Noise Reduction in Complex Biological Switches

Luca Cardelli ${ }^{1,2,9,{ }^{*}}$, Attila Csikász-Nagy ${ }^{3,4,9}$, Neil Dalchau ${ }^{1,9}$, Mirco Tribastone ${ }^{5,9}$, Max Tschaikowskis, ${ }^{\text {n }}$

${ }^{1}$ Microsoft Research Cambridge, United Kingdom; ${ }^{2}$ University of Oxford, United Kingdom; ${ }^{3}$ King’s College London, United Kingdom; ${ }^{4}$ Fondazione Edmund Mach, Italy; ${ }^{5}$ IMT Institute for Advanced Studies Lucca, Italy; * Corresponding author luca@microsoft.com; ๆl These authors contributed equally to this work.

Supplementary Information

S1 Appendix: The triplet model of influence (adapted from [2] supplement)

An influence network is a graph of influence nodes (species) and influence edges (reactions). Each influence node x is modeled as three chemical species, denoted x_{0}, x_{1}, x_{2} (Fig 1). Each influence node can have four terminals: high output (solid line), low output (dashed line), modification input (ball) and restoration input (bar). Influence edges connect two such terminals in one of the four patterns: low-to-modify, low-to-restore, high-to-modify, and high-to-restore, with at most one edge of each kind for each pair of (possibly coincident) nodes.

Each influence node x corresponds to a motif of three chemical species and four chemical reactions (Fig 1). That is, if i is a chemical species connected to the restoration terminal, a is one connected to the modification terminal, and $k_{01}, k_{12}, k_{21}, k_{10}$ are rates associated with the node x, we have the four reactions:

$$
x_{0}+i \rightarrow^{k_{01}} i+x_{1}, \quad x_{1}+i \rightarrow^{k_{12}} i+x_{2}, \quad x_{2}+a \rightarrow^{k_{21}} a+x_{1}, \quad x_{1}+a \rightarrow^{k_{10}} a+x_{0}
$$

This expansion of influence nodes into reaction motifs is sufficient to extract a chemical reaction network from any influence network, taking into account all the influence edges in the network (see S2 Appendix for examples).

We can solve the mass action equations of those four reactions at steady state, with tot $=x_{0}+x_{1}+x_{2}$, obtaining x_{0} as a function of a and i :

$$
x_{0}=\frac{k_{10} k_{21} \text { tot } a^{2}}{k_{10} k_{21} a^{2}+k_{01} k_{21} a i+k_{01} k_{12} i^{2}}
$$

Assuming $i=$ tot $-a$ (restoration decreases as modification increases), we obtain x_{0} as a function of a :

$$
x_{0}=\frac{k_{10} k_{21} \operatorname{tot} a^{2}}{\left(k_{10} k_{21}-k_{01} k_{21}+k_{01} k_{12}\right) a^{2}+\left(k_{01} k_{21}-2 k_{01} k_{12}\right) \operatorname{tot} a+k_{01} k_{12} \operatorname{tot}^{2}}=\frac{k_{1} a^{2}}{k_{2} a^{2}+k_{3} a+k_{4}}
$$

This is a generalized Hill function of coefficient 2, where the coefficients k_{i} depend on the four reaction rates and on tot. By regulating the rates of flow through x_{1} within two orders of magnitude we can obtain a range of linear, hyperbolic and sigmoid responses in the range [0..tot] to linear modification $a \in[0 .$. tot $]$: note that the response range is equal to the stimulus range. Therefore, this motif is sufficiently flexible for the purpose of characterizing intended influence networks.
(

Figure S1.1. Steady state transitions from restored to modified with tot $=1$ and $a \in[0 .$. tot $]$.

S2 Appendix: Deterministic analysis

S2.1 Trajectories

For the networks in Fig 2, these systems of ODEs are listed in Fig S2.1, along with conservation equations that result from certain sums of derivatives amounting to zero.

Network	Species	Chemical Reactions (with unit rates)	Dynamical System
AM	$\left\{x_{0}, x_{1}, x_{2}\right\}$	$\begin{aligned} & x_{2}+x_{0} \rightarrow x_{0}+x_{1} \\ & x_{1}+x_{0} \rightarrow x_{0}+x_{0} \\ & x_{0}+x_{2} \rightarrow x_{2}+x_{1} \\ & x_{1}+x_{2} \rightarrow x_{2}+x_{2} \end{aligned}$	$\begin{aligned} & \dot{x}_{0}=x_{0} x_{1}-x_{0} x_{2} \\ & \dot{x}_{1}=x_{0} x_{2}+x_{2} x_{0}-x_{1} x_{0}-x_{1} x_{2} \\ & \dot{x}_{2}=x_{1} x_{2}-x_{2} x_{0} \\ & x_{0}+x_{1}+x_{2}=x \end{aligned}$
SI	$\begin{array}{r} \left\{y_{0}, y_{1}, y_{2},\right. \\ \left.z_{0}, z_{1}, z_{2}\right\} \end{array}$	$\begin{aligned} & y_{0}+z_{0} \rightarrow z_{0}+y_{1} \\ & y_{1}+z_{0} \rightarrow z_{0}+y_{2} \\ & y_{2}+z_{2} \rightarrow z_{2}+y_{1} \\ & y_{1}+z_{2} \rightarrow z_{2}+y_{0} \\ & z_{2}+y_{2} \rightarrow y_{2}+z_{1} \\ & z_{1}+y_{2} \rightarrow y_{2}+z_{0} \\ & z_{0}+y_{0} \rightarrow y_{0}+z_{1} \\ & z_{1}+y_{0} \rightarrow y_{0}+z_{2} \end{aligned}$	$\begin{aligned} & \dot{z}_{0}=z_{1} y_{2}-z_{0} y_{0} \\ & \dot{z}_{1}=z_{0} y_{0}+z_{2} y_{2}-z_{1} y_{0}-z_{1} y_{2} \\ & \dot{z}_{2}=z_{1} y_{0}-z_{2} y_{2} \\ & \dot{y}_{0}=y_{1} z_{2}-y_{0} z_{0} \\ & \dot{y}_{1}=y_{0} z_{0}+y_{2} z_{2}-y_{1} z_{0}-y_{1} z_{2} \\ & \dot{y}_{2}=y_{1} z_{0}-y_{2} z_{2} \\ & y_{0}+y_{1}+y_{2}=y \\ & z_{0}+z_{1}+z_{2}=z \end{aligned}$
MI	$\begin{gathered} \left\{y_{0}, y_{1}, y_{2}\right. \\ \left.z_{0}, z_{1}, z_{2}\right\} \end{gathered}$	$\begin{aligned} & y_{0}+z_{0} \rightarrow z_{0}+y_{1} \\ & y_{1}+z_{0} \rightarrow z_{0}+y_{2} \\ & y_{2}+y_{0} \rightarrow y_{0}+y_{1} \\ & y_{1}+y_{0} \rightarrow y_{0}+y_{0} \\ & z_{2}+z_{0} \rightarrow z_{0}+z_{1} \\ & z_{1}+z_{0} \rightarrow z_{0}+z_{0} \\ & z_{0}+y_{0} \rightarrow y_{0}+z_{1} \\ & z_{1}+y_{0} \rightarrow y_{0}+z_{2} \end{aligned}$	$\begin{aligned} & \dot{z}_{0}=z_{1} z_{0}-z_{0} y_{0} \\ & \dot{z}_{1}=z_{2} z_{0}+z_{0} y_{0}-z_{1} z_{0}-z_{1} y_{0} \\ & \dot{z}_{2}=z_{1} y_{0}-z_{2} z_{0} \\ & \dot{y}_{0}=y_{1} y_{0}-y_{0} z_{0} \\ & \dot{y}_{1}=y_{0} z_{0}+y_{2} y_{0}-y_{1} z_{0}-y_{1} y_{0} \\ & \dot{y}_{2}=y_{1} z_{0}-y_{2} y_{0} \\ & y_{0}+y_{1}+y_{2}=y \\ & z_{0}+z_{1}+z_{2}=z \end{aligned}$
CCr	$\begin{gathered} \left\{x_{0}, x_{1}, x_{2},\right. \\ s_{0}, s_{1}, s_{2} \\ \left.r_{0}, r_{1}, r_{2}\right\} \end{gathered}$		$\begin{aligned} & \dot{x}_{0}=x_{1} r_{0}-x_{0} s_{0} \\ & \dot{x}_{1}=x_{0} s_{0}+x_{2} r_{0}-x_{1} s_{0}-x_{1} r_{0} \\ & \dot{x}_{2}=x_{1} s_{0}-x_{2} r_{0} \\ & \dot{s}_{0}=s_{1} x_{2}-s_{0} x_{0} \\ & \dot{s}_{1}=s_{0} x_{0}+s_{2} x_{2}-s_{1} x_{0}-s_{1} x_{2} \\ & \dot{s}_{2}=s_{1} x_{0}-s_{2} x_{2} \\ & \dot{r}_{0}=r_{1} x_{0}-r_{0} x_{2} \\ & \dot{r}_{1}=r_{2} x_{0}+r_{0} x_{2}-r_{1} x_{0}-r_{1} x_{2} \\ & \dot{r}_{2}=r_{1} x_{2}-r_{2} x_{0} \\ & x_{0}+x_{1}+x_{2}=x \\ & s_{0}+s_{1}+s_{2}=s \\ & r_{0}+r_{1}+r_{2}=r \end{aligned}$

Fig S2.1 Reaction networks and their differential equations.

Let $\boldsymbol{v} \in \mathbb{R}_{\geq 0}^{S}$ be a state associating a concentration $\boldsymbol{v}_{s} \in \mathbb{R}_{\geq 0}$ to each species $s \in S$. Let $f \in \mathbb{R}_{\geq 0}=\mathbb{R}_{\geq 0}^{S}$ be a trajectory of $A M$ associating a state $f(t)$ of $A M$ to each time point $t \in \mathbb{R}_{\geq 0}$, and $\hat{f} \in \mathbb{R}_{\geq 0}=\mathbb{R}_{\geq 0}^{\hat{S}}$ similarly be a trajectory of MI. Suppose that at time 0 we have states $f(0)=\boldsymbol{v}$ for $A M$ and $\hat{f}(0)=\widehat{\boldsymbol{v}}$ for MI such that:

$$
\begin{array}{ll}
\boldsymbol{v}_{x_{0}}=\widehat{\boldsymbol{v}}_{y_{2}}=\widehat{\boldsymbol{v}}_{z_{0}} & x_{0}=y_{2}=z_{0} \\
\boldsymbol{v}_{x_{1}}=\widehat{\boldsymbol{v}}_{y_{1}}=\widehat{\boldsymbol{v}}_{z_{1}} \\
\boldsymbol{v}_{x_{2}}=\widehat{\boldsymbol{v}}_{y_{0}}=\widehat{\boldsymbol{v}}_{z_{2}} & \text { or, informally: } \tag{Eq.1}\\
x_{1}=y_{1}=z_{1} \\
x_{2}=y_{0}=z_{2}
\end{array}
$$

So in particular we have $x_{0}=z_{0}$ at time 0 . The rate of change of (the concentration $\boldsymbol{v}_{x_{0}}$ of) x_{0} at time 0 happens to be the same as the rate of change of z_{0}, by the assumptions in (Eq. 1):

$$
\dot{x}_{0}=x_{0} x_{1}-x_{0} x_{2}=z_{0} z_{1}-z_{0} y_{0}=\dot{z}_{0}
$$

Since system evolution is deterministic, we then have that at any future time t, still $x_{0}=z_{0}$ (that is, $f(t)_{x_{0}}=$ $\left.\hat{f}(t)_{z_{0}}\right)$. This coincidence of trajectories holds for x_{0}, z_{0}, y_{2}, for x_{1}, z_{1}, y_{1}, and for x_{2}, z_{2}, y_{0}. Therefore, if we start the two networks with initial conditions satisfying (Eq. 1) at time 0 , we will have identical time evolution for all the corresponding species of $A M$ and $M I$. For example, as in Fig 2, take $x_{0}=y_{2}=z_{0}=2, x_{1}=y_{1}=z_{1}=0$, $x_{2}=y_{0}=z_{2}=1$, at time 0 . Then the deterministic time evolutions of $A M$ and $M I$ are identical, with overlapping pairs of traces in MI.

The observation that these trajectories coincide is a consequence of a more general phenomenon. Based on a correspondence of species between the networks, such as that in (Eq. 1), all the reaction networks in Fig 2 and Fig 5 can be folded (mapped) onto the reaction network of $A M$, in such a way that reactions between corresponding species under the mapping also correspond. This kind of mapping is called a homomorphism. But this is not sufficient in general for the coincidence of trajectories. In addition, the mapping must also preserve the stoichiometry of the reactions in a certain way; we call such a mapping a stoichiomorphism. Checking that a stoichiomorphism exists between two networks, under a correspondence of species, entails only checking that the stoichiometric constants and reaction rates obey certain constraints: it does not require analyzing the ODEs or any state-dependent property. When a stoichiomorphism exists, we can infer that when starting with coincident initial conditions the networks will evolve along coincident trajectories [2].

More complex networks have more degrees of freedom than $A M$. For example, we can start $M I$ in states that do not satisfy (Eq. 1), and therefore we can find traces of $M I$ that do not overlap traces of $A M$. But because of the coincidence of trajectories, steady states of $A M$ are also steady states of MI .

S2.2 Equilibria

By equating the ODEs of each system to 0 , we determine the set of equilibria for each network. We wrote a simple algorithm in Mathematica to solve the equations, test the validity of the solution, and then establish linear stability based on the Jacobian matrix of first-order partial derivatives. The results are summarized in the following Table.

Network Equilibria

i.	$x_{0}=0, x_{1}=N, x_{2}=0$
ii.	$x_{0}=0, x_{1}=0, x_{2}=N$
iii.	$x_{0}=\frac{N}{3}, x_{1}=\frac{N}{3}, x_{2}=\frac{N}{3}$
iv.	$x_{0}=N, x_{1}=0, x_{2}=0$

Stability

 Unstable Stable Unstable StableUnstable Stable Unstable Stable
i. $\quad z_{0}=0, y_{0}=0, r_{0}=0, s_{0}=0, p_{0}=0, q_{0}=0$

Unstable
ii. $\quad z_{0}=0, y_{0}=0, y_{1}=0, y_{2}=N, r_{0}=0, s_{0}=0, q_{0}=0$

Unstable
iii. $z_{0}=0, z_{1}=0, z_{2}=N, y_{0}=0, r_{0}=0, p_{0}=0, q_{0}=0 \quad$ Unstable
iv. $z_{0}=0, z_{1}=0, z_{2}=N, y_{0}=0, y_{1}=0, y_{2}=N, r_{0}=0, q_{0}=0 \quad$ Unstable
v. $z_{0}=0, z_{1}=0, z_{2}=N, y_{0}=N, y_{1}=0, y_{2}=0, r_{0}=0, r_{1}=0, r_{2}=N, s_{0}=$

Stable

$$
N, s_{1}=0, s_{2}=0, p_{0}=0, p_{1}=0, p_{2}=N, q_{0}=N, q_{1}=0, q_{2}=0
$$

vi. $\quad z_{0}=\frac{N}{3}, z_{1}=\frac{N}{3}, z_{2}=\frac{N}{3}, y_{0}=\frac{N}{3}, y_{1}=\frac{N}{3}, y_{2}=\frac{N}{3}, r_{0}=\frac{N}{3}, r_{1}=\frac{N}{3}, r_{2}=$ $\frac{N}{3}, s_{0}=\frac{N}{3}, s_{1}=\frac{N}{3}, s_{2}=\frac{N}{3}, p_{0}=\frac{N}{3}, p_{1}=\frac{N}{3}, p_{2}=\frac{N}{3}, q_{0}=\frac{N}{3}, q_{1}=\frac{N}{3}, q_{2}=\frac{N}{3}$
vii.
$z_{0}=N, z_{1}=0, z_{2}=0, y_{0}=0, y_{1}=0, y_{2}=N, r_{0}=N, r_{1}=0, r_{2}=0, s_{0}=$
Stable $0, s_{1}=0, s_{2}=N, p_{0}=N, p_{1}=0, p_{2}=0, q_{0}=0, q_{1}=0, q_{2}=N$

Fig S2.2 Equilibria of reaction networks.

S3 Appendix: Fluid limit and central limit approximation

In this section we overview the results on fluid limit [Kurtz] and the central limit approximation [5,6] which are used in the paper.

We write a CRN as a Markov population process. This is a continuous-time Markov chain (CTMC) where the state descriptor is given by a vector of non-negative integers that associates with each species its current population of molecules in that state. The state descriptor will be denoted by $\xi=\left(\xi_{s}\right)_{s \in S} \in \Omega$, and the CTMC by $\boldsymbol{X}(t)$, associating a random variable over Ω to each time instant t. Let M be the number of reactions and $N \in \mathbb{N}_{>0}$ refer to the volume of the system. Each reaction is expressed as a jump vector, l_{k}, with an associated rate function $f_{k}^{N}: \Omega^{N} \rightarrow \mathbb{R}$, where $1 \leq k \leq M$. The jump vector records the net stoichiometry of the reaction, whereas the rate function determines the rate at which the reaction happens in each state ξ. For instance, let us consider the CRN consisting of reactions $A+B \rightarrow{ }^{r_{1}} C$ and $D \rightarrow^{r_{2}} E$. Then, using the obvious ordering of species, the jump vectors are given by $l_{1}=(-1,-1,+1,0,0)$ and $l_{2}=(0,0,0,-1,+1)$ with associated rate functions $f_{1}^{N}(\xi)=r_{1} \xi_{1} \xi_{2} / N$ and $f_{2}^{N}(\xi)=r_{2} \xi_{3}$, respectively. The idea is to consider a sequence of Markov population processes characterized by increasingly larger initial populations of species but such that their initial relative abundances are kept fixed. Let us denote the CTMC sequence by $\left\{\boldsymbol{X}_{N}(t), N \in \mathbb{N}_{>0}\right\}$ (or simply $\boldsymbol{X}_{N}(t)$). The rate functions have to be in the well-known density dependent form, which ensures that the rates of the rescaled CTMC process $\left\{\boldsymbol{X}_{N}(t) / N, N \in \mathbb{N}_{>0}\right\}$ are independent of N. That is, we require that $f_{k}^{N}(\xi) / N=$ $f_{k}(\xi / N)$ for all k, N and $\xi \in \Omega^{N}$, where $f_{k}: \mathbb{R}^{S} \rightarrow \mathbb{R}$ is a locally Lipschitz function.

In the case of our example, let us fix an initial concentration $v(0) \in \mathbb{R}_{\geq 0}^{\mathcal{S}}$ and define the initial population of molecules of the N-th CTMC is by $[N v(0)]$. For instance, let us assume that in our sample CRN we have $\boldsymbol{v}(0)=$ ($0.5,0.5,0.0,0.1,0.1$). Then, the first CTMC will have initial condition ($1,1,0,1,1$) while the 10 -th CTMC will have initial condition ($5,5,0,1,1$). Then, Kurtz's result establishes convergence in probability of the rescaled CTMC process $\boldsymbol{X}_{N}(t) / N$ to $\boldsymbol{v}(t)$ over any finite time time interval, where $\boldsymbol{v}(t)$ is the unique solution of the autonomous ODE system $\dot{\boldsymbol{v}}=F(\boldsymbol{v}):=\sum_{k=1}^{M} l_{k} f_{k}(\boldsymbol{v})$ subject to initial condition $\boldsymbol{v}(0)$. Generalizing the choice of parameterized rate functions of example to an arbitrary CRN, we observe that the above ODE system corresponds to the usual deterministic mass-action system. This justifies the use of the fluid approximation $\mathbb{E}\left[\boldsymbol{X}_{N}(t)\right] \approx N \boldsymbol{v}(t)$ for large values of N (i.e., for large populations of molecules).

Using an analogous setup it is possible to estimate the variance of the population process, with a procedure known as the central limit or linear noise approximation. For this, starting from $\boldsymbol{X}_{N}(t)$ we construct a rescaled process centered about the deterministic trajectory. Specifically, we consider the stochastic process $\boldsymbol{Z}_{N}(t):=$ $\left(\zeta_{s}(t)\right)_{s \in S}:=\boldsymbol{X}_{N}(t) / \sqrt{N}-\sqrt{N} \cdot \boldsymbol{v}(t)$. Then, as N goes to infinity this process converges to a Gaussian process $\boldsymbol{Z}(t)$ whose covariance matrix $\boldsymbol{C}(t):=\operatorname{Cov}\left(\zeta_{s}(t), \zeta_{s^{\prime}}(t)\right)_{s, s^{\prime} \in S}$ satisfies the ODE system (in matrix notation)

$$
\frac{d \boldsymbol{C}(t)}{d t}=\boldsymbol{J}_{\boldsymbol{F}}(\boldsymbol{v}(t)) \boldsymbol{C}(t)+\boldsymbol{C}(t) \boldsymbol{J}_{\boldsymbol{F}}^{T}(\boldsymbol{v}(t))+\boldsymbol{G}(\boldsymbol{v}(t))
$$

with initial condition $\boldsymbol{C}(0)=0$, where $\boldsymbol{J}_{\boldsymbol{F}}(\boldsymbol{v}(t))$ is the Jacobian of the ODE vector field F evaluated at the solution of the fluid limit $\boldsymbol{v}(t)$ and $\boldsymbol{G}(\boldsymbol{x}):=\sum_{k=1}^{M} l_{k} l_{k}^{T} f_{k}(\boldsymbol{x})$. This justifies the use of the approximation for the variance $\mathbb{V}\left[\boldsymbol{X}_{N}(t) / \sqrt{N}-\sqrt{N} \cdot \boldsymbol{v}(t)\right] \approx \mathbb{V}[\boldsymbol{Z}(t)]$ for large N.

Plots of the standard deviation bands around the ODE solution for selected influence networks are shown below.

Fig S3.1. Standard deviation band about the ODE solution obtained by central limit approximation.

S4 Appendix: Transitions between steady states
We place networks in hysteresis harnesses (Fig S4.1) and we verify that they still behave correspondingly (Fig S4.2). This is in support of the discussion in Section "Complex cell cycle switch networks".

Fig S4.1 - Harnesses for stimulus-response study. The AM network is augmented with a fixed bias d held at an intermediate level, and an opposite varying stimulus c. In absence of the stimulus c, the fixed bias d pushes the switch in one steady state. As the level of c increases it overcomes d and flips the switch in the other steady state. As c then decreases, d overcomes c to switch back, but at a different switching point, exhibiting hysteresis as seen in Fig 7. The other networks, which all emulate $A M$, are placed in harnesses such that the network with its harness emulates $A M$ with its harness.

Fig S4.2 - Emulation of external inputs to the system. To ensure that the hysteresis harnesses applied to each network were equivalent, ODE simulations were performed for each network ($A: A M, B: M I, C: S I, D: C C r, E: G W, F: N C C$), with the input stimulus set to 1 and the backwards fixed bias set to 0.5 . For each network, the dynamics are shown for each species over time (top panels), and form three groups, due to emulation. To visualize which species belong to each group, the final concentrations for each influence node are compared with a bar chart (bottom panels): the bar triplets correspond to the triplets of variables for each influence species.

S5 Appendix: Comparing stationary distributions with the Wasserstein metric
The Wasserstein metric (also known as the Earth Mover's Distance, EMD) can be used to quantify the distance between two distributions. Informally, it can be interpreted as the cost of converting one pile of earth into another, hence the EMD moniker. It considers both the amount of earth that must be moved and how far it must be moved. For discrete distributions over a single variable, it can be computed efficiently with a simple recursive algorithm (https://en.wikipedia.org/wiki/Earth mover\%27s distance).

Given two discrete domain distributions $u, v \in \mathbb{R}_{+}^{n}$, the EMD can be computed as:

$$
\begin{gathered}
E M D_{0}=0 \\
E M D_{i+1}=u_{i}+E M D_{i}-v_{i} \\
E M D=\sum_{i}^{n}\left|E M D_{i}\right|
\end{gathered}
$$

We apply this distance measure to pairs of hysteresis plots from Figure 7A by computing the distance between the stationary distributions at a given stimulus (once per value of c), then taking the sum. Similarly, this summed EMD is used for analyzing extrinsic noise in Figure 8A, by comparing the stationary distributions in the hysteresis plots between basal parameter values (all equal to 1) and randomly perturbed values.

S6 Appendix: Numerical simulation scripts

	A Influence Network Diagram	B LBS ODE simulation	C LBS CME simulation
AM			(* AM cme *) 5.0100 rate $\mathrm{k}=1$; init x0 $2 \mid$ init x1 init $\times 21$ $x 0+x 2->\{k\} \times 2+x 1$ $x 2+x 0->\{k\} \times 0+x 1 \mid$ $\mathrm{x} 1+\mathrm{x} 2->\{\mathrm{k}\} \times 2+\mathrm{x} 2$
SI			
MI		(* MI *) ample 5.0100 directive simulation deterministic rate $\mathrm{k}=1$; init 2021 init z101 init z2 1 \| init y10 init y2 2 I $z 2+z 0->\{k\} z 0+z 1 \mid$ $z 1+z 0->\{k\} z 0+z 0$ $y 0+z 0->\{k\} z 0+y 1$ $y 1+z 0->\{k\} z 0+y 2 \mid$ $y 2+y 0 \rightarrow\{k\} y 0+y 1 \mid$ $y 1+y 0 \rightarrow\{k\} y 0+y 0 \mid$ $z 0+y 0->\{k\} y 0+z 1$ $z 1+y 0->\{k\} y 0+z 2$	(* MI cme *) directive sample 5.0100 directive simulation cme rate $\mathrm{k}=1$; init z0 21 init z101 init y0 1 init y10 \| init y2 2 $z 2+z 0->\{k\} z 0+z 1 \mid$ $z 1+z 0->\{k\} z 0+z 0 \mid$ $y 0+z 0->\{k\} z 0+y 1$ $y 1+z 0->\{k\} z 0+y 2 \mid$ $y 2+y 0->\{k\} y 0+y 1$ $y 1+y 0 \rightarrow\{k\} y 0+y 0 \mid$ $z 0+y 0->\{k\} y 0+z 1 \mid$ $z 1+y 0->\{k\} y 0+z 2$
CCr		(*당) directive simple 5.0100	${ }^{*}$ CCr cme *) directive simulation cme rate $\mathrm{k}=1$; $\begin{array}{lll}\text { init } x 0 & 21 \\ \text { init } \times 1 & 1\end{array}$ init $\times 211$ init r021 init r101 init r2 11 init 5011 init 5101 init 5221 $r 2+x 0->\{k\} \times 0+r 1 \mid$ $r 1+x 0->\{k\} \times 0+r 0 \mid$ $s 0+x 0->\{k\} \times 0+s 1$ $s 1+x 0->\{k\} x 0+s 2 \mid$ $s 2+x 2->\{k\} \times 2+s 1$ $s 1+x 2->\{k\} \times 2+s 0$ $r 0+x 2->\{k\} \times 2+r 1$ $r 1+x 2->\{k\} \times 2+r 2$ $\mathrm{x} 2+\mathrm{r} 0->\{\mathrm{k}\} \mathrm{r} 0+\mathrm{x} 1 \mid$ $\mathrm{x} 1+\mathrm{r} 0->\{\mathrm{k}\} \mathrm{r} 0+\mathrm{x} 0 \mid$ $\mathrm{x} 0+\mathrm{sO}->\{\mathrm{k}\} \mathrm{s} 0+\mathrm{x} 1 \mid$ $x 1+s 0->\{k\} s 0+x 2$

GW		(Cow*) sample 5.0100 directive simulation deterministic rate $\mathrm{k}=1$; init z0 21 init z2 11 init r101 init r2 1 I init 5011 init 5101 init 5221 init y10 I init y2 2 \| $y 0+z 0->\{k\} z 0+y 1 \mid$ $y 1+z 0->\{k\} z 0+y 2$ $r 2+z 0 \rightarrow\{k\} z 0+r 1 \mid$ $\left.\begin{aligned} & \mathrm{r} 1+\mathrm{zO}->\{\mathrm{k}\} \mathrm{zO}+\mathrm{rO} \mid \\ & \mathrm{s} 0+\mathrm{zO}->\{\mathrm{k}\} \\ & \mathrm{z} 0\end{aligned} \right\rvert\,$ $s 1+z 0->\{k\} z 0+s 2 \mid$ $z 2+r 0 \rightarrow\{k\} r 0+z 1 \mid$ $z 1+r 0 \rightarrow\{k\} r 0+z 0 \mid$ $z 0+s 0->\{k\} s 0+z 1 \mid$ $z 1+s 0->\{k\} s 0+z 2 \mid$ $y 2+y 0->\{k\} y 0+y 1 \mid$ $\mathrm{y} 0+\mathrm{y} 0 \rightarrow>\{\mathrm{k}\} \mathrm{y} 0+\mathrm{y} 0$ r 0 $r 1+y 0->\{k\} y 0+r 2 \mid$ $s 2+y 0 \rightarrow\{k\} y 0+s 1$ 	(* GW cme *) directive sample 5.0100 rate $\mathrm{k}=1$; init z021 init z2 1 \| init r021 init r211 init 501 \| init 5221 init y0 11 init y1 init y2 2 I $y 0+z 0-\{\{k\} z 0+y 1 \mid$ $y 1+z 0->\{k\} z 0+y 2$ $r 2+z 0 \rightarrow\{k\} z 0+r 1 \mid$ $r 1+z 0>\{k\} z 0+r 0 \mid$ $s 0+z 0>\{k\} z 0+s 1$ $s 0+z 0->\{k\} z 0+s 1 \mid$ $s 1+z 0->\{k\} z 0+s 2$ $z 2+r 0->\{k\} r 0+z 1 \mid$ $z 1+r 0->\{k\} r 0+z 0 \mid$ $z 0+s 0->\{k\} s 0+z 1 \mid$ $z 1+s 0->\{k\} s 0+z 2 \mid$ $y 2+y 0 \rightarrow\{k\} y 0+y 1 \mid$ $y 1+y 0->\{k\} y 0+y 0 \mid$ $r 0+y 0->\{k\} y 0+r 1 \mid$ $r 1+y 0->\{k\} y 0+r 2 \mid$ $s 2+y 0->\{k\} y 0+s 1$ $s 1+y 0->\{k\} y 0+s 0$
NCC		(*NCC *) directive 5.0100 rate $\mathrm{k}=1$; init zo 21 init z2 1 init 501 ! init s2 21 init r021 init r1 01 init r2 init q0 1 \| init q10 init q2 21 init p02 init p2 1 init y0 1 \| init y10 init y2 $\mathrm{zO}+\mathrm{sO}->\{\mathrm{k}\} \mathrm{sO}+\mathrm{z} 1 \mid$ $z 1+s 0->\{k\} 50+z 2$ $z 2+r 0->\{k\} r 0+z 1$ $z 1+r 0->\{k\} r 0+z 0 \mid$ $s 2+y 0->\{k\} y 0+s 1 \mid$ $s 1+y 0->\{k\} y 0+s 0$ $s 0+z 0->\{k\} z 0+s 1$ $s 0+z 0->\{\mathrm{k}\} z 0+\mathrm{s} 1 \mid$ $\mathrm{s} 1+\mathrm{zO}->\{\mathrm{k}\} z 0+\mathrm{s} 2$ $\mathrm{r} 2+\mathrm{zO} \rightarrow>\{\mathrm{k}\} \mathrm{zO}+\mathrm{r} 1 \mid$ $\mathrm{r} 1+\mathrm{zO}->\{\mathrm{k}\} \mathrm{z0}+\mathrm{rO} \mid$ $r 0+y 0->\{k\} y 0+r 1 \mid$ $r 1+y 0->\{k\} y 0+r 2$ $y 2+q 0->\{k\} q 0+y 1 \mid$ $y 1+q 0->\{k\} q 0+y 0 \mid$ $y 0+p 0->\{k\} p 0+y 1$ $y 1+p 0->\{k\} p 0+y 2 \mid$ $q 2+y 0->\{k\} y 0+q 1 \mid$ $q 1+y 0->\{k\} y 0+q 0 \mid$ $q 0+z 0->\{k\} z 0+q 1 \mid$ $\left.\mathrm{p} 2+\mathrm{zo}^{0}->\mathrm{k}\right\} \geq \mathrm{zO}+\mathrm{p} 1 \mid$ $\mathrm{p} 1+\mathrm{yo} 0 \rightarrow\{\mathrm{k}\} \mathrm{y} 0+\mathrm{p} 2$	(* NCC cme *) directive simulation cme rate $\mathrm{k}=1$; init 2021 init z2 1 \| init 5011 init 5101 init 5221 init ro 21 init r1 init r2 in init q0 11 init q2 21 init pO2 init p2 11 init y0 1 \| init y10 init y2 2 $z 0+s 0->\{k\} 50+z 1 \mid$ $z 1+s 0->\{k\} s 0+z 2$ $z 2+r 0->\{k\} r 0+z 1$ $z 1+r 0->\{k\} r 0+z 0 \mid$ $s 2+y 0->\{k\} y 0+s 1 \mid$ $s 1+y 0->\{k\} y 0+s 0$ $s 0+z 0->\{k\} z 0+51$ $s 1+z 0->\{k\} z 0+s 2$ $s 1$ $\mathrm{r} 2+\mathrm{zO}->\{\mathrm{k}\} \mathrm{zO}+\mathrm{r} 1 \mid$ $\mathrm{r} 1+\mathrm{zO}->\{\mathrm{k}\} \mathrm{zO}+\mathrm{rO} \mid$ $r 0+y 0->\{k\} y 0+r 1 \mid$ $r 1+y 0->\{k\} y 0+r 2 \mid$ $\mathrm{y} 2+\mathrm{q} 0->\{\mathrm{k}\} \mathrm{q} 0+\mathrm{y} 1 \mid$ $\mathrm{y} 1+\mathrm{q} 0->\{\mathrm{k}\} \mathrm{q} 0+\mathrm{y} 0 \mid$ $\mathrm{y} 0+\mathrm{p} 0->\{\mathrm{k}\} \mathrm{p} 0+\mathrm{y} 1 \mid$ $y 1+p 0->\{k\} p 0+y 2 \mid$ $q 2+y 0 \rightarrow\{k\} y 0+q 1 \mid$ $q 1+y 0 \rightarrow\{k\} y 0+q 0 \mid$ p 1 $\mathrm{p} 0+\mathrm{y} 0 \rightarrow>\{k\} \times 0+\mathrm{p} 1 \mid$ $+\mathrm{y} 0 \rightarrow\{\{k\} \mathrm{y} 0+\mathrm{p} 2$

Fig S5.1 - Networks and their simulation scripts. A Influence network diagram. B LBS script for ODE simulation. C LBS script for CME simulation.

LBS is the Language for Biochemical Systems:
http://homepages.inf.ed.ac.uk/gdp/publications/Lang Bio Sys Design Spec.pdf, which is part of the GEC simulation tool: http://research.microsoft.com/gec.

