

Bioware Languages

Luca Cardelli

Microsoft Research

Reflecting joint work with Ehud Shapiro and Aviv Regev,

Weizmann Institute of Science.

Introduction

This work can be seen as example of an emerging class of languages for describing, and
possibly programming, biological systems (bioware). A living cell is, to a rather
surprising extent, an information processing device [1]. One can envision describing
precisely such complex biological systems, and then driving simulation and analysis from
such descriptions. One can even imagine one day “compiling” bioware languages into real
biological systems, just like silicon chips are today compiled from hardware languages.

Biological systems, far from being unstructured chemical soups, employ membranes to
organize and isolate chemical reactions and their products. Hierarchies of membranes are
a necessary component of any description of such system. The π-calculus [3] has been
used to model chemical reactions [6]. As an extension [7], the ambient calculus [2], which
is based on a dynamic hierarchy of containers, can be used to model biological
interactions. (Stochastic aspects can be handled, but are not discussed here [5].)

We represent biological systems with a graphical (rather than textual) notation; this is
somewhat natural because of the aspect and hierarchical structure of many such systems.
It is also possible to provide a formal textual notation and related semantics, using
standard techniques from process calculi. Moreover, it is possible to provide a formal
graphical notation and related semantics, as a special case of Milner’s BiGraphs. But here
we just present a (formalizable) graphical notation: the graphical language of biographs.

Biographs

A biograph represents a biological system via three primitive constructions and eight
basic reactions. (The number of reactions could be reduced, but it then becomes harder to
program ‘instantaneous’ reactions.)

Membranes. For our purposes, a membrane is simply a boundary that confines reactions
to its interior, unless these are reactions that explicitly interact with a membrane as
discussed below. Graphically, a membrane may contain reagents or other membranes.
Membranes are nameless, but it useful to attach comments to them (e.g. “cell membrane”
or “virus capsid”).

mmeemmbbrraannee

In: Computer Systems – Papers for Roger Needham

 2

Reagents. A reagent represents a biological (or, for the matter, chemical) entity that is
ready to interact with some other biological entity. Reagents typically represent protein
complexes that are ready to bind to each other and to transform each other as a result.
Rather than considering the countless protein structures that exists in reality, we take a
fixed set of primitive reagents, enumerated later, that can be used to express a large class
of interactions (the formalism is, in fact, Turing-complete). Each reagent is parameterized
by a number of binding sites. These binding sites are named by pure names [4] n1 … nk,
that is, names that have no structure other than their identity. Graphically, a reagent
encloses the future product of its activation inside a dotted line.

Binding. The binding of, e.g., a protein to a ligand, can be represented as a binding site (a
pure name) n that is privately shared by two reagents. A binding box represents a region
where a pure name n is privately shared. Unlike membranes, which have physical
existence, binding boxes are more of a bookkeeping device. A binding box for n can
graphically expand, contract, and cross other membranes and binding boxes, as long as
this process does not lead to revealing n or to confusing it with some other n.

Named Subsystems. This is meta-notation for subsystems, used when expressing general
interaction rules (named subsystems do not occur in specific system instances). The
notation below represents a subsystem (the dashed boundary) that is named P so we can
refer to it. Sometimes we need to apply a name replacement {m/n} (replacing m with n) to
a still undetermined subsystem; the name replacement then sits on the boundary, until
later when the subsystem is determined and the replacement can be applied.

Membrane Reactions

We start by describing reagents that affect membranes. These reagents typically represent
protein complexes that sit on or across a membrane, and cause membranes to interact with
each other. Graphically, these reagents are drawn inside the membrane that they actually
sit on or across, so that they are transported along with the membrane.

On the left of the reaction arrow we have the situation before the interaction, and on the
right we have the situation after the interaction.

The first reaction describes a membrane that enters another contiguous membrane,
through the interaction of two specific reagents, enter and accept, that have a common
binding site n. Here P and Q represent the residuals of the interacting reagents (which
could be void), while R and S represent whatever else is initially contained in the
membranes. The following two reactions describe the effects of reagents that cause
membranes to exit each other (exit and expel) or to merge (merge+ and merge-), each
based on a common interaction site n.

rreeaaggeenntt nn11 …… nnkk

((nn))

P
{{mm//nn}}

In: Computer Systems – Papers for Roger Needham

 3

Site Reactions

The next group of reactions do not affect membranes (although membranes may be
involved), but only affect reagents. In these reactions, reagents interact on a binding site
n, and can also exchange tokens m. These tokens can represent further binding sites, or
other entities that get passed along in reactions (e.g., electrons or small molecules).

The first site reaction represents a pure chemical reaction: two molecules interact and
produce two other molecules, within the confines of some common solution (the two
molecules must be inside the same membrane, if any). The two complementary molecules
are indicated by n! and n?. The common name n means that they can interact, and the !,?
pair determines the direction of the interaction. In full, n!{m}(P) means that this is a
molecule that, when interacting, provides a token m to the other molecule, and transforms
itself into P. Instead, n?{p}(Q) means that this other molecule receives some token m, and
transforms itself into Q{m/p}. Here p is really a formal input parameter, and Q{m/p} is Q
where the formal p is replaced by the actual m.

The next two reactions are similar, but the interaction between reagents happens across a
membrane. The exchanged token m flows either down through a membrane (indicated by
‘_’) or up through a membrane (indicated by ‘^’).

PP
eenntteerr nn

RR

QQ
aacccceepptt nn

SS

PP

RR

QQ

SS

→→ EEnntteerr

PP
eexxiitt nn

RR

QQ
eexxppeell nn

SS

→→ PP

RR

QQ

SS

EExxiitt

→→ PP

RR

QQ

SS

PP
mmeerrggee++ nn

RR

QQ
mmeerrggee-- nn

SS

MMeerrggee

QQ
nn??{{pp}}

PP
nn!!{{mm}}

PP →→ LLooccaall
QQ

{{mm//pp}}

In: Computer Systems – Papers for Roger Needham

 4

Finally, we have a reaction where the token m flows through two sibling membranes
(indicated by ‘#’).

Repeat Reaction and Some Abbreviations

A “repeat” reagent creates new copies of a given reagent or subsystem. This models,
abstractly, unbounded resources and processes.

Moreover, we use some graphical abbreviations, to simplify drawings:

rreeaaggeenntt11

rreeaaggeenntt22

PP

rreeaaggeenntt11
rreeaaggeenntt22

PP ==

QQ
nn##??{{pp}}

PP
nn##!!{{mm}}

→→
SS RR

PP

SS RR

TToo ssiibblliinngg
QQ

{{mm//pp}}

QQ
nn^̂??{{pp}}

PP
nn__!!{{mm}}

→→
SS

QQ
{{mm//pp}}

PP

SS

TToo cchhiilldd

QQ
nn__??{{pp}}

PP
nn^̂!!{{mm}}

→→
RR

QQ
{{mm//pp}}

PP

RR

TToo ppaarreenntt

PP
rreeppeeaatt

→→ PP RReeppeeaatt PP
rreeppeeaatt

In: Computer Systems – Papers for Roger Needham

 5

Example: Symporter

A symporter is a molecular channel. It binds two specific proteins, here called protein-P
and protein-Q, from outside the cell in either order, and then simultaneously transports
them inside the cell.

The symporter subsystem can repeat its behavior indefinitely (given sufficient energy,
which is not modeled), and persists within the cell. It is first written separately, and then
indicated by name in the larger system below. Two interaction sites, bind-P and bind-Q,
represent the binding sites of the symporter with any instance of protein-P and protein-Q
respectively. Each repeated interactions uses a fresh pair of distinct tokens p,q, which
represent bindings with specific protein instances. After an instance of a protein is bound,
nothing can then interfere with that binding because nothing else knows the freshly
created pure names p,q.

The whole system then looks like the picture below. Initially a cell contains a symporter
and whatever else, and is contiguous (that is, within the same surrounding membrane, if
any) with instances of protein-P and protein-Q. Note that the proteins are themselves
modeled as membranes: this is common because protein complexes can have a
complicated structure.

After a sequence of reactions, during which the proteins are bound in either order, the
proteins are both transported inside the cell membrane. Each reaction in the sequence is
an instance of one of the reactions explained previously.

((nn))((mm))
((nn))

((mm))

== PP
PP

rreeppeeaatt

bbiinndd--PP##!!{{pp}}
bbiinndd--QQ##!!{{qq}}
aacccceepptt pp
aacccceepptt qq

((pp))((qq))

SSyymmppoorrtteerr ==

In: Computer Systems – Papers for Roger Needham

 6

Although this protocol works under ‘ordinary conditions’, it is not perfect, and one can
study ways in which it can be subverted. In fact, this is an important reason for modeling
biological systems in all their complexity: many drugs and natural defenses work by
subverting natural pathways. We need to model biological systems in order to understand
them, but also to study how they can or cannot be tampered with at any level of
abstraction.

References

[1] Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D. (1994) Molecular
Biology of the Cell. Garland Publishing.

[2] Cardelli, L., Gordon, A.D. (2000) Mobile Ambients. Theoretical Computer Science,
Vol 240/1, June 2000. pp 177-213.

[3] Milner, R. (1999) Communicating and Mobile Systems: the Pi-Calculus. Cambridge
University Press.

[4] Needham. R.M., Names. In S. Mullender, ed., Distributed Systems, pp 89-101.
Addison-Wesley, 1989.

[5] Priami, C., Regev, A., Silverman, W., and Shapiro, E. (2001) Application of stochastic
process algebras to bioinformatics of molecular processes. Information Processing
Letters. 80, 25-31.

[6] Regev, A., Silverman, W., and Shapiro, E. (2001) Representation and simulation of
biochemical processes using the pi-calculus process algebra. Proceedings of the Pacific
Symposium of Biocomputing 2001 (PSB2001), 6: 459-470.

[7] Regev, A., Ph.D. Thesis, to appear.

pprrootteeiinn--PP

bbiinndd--PP##??{{rr}}
eenntteerr rr

PP--bbeehhaavviioorr

pprrootteeiinn--QQ

bbiinndd--QQ##??{{ss}}
eenntteerr ss

QQ--bbeehhaavviioorr

→→**

CCeellll

CCeellll--bbeehhaavviioorr

SSyymmppoorrtteerr

pprrootteeiinn--PP

PP--bbeehhaavviioorr

pprrootteeiinn--QQ

QQ--bbeehhaavviioorr

CCeellll

CCeellll--bbeehhaavviioorr

SSyymmppoorrtteerr

