
A Commitment Relation
for the Ambient Calculus

Luca Cardelli
Microsoft Research
luca@luca.demon.co.uk

Andrew D. Gordon
Microsoft Research
adg@microsoft.com

October 6, 2000

Abstract

We present a commitment relation, a kind of labeled transition
system, for the ambient calculus. This note is an extract from an
unpublished annex to our original article [2] on the ambient calculus.

1 Review of the Ambient Calculus

In this section we review the syntax of the ambient calculus, and the struc-
tural congruence and reduction relations.

1.1 Capabilities and Processes

We assume an infinite set of names. We let m and n range over names.
Moreover, we assume there is an infinite collections of variables ranged over
by metavariables x, y, z. The sets of capabilities and processes are defined
by the grammars:

Mobility and Communication Primitives

M ::= capability
x variable
n name
in M can enter into M
out M can exit out of M
open M can open M
ε null

1

M.M ′ path
P,Q,R ::= process

(νn)P restriction
0 inactivity
P | Q composition
!P replication
M [P] ambient
M.P action
(x).P input action
〈M〉 async output action

The general forms in M , out M and open M allow for the ambient to be
an arbitrary capability M . The only useful cases are for M to be a name,
or a variable that gets instantiated to a name. Similarly, the ambient syntax
M [P] allows M to be an arbitrary capability. The only useful case is for M
to be a name, or a variable that gets instantiated to a name.

We identify capabilities up to the following equations:

ε.M = M

M.ε = M

(L.M).N = L.(M.N)

The following table defines the sets fn(M) and fv(M) of free names and
free variables of a capability M , and the sets fn(P) and fv(P) of free names
and free variables of a process P .

Free Names and Variables of Capabilities and Processes

fn(x) = ∅ fv(x) = {x}
fn(n) = {n} fv(n) = ∅
fn(in M) = fn(M) fv(in M) = fv(M)
fn(out M) = fn(M) fv(out M) = fv(M)
fn(open M) = fn(M) fv(open M) = fv(M)
fn(ε) = ∅ fv(ε) = ∅
fn(M.M ′) = fn(M) ∪ fn(M ′) fv(M.M ′) = fv(M) ∪ fv(M ′)
fn((νn)P) = fn(P)− {n} fv((νn)P) = fv(P)
fn(0) = ∅ fv(0) = ∅
fn(P | Q) = fn(P) ∪ fn(Q) fv(P | Q) = fv(P) ∪ fv(Q)
fn(!P) = fn(P) fv(!P) = fv(P)
fn(M [P]) = fn(M) ∪ fn(P) fv(M [P]) = fv(M) ∪ fv(P)
fn(M.P) = fn(M) ∪ fn(P) fv(M.P) = fv(M) ∪ fv(P)

2

fn((x).P) = fn(P) fv((x).P) = fv(P)− {x}
fn(〈M〉) = fn(M) fv(〈M〉) = fv(M)

We say a capability M is closed if and only if fv(M) = ∅; similarly, a
process P is closed if and only if fv(M) = ∅.

If phrase φ is a capability or a process, we write φ{x ← M} for the
outcome of a capture-avoiding substitution of the capability M for each free
occurrence of the variable x in φ. We identify processes up to renaming
of bound names and variables: (νn)P = (νm)(P{n ← m}) if m /∈ fn(P);
(x).P = (y).(P{x← y}) if y /∈ fn(P).

1.2 Structural Congruence

We let structural congruence, ≡, be the least relation on processes that sat-
isfies the following equations and rules:

Structural Congruence

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q,Q ≡ R⇒ P ≡ R (Struct Trans)
P ≡ Q⇒ (νn)P ≡ (νn)Q (Struct Res)
P ≡ Q⇒ P | R ≡ Q | R (Struct Par)
P ≡ Q⇒ !P ≡ !Q (Struct Repl)
P ≡ Q⇒M [P] ≡M [Q] (Struct Amb)
P ≡ Q⇒M.P ≡M.Q (Struct Action)
P ≡ Q⇒ (x).P ≡ (x).Q (Struct Input)
P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)
!P ≡ P | !P (Struct Repl Par)
(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)
n /∈ fn(P)⇒ (νn)(P | Q) ≡ P | (νn)Q (Struct Res Par)
n 6= m⇒ (νn)m[P] ≡ m[(νn)P] (Struct Res Amb)
P | 0 ≡ P (Struct Zero Par)
(νn)0 ≡ 0 (Struct Zero Res)
!0 ≡ 0 (Struct Zero Repl)
ε.P ≡ P (Struct ε)
(M.M ′).P ≡M.M ′.P (Struct .)
→∗ reflexive, transitive closure of →

3

1.3 Reduction

We let the reduction relation, →, be the least relation on processes to satisfy
the following rules:

Reduction

n[in m.P | Q] | m[R]→ m[n[P | Q] | R] (Red In)
m[n[out m.P | Q] | R]→ n[P | Q] | m[R] (Red Out)
open n.P | n[Q]→ P | Q (Red Open)
〈M〉 | (x).P → P{x←M} (Red I/O)
P → Q⇒ P | R→ Q | R (Red Par)
P → Q⇒ (νn)P → (νn)Q (Red Res)
P → Q⇒ n[P]→ n[Q] (Red Amb)
P ′ ≡ P, P → Q,Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

2 Commitment

This section introduces a labeled transition system, the commitment relation,
for the ambient calculus. The use of structural congruence to define reduction
results in an elegant and compact definition, but also complicates proofs
about reduction. As in the π-calculus [1, 4, 5], one purpose of a labeled
transition system is to characterise reduction independently of structural
congruence.

The commitment relation is a relation indexed by a set of actions, ranged
over by α, given as follows.

Actions

α ::= actions
τ internal action
in n enter ambient n
enter n invite sibling ambient to enter
enter n move ambient into sibling n
out n exit ambient n
exit n exit parent ambient
open n open ambient n
open n open self
anon anonymous input
anon anonymous output

4

To express the commitment relation, we need an auxiliary notion of eval-
uation expression, given as follows, where X drawn from an infinite collection
of process variables.

Evaluation Expressions

E ::= evaluation expressions
X process variable
(νn)E restriction
P | E left composition
E | Q right composition
n[E] ambient

We identify evaluation expressions up to renaming of bound names. We let
fn(E) be the set of names occurring free in evaluation expression E . We let
fv(E) be the set of variables and process variables occurring free in evaluation
expression E . If E is an evaluation expression, we write E{X ← P} for the
outcome of substituting the process P for each occurrence of the process
variable X in evaluation expression E . Given the grammar for evaluation
expressions, E has either no occurrence of the process variable X, or exactly
one occurrence.

The commitment relation relates a process to an outcome, O, which is
either a process, an abstraction or a concretion. Here are the grammars for
ambients, abstractions, concretions and outcomes.

Ambients, Abstractions, Concretions, Outcomes

A,B ::= n[P] ambients
F,G ::= abstractions

(X)E ambient abstraction
(x)P capability abstraction

C,D ::= concretions
(ν~n)〈A〉P ambient concretion
(ν~n)〈M〉P capability concretion

O ::= P | F | C outcomes

In an ambient abstraction (X)E , the process variable X is bound; its
scope is the evaluation expression E . In a capability abstraction (x)P , the
variable x is bound; its scope is the process P . In an ambient concretion
(ν~p)〈A〉P , the names ~p are bound; their scope is the ambient A and the
process P . In a capability concretion (ν~p)〈M〉P , the names ~p are bound;
their scope is the capability M and the process P .

5

We let φ range over both ambients and capabilities, so that any concretion
takes the form (ν~n)〈φ〉P .

We extend the notions of free names, free variables and substitution to
abstractions and concretions in the obvious way. We identify abstractions
and concretions up to renaming of bound names and bound variables.

The commitment relation is written as follows:

The Commitment Relation

P
α−→ O P α-commits to outcome O

The commitment relation is the union of ten different judgments, one for
each of the different kinds of action. Judgments of the form P

τ−→ Q indicate
that process P proceeds to Q by an internal computation step. We will later
prove that this judgment corresponds to the reduction relation on processes.
The role of the other nine judgments making up the commitment relation is
to represent intermediate stages in the derivation of a τ -commitment.

We introduce the rules that inductively define the commitment relation
in groups, beginning with a group of congruence rules. As a convenient
shorthand for writing (Comm Par 1) and (Comm Par 2), we define the com-
position, O ‖ O′ of outcomes O and O′, at least one of which is a process, as
follows:

P ‖ Q ∆
= P | Q

((X)E) ‖ Q ∆
= (X)(E | Q)

P ‖ ((X)E)
∆
= (X)(P | E)

((x)P) ‖ Q ∆
= (x)(P | Q) if x /∈ fn(Q)

P ‖ ((x)Q)
∆
= (x)(P | Q) if x /∈ fn(P)

((ν ~m)〈φ〉P) ‖ Q ∆
= (ν ~m)〈φ〉(P | Q) if {~m} ∩ fn(Q) = ∅

P ‖ ((ν ~m)〈φ〉Q)
∆
= (ν ~m)〈φ〉(P | Q) if {~m} ∩ fn(P) = ∅

As a shorthand for writing (Comm Res), we define the restriction, (νn)O of
outcome O, as follows:

(νn)P
∆
= (νn)P

(νn)(X)E ∆
= (X)(νn)E

(νn)(x)P
∆
= (x)(νn)P

(νn)(ν ~m)〈φ〉P ∆
= (νn, ~m)〈φ〉P if n ∈ fn(φ) and n /∈ {~m}

(νn)(ν ~m)〈φ〉P ∆
= (ν ~m)〈φ〉(νn)P if n /∈ fn(φ) and n /∈ {~m}

6

Congruence

(Comm Amb)

P
τ−→ Q

n[P]
τ−→ n[Q]

(Comm Res)

P
α−→ O n /∈ fn(α)

(νn)P
α−→ (νn)O

(Comm Par 1)

P
α−→ O

P | Q α−→ O ‖ Q

(Comm Par 2)

Q
α−→ O

P | Q α−→ P ‖ O

The next three groups of rules explain the behavior of processes of the
form in n.P , out n.P and open n.P . As a convenient shorthand for writing
(Comm τ -enter 1) and (Comm τ -enter 2), we define the interactions, F@C
and C@F , of an ambient abstraction F and an ambient concretion C, as
follows:

((X)E)@(ν ~m)〈A〉P ∆
= (ν ~m)(E{X ← A} | P) if {~m} ∩ fn(E) = ∅

((ν ~m)〈A〉P)@(X)E ∆
= (ν ~m)(P | E{X ← A}) if {~m} ∩ fn(E) = ∅

Entering an Ambient

(Comm in)

(in n.M).P
in n−→M.P

(Comm enter)

P
in n−→ Q

m[P]
enter n−→ 〈m[Q]〉0

(Comm enter)

n[P]
enter n−→ (X)n[X | P]

(Comm τ -enter 1)

P
enter n−→ C Q

enter n−→ F

P | Q τ−→ C@F

(Comm τ -enter 2)

P
enter n−→ F Q

enter n−→ C

P | Q τ−→ F@C

We begin an enumeration of the nine judgments that represent interme-
diate stages in deriving τ -commitments, with the three used in the rules for
entering an ambient:

(1) P
in n−→ Q: process P instructs its enclosing ambient to move into sibling

ambient n.

(2) P
enter n−→ (X)E : an ambient n within P is ready to accept entry of a

sibling ambient, A; in this event, the residue of P is E{X ← A}.

(3) P
enter n−→ (ν ~m)〈A〉Q: an ambient A within P is ready to enter a sibling

ambient n; in this event, process Q is the residue of P .

7

Exiting an Ambient

(Comm out)

(out n.M).P
out n−→ M.P

(Comm exit)

P
out n−→ Q

m[P]
exit n−→ 〈m[Q]〉0

(Comm τ -exit) (where n /∈ {~m})
P

exit n−→ (ν ~m)〈A〉Q
n[P]

τ−→ (ν ~m)(A | n[Q])

Apart from τ -commitments, the rules above allow the derivation of the
following judgments:

(4) P
out n−→ Q: process P instructs its enclosing ambient to move out of its

parent ambient n.

(5) P
exit n−→ (ν~n)〈A〉Q: ambient A within P is ready to exit its parent

ambient n; in this event, process Q is the residue of P .

Opening an Ambient

(Comm open)

(open n.M).P
open n−→ M.P

(Comm open)

n[P]
open n−→ P

(Comm τ -open 1)

P
open n−→ P ′ Q

open n−→ Q′

P | Q τ−→ P ′ | Q′

(Comm τ -open 2)

P
open n−→ P ′ Q

open n−→ Q′

P | Q τ−→ P ′ | Q′

Apart from τ -commitments, the rules above allow the derivation of the
following judgments:

(6) P
open n−→ Q: process P opens a sibling ambient n.

(7) P
open n−→ Q: an ambient n within P is opened.

The following group of rules explains the behavior of processes of the
form 〈M〉 and (x).P . As a convenient shorthand for writing (Comm τ -anon
1) and (Comm τ -anon 2), we define the interactions, F@C and C@F , of a
capability abstraction F and a capability concretion C, as follows:

((x)P)@(ν ~m)〈M〉Q ∆
= (ν ~m)(P{x←M} | Q) if {~m} ∩ fn(P) = ∅

((ν ~m)〈A〉P)@(x)Q
∆
= (ν ~m)(P | Q{x←M}) if {~m} ∩ fn(Q) = ∅

8

Anonymous I/O

(Comm anon)

(x).P
anon M−→ (x)P

(Comm anon)

〈M〉 anon−→ 〈M〉0

(Comm τ -anon 1)

P
anon−→ C Q

anon−→ F

P | Q τ−→ C@F

(Comm τ -anon 2)

P
anon−→ F Q

anon−→ C

P | Q τ−→ F@C

We can now conclude our enumeration of the nine judgments that repre-
sent intermediate stages in the derivation of a τ -commitment:

(8) P
anon−→ (x)Q: a process within P is ready to input a capability, M ; in

this event, the residue of P is Q{x←M}.

(9) P
anon−→ (ν ~m)〈M〉Q: a process within P is ready to output capability

M ; in this event, process Q is the residue of P .

Finally, we complete the definition of the commitment relation with two
groups of commitment rules that explain the behavior of processes of the
form ε.P and !P :

Capability Sequencing

(Comm ε)

P
α−→ O

ε.P
α−→ O

Replication

(Comm Repl)

P | !P α−→ O

!P
α−→ O

By standard techniques, we can relate the reduction semantics of the
previous section and the commitment semantics of this section as follows:

Theorem 1 P → Q if and only if there is R such that P
τ−→ R and R ≡ Q.

9

3 Discussion

Our original motivation for defining this commitment relation was to use it
as the basis of labeled bisimilarity for the ambient calculus. We encountered
various difficulties, in part due to the multitude of different labels used in the
definition of commitment. Subsequently, in our paper on testing equivalence
for the ambient calculus [3], we employed a different labeled transition sys-
tem, with rather fewer labels, defined in terms of an auxiliary relation called
the hardening relation.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Technical Report 414, University of Cambridge Computer
Laboratory, January 1997. (This version contains detailed proofs omitted
from the journal version of the paper.).

[2] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer
Science, 240:177–213, 2000.

[3] A. D. Gordon and L. Cardelli. Equational properties of mobile ambients.
In Foundations of Software Science and Computation Structures, Lecture
Notes in Computer Science, pages 212–226. Springer-Verlag, 1999. An
extended version appears Microsoft Research Technical Report MSR–
TR–99–11.

[4] R. Milner. Communicating and Mobile Systems: the π-Calculus. 1999.

[5] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD thesis, University of Edinburgh, 1992.

10

