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Introduction 

This work can be seen as example of an emerging class of languages for describing, and 
possibly programming, biological systems (bioware). A living cell is, to a rather 
surprising extent, an information processing device [1]. One can envision describing 
precisely such complex biological systems, and then driving simulation and analysis from 
such descriptions. One can even imagine one day “compiling” bioware languages into real 
biological systems, just like silicon chips are today compiled from hardware languages. 

Biological systems, far from being unstructured chemical soups, employ membranes to 
organize and isolate chemical reactions and their products. Hierarchies of membranes are 
a necessary component of any description of such system. The π-calculus [3] has been 
used to model chemical reactions [6]. As an extension [7], the ambient calculus [2], which 
is based on a dynamic hierarchy of containers, can be used to model biological 
interactions. (Stochastic aspects can be handled, but are not discussed here [5].) 

We represent biological systems with a graphical (rather than textual) notation; this is 
somewhat natural because of the aspect and hierarchical structure of many such systems. 
It is also possible to provide a formal textual notation and related semantics, using 
standard techniques from process calculi. Moreover, it is possible to provide a formal 
graphical notation and related semantics, as a special case of Milner’s BiGraphs. But here 
we just present a (formalizable) graphical notation: the graphical language of biographs. 

Biographs 

A biograph represents a biological system via three primitive constructions and eight 
basic reactions. (The number of reactions could be reduced, but it then becomes harder to 
program ‘instantaneous’ reactions.) 

Membranes. For our purposes, a membrane is simply a boundary that confines reactions 
to its interior, unless these are reactions that explicitly interact with a membrane as 
discussed below. Graphically, a membrane may contain reagents or other membranes. 
Membranes are nameless, but it useful to attach comments to them (e.g. “cell membrane” 
or “virus capsid”). 

 

mmeemmbbrraannee 
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Reagents. A reagent represents a biological (or, for the matter, chemical) entity that is 
ready to interact with some other biological entity. Reagents typically represent protein 
complexes that are ready to bind to each other and to transform each other as a result. 
Rather than considering the countless protein structures that exists in reality, we take a 
fixed set of primitive reagents, enumerated later, that can be used to express a large class 
of interactions (the formalism is, in fact, Turing-complete). Each reagent is parameterized 
by a number of binding sites. These binding sites are named by pure names [4] n1 … nk, 
that is, names that have no structure other than their identity. Graphically, a reagent 
encloses the future product of its activation inside a dotted line. 

 
Binding. The binding of, e.g., a protein to a ligand, can be represented as a binding site (a 
pure name) n that is privately shared by two reagents. A binding box represents a region 
where a pure name n is privately shared. Unlike membranes, which have physical 
existence, binding boxes are more of a bookkeeping device. A binding box for n can 
graphically expand, contract, and cross other membranes and binding boxes, as long as 
this process does not lead to revealing n or to confusing it with some other n.  

 
Named Subsystems. This is meta-notation for subsystems, used when expressing general 
interaction rules (named subsystems do not occur in specific system instances). The 
notation below represents a subsystem (the dashed boundary) that is named P so we can 
refer to it. Sometimes we need to apply a name replacement {m/n} (replacing m with n) to 
a still undetermined subsystem; the name replacement then sits on the boundary, until 
later when the subsystem is determined and the replacement can be applied. 

 

Membrane Reactions 

We start by describing reagents that affect membranes. These reagents typically represent 
protein complexes that sit on or across a membrane, and cause membranes to interact with 
each other. Graphically, these reagents are drawn inside the membrane that they actually 
sit on or across, so that they are transported along with the membrane. 

On the left of the reaction arrow we have the situation before the interaction, and on the 
right we have the situation after the interaction. 

The first reaction describes a membrane that enters another contiguous membrane, 
through the interaction of two specific reagents, enter and accept, that have a common 
binding site n. Here P and Q represent the residuals of the interacting reagents (which 
could be void), while R and S represent whatever else is initially contained in the 
membranes. The following two reactions describe the effects of reagents that cause 
membranes to exit each other (exit and expel) or to merge (merge+ and merge-), each 
based on a common interaction site n. 

 
rreeaaggeenntt  nn11  ……  nnkk 

((nn)) 

P 
{{mm//nn}}  
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Site Reactions 

The next group of reactions do not affect membranes (although membranes may be 
involved), but only affect reagents. In these reactions, reagents interact on a binding site 
n, and can also exchange tokens m. These tokens can represent further binding sites, or 
other entities that get passed along in reactions (e.g., electrons or small molecules). 

The first site reaction represents a pure chemical reaction: two molecules interact and 
produce two other molecules, within the confines of some common solution (the two 
molecules must be inside the same membrane, if any). The two complementary molecules 
are indicated by n! and n?. The common name n means that they can interact, and the !,? 
pair determines the direction of the interaction. In full, n!{m}(P) means that this is a 
molecule that, when interacting, provides a token m to the other molecule, and transforms 
itself into P. Instead, n?{p}(Q) means that this other molecule receives some token m, and 
transforms itself into Q{m/p}. Here p is really a formal input parameter, and Q{m/p} is Q 
where the formal p is replaced by the actual m. 

 

 
 

The next two reactions are similar, but the interaction between reagents happens across a 
membrane. The exchanged token m flows either down through a membrane (indicated by 
‘_’) or up through a membrane (indicated by ‘^’). 

PP  
eenntteerr  nn 

RR 

QQ  
aacccceepptt  nn 

SS 

PP 

RR 

QQ 

SS 

→→  EEnntteerr  

PP  
eexxiitt  nn 

RR 

QQ  
eexxppeell  nn 

SS 

→→  PP 

RR 

QQ 

SS 

EExxiitt 

→→  PP 

RR 

QQ 

SS 

PP  
mmeerrggee++  nn 

RR 

QQ  
mmeerrggee--  nn 

SS 

MMeerrggee 

QQ  
nn??{{pp}} 

PP  
nn!!{{mm}} 

PP →→  LLooccaall  
QQ 

{{mm//pp}}  
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Finally, we have a reaction where the token m flows through two sibling membranes 
(indicated by ‘#’). 

 

 
 

Repeat Reaction and Some Abbreviations 

A “repeat” reagent creates new copies of a given reagent or subsystem. This models, 
abstractly, unbounded resources and processes. 

 

 
 

Moreover, we use some graphical abbreviations, to simplify drawings: 

 

 
 

 

rreeaaggeenntt11  

 
rreeaaggeenntt22  

PP  

rreeaaggeenntt11  
rreeaaggeenntt22  

PP ==  

QQ  
nn##??{{pp}} 

PP  
nn##!!{{mm}} 

→→  
SS RR 

PP 

SS RR 

TToo  ssiibblliinngg  
QQ 

{{mm//pp}}  

QQ  
nn^̂??{{pp}} 

PP  
nn__!!{{mm}} 

→→  
SS 

QQ 
{{mm//pp}} 

PP 

SS 

TToo  cchhiilldd  

QQ  
nn__??{{pp}} 

PP  
nn^̂!!{{mm}} 

→→  
RR 

QQ 
{{mm//pp}} 

PP 

RR 

TToo  ppaarreenntt  

PP  
rreeppeeaatt 

→→  PP RReeppeeaatt  PP  
rreeppeeaatt 
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Example: Symporter 

A symporter is a molecular channel. It binds two specific proteins, here called protein-P 
and protein-Q, from outside the cell in either order, and then simultaneously transports 
them inside the cell.  

The symporter subsystem can repeat its behavior indefinitely (given sufficient energy, 
which is not modeled), and persists within the cell. It is first written separately, and then 
indicated by name in the larger system below. Two interaction sites, bind-P and bind-Q, 
represent the binding sites of the symporter with any instance of protein-P and protein-Q 
respectively. Each repeated interactions uses a fresh pair of distinct tokens p,q, which 
represent bindings with specific protein instances. After an instance of a protein is bound, 
nothing can then interfere with that binding because nothing else knows the freshly 
created pure names p,q. 

 
 

The whole system then looks like the picture below. Initially a cell contains a symporter 
and whatever else, and is contiguous (that is, within the same surrounding membrane, if 
any) with instances of protein-P and protein-Q. Note that the proteins are themselves 
modeled as membranes: this is common because protein complexes can have a 
complicated structure.  

After a sequence of reactions, during which the proteins are bound in either order, the 
proteins are both transported inside the cell membrane. Each reaction in the sequence is 
an instance of one of the reactions explained previously. 

((nn))((mm)) 
((nn)) 

((mm)) 

==  PP 
PP 

 

rreeppeeaatt 

 

bbiinndd--PP##!!{{pp}}  
bbiinndd--QQ##!!{{qq}}  
aacccceepptt  pp  
aacccceepptt  qq 

((pp))((qq)) 

SSyymmppoorrtteerr  ==  
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Although this protocol works under ‘ordinary conditions’, it is not perfect, and one can 
study ways in which it can be subverted. In fact, this is an important reason for modeling 
biological systems in all their complexity: many drugs and natural defenses work by 
subverting natural pathways. We need to model biological systems in order to understand 
them, but also to study how they can or cannot be tampered with at any level of 
abstraction. 
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pprrootteeiinn--PP 

 

bbiinndd--PP##??{{rr}}  
eenntteerr  rr 

PP--bbeehhaavviioorr 

pprrootteeiinn--QQ 

 

bbiinndd--QQ##??{{ss}}  
eenntteerr  ss 

QQ--bbeehhaavviioorr 

→→**  

CCeellll 

CCeellll--bbeehhaavviioorr 

SSyymmppoorrtteerr  

pprrootteeiinn--PP 

PP--bbeehhaavviioorr 

pprrootteeiinn--QQ 

QQ--bbeehhaavviioorr 

CCeellll 

CCeellll--bbeehhaavviioorr 

SSyymmppoorrtteerr  


