
Draft

May 27, 1994 3:14 AM Page 1

Methods in Structures

Luca Cardelli

There is a slight technical problem in adding methods to dependent structures. The “self”
parameter of a method in a binding needs to know the final signature, since the method may want to
refer to methods to its right through self. So the usual left-to-right checking of structures and signatures
does not quite work. I don’t think we want to make the entire binding recursive. So here is a left-to-
right solution that accounts for mutual method access through self.

A structure {B} contains a dependent binding B, and a signature {D} contains a dependent
declaration D. We keep track at all times of the final declaration, via the judgment Γ ∫ B : D∫D’,
meaning that B has declaration D, but must still be “integrated” with D’. Eventually we prove Γ ∫ B :
D∫() and we are done.

See [Harper Lillibridge 1993] for the notation and the other necessary rules. Here D̃ is the label-
stripping function, and ξ is a vector of variables/labels, where each ξ is a type or term variable/label.

Bindings: B
Structures: {B}
Declarations: D
Signatures: {D}

Γ ∫ A :: K type A has kind K
Γ ∫ a : A term a has type A
Γ ∫ B : D∫D’ binding B has declaration D, pending D’
Γ ∫ {B} : {D} structure {B} has signature {D}

x ÷ A method x has result type A (used in contexts and declarations)

(Empty binding)
Γ ∫ D
––––––––––

Γ ∫ () : ()∫D

(Type binding)
Γ ∫ B : D∫ b≈X::K, D’ Γ, D̃ ∫ A::K XÌdom(Γ, D̃)
–––

Γ ∫ B, b≈X::K=A : D, b≈X::K∫ D’

(Term binding)
Γ ∫ B : D∫ b≈x:A, D’ Γ, D̃ ∫ a:A xÌdom(Γ, D̃)
––

Γ ∫ B, b≈x:A=a : D, b≈x:A∫ D’

Draft

Page 2 May 27, 1994 3:14 AM

(Method binding) where S = {D, b≈x÷A{ ξ}, D’}
Γ ∫ B : D∫ b≈x÷A, D’ Γ, D̃ ,y:S ∫ a:(A{ y.ξ}) x,yÌdom(Γ, D̃) ξÏdom(D̃)
––

Γ ∫ B, b≈x÷A{ ξ}=ς(y:S)a : D, b≈x÷A{ ξ}∫ D’

(Structure)
Γ ∫ B : D∫()
–––––––––––

Γ ∫ {B}:{D}

(Method invocation)
Γ ∫ a : {b≈x÷A}
–––––––––––––

Γ ∫ a.b : A

(Method override) where S = {D, b≈x÷A{ ξ}, D’}
Γ ∫ a : S Γ, D,y:S ∫ a’:A{ y.ξ} yÌdom(Γ, D) ξÏdom(D̃)
–––

Γ ∫ a.b:=ς(y:S)a’ : S

The substitution A{ y.ξ} in the (Method binding) rule needs some explanations. At first I wrote:

(Method binding 0) where S = {D, b≈x÷A, D’}
Γ ∫ B : D∫ b≈x÷A, D’ Γ, D,y:S ∫ a:A x,yÌdom(Γ, D) yÌA
–––

Γ ∫ B, b≈x÷A=ς(y:S)a : D, b≈x÷A∫ D’

Where the restriction yÌA is similar to the usual restriction for the dot notation in function result
types. But, according to (Method binding 0), the following does not typecheck (I am abbraviating ξ≈ξ
as ξ):

{X::Type = Int, z÷X = ς(y:{X::Type, z÷X}) y.z} : {X::Type = Int, z÷X}

However, we know that the current D in (Method binding 0) is a prefix of the final S, which is the
type of y. Hence y.X is really the same as X in the current context., for any X declared in D. This is
what (Method binding) is saying, and the example above is then typeable.

By the way, for a similar situation [Harper Lillibridge 1993] uses the following rules:

Γ,x:A ∫ a:A’
–––––––––––––––––––

Γ ∫ λ(x:A)a : Π(x:A)A’

Γ ∫ a’:Π(x:A)A’ Γ ∫ a:A xÌA’
–––––––––––––––––––––––––––––

Γ ∫ a’(a) : A’

I don’t quite understand why the side condition is placed on elimination, and not on introduction.
Without subsumption, if x occurs in A’ then λ(x:A)a is unusable, and we are only delaying the error
messages. Subsumption can eliminate occurrences of x in A’, but is this really useful?.

