ‡ Exception: '!'Error

. bOption!b;
 ‡ tuple 1 let x=true end : Tuple :Int x:Bool end

. bOption!b.x;
 ‡ true : Bool

A more structured way of inspecting options is through the case construct, which
discriminates on the option tag and may bind an identifier to the option contents:

. case bOption
when a then ""
when b with arm then

if arm.x then "true" else "false" end
when c with arm then

arm.x <> arm.y
else "??"

end;
 ‡ "true": String

A when clause may list several options, then the following are equivalent:

when x,y with z then a when x with z then a
when y with z then a

where the two occurrences of z in the right-hand side must receive the same type.
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If an option type starts directly with a with clause, it means that the components of that
clause are common to all the branches. That is, the following types are equivalent:

Option Option
with x:Bool end a with x,y:Bool end
a with y:Bool end b with x,z:Bool end
b with z:Bool end end

end;

However, values of these types behave slightly differently; in the former case, the common
components can be extracted directly by the dot notation, without first coercing to a given
label by !.

Option types will be discussed again in conjunction with subtypes.

5.5. Auto and Dynamic types
$ These are not implemented, however dynamic types, below, are implemented and

are a special case of auto types.
There are some situations in programming where it is necessary to delay typechecking

until run-time. These situations can be captured by a new form of quantification: an infinite
union of signatures indexed by types, whose use requires dynamic typechecking. This
quantifier resembles both option types and abstract types. Like an option type it is a union
with run-time discrimination, but the union is infinite. Like an abstract type it is a collection
of types and related values, but the types can be dynamically inspected.

Automorphic values (auto values, for short) are values capable of describing
themselves; they contain a type that is used to determine the rest of their shape.  The related
automorphic types (auto types)  consist of a type variable X and a signature S depending on
X; they represent the union of all the signatures S when X varies over all types or, as we
shall see, over all the subtypes of a given type.

. Let UniformPair =
Auto A::TYPE with fst,snd:A end;

. let p:UniformPair =
auto :Bool with false true end;

 ‡ let p:UniformPair = auto :Bool with false true end

+ Restriction: the type component of an auto value must be a closed type: it cannot
contain any free type variables.

It is possible to discriminate on the type component of an automorphic object through a
construct similar to case; this is named after the inspect construct in Simula67, since, as we
shall see, it can be used to discriminate between the subtypes of a given type.

. inspect b
when Bool with arm then arm.fst\/arm.snd
when Int with arm then (arm.fst*arm.snd) isnot 0
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end;
 ‡ true: Bool

The types in the when clauses of inspect must all be closed types. The branch that is
selected for execution (if any) is the first branch such that the type in the auto value is a
subtype of the type in the branch. An else branch can be added at the end of the construct.

Automorphic types will be discussed again in conjunction with subtypes and with
dynamic types.

5.5.1. Dynamic types
$ Dynamics are currently unsound: the run-time type test is a no-op (this will only

work in the future fully bootstrapped system).
Static typechecking cannot cover all situations. One problem is with giving a type to an

eval function, or to a generic print function. A more common problem is handling in a type-
sound way data that lives longer than any activation of the compiler [Atkinson Bailey
Chisholm Cockshott Morrison 83]. These problems can be solved by the introduction of
dynamic types, here realized by a built-in module  dynamic:Dynamic (see the Appendix).

Objects of type Dynamic_T should be imagined as pairs of a type and an object of that
type. In fact, Dynamic_T is defined as the type Auto A::TYPE with a:A end, and many of
the relevant operations are defined in terms of operations on auto types. In particular, the
type component of a Dynamic_T object must be a closed type, and it can be tested at run-
time through inspect.

One can construct dynamic objects as follows:

. let d3:Dynamic_T = dynamic.new(:Int 3);
 ‡ let d3:Dynamic_T = auto :Int with 3 end

These objects can then be narrowed to a given (closed) type via the dynamic.be
operation. If the given type matches the type contained in the dynamic, then the value
contained in the dynamic is returned. Otherwise an exception is raised (narrowing is just a
special case of inspect):

. dynamic.be(:Int d3);
 ‡ 3: Int

. dynamic.be(:Bool d3);
 ‡ Exception: dynamicError

The matching rules for narrowing and inspecting are the same as for static typechecking,
except that the check happens at run-time.

Since an object of type dynamic is self-describing it can be saved to a file and then read
back and narrowed, maybe in a separate programming  session:

. let wr = writer.file("d3.dyn");

. dynamic.extern(wr d3); (* Write d3 to file *)

. writer.close(wr);

. . .
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. let rd = reader.file("d3.dyn");

. let d3 = dynamic.intern(rd); (* Read d3 from file *)

, All values can be made into dynamics, including functions and dynamics.
* The operations extern and intern preserve sharing and circularities within a single

dynamic object, but not across different objects.
* All dynamic values can be externed, except readers and writers; in general it is not

meaningful to extern objects that are bound to input/output devices.

5.6. Recursive types
Recursive types are useful for defining lists, trees, and other inductive data structures.

Since these are often parametric types, they will be discussed in the section on type
operators.

Here we discuss a rather curious fact: recursive types allow one to reproduce what is
normally called type-free programming within the framework of a typed language. Hence
no "expressive power" (in some sense) is lost by using a typed language with recursive
types. Again, this shows that a sufficiently sophisticated type system can remove many of
the restrictions normally associated with static typing.

S-expressions are Lisp's fundamental data structures. These can be described as
follows (for simplicity, we do not consider atoms):

. Let Rec SExp::TYPE =
Option

nil
cons with car,cdr:SExp end

end;
 ‡ Let Rec SExp::TYPE = Option nil  cons with car,cdr:SExp end end

The usual Lisp primitives1 can now be defined in terms of operations on options and
tuples.

- Define such operations..

Another interesting recursive type is the "universal" type of "untyped" functions:

. Let Rec V::TYPE = All(:V)V;
 ‡ let Rec V::TYPE = All(:V)V

We can now define the universal untyped combinators K and S:

. let K(x:V)(y:V):V = x;
 ‡ let K:V = <fun>

1   I.e., "pure" Lisp primitives. To define rplaca see the next section.
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. let S(x:V)(y:V)(z:V):V = x(z)(y(z));
 ‡ let S:V = <fun>

- Note however that Quest is a call-by-value language; as an exercise, define a call-
by-name version of the definitions above, and encode a non-strict conditional expression.
(Hint: Let Rec V::TYPE = All()All(:V)V.)

- It is also interesting to notice that recursive types by themselves imply the presence
of general recursive functions. As an exercise, define the fixpoint combinator on V (both
the call-by-name and the call-by-value versions) without using let rec.

Two recursive types are equivalent when their infinite expansions (obtained by
unfolding recursion) form equivalent infinite trees. Recursive type definitions describe
finite graphs with type operators at the nodes, hence it is possible to test the condition
above in finite time, without actually generating infinite structures [Courcelle 83].

5.7. Mutable types
Imperative programming is based on the notion of a mutable global store, together with

constructs for sequencing the operations affecting the store.
+ Mutability interacts very nicely with subtyping and polymorphism2, showing that

the functional-style approach suggested by type theory does not prevent the design of
imperative languages.

5.7.1. Var types
Mutable store is supported by types of the form Var(A), which is the type of mutable

identifiers and data components of type A, and Out(A), which is the type of write-only
parameters of type A.

+ These are not in fact first-class operators, in the sense that values of type Var (A) or
Out(A) are not first-class values, and types like Var(Var(A)) cannot be produced.
However, when discussing type rules it is often useful to think of Var and Out as ordinary
operators; the above restrictions are for efficiency reasons only, and not for typing reasons.

An identifier can be declared mutable by prefixing it with the var keyword in a binding
or signature; it then receives a Var type.

. let var a=3;
 ‡ let var a:Int = 3

The answer  let var a:Int = 3  above should be read as meaning that a has type Var (Int).
 When evaluating an expression of type Var (A) (or Out (A)), an automatic coercion is

2   The problems encountered in ML [Gordon Milner Wadsworth 79, page 52] are avoided by the

use of explicit polymorphism. However, we have to take some precautions with subtyping, as

explained later.
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applied to obtain a value of type A.

. a;
 ‡ 3 : Int

The := sign is used as the assignment operator; it requires a destination of type Var (A)
and a source of type A, and returns ok after performing the side-effect:

. a:=5;
 ‡ ok : Ok

. a+1;
 ‡ 6 : Int

 + Functions cannot refer directly to global variables of Var type; these must be either
passed as in and out parameters, or embedded in data structures to be accessed indirectly.
This restriction facilitates the implementation of higher-order functions.  Here is an example
of two functions sharing a private variable that is accessible to them only (sometimes called
an own variable):

. let t: Tuple f,g():Int end =
begin

let a = tuple let var x=3 end
tuple

let f():Int = begin a.x:=a.x+1 a.x end
let g():Int = begin a.x:=a.x+2 a.x end

end
end;

 ‡ let t:Tuple f():Int g():Int end =

tuple let f = <fun> let g = <fun> end

. t.f();
 ‡ 4: Int

. t.g();
 ‡ 6: Int

Data structure components can be made mutable by using the same var notation used
for variables:

. let t = tuple let var a=0 end;
 ‡ let t = tuple let var a:Int = 0 end

. t.a := t.a+1;
 ‡ ok : Ok

5.7.2. Sequencing and iteration
A syntactic construct called a block is used to execute expressions sequentially and then

return a value. A block is just a binding D (hence it can declare local variables) with the
restriction that its last component, which is the result value, must be a value expression.
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The type of a block is then the type of its last expression.
+ Value-variables declared in a block D:A may not appear free in A (as tuple variables

from which an abstract type is extracted), since they would escape their scope.
The most explicit use of a block is in the begin D end construct, but blocks are implicit

in most places where a value is expected, for example in the branches of a conditional.

Iteration is provided by a  loop .. exit .. end  construct, which evaluates its body (a
binding) repeatedly until a syntactically enclosed exit is encountered. The exit construct has
no type of its own (it can be thought of as an exception raise exit as A end, where A is
inferred). A loop construct always returns ok, if it terminates, and has type Ok.

In addition, while and for constructs are provided as abbreviations for some loop-exit
forms. ($ Desugaring of while and for to be described.)

Here is an example of usage of blocks and iteration:

. let gcd(n,m:Int):Int =
begin

let var vn=n
and var vm=m
while vn isnot vm do

if vn>vm then vn:=vn-vm end
if vn<vm then vm:=vm-vn end

end
vn

end;
 ‡ let gcd(n,m:Int):Int = <fun>

. gcd(12 20);
 ‡ 4 : Int

5.7.3. Out types
Formal parameters of functions may be declared of Out type by prefixing them with the

out keyword. This makes them into write-only copy-out parameters.
When passing an argument corresponding to an out parameter, there must be an explicit

coercion into an Out type. This is provided by the @ keyword, which must be applied to a
mutable (Var or Out) entity: this is meant to be suggestive of passing the location of the
entity instead of its value.

. let g(x:Int out y:Int):Ok = y:=x+1;

. begin g(0 @t.a) t.a end;
 ‡ 1 : Int

For convenience, it is also possible to convert a non-mutable value to an out parameter by
creating a location for it on-the-fly, as in  g(0 let var y=0); this is also abbreviated as g(0
var(0)). In other words, an out entity can be obtained from a Var or Out entity by @, or
from an ordinary value by var.

+ This discussion was very operational; the deeper relations between Var and Out,
and the type rules for passing Var and Out parameters, are explained in the section on



May 12, 1994 Page 32

subtyping.
, Polymorphism and Out parameters can be combined to define the following

function:

 . let assign(A::TYPE out a:A b:A):Ok = a:=b;
. let var a=3;
. assign(:Int @a 7);

that has the same effect as the assignment operator:

5.7.4. Array types
Array types Array(A) describe arrays with elements of type A, indexed by non-negative

integers. Array types do not carry size information, since array values are dynamically
allocated. Individual arrays are created with a given size, which then never changes.

Array values can be created with a given size and an initial value for all the elements, or
from an explicit list of values. They can be indexed and updated via the usual square-
bracket notation, and a extent operator is provided to extract their size.

 . let a:Array(Int) = array of 0 1 2 3 4 5 end;
. let b:Array(Bool) = array of(5 false);
. b[0] := {a[0] is 0};

The array a has the 6 listed elements. The array b is defined to have 5 elements
initialized to false.

We have used here listfix syntax, which is an enumeration of values enclosed in
of..end, or a size-init pair enclosed in of(..).

Although array is the basic listfix construct, additional listfix functions can be defined.
They are interpreted according to the following abbreviations:

f of .. end for f(array of .. end)
f of(n a) for f(array of(n a))

Hence, all is needed to get a listfix function is to define an ordinary function with an array
parameter:

. let sum(a:Array(Int)):Int =
begin

let var total=0
for i = 0 upto extent(a)-1 do

total := total+a[i]
end
total

end;
 ‡ let sum(a:Array(Int)):Int = <fun>
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. sum of 0 1 2 3 4 end;
 ‡ 10 : Int

. sum of(5 1);
 ‡ 5 : Int

+ The complete set of operations on arrays is provided by the built-in module
arrayOp:ArrayOp. It should be interesting to examine the polymorphic signatures of these
operations.

5.8. Exception types
Exceptions, when used wisely, are an important structuring tool in embedded systems

where anomalous conditions are out of the control of the programmer, or where their
handling has to be deferred to clients.

Again it is comforting to notice that exceptions, being a control-flow mechanism, do
not greatly affect the type system. In fact, exceptions can be propagated together with a
typed entity, and in this sense they can be typechecked.

Many primitive operations produce exceptions when applied to certain arguments (e.g.
division by zero). User-defined exceptions are also available in our language. Exceptions in
Quest are treated differently than in most languages; there is an explicit notion of an
exception value which can be created by the exception construct, and then bound to a
variable or even passed to a function to be eventually raised.

. let exc1: Exception(Int) =
exception integerException:Int end;

. let exc2: Exception(String) =
exception stringException:String end;

The exception construct generates a new unique exception value whenever it is
evaluated. The identifier in it is used only for printing exception messages; the type is the
type of a value that can accompany the exception. Exceptions can be raised with a value of
the appropriated type via the raise construct:

. raise exc1 with 3 end;
 ‡ Exception: integerException with 3:Int

Exceptions can be caught by the try construct that attempts evaluating an expression. If
an exception is generated during the evaluation it will be matched against a set of
exceptions, optionally binding an identifier to the exception value. If the exception is not
among the ones considered by the try construct, and if there is no else branch, the
exception is propagated further.

. try
raise exc1 with 55 end
when exc1 with x then x+5
when exc2 then 1
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else 0
end;

 ‡ 60: Int

* Exceptions propagate along the dynamic call chain.

6. Operator kinds
Operators are functions from types to types that are evaluated at compile-time. There are

also higher-order operators that map types or operators to other types or operators. All
languages have built-in operators, such as function spaces and cartesian products, but very
few languages allow new operators to be defined, or restrict them to first-order (types to
types). Higher-order operators embody a surprising expressive power; they define one of
the largest known classes of total functions [Girard 71], and every free algebra with total
operations (booleans, integers, lists, trees, etc.) is uniformly representable in them [Böhm
Berarducci 85] (see the example below for booleans). Because of this, we believe they will
turn out to be very useful for parametrization and for carrying out compile-time
computations.

An operator has the form:

Fun(S)A

where S is a signature introducing only type variables, and A is a type.
The kind of an operator has the form:

ALL(S)K

where K is a kind.

6.1. Type operators
The simplest operator is the identity operator, which takes a type and returns it; here it

is defined in the normal and abbreviated ways.

. Let Id::ALL(A::TYPE)TYPE = Fun(A::TYPE) A;

. Let Id(A::TYPE)::TYPE = A;
 ‡ Let Id(A::TYPE)::TYPE = A

. :Id(Int);
 ‡ :Int :: TYPE

. let a:Id(Int) = 3;
 ‡ let a:Int = 3

The function space and cartesian product (infix) operators take two types and return a
type:
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. Let ->(A,B::TYPE)::TYPE = All(:A)B;

. Let #(A,B::TYPE)::TYPE = Tuple fst:A snd:B end;

. let f:{Int#Int}->Int = fun(p:Int#Int)p.fst+p.snd;

Note the omitted identifier in All(:A)B;  this is to make typings such as  {fun(x:A)B}:A->B
legal for any identifier x, hence allowing f above to typecheck. Omitted identifiers and
alpha-conversion were briefly discussed in the overview.

The optional operator is for data components which may or may not be present:

. Let Opt(A::TYPE)::TYPE =
Option

none
some with some:A end

end;

Operator applications are evaluated with call-by-name, although this is not very
important since all computations at the operator level terminate. (There are no recursive
operators.)

Some interesting functional programs can be written at the operator level (DEF here
introduces a kind):

. DEF BOOL = ALL(Then,Else::TYPE)TYPE;

. Let True::BOOL = Fun(Then,Else::TYPE) Then;

. Let False::BOOL = Fun(Then,Else::TYPE) Else;

. Let Cond(If::BOOL Then,Else::TYPE)::TYPE =
If(Then Else);

- Convince yourself that Cond above is really a conditional at the type level.

$ Rémy's pair-mapping example.

6.2. Recursive type operators
There are no recursive type operators, in order to guarantee that computations at the

type level always terminate. However, there are recursive types which can achieve much of
the same effect. For example, one might expect to define parametric lists via a  recursive
operator as follows:

. (* Invalid recursive definition:
Let Rec List(A::TYPE)::TYPE =

Option
nil
cons with head:A tail:List(A) end

end;
*)
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Instead, we have to define List as an ordinary operator that returns a recursive type:
$ (We could use the syntax above as sugar for the syntax below.)

. Let List(A::TYPE)::TYPE =
Rec(B)

Option
nil
cons with head:A tail:B end

end;
 ‡ Let List(A::TYPE)::TYPE =

Rec(B::TYPE) Option nil  cons with head:A tail:B end end

We have used the recursive type constructor Rec(A)B.
Here are the two basic list constructors:

. let nil(A::TYPE):List(A) =
option nil of List(A) end

and cons(A::TYPE)(head:A tail:List(A)):List(A) =
option cons of List(A) with

head tail
end;

The other basic list operations are left as an exercise.

$ Go look at the List library interface; it is an existential type containing an operator.

7. Power kinds
Most of the quantifier and operator structure described so far derives from Girard's

system Fw [Girard 71].  The main new fundamental notion in Quest is the integration of
subtyping with type quantification. This allows us to express more directly a wider range
of programming situations and programming language features, as well as to introduce new
ones.

In this section we define a subtyping relation between types, written <:, such that if x
has type A and A<:B then x has also type B. Hence, the intuition behind subtyping is
ordinary set inclusion. Subtyping is defined for all type constructions, but normally holds
only among types based on the same constructor. We do not have non-trivial subtype
relations over basic types, although it is possible to add them when the machine
representations of related types are compatible.

We can then talk of the collection of all subtypes of a given type B; this forms a kind
which we call POWER(B), the power-kind of B. Then A::POWER(B) and A<:B have the
same meaning; the former is taken as the actual primitive, while the latter is considered an
abbreviation. Subtyping induces a subkind relation, written <:: , on kinds; basically,
POWER(A)<::POWER(B) whenever A<:B, and POWER(A)<:: TYPE for any type A.
Then we say that a signature S is a subsignature of a signature S' if S has the same number



May 12, 1994 Page 37

of components as S' with the same names and in the same position, and if the component
types (or kinds) of S are subtypes (or subkinds) of the corresponding components in S'.
Moreover, we say that S" is an extended subsignature of S' if S" has a prefix S which is a
subsignature of S'. The formal subtyping rules for a simplified Quest language are in the
Appendix.

Our notion of subtyping can emulate many characteristics of what is commonly
understood as inheritance in object oriented languages. However, we must keep in mind
that inheritance is a fuzzy word with no unequivocally established definition, while
subtyping has a technical meaning, and that in any case subtyping is only one component
of a full treatment of inheritance. Hence, we must try and keep the two notions distinct to
avoid confusion.

The most familiar subtyping relation is between tuple types; this idea comes from object
oriented programming where a class A is a subclass of another class B if the former has all
the attributes (methods and instance variables) of the latter.

We interpret an object as a tuple, a method as a functional component of a tuple, a
public instance variable as a modifiable value component of a tuple, a private instance
variable as a modifiable own variable of the methods (not appearing in the tuple), a class as
a function generating objects with given methods and instance variables, and finally a class
signature as a tuple type. We do not discuss the interpretation of self here, which is in itself
a very interesting and complex topic [Cook 87].

If A is a subclass of B, then A is said to inherit from B. In object oriented programming
this usually (but not always) means that objects of A inherit the methods (functional fields)
of B by sharing the method code, and also inherit the instance variables (data fields) of B
by allocating space for them.

In our framework only signatures are in some sense inherited, not object components.
Inheritance of methods can be achieved manually by code sharing. Since such sharing is
not enforced by the language, we acquire flexibility: a class signature can be implemented
by many classes, hence different instances of the same class signature can have different
methods. This confers a dynamic aspect to method binding, while not requiring any run
time search in the class hierarchy for method access.

7.1. Tuple subtypes
The subtyping rule for tuples is as follows. A tuple type A is a subtype of a tuple type

B if the signature of A is an extended subsignature of the signature of B.
Remember that fields in a tuple or tuple type are ordered, hence tuple subtyping

emulates single-inheritance hierarchies where the hierarchical structure always forms a tree
(or a forest).

Simple tuples
Here is an example of a subtyping hierarchy on tuple types:

. Let Object =
Tuple age:Int end;

. Let Vehicle =
Tuple age:Int speed:Int end;
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. Let Machine =
Tuple age:Int fuel:String end;

which produces the following subtyping diagram:

Vehicle)))))))<:

)))))))))))))))))))))))Object

Machine)))))))<:

Here are a couple of actual objects:

. let myObject:Object =
tuple let age=3 end;

. let myVehicle:Vehicle =
tuple let age=3 let speed=120 end;

Since myVehicle:Vehicle and Vehicle<:Object, we have that myVehicle:Object (this is called
the subsumption rule). Hence functions expecting objects will accept vehicles:

. let age(object:Object):Int = object.age;

. age(myVehicle);
 ‡ 3 : Int

This example illustrates the flexibility inherent in subtypes. Note that inheritance (i.e.
subtyping) is automatic and depends only on the structure of types; it does not have to be
declared. Note also that the age function could have been defined before the Vehicle type,
but still would work on vehicles as soon as these were defined.

Abstract tuples
Since tuples may be used to form abstract types, we immediately get a notion of

abstract subtypes: that is, subtyping between abstract types. For example:

. Let Point =
Tuple

A::TYPE
new(x,y:Int):A
x,y(p:A):Int

end;
. Let ColorPoint =

Tuple
A::TYPE
new(x,y:Int):A
x,y(p:A):Int
paint(p:A c:Color):Ok
color(p:A):Color
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end;

where a new color point starts with some default color and can then be painted in some
other color. Here ColorPoint <: Point, hence any program working on points will also
accept color points, by subsumption.

7.2. Option subtypes
The subtyping rule for option types is as follows: an option type A is a subtype of an

option type B if B has all the tagged components of A (according to their names and
positions) and possibly more, and the component signatures in A are extended
subsignatures of the corresponding component signatures in B. Again, components in an
option type are ordered.

For example, if we define the following enumeration types:

. Let Day =
Option mon tue wed thu fri sat sun end;

. Let WeekDay =
Option mon tue wed thu fri end;

then we have:

WeekDay   <:   Day

, It is important to notice that, unlike enumeration types in Pascal, here we can freely
extend an existing enumeration with additional elements, while preserving type
compatibility with the old enumeration. Similarly, after defining a tree-like data type using
options, one can add new kinds of nodes without affecting programs using the old
definition. Of course the old programs will not recognize the new options, but their code
can be reused to deal with the old options.

+ On the other hand, there is no automatic creation of values of enumeration types.

7.3. Function subtypes
In ordinary mathematics, a function from A to B can also be considered as a function

from A' to B' if A' is a subset of A and B is a subset of B'. This is called contravariance
(in the first argument) of the function space operator.

This also makes good programming sense: this rule is used in some form by all the
object-oriented languages that have a sound type system. It asserts that a function working
on objects of a given type will also work on objects of any subtype of that type, and that a
function returning an object of a given type can be regarded as returning an object of any
supertype of that type.

Hence the subtyping rule for function spaces asserts that  All(x:A)B <: All(x:A')B'  if
A'<:A  and (assuming x:A') B<:B'.

By adopting this rule for functions, we take "ground" subtyping, at the data-structure
level, and "lift" it to higher function spaces. Since object-oriented programming is based on
ground subtyping, and
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functional programming is based on higher-order functions, we can say that the rule above
unifies functional and object-oriented programming, at least at the type level.

7.4. Bounded universals
Subtyping increases flexibility in typing, because of subsumption, but by the same

mechanism can cause loss of type information. Consider the identity function on objects;
when applied to a car, this returns an object:

. let objectId(object:Object):Object = object;

. objectId(myCar);
 ‡ record age=3 end : Object

Here we have unfortunately forgotten that myCar was a Car, just by passing it through an
identity function.

This problem can be solved by providing more type information:

. let objectId(A<:Object)(object:A):A = object;

. ObjectId(:Car)(myCar);
 ‡ record age=3 speed=120 fuel="gas" end : Car

Note the signature A<:Object;  objectId is now a polymorphic function, but not
polymorphic in any type; it is polymorphic in the subtypes of Object. It takes a type which
is any subtype of Object, then a value of that type, and returns a value of that type.

The signature A<:Object is called a bounded (universal) quantifier; in fact it is not a new
kind of signature because it can be interpreted as an abbreviation for A::POWER(Object).

Bounded universal quantifiers have the effect of integrating polymorphism with
subtyping, and they provide more expressive power than either notion taken separately.

7.5. Bounded existentials
Bounded quantifiers can also be used in tuple types, where they are called bounded

existential quantifiers. They provide a weaker form of type abstraction, called partial type
abstraction;  here for example we have an abstract type A which is not completely abstract:
it is known to be an Object:

. Let U =
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Tuple A<:Object a:A f(x:A):Int end;

It can be implemented as any subtype of Object; in this case it is implemented as a Vehicle.

. let u:U =
tuple

Let A<:Object = Vehicle
let a:A = myVehicle
let f(x:A):Int = x.speed

end;

, The interaction between type abstraction and inheritance is a delicate topic; in many
languages inheritance violates type abstraction by providing access to implementation
details of superclasses. Here we have mechanisms that smoothly integrate abstract types
and subtyping: the partially abstract types above, and the abstract subtypes we have seen in
a previous section.

7.6. Auto subtypes
  An auto type is a subtype of another auto type if the respective components (with
matching names and order) are in the subtype or subkind relation.

The first component of an auto type can be any subkind of TYPE; it is therefore
possible to form a sum of a restricted class of types:

. Let AnyObject = Auto A<:Object with a:A end;

. let aCar:AnyObject = auto :Car with myCar end;

  Then, the inspect construct can be used to discriminate at run-time between the
subtypes of a given type, in this case between the subtypes of Object. This operation is
widely used in object-oriented languages such as Simula67, Modula-3, and Oberon.

7.7. Var, Out, and Array subtypes
  The best way to explain the relations between Out and Var types is to take Out as a
primitive operator, and consider Var(A) to be defined as a type conjunction [Reynolds --]:

Var(A) intended as In(A) Â Out(A),

This means that Var(A) is the type of locations that have both type In(A) and type Out(A).
Here In(A) is intended as the type of locations from which we can only read an A, and
Out(A) as the type of locations to which we can only write an A. Hence Var(A) is the type
of read-write locations.

Type conjunction has the following subtyping properties:

A ÂB <: A A ÂB <: B
A<:B fi A<:C„A <: BÂC
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from which we may also derive (using reflexivity and transitivity of <:, and writing A<:>B
for A<:B fi B<:A):

AÂA <:> A
A ÂB <:> BÂA
A Â( B ÂC) <:> (AÂB ) ÂC

A<:C „ A ÂB <: C
A <: BÂC „ A<:B
A<:B fi C<:D„A ÂC <: BÂD

The conversions between A and In(A) are rather trivial; they are performed by let
variable declarations (A->In(A)) and by variable access. (In(A)->A), with subtyping rule
A<:B „ In(A)<:In(B). For simplicity, in Quest we identify the types A and In(A), and
take their conversions as implicit. This amounts to assuming In(A)<:A and A<:In(A).

The Out types are much more interesting. First note that we assume neither A<:Out(A)
nor Out(A)<:A (this would amount to In(A)<:Out(A) and Out(A)<:In(A)). The fundamental
subtyping rule for Out is suggested by the following reasoning: if every A is a B by
subtyping, then a place where one can write a B is also a place where one can write an A.
This means that Out is contravariant:

(1) A<:B „ Out(B)<:Out(A)

This has a nice consequence: out parameters appear in contravariant positions (on the "left"
of function arrows), but as parameters they should behave covariantly since they are really
function results. The contravariant rule for Out has the effect of neutralizing the
contravariant rule for functions.

From the subtyping rules given so far we can easily infer:

(2') Var(A) <: A
(3') Var(A) <: Out(A)

with the more general forms:

(2) A<:B „ Var(A)<:B
(3) B<:A „ Var(A)<:Out(B)

and, putting the last two together:

(4) (A<:B) fi (B<:A)  „  Var(A)<:Var(B)

Since Var(A)<:A the conversion from the former to the latter is implicit and automatic;
nothing special is needed to fetch the contents of a mutable location. This rule also says that
any structure that can be updated can be regarded as a structure that cannot be updated, and
passed to any function that will not update it.

Since Var(A)<:Out(A), it becomes possible to pass a mutable location as an out
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parameter, but the explicit conversions @ and var are required to prevent the automatic
fetching of mutable locations described above3:

let var a = 3;
let f(x:Int out y:Int):Ok = y := x;

(* i.e. f:Fun(x:Int y:Out(Int))Ok *)
f(3 @a); (* a becomes 3 *)
f(3 var(0)) (* dummy location initially 0 becomes 3 *)

Now these conversions can be given a precise typing:

@:   Out(A)->Out(A)
var: A->Var(A)

In the example, they have been used with types:

@:   Var(Int)->Out(Int)  :>  Out(Int)->Out(Int)
var: Var(Int)->Out(Int)  :>  Int->Var(Int)

In-out var parameters could be used in addition to out parameters, but because of (4)
they would be less flexible from a subtyping point of view. For simplicity, they are left out
of the language4.

The following example shows that relaxing rule (4) to A<:B „ Var(A)<:Var(B) is
semantically unsound:

. let r =
tuple

let var a =
tuple let b=3 end

end;
. let f(r:Tuple var a:Tuple end end):Ok =

r.a := tuple end;
. f(r); (* Typechecks! *)
. r.a.b; (* Crash! *)

Here the invocation of f(r) removes the b field from inside r, but r maintains its old type.
Hence, a crash occurs when attempting to extract r.a.b. Note how everything typechecks
under the weaker subtyping rule for Var.

3   These explicit conversions are required more for making programs easier to read than out of

algorithmic necessity.

4 Note: the implicit conversion Var(A)<:A is problematic for a natural implementation of in-out

parameters as pointer-displacement pairs.
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Finally, the subtyping rule for arrays is give by considering them, for the purpose of
subtyping, as functions from integers to mutable locations:

Array(A)    regarded as    All(:Int) Tuple :Var(A) end

Hence we obtain the rule:

(5) (A<:B) fi (B<:A)  „  Array(A)<: Array(B)

which requires the Array operator to be both covariant and contravariant.

7.8. Recursive subtypes
  Two recursive types are in subtype relation when their infinite expansions are in
subtype relation. As for type equivalence, this condition can be tested in finite time. The
formal version of this rule is non-trivial, and is described in appendix.

We can therefore produce hierarchies of recursively defined types. The following
example also involves the subtyping rules for Var types, defined in the previous section.

. Let List(A::TYPE)::TYPE =
Rec(List)

Option
nil
cons with head:A tail:List end

end;

. Let VarList(A:TYPE)::TYPE =
Rec(VarList)

Option
nil
cons with var head:A var tail:VarList end

end;

Then we obtain, for example, VarList(Int)<:List(Int) by a non-trivial use of the Var(A)<:A
rule. Note that VarList<:List does not make sense since subtyping is defined between
types, not between operators.

8. Modularity
Most serious programming involves the construction of large programs, which have the

property that no single person can understand or remember all of their details at the same
time (even if they are written by a single person).
 Large programs must be split into modules, not only to allow compilers to deal with
them one piece at a time, but also to allow people to understand them one piece at a time. In
fact it is a good idea to split even relatively small programs into modules. As a rule of
thumb, a module should not exceed a few hundred lines of code, and can be as small as
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desired.
A lot of experience is required to understand where module boundaries should be

located [Parnas 72]. In principle, any part of a program which could conceivably be reused
should form a module. Any collection of routines which maintain an internal invariant that
could be violated by careless use should also form a module. And almost every user-
defined data type (or collection of closely related data types) should form a module,
together with the relevant operations. Module boundaries should be located wherever there
is some information that can or should be hidden; that is, information not needed by other
modules, or information that can be misused by other modules.

8.1. Interfaces and modules
Module boundaries are called interfaces. Interfaces declare the types (or kinds) of

identifiers supplied by modules; that is, they describe how modules may plug together to
form systems.

Many interfaces provide one or more abstract data types with related operations; in this
case they should define a consistent and complete set of operations on the hidden types.
Other interfaces may just be a collection of related routines, or a collection of types to be
used by other modules. Interfaces should be carefully documented, because they are the
units of abstraction that one must understand in order to understand a larger system.

Both interfaces and modules may import other interfaces or modules; they all export a
set of identifiers. A module satisfies (or implements) an interface if it provides all the
identifiers required by the interface; a module may also define additional identifiers for its
own internal purposes.

In Quest, interfaces and modules can be entered at the top level, although normally they
will be found in separate files. Each interface, say A, can be implemented by many
modules, say b and c. Each module specifies the interface it implements; this is written as
b:A and c:A in the module headings:

. interface A . module b:A
import .. import ..
export export

. . . .
end; end;

Both interfaces and modules may explicitly import other interfaces and modules in their
headings (the interface implemented by a module is implicitly imported in the module). The
following line imports: interfaces C, D, and E;  module c implementing C; and modules d1
and d2 both implementing D.

import  c:C  d1,d2:D  :E

$ open  c:C  d1,d2:D  :E

Imported modules are just tuples; values and types can be extracted with the usual "dot"
notation. Imported interfaces are just tuple types. Since modules are tuples, they are first
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class: it is possible to pass modules around, store them in variables, and choose
dynamically between different implementations of the same interface.

One of the main pragmatic goals of modules and interfaces is to provide separate
compilation. When an interface is evaluated, a corresponding file is written, containing a
compiled version of the interface. Similarly, when a module is evaluated, a file is written,
containing a compiled version of the module. When interfaces and modules are evaluated,
all the imported interfaces must have been compiled, but the imported modules do not have
to be. The import dependencies of both modules and interfaces must form a directed acyclic
graph; that is, mutually recursive imports are not allowed to guarantee that the linking
process is deterministic.

Modules are linked by importing them at the top level5.

. import b:A;
 ‡ let b:A = ..

At this point all the interfaces and modules imported directly by b, A, and recursively by
their imports, must have been compiled. The result is the definition at the top level of a
tuple b, of type A, from which values and types can be extracted in the usual fashion.

A compiled module is like a function closure: nothing in it has been evaluated yet. At
link time, the contents of compiled modules are evaluated in the context of their imports. In
the linking process, a single copy of each module is evaluated (although it may be imported
many times). Evaluation happens depth-first along import chains, and in the order in which
modules appear in the import lists.

Version checking is performed during linking, to make sure that the compiled interfaces
and modules are consistent.

8.2. Manifest types and kinds
When programming with modules, it is very convenient to define a type in an interface

and then have other modules and interfaces refer to that definition. But so far we have
shown no way of doing this: types can be defined in bindings (module bodies) where they
are not accessible to other modules, and signatures (interfaces) can only contain
specifications of abstract types6.

Hence a separate mechanism is provided to introduce type and kind definitions in
signatures; such types and kinds are then called manifest. This should be seen just as a
convenience: these types and kinds could be expanded at all their points of use, and
everything would be the same. In particular, manifest entities appearing in signatures and

5   In view of dynamic linking, it might be nicer to introduce import as a new form of binding

that would not be restricted to the top level.

6   In fact we could write X<:A (a specification of a partially-abstract type) in an interface,

thereby making X publicly available as (a subtype of) the known type A. However according to

our signature matching rules, any implementation of such an interface should then "implement"

X , probably just by duplicating A's possibly complex definition.
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bindings are (conceptually) removed and expanded before typechecking.
We augment our syntactic classes as follows:

• Signatures: they can now contain manifest kinds and types, introduced by the DEF and
Def keywords respectively. The identifiers thus introduced can be mentioned later in the
signature. These definitions are particularly useful in signatures forming tuple types (e.g.
interfaces), so that these definitions can be later extracted from the tuple type.

DEF U=K is a manifest kind definition.
Def X::K=A is a manifest type definition. (Similarly for  Def Rec.)

• Kinds: if X is a type identifier bound to a tuple type (e.g. an interface), and U is a kind
variable introduced by DEF in that tuple type, then:

X_U is a kind.

• Types: if A denotes a tuple type, and X is a type variable declare by Def in that tuple type,
then:

A_X is a type.

+ The "dot" notation (x.Y and x.y) is used to extract types and values out of binding-
like structures, while the "underscore" notation (X_U and A_X) is used to extract manifest
kinds and types out of signature-like structures.

8.3. Diamond import
In module systems that admit multiple implementations of the same interface, there

must be a way of telling when implementations of an interface imported through different
paths are the "same" implementation [MacQueen 84].

This is called the diamond import problem. A module d imports two modules c and b
which both import a module a. Then the types flowing from a to d through two different
import paths are made to interact in d. In other words, if a:A and b:A, then a.T must not
match b.T, unless we know statically that a and b are the same value (the same
implementation of the interface A).

In the Quest context (without parametric modules), this is solved by assuming a global
name space of externally compiled modules, so that a.T matches b.T precisely when a and
b are the same identifier.

. interface A . module a:A
export export

T::TYPE Let T::TYPE = Int
new(x:Int):T let new(x:Int):T = x
int(x:T):Int and int(x:T):Int = x

end; end;

. interface B . module b:B
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import a:A import a:A
export export

x:a.T let x = a.new(0)
end; end;

. interface C . module c:C
import a:A import a:A
export export

f(x:a.T):Int let f(x:a.T):Int =
end; a.int(x)+1

end;

. interface D . module d:D
export import b:B c:C

z:Int export
end; let z = c.f(b.x)

end;

Note that the application c.f(b.x) in module d typechecks because the a imported by b and
the a imported by c are the "same" implementation of the interface A, since a is a global
external name.

To illustrate the correspondence between interfaces and signatures, and between
modules and bindings, we can rephrase the diamond import example as follows.

. Let A::TYPE = . let a:A =
Tuple tuple

T::TYPE Let T::TYPE = Int
new(x:Int):T let new(x:Int):T = x
int(x:T):Int and int(x:T):Int = x

end; end;

. Let B::TYPE = . let b:B =
Tuple tuple

x:a.T let x = a.new(0)
end; end;

. Let C::TYPE = . let c:C =
Tuple tuple

f(x:a.T):Int let f(x:a.T):Int =
end; a.int(x)+1

end;

. Let D::TYPE = . let d:D =
Tuple tuple

z:Int let z = c.f(b.x)
end; end;
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In this case, c.f(b.x) typechecks because the types of c.f and b.x both refer to the same
variable a which is lexically in the scope of both c and b.

By convention, if an interface is dedicated to implementing a single type, or has a main
type, that type is given the simple name "T", since this will always be qualified by the
module name which will normally be expressive enough (e.g. list.T).

8.4. Soundness
In the Appendix, we provide a particular type violation mechanism via the built-in

interface Value, which manipulates raw words of memory. But whatever the type violation
mechanisms are, they need to be controlled somehow, lest they compromise the reliability
of the entire language.

Cedar-Mesa and Modula-3 use the following idea. Unsound operations that may violate
run-time system invariants are called unsafe. Unsafe operations can only be used in
modules that are explicitly declared unsafe. If a module is declared safe, the compiler
checks that (a) its body contains no unsafe operations, and (b) it imports no unsafe
interfaces.

We adopt essentially the same scheme here, except we use the keyword unsound7.
Unsound modules may advertise an unsound interface. However, unsound modules can
also have ordinary interfaces. In the latter case, the programmer of the unsound module
guarantees (i.e. proves or, more likely, trusts) that the module is not actually unsound,
from an external point of view, although internally it uses unsound operations. This way,
low-level facilities can be added to the system without requiring all the users of such
facilities to declare their modules unsound just because they import them.

The only unsound operations in Quest are provided by built-in unsound interfaces such
as Value. Unsound modules can import (implementations of) unsound interfaces and may
have unsound or sound interfaces. Sound modules can import only (implementations of)
sound interfaces. (These implementations may be unsound.) Sound interfaces are allowed
to import (implementations of) unsound interfaces since soundness can be compromised
only by operations, not by their types. Finally, the top level is implicitly sound.

9. Acknowledgments
Thanks for various discussions to: Roberto Amadio (rules for recursive types), Pierre-

Louis Curien (typechecking algorithms), Peppe Longo (models of subtyping), and
Benjamin Pierce (dynamic types).

7   Soundness is the property one proves to show that a type system does not permit type

violations. The word unsafe has a slightly different meaning in the languages above, since some

unsound operations are considered safe if they do not violate run-time invariants.
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10. Appendix

10.1 Syntax

Id ranges over non-terminal identifiers; A and B range over syntactic expressions.

Id ::= A the non-terminal identifier Id is defined to be A
Id a non-terminal symbol
".." a terminal symbol ("" is the empty input)

ide an alphanumeric identifier token
(A..Z, a..z, 0..9, with initial letter) or infix

infix a symbolic identifier token (!@#$%&*_+=-|\`:<>/?)
char a character token ('a', with escapes \n \b \t \f \\ \')
string a string token ("abc", with escapes \n \b \t \f \\ \")
int an integer token (2)
real a real token (2.0)
A B means A followed by B (binds strongest)
A | B means A or B
[A] means  ("" | A)
{A} means  ("" | A {A})
(A) means A

Program ::=
{Phrase ";"}

Phrase ::=
[Interface | Module | Linkage | Binding |
 "command" string | "load" string]

Interface ::=
["unsound"] "interface" ide ["import" Import]

"export" Signature "end"

Module ::=
["unsound"] "module" ide ":" ide ["import" Import]

"export" Binding "end"

Linkage ::=
("import" | "open") Import

Import ::=
{[ideList] ":" ide}

Kind ::=
ide |
"TYPE" |
"POWER" "(" Type ")" |
"ALL" "(" TypeSignature ")" Kind |
ide "_" ide |
"{" Kind "}"

Type ::=
ide {"." ide | "!" ide} |
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"Ok" | "Bool" | "Char" | "String" | "Int" | "Real" |
"Array" "(" Type ")" | "Exception" |
"All" "(" Signature ")" Type |
"Tuple" Signature "end" |
"Option" OptionSignature "end" |
"Fun" "(" TypeSignature ")" [HasKind] Type |
"Rec" "(" ide ")" Type |
Type "(" TypeBinding ")" |
Type infix Type |
Type "_" ide |
"{" Type "}"

Value ::=
ide |
"ok" | "true" | "false" | char | string | integer | real |
"if" Binding ["then" Binding] {"elsif" Binding ["then" Binding]}

["else" Binding] "end" |
"begin" Binding "end" |
"loop" Binding "end" | "exit" |
"while" Binding "do" Binding "end" |
"for" ide "=" Binding ( "upto"|"downto" ) Binding "do" Binding "end" |
"fun" "(" Signature ")" [":" Type] Value |
Value "(" Binding ")" |
Value (infix | "is" | "isnot" | "andif" | "orif" | ":=") Value |
"tuple" Binding "end" |
"option" (ide | $"ordinal" "(" Value ")")

"of" Type ["with" Binding] "end" |
Value ("." | "?" | "!") ide |
"case" Binding CaseBranches "end" |
("array"| Value) "of" (Binding "end" | "(" Binding ")" ) |
Value "[" Value "]" [ ":=" Value ] |
"exception" ide [":" Type] "end" |
"raise" Value ["with" Value] ["as" Type] "end"|
"try" Binding TryBranches "end" |
"{" Value "}"

Signature ::=
{ TypeSignature |
  ["var" | "out"] IdeList (HasType|ValueFormals) | HasMutType }

TypeSignature ::=
{ "DEF" KindDecl |
  "Def" ["Rec"] TypeDecl |
  [IdeList] HasKind }

OptionSignature ::=
["with" Signature "end"] {IdeList ["with" Signature "end"]}

Binding ::=
{ "DEF" KindDecl |
  "Def" ["Rec"] TypeDecl |
  "Let" ["Rec"] TypeDecl |
  "let" ["rec"] ValueDecl |
  "::" Kind |
  ":" Type |
  "var" "(" Value ")" |
  "@" Value |

        Value }
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TypeBinding ::=
{ Type }

KindDecl ::=
ide "=" Kind |
KindDecl "and" KindDecl

TypeDecl ::=
ide [HasKind | TypeFormals] "=" Type |
TypeDecl "and" TypeDecl

ValueDecl ::=
["var"] ide [HasType | ValueFormals] "=" Value |
ValueDecl "and" ValueDecl

TypeFormals ::=
{"(" TypeSignature ")"} HasKind

ValueFormals ::=
{"(" Signature ")"} ":" Type

CaseBranches ::=
{"when" IdeList ["with" ide] "then" Binding}
["else" Binding]

TryBranches ::=
{"when" Binding ["with" ide] "then" Binding}
["else" Binding]

HasType ::=
":" Type

HasMutType ::=
":" Type | ":" "Var" "(" Type ")"

HasKind ::=
"<:" Type | "::" Kind

IdeList ::=
ide | ide "," IdeList

Operators:
niladic: Ok Bool Char String Int Real ok true false
prefix monadic: not extent ordinal
infix: is isnot andif orif

/\  \/  +  -  *  /  %  <  >  <=  >=  <>
++ -- ** // ^^ << >> <<= >>=

Keywords:
ALL DEF POWER TYPE All Array Def Exception Fun Let Option Out Rec Tuple Var and array as begin
case do downto else elsif end exception exit export for fun if import interface let loop module of open
option out raise rec reraise then try tuple unsound upto var when while with ? ! : :: <: := = _ @

$ Other keywords:
Builtin builtin command load build
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Notes:
The @ keyword can appear only in actual-parameter bindings.
Bindings evaluated for a single result must end with a value component (modulo manifest declarations).
Bindings in listfix constructs may begin with a type (the type of array elements) and must then contain

only values.
Recursive value bindings can contain only constructors, i.e. functions, tuples, etc. $ Only functions
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10.2 Type rules
A complete semantics of Quest would take many pages; we think it could be written

using Structural Operational Semantics [Plotkin 81], also using the techniques developed in
[Abadi Cardelli Pierce Plotkin 89] for dynamic types. See  [Harper Milner Tofte 88] for a full formal
language definition in this style.

This section contains the type rules for Miniature Quest, which is a language with
scaled down notions of values, types, kinds, bindings, and signatures, but which presents
the essential concepts.

Syntax

Signatures (S): Types and operators (A,B,C; type ident. X,Y,Z):
∅ X
S, X::K All(S)A
S, x:A Tuple(S)

Fun(X::K)A A(B)
Bindings (D): Rec(X::TYPE)A

∅
D, X::K=A Values (a,b,c; value ident. x,y,z):
D, x:A=a x

fun(S)a a(D)
Kinds (K, L, M): tuple(D) bind S = a in b

TYPE rec(x:A)a
ALL(X::K)L
POWER(A)

Here we use the construct "bind S = a in b" which binds the components of the tuple
"a" to the identifiers in "S" in the scope "b". In full Quest we use instead the notation "x.Y"
and "x.y" to extract types and values out of a tuple denoted by an identifier "x". Then a
program fragment  "let x = a .. x.Y .. x.y..." corresponds to "bind ..Y::K..y:A..  = a in ..
y .. Y...". The type rule for "bind" prevents the type identifiers in "S" from occurring in
the type of the result. Similarly, in full Quest types like "x.Y" are not allowed to escape the
scope of "x"; these restrictions are better understood by analogy with the "bind" construct.

Judgments

 ∫ S sig S is a signature
S ∫ K kind K is a kind
S ∫ A type A is a type  (same as  S ∫ A::TYPE)

S ∫ DS' D has signature S'
S ∫ A::K A has kind K
S ∫ a:A a has type A

S ∫ S'<S'' S' is a subsignature of S''
S ∫ K<::L K is a subkind of L
S ∫ A<:B A is a subtype of B  (same as  S ∫ A::POWER(B))
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S ∫ S'<>S''equivalent signatures
S ∫ K<::>L equivalent kinds
S ∫ A<:>B equivalent types

Notation
S S' is the concatenation (iterated extension) of S with S'. Signatures and bindings are

ordered sequences; however we freely use the notation XÏdom(S) (type X is defined in
S), xÏdom(S) (value x is defined in S). Similarly for bindings.

E{XŸA} and E{xŸa} denote the substitution of the type variable X  by the type A,
or of the variable x by the value a, within an expression E of any sort. For a binding D,
E{D} is defined as follows: E{∅ } = E; E{D', X::K=A} = E{XŸA}{D'}; E{D', x:A=a}
= E{xŸa}{D '} .

E[E'] indicates that E' is a given subexpression of expression E. Then E[E"] denotes
the substitution of (a particular occurrence of) E' by E" in E. Here E, E' and E" are
expressions of any sort.

A type C is contractive in a (free) type variable X [MacQueen Plotkin Sethi 86], written
C‹X , if and only if  C is either: a type variable different from X, a function or tuple type,
an operator application whose reduced form is contractive in X, or a recursive type whose
body is contractive in X. The body of a legal recursive type must also be contractive in the
recursion variable. From a type whose recursion bodies are all contractive in their recursion
variables, we can construct a well-formed regular (infinite) tree.

Equivalence

S ∫ A :: K S ∫ K kind ∫ S S 'sig
—————— —————— ——————

S ∫ A <:> A S ∫ K <::> K S ∫ S' <> S'

S ∫ A <:> A' S ∫ K <::> K' S ∫ S' <> S"
—————— —————— ——————

S ∫ A' <:> A S ∫ K' <::> K S ∫ S" <> S'

S ∫ A <:> A'    S ∫ A' <:> A" S ∫ K <::> K'    S ∫ K' <::> K" S ∫ S' <> S"    S ∫ S" <> S"'
—————————————— —————————————— ——————————————

S ∫ A <:> A" S ∫ K <::> K" S ∫ S' <> S"'

Congruence

S ∫ A[B] :: K    S ∫ B <:> B' S ∫ A[K] :: L    S ∫ K <::> K' S ∫ A[S'] :: L    S ∫ S' <> S"
————————————— ————————————— —————————————

S ∫ A[B] <:> A[B'] S ∫ A[K] <:> A[K'] S ∫ A[S'] <:> A[S"]

S ∫ K[A] kind    S ∫ A <:> A' S ∫ K[L] kind    S ∫ L <::> L' S ∫ K[S'] kind    S ∫ S' <> S"
————————————— ————————————— —————————————

S ∫ K[A] <::> K[A'] S ∫ K[L] <::> K[L'] S ∫ K[S'] <::> K[S"]

∫ S S'[A] sig    S ∫ A <:> A' ∫ S S'[K] sig    S ∫ K <::> K' ∫ S S'[S"] sig    S ∫ S" <> S"'
————————————— ————————————— —————————————

S ∫ S'[A] <> S'[A'] S ∫ S'[K] <> S'[K'] S ∫ S'[S"] <> S'[S"']



May 12, 1994 Page 56

Inclusion

S ∫ A <:> A S ∫ K <::> L S ∫ S' <> S"
—————— —————— ——————

S ∫ A <: A S ∫ K <:: K S ∫ S' < S"

Subsumption

S ∫ a:A    S ∫ A<:B S ∫ A::K    S ∫ K<::L S ∫ DS'    S ∫ S'<S''
————————— —————————— ——————————

S ∫ a : B S ∫ A :: L S ∫ D  S''

Conversion

S, X::K ∫ B::L    S ∫ A::K S ∫ Rec(X::TYPE)A type
——————————————— —————————————————————

S ∫ (Fun(X::K)B)(A) <:> B{X←A} S ∫ Rec(X::TYPE)A <:> A{X←Rec(X::TYPE)A}

S ∫ A<:>C{X←A}   S ∫ B<:>C{X←B}   C‹X
———————————————————

S ∫ A <:> B

Signatures

∫ ∅  sig S ∫ K kind      XÌdom(S) S ∫ A type      xÌdom(S)
———————————— ———————————

∫ S, X::K  sig ∫ S, x:A  sig

Bindings

∫ S sig S ∫ DS'    S  ∫ A{D}::K{D} S ∫ DS'    S  ∫ a{D}:A{D}
————— ————————————— —————————————

S ∫ ∅   ∅ S ∫ D, X::K=A    S', X::K S ∫ D, x:A=a    S', x:A

Kinds

∫ S sig S ∫ K kind    S, X::K ∫ L kind S ∫ A type
——————— —————————————— ——————————

S ∫ TYPE kind S ∫ ALL(X::K)L kind S ∫ POWER(A) kind

Types and Operators

∫ S, X::K, S' sig S S' ∫ A type ∫ S S' sig
————————— ————————— —————————

S, X::K, S' ∫ X :: K S ∫ All(S')A type S ∫ Tuple(S') type

S, X::K ∫ B::L S ∫ B::ALL(X::K)L    S ∫ A::K S, X::TYPE ∫ A type    A‹X
—————————————— —————————————— —————————————

S ∫ Fun(X::K)B :: ALL(X::K)L S ∫ B(A) :: L{X←A} S ∫ Rec(X::TYPE)A type

Values

∫ S, x:A, S' sig S S' ∫ a:A S ∫ a:All(S')A    S ∫ DS'
———————— —————————— ————————————
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S, x:A, S' ∫ x : A S ∫ fun(S')a : All(S')A S ∫ a(D) : A{D}

S ∫ DS' S ∫ a:Tuple(S')   S ∫ B type    S S' ∫ b:B S, x:A ∫ a : A
——————————— ——————————————————— ————————

S ∫ tuple(D) : Tuple(S') S ∫ bind S' = a in b : B S ∫ rec(x:A)a : A

SubSignatures

S ∫ S'<S''    S S' ∫ K<::L S ∫ S'<S''    S S' ∫ A<:B
———————————— ————————————

S ∫ S', X::K  <  S'', X::L S ∫ S', x:A  <  S'', x:B

SubKinds

S ∫ K'<::K    S, X::K' ∫ L<::L' S ∫ A type S ∫ A<:B
——————————————— ———————————— ——————————————

S ∫ ALL(X::K)L <:: ALL(X::K')L' S ∫ POWER(A) <:: TYPE S ∫ POWER(A) <:: POWER(B)

SubTypes

S ∫ S''<S'    S, S'' ∫ A'<:A'' ∫ S S'S" sig    S ∫ S'<S'''
————————————— ——————————————

S ∫ All(S')A' <: All(S'')A'' S ∫ Tuple(S'S") <: Tuple(S''')

S ∫ Rec(X::TYPE)A type    S ∫ Rec(Y::TYPE) B type    S, Y::TYPE, X<:Y ∫ A <: B
—————————————————————————————————————

S ∫ Rec(X::TYPE)A <: Rec(Y::TYPE) B

10.3 Quest Machine
Quest programs are compiled into an intermediate code format that can then be use as a

starting point for code generation. This code can also be run directly on an abstract
machine, called the Quest Machine, which is described in this section.

In the current system, the intermediate code is assembled into bytecode (a simple
linearization of the intermediate code), which is then interpreted by a Modula3 program
emulating the Quest Machine. Other back-end implementations might assemble the
intermediate code into, e.g., native VAX code and run it on a VAX architecture.
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Figure 1: The Quest Machine

The global state of the Quest Machine is described in Figure 1. It consists of a heap, a
general purpose register called home (HO), an exception packet (EX) register used during
exception handling (where EX1 is the exception name and EX2 the exception value), a fault
light (FL) indicating normal or exceptional termination (initially off), and a level stack (LP),
(initially empty).

The level stack can store machine states (described below) to keep track of recursive
invocations of the machine. Typically the Quest system, which is a Quest program running
at level 0, compiles another Quest program and recursively starts a machine at level 1 to
execute it. When the level 1 machine stops, the control returns to the machine at level 0,
that is to the Quest system. Sometime a Quest system is run on top of another Quest system
for debugging; then there may be three active levels. A main feature of this scheme is that
exceptions do not propagate through level boundaries.

The heap has a heap pointer (HP) to the unallocated area. The allocated area contains a
current stack, pointed by a stack pointer (SP), and a current closure, pointed by a closure
pointer (CP).

The closure contains a record of all the global variables of the current program, and a
pointer to the program. The program is a piece of code, with the program counter (PC)
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indicating the current instruction, plus a pointer to a record of all the literals of the program.
Literals are typically strings, or other programs arising from statically nested functions.
Program code is relocatable, and contains no pointers into the heap; all such pointers are
collected as literals. A closure is a completely self-contained entity; it contains all it needs to
execute, with the possible exception of I/O handles gone stale.

The stack has a large bottom frame, pointed by a top-level pointer (TL); this is where
the values declared at the top level are kept. Above the top level are the frames resulting
from function activations; the topmost (current) frame is indicated by the frame pointer
(FP); initially FP=TL. Exception handlers are threaded through the active frames; the
topmost, if any, is indicated by the trap pointer (TP); initially TP=SP. The stack is
relocatable.

Finally, a complete machine state, is determined by SP, TL, FP, CP, PC, EX, HO and
FL.

The structure of a frame is described in Figure 2. From bottom to top there is a
(currently unused) frame descriptor, space for function results (only single results are
implemented), space for arguments, space for temporaries, and two locations to save CP
and PC on function calls. Addressing conventions are indicated in the figure.

The calling conventions require the caller to assemble the arguments into the (future)
frame above the current FP; the caller knows the number of arguments and results of the
callee. The caller then saves CP and PC, and the callee is invoked to initialize a proper
frame around the arguments. The callee knows how many temporaries it requires, and
raises FP accordingly. Enventually the callee stores its results in the result space, lowers
FP of the known amount, and restores the previous CP and PC. The caller gets control
again and fetches the results of the callee. (Note: FP's are not threaded. Stack unwinding,
e.g. for debugging, can be done via the CPs stored in each frame, since the first instruction
of each program has the frame size in it.) (Note: in presence of concurrent garbage
collection, a shadow FP must be maintained to prevent the collector from reclaiming data
temporarily stored above the real FP.)

Frame Descriptor(unused)
0
1
..

0
1
..

0
1..

Results

Arguments

Temporaries

Save CP

Save PC

FP[-1]

FP[1]

FP[0]

.

.

FP

Frame  Size

(only 1-result
implemented

Figure 2: Frame structure
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Addressing is described in the following table.

Immediate(imm) referring directly to imm, where imm is either ok,
a boolean, a character, an integer or a real. Read only.

Frame(n) referring to the contents ofthe location FP+n
(n pointees).

FrameLocative(n) referring to the contents of the m-th pointee off the
address found at FP+n, where m is found at
FP+n+pointersize. Used to pass parameters by var.

Literal(n) referring to the contents of the n-th literal location
(n≥0 pointees), obtained via CP.

Global(n) referring to the contents of the n-th global location
(n≥0 pointees), obtained via CP.

Indexed(A,n) referring to the contents of the n-th pointee off the
address described by A, where A is another addressing.

StackDispl(n) Referring directly to (FP-SP)+n (n≤0 pointees). Used to
obtain the relative stack location of a frame location,
in conjunction with var parameters. Read only.

Special(s) referring, depending on s, to the contents of either HO,
SP, EX1 (exception name, read only), or EX2 (exception
value, read only).

Finally, here is an informal description of the instruction set.

NoOp()    do nothing.
Move(A1, A2)    fetch a value from A1 and store it in A2.
Arguments(resultsNo,(A1,...,An))    move the values from A1..An in the

"future" frame above FP. Also clear the result slots.
Apply(A)    call the closure at A. That is, save the current CP and PC in the

reserved slots of the current frame, set CP to the new closure, and set
PC to the beginning of the new program.

Frame(frameSize,tempSize)    first instruction of each program. Initialize a frame
of given size by raising FP and clearing the temporary slots (assume

argument and result slots are ready).
Return(frameSize)    lower FP according to frameSize; the results of the returning
program remain in the "past" frame above the FP. Restore

the CP and PC of the calling closure.
Results((A1,...,An))    move the results of the "past" frame into locations A1..An of
the current frame.
Closure(A1,(A2,...,An),An+1)    allocate a closure with program from A1

(usually a literal) and globals from A2..An. Store the result at An+1.
DumClosure(A1,globalsSize,A2)    allocate a closure with program from A1

and globalsSize null globals. Store the result at A2.
RecClosure(A1,(A2,...,An))    fill the globals of the closure found at A1 with

the values at A2..An. This is intended to match a previous DumClosure.
JumpAlways(target)    set PC to PC+target (relative to the address of target).
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Jump(condition,A1,A2,target)    if condition is true of the values at A1,A2,
set PC to PC+target (relative to the address of target). Conditions
are: True, False, Eq, NotEq, Less, LessEq, More, MoreEq.

Case(A,(target1,...,targetn))    get the tuple value at A; let its first field
contain the number i≥0. Set PC to PC+targeti (relative to the address
of targeti).

CaseFault()    store a case-fault exception in EX and do Raise+Unwind.
CaseCheck(A, i)    check that the first field of the tuple value at A is i; otherwise store
a case-check exception in EX and do Raise+Unwind.
Trap(n,target)    store a (relocation independent) trap frame at location n in

the current frame, with exception handler to be later found at target.
That is, let PC0(CP) be the address of the first instruction of the program
at CP, and tf be FP+n; then: tf[0]^ := TP-SP;  tf[-1]^ := CP;
tf[-2]^ := PC+target-PC0(CP);  tf[-3] := FP-SP;  TP := tf.

Untrap    forget the topmost trap frame:  TP := TP^+SP.
Raise(A1,A2)    begin raising the exception whose unique identifier is at A1 (a string)
and whose exception value is at A2. That is, move A1 to EX1 and

A2 to EX2. An Unwind should then follow.
Unwind()    perform one step of stack unwinding. That is; if TP=Stack, set FL

on (signalling a fault) and do a Stop. Otherwise restore the machine
to the state recorded in the last trap frame: tf := TP; TP := tf[0]^+SP;
CP := tf[-1]^;  PC := tf[-2]^+PC0(CP);  FP := tf[-3]^+SP. Exception matching
and further unwinding must be programmed in, at the beginning of every
exception handler.

Crash()    store a crash exception in EX and do Raise+Unwind.
Start(A1,A2)    fetch a data structure from A1 representing a machine state M,

push the current machine state on the level stack, and start the new
machine with M. A2 is later fetched by the Stop instruction of M.

Stop()    if the level stack is empty then set FL off and stop the machine.
Otherwise create a machine state M for the current machine, pop a
machine state from the level stack and make it current, and store M in
the A2 address from the suspended Start instruction.

Data(op,(A1,...,An),An+1)    perform the data operation op with arguments
from A1..An and result in An+1. There is an extensive list of such operations for all

the built-in date types and modules.
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10.4 Library interfaces

Here is a list of supplied modules; their interface specification follows. Most of these
modules are pre-linked at the top level, but must be explicitly imported by any module
which uses them.

* The ones that are not implicitly imported can be imported explicitly, and will be
found.

arrayOp: ArrayOp (* Array operations *)
ascii: Ascii (* Ascii conversions *)
conv: Conv (* String conversions *)
dynamic: Dynamic (* Dynamically typed values *)
int: IntOp (* Integer number operations *)
list: List (* Polymorphic lists *)
reader: Reader (* Input operations *)
real: RealOp (* Real number operations *)
trig: Trig (* Trigonometry, to be defined *)
string: StringOp (* String operations *)
value: Value (* Arbitrary operations. Unsound! *)
writer: Writer (* Output operations *)

$ Always check these interfaces in the current system, to see what the real truth is.  These
however should be pretty close.

interface ArrayOp
export

error:Exception(Ok)
(* Raised when an operation cannot be carried out. *)

new(A::TYPE size:Int init:A):Array(A)
(* Create a new array of given size, all initialized to init. *)

size(A::TYPE arr:Array(A)):Int
(* Return the size of an array, same as "extent(arr)". *)

get(A::TYPE arr:Array(A) index:Int):A
(* Extract an array element, same as "arr[index]". *)

set(A::TYPE arr:Array(A) index:Int item:A):Ok
(* Update an array element, same as "arr[index] := item". *)

end;

interface Ascii
export

error:Exception(Ok)
(* Raised when an operation cannot be carried out. *)

char(n:Int):Char
(* Return the character of ascii encoding n. Raise error if n<0

or n>255. *)
val(c:Char):Int

(* Return the ascii encoding of character c. *)
end;

interface Conv
export

okay():String
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(* Return the string "ok". *)
bool(b:Bool):String

(* Return "true" if b is true, "false" otherwise. *)
int(n:Int):String

(* Return a string representation of the integer n (preceded
by '~' if negative). *)

real(r:Real):String
(* Return a string representation of the real r (preceded

by '~' if negative). *)
char(c:Char):String

(* Return a string containing the character c in single quotes,
with backslash encoding if necessary. *)

string(s:String):String
(* Return a string containing the string s in double quotes,

with backslash encoding wherever necessary. *)
end;

interface Dynamic
import reader:Reader writer:Writer
export

T::TYPE
(* A pair of an arbitrary object and its type. *)

error:Exception(Ok)
(* Raised when an operation cannot be carried out. *)

new(A::TYPE a:A):T
(* Package an object of any type into an object of type T. *)

be(A::TYPE d:T):A
(* If the object d was generated from and object a of type A,

then return a, otherwise raise error. *)
copy(d:T):T

(* Make a complete copy of a dynamic object. *)
intern(rd:reader.T):T

(* Read a dynamic object from a reader. *)
extern(wr:writer.T d:T):Ok

(* Write a representation of a dynamic object to a writer. *)
end;

interface IntOp
export

error:Exception(Ok)
(* Raised when an operation cannot be carried out. *)

minInt,maxInt:Int
(* The most negative and most positive representable integers. *)

abs(r:Real):Real
(* Absolute value. *)

min,max(r:Real):Real
(* Min and max. *)

end;

interface List
export

T:: ALL(::TYPE)::TYPE
(* If list:List is an implementation of this interface,

then list.T(A) is a list of items of type A. *)
error:Exception(Ok)

(* Raised when an operation cannot be carried out. *)



May 12, 1994 Page 64

nil(A::TYPE):T(A)
(* The (polymorphic) empty list. *)

cons(A::TYPE :A :T(A)):T(A)
(* List construction. *)

null(A::TYPE :T(A)):Bool
(* Whether a list is empty. *)

head(A::TYPE :T(A)):A
(* Return the head of a list. *)

tail(A::TYPE :T(A)):T(A)
(* Return the tail of a list. *)

length(A::TYPE :T(A)):Int
(* Return the length of a list. *)

enum(A::TYPE :Array(A)):T(A)
(* "list.enum of ... end" returns a list of elements "...". *)

end;

$ interface Nester
(Basic prettyprinter. Works, see interface)

interface Reader
export

T::TYPE
(* A reader is a source of characters. *)

error:Exception(Ok)
(* Raised when an operation cannot be carried out. *)

input:T
(* The standard input reader. *)

file(name:String):T
(* Make a reader out of a file, given its file name. *)

more(reader:T):Bool
(* Test for end of character stream. May block. *)

ready(reader:T):Int
(* Counts the number of characters that can be read without

blocking; the end-of-stream marker counts as 1.
Never blocks. *)

getChar(reader:T):Char
(* Read a character from a reader. May block. *)

getString(reader:T size:Int):String
(* Read a string of given size from a reader. May block. *)

getSubString(reader:T string:String start,size:Int):Ok
(* Read a string of given size from a reader and store it in

another string at a given position. May block. *)
close(reader:T):Ok

(* Close a reader; operations on it will now fail. *)
end;

interface RealOp
export

error:Exception(Ok)
(* Raised when an operation cannot be carried out. *)

minReal,maxReal:Real
(* The most negative and most positive representable reals. *)

negEpsilon,posEpsilon:Real
(* The most positive representable negative real, and

the most negative representable positive real. *)
e:Real

(* e. *)
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int(n:Int):Real
(* Convert an integer to a real. *)

floor,round(r:Real):Int
(* Convert a real to an integer. *)

plus,diff,mul,div,exp(r:Real):Real
(* Basic operations, A.k.a. ++ -- ** // ^^. *)

smaller,greater,smallerEq,greaterEq(r,s:Real):Bool
(* Basic comparisons, A.k.a. << >> <<= >>=. *)

abs,log(r:Real):Real
(* Abs and log. *)

min,max(r:Real):Real
(* Min and max. *)

end;

interface StringOp
export

error:Exception(Ok)
(* Raised when an operation cannot be carried out. *)

new(size:Int init:Char):String
(* Create a new string of give size, all initialized to init. *)

isEmpty(string:String):Bool
(* Test whether a string is empty. *)

length(string:String):Int
(* Return the length of a string. *)

getChar(string:String index:Int):Char
(* Extract a character from a string. *)

setChar(string:String index:Int char:Char):Ok
(* Replace a character of a string. *)

getSub(source:String start,size:Int):String
(* Extract a substring from a string. *)

setSub(dest:String destStart:Int
source:String sourceStart,sourceSize:Int):Ok
(* Replace a substring of a string. If source and dest are the

same, copies characters in the appropriate direction. *)
cat(string1,string2:String):String

(* Concatenate two strings (same as "<>"). *)
catSub(string1:String start1,size1:Int

string2:String start2,size2:Int):String
(* Concatenate two substrings. *)

conc(a:Array(String)):String
(* "string.conc of s1..sn end" is the concatenation of s1..sn. *)

equal(string1,string2:String):Bool
(* True if two strings have the same size and contents. *)

equalSub(string1:String start1,size1:Int
string2:String start2,size2:Int):Bool
(* True if two substrings have the same size and contents. *)

precedes(string1,string2:String):Bool
(* True if two strings are equal or in Ascii

lexicographic order. *)
precedesSub(string1:String start1,size1:Int

string2:String start2,size2:Int):Bool
(* True if two substrings are equal or in Ascii lexicographic

order. *)
end;

unsound interface Value
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export
T::TYPE

(* The type of an arbitrary value. *)
error:Exception(Ok)

(* Raised when an operation cannot be carried out. *)
length:Int

(* Implementation-dependent size of a value in implementation-
dependent units. *)

new(A::TYPE a:A):T
(* Convert any value to a T. *)

be(A::TYPE v:T):A
(* Convert a T to a value of a given type. Unsound! *)

fetch(run:T index:Int):T
(* Fetch the value at location run+index in memory; index is in

implementation-dependent units. *)
store(run:T index:Int val:T):Ok

(* Store a value at location run+index in memory; displ is in
implementation-dependent units. Unsound! *)

end;

interface Writer
export

T::TYPE
(* A writer is a sink of characters. *)

error:Exception(Ok)
(* Raised when an operation cannot be carried out. *)

output:T
(* The standard output writer. *)

file(name:String):T
(* Make a writer out of a file, given its file name. *)

flush(writer:T):Ok
(* Flush any buffered characters to their final destination. *)

putChar(writer:T char:Char):Ok
(* Write a character to a writer. *)

putString(writer:T string:String):Ok
(* Write a string to a writer. *)

putSubString(writer:T string:String start,size:Int):Ok
(* Write a substring of a given string to a writer. *)

close(writer:T):Ok
(* Close a writer; operations on it will now fail. *)

end;
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