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S1 Appendix: The triplet model of influence (adapted from [2] supplement) 

An influence network is a graph of influence nodes (species) and influence edges (reactions). Each influence node 

� is modeled as three chemical species, denoted ��, ��, �� (Fig 1). Each influence node can have four terminals: 

high output (solid line), low output (dashed line), modification input (ball) and restoration input (bar). Influence 

edges connect two such terminals in one of the four patterns: low-to-modify, low-to-restore, high-to-modify, 

and high-to-restore, with at most one edge of each kind for each pair of (possibly coincident) nodes.  

Each influence node � corresponds to a motif of three chemical species and four chemical reactions (Fig 1). That 

is, if � is a chemical species connected to the restoration terminal, � is one connected to the modification 

terminal, and ���, ���, ���, ��� are rates associated with the node �, we have the four reactions: 

�� + � →
�� � + ��,       �� + � →
�� � + ��,       �� + � →
�� � + ��,       �� + � →
�� � + �� 

This expansion of influence nodes into reaction motifs is sufficient to extract a chemical reaction network from 

any influence network, taking into account all the influence edges in the network (see S2 Appendix for 

examples).  

We can solve the mass action equations of those four reactions at steady state, with ��� = �� + �� + ��, 

obtaining �� as a function of � and �: 

�0 = �10�21��� �2

�10�21�2 + �01�21�� + �01�12�2 

Assuming � = ��� − � (restoration decreases as modification increases), we obtain �0 as a function of �: 

�0 = �10�21��� �2

(�10�21 − �01�21 + �01�12)�2 + (�01�21 − 2�01�12)��� � + �01�12���2 = �1�2

�2�2 + �3� + �4  

This is a generalized Hill function of coefficient 2, where the coefficients ��  depend on the four reaction rates 

and on ���. By regulating the rates of flow through �� within two orders of magnitude we can obtain a range of 

linear, hyperbolic and sigmoid responses in the range [0. . ���] to linear modification � ∈ [0. . ���]: note that the 

response range is equal to the stimulus range. Therefore, this motif is sufficiently flexible for the purpose of 

characterizing intended influence networks. 
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Figure S1.1. Steady state transitions from restored to modified with ��� = 1 and � ∈ [0. . ���]. 
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S2 Appendix: Deterministic analysis 

S2.1 Trajectories 

For the networks in Fig 2, these systems of ODEs are listed in Fig S2.1, along with conservation equations that 

result from certain sums of derivatives amounting to zero. 

 

Network Species   Chemical Reactions  

(with unit rates) 

Dynamical System 

AM {��, ��, ��} �� + �� → �� + ��  

�� + �� → �� + ��  

�� + �� → �� + ��  

�� + �� → �� + ��   

� �  =  ���� − ����  

� �  =  ���� + ���� − ���� − ����  

� �  =  ���� − ����  
 
�� + �� + �� = �  
 

SI {!�, !�, !�, 

  "�, "�, "�} 

!� + "� → "� + !�  

!� + "� → "� + !�  

!� + "� → "� + !�  

!� + "� → "� + !�  
 
"� + !� → !� + "�   

"� + !� → !� + "�    

"� + !� → !� + "�   

"� + !� → !� + "�   

" �  =  "�!� − "�!�  

" �  =  "�!� + "�!� − "�!� − "�!�  

" �  =  "�!� − "�!�  
  
! �  =  !�"� − !�"�  

! �  =  !�"� + !�"� − !�"� − !�"�  

! �  =  !�"�  −  !�"�  
 
!� + !� + !� = !  

"� + "� + "� = "  
 

MI {!�, !�, !�, 

  "�, "�, "� } 

!� + "� → "� + !�  

!� + "� → "� + !�  

!� + !� → !� + !�  

!� + !� → !� + !�  
 
"� + "� → "� + "�   

"� + "� → "� + "�    

"� + !� → !� + "�   

"� + !� → !� + "�   

" �  =  "�"� − "�!�  

" �  =  "�"� + "�!� − "�"� − "�!�  

" �  =  "�!� − "�"�  
  
! �  =  !�!� − !�"�  

! �  =  !�"� + !�!� − !�"� − !�!�  

! �  =  !�"�  −  !�!�  
 
!� + !� + !� = !  

"� + "� + "� = "  
 

CCr {��, ��, ��, 

  #�, #�, #�, 

  $�, $�, $�} 

#� + �� → �� + #�  

#� + �� → �� + #�  

$� + �� → �� + $�  

$� + �� → �� + $�  
 
#� + �� → �� + #�  

#� + �� → �� + #�  

$� + �� → �� + $�  

$� + �� → �� + $�  
 
�� + #� → #� + ��   

�� + #� → #� + ��  

�� + $� → $� + ��   

�� + $� → $� + ��     

� �  =  ��$� − ��#�  

� �  =  ��#� + ��$� − ��#� − ��$�  

� �  =  ��#� − ��$�  
 
# �  =  #��� − #���  

# �  =  #��� + #��� − #��� − #���  

# �  =  #��� − #���  
 
$ �  =  $��� − $���  

$ �  =  $��� + $��� − $��� − $���  

$ �  =  $��� − $���  
 
�� + �� + �� = �  

#� + #� + #� = #  

$� + $� + $� = $  
 

Fig S2.1 Reaction networks and their differential equations. 

 

Let % ∈ ℝ'�(  be a state associating a concentration %) ∈ ℝ'� to each species # ∈ *. Let + ∈ ℝ'� = ℝ'�(  be a 

trajectory of AM associating a state +(�) of AM to each time point � ∈ ℝ'�, and +, ∈ ℝ'� = ℝ'�(,  similarly be a 

trajectory of MI. Suppose that at time 0 we have states +(0) = % for AM and +,(0) = %-  for MI such that: 

 

%.�  =  %-/�  =  %-0�                  ��  =  !�  =  "�   
%.�  =  %-/�  =  %-0�  or, informally:  ��  =  !�  =  "�    (Eq. 1) 

%.�  =  %-/�  =  %-0�    ��  =  !�  =  "� 
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So in particular we have �� = "� at time 0. The rate of change of (the concentration %.�of) �� at time 0 happens 

to be the same as the rate of change of "�, by the assumptions in (Eq. 1): 

� � = ���� − ���� = "�"� − "�!� = " � 

Since system evolution is deterministic, we then have that at any future time �, still �� = "� (that is, +(�).� =
+,(�)0�). This coincidence of trajectories holds for ��, "�, !�, for ��, "�, !�, and for ��, "�, !�. Therefore, if we start 

the two networks with initial conditions satisfying (Eq. 1) at time 0, we will have identical time evolution for all 

the corresponding species of AM and MI. For example, as in Fig 2, take  �� = !� = "� = 2, �� = !� = "� = 0, 

�� = !� = "� = 1, at time 0. Then the deterministic time evolutions of AM and MI are identical, with overlapping 

pairs of traces in MI.  

The observation that these trajectories coincide is a consequence of a more general phenomenon. Based on a 

correspondence of species between the networks, such as that in (Eq. 1), all the reaction networks in Fig 2 and 

Fig 5 can be folded (mapped) onto the reaction network of AM, in such a way that reactions between 

corresponding species under the mapping also correspond. This kind of mapping is called a homomorphism. But 

this is not sufficient in general for the coincidence of trajectories. In addition, the mapping must also preserve 

the stoichiometry of the reactions in a certain way; we call such a mapping a stoichiomorphism. Checking that a 

stoichiomorphism exists between two networks, under a correspondence of species, entails only checking that 

the stoichiometric constants and reaction rates obey certain constraints: it does not require analyzing the ODEs 

or any state-dependent property. When a stoichiomorphism exists, we can infer that when starting with 

coincident initial conditions the networks will evolve along coincident trajectories [2].  

More complex networks have more degrees of freedom than AM. For example, we can start MI in states that 

do not satisfy (Eq. 1), and therefore we can find traces of MI that do not overlap traces of AM. But because of 

the coincidence of trajectories, steady states of AM are also steady states of MI.  
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S2.2 Equilibria 

By equating the ODEs of each system to 0, we determine the set of equilibria for each network. We wrote a 

simple algorithm in Mathematica to solve the equations, test the validity of the solution, and then establish 

linear stability based on the Jacobian matrix of first-order partial derivatives. The results are summarized in the 

following Table. 

Network Equilibria Stability 

AM i. �� = 0, �� = 1, �� = 0 Unstable 

 ii. �� = 0, �� = 0, �� = 1 Stable 

 iii. �� = 2
3 , �� = 2

3 , �� = 2
3  Unstable 

 iv. �� = 1, �� = 0, �� = 0 

 

Stable 

SI i. "� = 0, "� = 1, "� = 0, !� = 0, !� = 1, !� = 0 Unstable 

 ii. "� = 0, "� = 0, "� = 1, !� = 1, !� = 0, !� = 0 Stable 

 iii. "� = 2
3 , "� = 2

3 , "� = 2
3 , !� = 2

3 , !� = 2
3 , !� = 2

3  Unstable 

 iv. "� = 1, "� = 0, "� = 0, !� = 0, !� = 0, !� = 1 

 

Stable 

MI i. "� = 0, !� = 0 Unstable 

 ii. "� = 1, "� = 0, "� = 0, !� = 0, !� = 0, !� = 1 Stable 

 iii. "� = 0, "� = 0, "� = 1, !� = 0, !� = 0, !� = 1 Unstable 

 iv. "� = 2
3 , "� = 2

3 , "� = 2
3 , !� = 2

3 , !� = 2
3 , !� = 2

3  

 

Stable 

CCr i. �� = 0, �� = 0, �� = 0, #� = 0, $� = 0 Unstable 

 ii. �� = 1, �� = 0, �� = 0, #� = 0, #� = 0, #� = 1, $� = 1, $� = 0, $� = 0 Stable 

 iii. �� = 2
3 , �� = 2

3 , �� = 2
3 , #� = 2

3 , #� = 2
3 , #� = 2

3 , $� = 2
3 , $� = 2

3 , $� = 2
3   Unstable 

 iv. �� = 0, �� = 0, �� = 1, #� = 1, #� = 0, #� = 0, $� = 0, $� = 0, $� = 1 

 

Stable 

GW i. "� = 0, !� = 0, $� = 0, #� = 0 Unstable 

 ii. "� = 0, "� = 0, "� = 1, !� = 0, $� = 0 Unstable 

 iii. "� = 0, "� = 0, "� = 1, !� = 1, !� = 0, !� = 0, $� = 0, $� = 0, $� = 1, #� =
1, #� = 0, #� = 0 

Stable 

 iv. "� = 2
3 , "� = 2

3 , "� = 2
3 , !� = 2

3 , !� = 2
3 , !� = 2

3 , $� = 2
3 , $� = 2

3 , $� =
2
3 , #� = 2

3 , #� = 2
3 , #� = 2

3  

Unstable 

 v. "� = 1, "� = 0, "� = 0, !� = 0, !� = 0, !� = 1, $� = 1, $� = 0, $� = 0, #� =
0, #� = 0, #� = 1 

 

Stable 

NCC i. "� = 0, !� = 0, $� = 0, #� = 0, 4� = 0, 5� = 0 Unstable 

 ii. "� = 0, !� = 0, !� = 0, !� = 1, $� = 0, #� = 0, 5� = 0 Unstable 

 iii. "� = 0, "� = 0, "� = 1, !� = 0, $� = 0, 4� = 0, 5� = 0 Unstable 

 iv. "� = 0, "� = 0, "� = 1, !� = 0, !� = 0, !� = 1, $� = 0, 5� = 0 Unstable 

 v. "� = 0, "� = 0, "� = 1, !� = 1, !� = 0, !� = 0, $� = 0, $� = 0, $� = 1, #� =
1, #� = 0, #� = 0, 4� = 0, 4� = 0, 4� = 1, 5� = 1, 5� = 0, 5� = 0 

Stable 

 vi. "� = 2
3 , "� = 2

3 , "� = 2
3 , !� = 2

3 , !� = 2
3 , !� = 2

3 , $� = 2
3 , $� = 2

3 , $� =
2
3 , #� = 2

3 , #� = 2
3 , #� = 2

3 , 4� = 2
3 , 4� = 2

3 , 4� = 2
3 , 5� = 2

3 , 5� = 2
3 , 5� = 2

3  

Unstable 

 vii. "� = 1, "� = 0, "� = 0, !� = 0, !� = 0, !� = 1, $� = 1, $� = 0, $� = 0, #� =
0, #� = 0, #� = 1, 4� = 1, 4� = 0, 4� = 0, 5� = 0, 5� = 0, 5� = 1 

 

Stable 

Fig S2.2 Equilibria of reaction networks. 
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S3 Appendix: Fluid limit and central limit approximation 

In this section we overview the results on fluid limit [Kurtz] and the central limit approximation [5,6] which are 

used in the paper. 

We write a CRN as a Markov population process. This is a continuous-time Markov chain (CTMC) where the state 

descriptor is given by a vector of non-negative integers that associates with each species its current population 

of molecules in that state. The state descriptor will be denoted by 6 = (7))) ∈(  8 Ω, and the CTMC by :(�), 

associating a random variable over Ω to each time instant �. Let ; be the number of reactions and 1 ∈ ℕ=� 

refer to the volume of the system. Each reaction is expressed as a jump vector, >
, with an associated rate 

function +
2: Ω2 → ℝ, where 1 ≤ � ≤ ;.  The jump vector records the net stoichiometry of the reaction, 

whereas the rate function determines the rate at which the reaction happens in each state 6. For instance, let 

us consider the CRN consisting of reactions A + B →C� D and E →C� F. Then, using the obvious ordering of 

species, the jump vectors are given by >� = (−1, −1, +1, 0, 0) and >� = (0, 0, 0, −1, +1) with associated rate 

functions +�2(6) = $�7�7�/1 and +�2(6) = $�73, respectively. The idea is to consider a sequence of Markov 

population processes characterized by increasingly larger initial populations of species but such that their initial 

relative abundances are kept fixed.  Let us denote the CTMC sequence by H:2(�), 1 ∈ ℕ=�I (or simply :2(�)). 

The rate functions have to be in the well-known density dependent form, which ensures that the rates of the 

rescaled CTMC process H:2(�)/1, 1 ∈ ℕ=�I are independent of 1. That is, we require that  +
2(6)/ 1 =
+
(6/1) for all �, 1 and 6 ∈ Ω2, where +
: ℝ( → ℝ is a locally Lipschitz function. 

In the case of our example, let us fix an initial concentration %(0) ∈ ℝ'�(  and define the initial population of 

molecules of the 1-th CTMC is by J1%(0)K. For instance, let us assume that in our sample CRN we have %(0) =
(0.5, 0.5, 0.0, 0.1,0.1). Then, the first CTMC will have initial condition (1,1,0,1,1) while the 10-th CTMC will have 

initial condition (5,5,0,1,1). Then, Kurtz’s result establishes convergence in probability of the rescaled CTMC 

process :2(�)/1 to %(�) over any finite time time interval, where %(�) is the unique solution of the autonomous 

ODE system %  = M(%) ≔ ∑ >
+
(%)P
Q�  subject to initial condition %(0). Generalizing the choice of 

parameterized rate functions of example to an arbitrary CRN, we observe that the above ODE system 

corresponds to the usual deterministic mass-action system. This justifies the use of the fluid approximation 

R[:2(�)] ≈ 1%(�) for large values of 1 (i.e., for large populations of molecules). 

Using an analogous setup it is possible to estimate the variance of the population process, with a procedure 

known as the central limit or linear noise approximation. For this, starting from :2(�) we construct a rescaled 

process centered about the deterministic trajectory. Specifically, we consider the stochastic process T2(�) ≔
UV)(�)W)∈( ≔  :2(�)/√1 − √1 ⋅ %(�). Then, as 1 goes to infinity this process converges to a Gaussian process 

T(�) whose covariance matrix Z(�) ≔ D�[(V)(�), V)\(�))),)]∈( satisfies the ODE system (in matrix notation) 

^Z(�)
^� = _`U%(�)WZ(�) + Z(�)_àU%(�)W + b(%(�)) 

with initial condition Z(0) =  0, where _`U%(�)W is the Jacobian of the ODE vector field M evaluated at the 

solution of the fluid limit %(�) and b(c) ≔ ∑ >
>
d+
(c)efQg . This justifies the use of the approximation for the 

variance hi:2(�)/√1 − √1 ⋅ %(�)j  ≈  h[T(�)] for large 1. 

Plots of the standard deviation bands around the ODE solution for selected influence networks are shown below. 
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Fig S3.1. Standard deviation band about the ODE solution obtained by central limit approximation. 
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S4 Appendix: Transitions between steady states 

We place networks in hysteresis harnesses (Fig S4.1) and we verify that they still behave correspondingly (Fig 

S4.2). This is in support of the discussion in Section “Complex cell cycle switch networks”. 

 
AM 

 
SI 

 
MI 

 
CCr 

 
GW 

 
NCC 

Fig S4.1 – Harnesses for stimulus-response study. The AM network is augmented with a fixed bias d held at an intermediate 

level, and an opposite varying stimulus c. In absence of the stimulus c, the fixed bias d pushes the switch in one steady state. 

As the level of c increases it overcomes d and flips the switch in the other steady state. As c then decreases, d overcomes c to 

switch back, but at a different switching point, exhibiting hysteresis as seen in Fig 7. The other networks, which all emulate 

AM, are placed in harnesses such that the network with its harness emulates AM with its harness. 
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Fig S4.2 – Emulation of external inputs to the system. To ensure that the hysteresis harnesses applied to each network were 

equivalent, ODE simulations were performed for each network (A: AM, B: MI, C: SI, D: CCr, E: GW, F: NCC), with the input 

stimulus set to 1 and the backwards fixed bias set to 0.5. For each network, the dynamics are shown for each species over 

time (top panels), and form three groups, due to emulation. To visualize which species belong to each group, the final 

concentrations for each influence node are compared with a bar chart (bottom panels): the bar triplets correspond to the 

triplets of variables for each influence species. 
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S5 Appendix: Comparing stationary distributions with the Wasserstein metric  

The Wasserstein metric (also known as the Earth Mover’s Distance, EMD) can be used to quantify the distance 

between two distributions. Informally, it can be interpreted as the cost of converting one pile of earth into 

another, hence the EMD moniker. It considers both the amount of earth that must be moved and how far it 

must be moved. For discrete distributions over a single variable, it can be computed efficiently with a simple 

recursive algorithm (https://en.wikipedia.org/wiki/Earth_mover%27s_distance). 

Given two discrete domain distributions k, [ ∈ ℝlm , the EMD can be computed as: 

F;E� = 0 

F;E�l� = k� + F;E� − [� 

F;E = n|F;E�|
m

�
 

We apply this distance measure to pairs of hysteresis plots from Figure 7A by computing the distance between 

the stationary distributions at a given stimulus (once per value of c), then taking the sum. Similarly, this summed 

EMD is used for analyzing extrinsic noise in Figure 8A, by comparing the stationary distributions in the hysteresis 

plots between basal parameter values (all equal to 1) and randomly perturbed values.   
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S6 Appendix: Numerical simulation scripts 

 

 A Influence 

Network Diagram 

B LBS ODE simulation C LBS CME simulation 

AM 

 

(* AM *) 

directive sample 5.0 100 

directive simulation deterministic 

 

rate k = 1; 

 

init x0 2 | 

init x1 0 | 

init x2 1 | 

 

x0 + x2 ->{k} x2 + x1 | 

x2 + x0 ->{k} x0 + x1 | 

x1 + x0 ->{k} x0 + x0 | 

x1 + x2 ->{k} x2 + x2 

(* AM cme *) 

directive sample 5.0 100 

directive simulation cme 

 

rate k = 1; 

 

init x0 2 | 

init x1 0 | 

init x2 1 | 

 

x0 + x2 ->{k} x2 + x1 | 

x2 + x0 ->{k} x0 + x1 | 

x1 + x0 ->{k} x0 + x0 | 

x1 + x2 ->{k} x2 + x2 

SI 

 

(* SI *) 

directive sample 5.0 100 

directive simulation deterministic 

 

rate k = 1; 

 

init z0 2 | 

init z1 0 | 

init z2 1 | 

init y0 1 | 

init y1 0 | 

init y2 2 | 

 

z0 + y0 ->{k} y0 + z1 | 

z1 + y0 ->{k} y0 + z2 | 

z2 + y2 ->{k} y2 + z1 | 

z1 + y2 ->{k} y2 + z0 | 

 

y0 + z0 ->{k} z0 + y1 | 

y1 + z0 ->{k} z0 + y2 | 

y2 + z2 ->{k} z2 + y1 | 

y1 + z2 ->{k} z2 + y0 

(* SI cme *) 

directive sample 5.0 100 

directive simulation cme 

 

rate k = 1; 

 

init z0 2 | 

init z1 0 | 

init z2 1 | 

init y0 1 | 

init y1 0 | 

init y2 2 | 

 

z0 + y0 ->{k} y0 + z1 | 

z1 + y0 ->{k} y0 + z2 | 

z2 + y2 ->{k} y2 + z1 | 

z1 + y2 ->{k} y2 + z0 | 

 

y0 + z0 ->{k} z0 + y1 | 

y1 + z0 ->{k} z0 + y2 | 

y2 + z2 ->{k} z2 + y1 | 

y1 + z2 ->{k} z2 + y0 

MI 

 

(* MI *) 

directive sample 5.0 100 

directive simulation deterministic 

 

rate k = 1; 

 

init z0 2 | 

init z1 0 | 

init z2 1 | 

init y0 1 | 

init y1 0 | 

init y2 2 | 

 

z2 + z0 ->{k} z0 + z1 | 

z1 + z0 ->{k} z0 + z0 | 

y0 + z0 ->{k} z0 + y1 | 

y1 + z0 ->{k} z0 + y2 | 

 

y2 + y0 ->{k} y0 + y1 | 

y1 + y0 ->{k} y0 + y0 | 

z0 + y0 ->{k} y0 + z1 | 

z1 + y0 ->{k} y0 + z2 

(* MI cme *) 

directive sample 5.0 100 

directive simulation cme 

 

rate k = 1; 

 

init z0 2 | 

init z1 0 | 

init z2 1 | 

init y0 1 | 

init y1 0 | 

init y2 2 | 

 

z2 + z0 ->{k} z0 + z1 | 

z1 + z0 ->{k} z0 + z0 | 

y0 + z0 ->{k} z0 + y1 | 

y1 + z0 ->{k} z0 + y2 | 

 

y2 + y0 ->{k} y0 + y1 | 

y1 + y0 ->{k} y0 + y0 | 

z0 + y0 ->{k} y0 + z1 | 

z1 + y0 ->{k} y0 + z2 

CCr 

 

(* CCr *) 

directive sample 5.0 100 

directive simulation deterministic 

 

rate k = 1; 

 

init x0 2 | 

init x1 0 | 

init x2 1 | 

init r0 2 | 

init r1 0 | 

init r2 1 | 

init s0 1 | 

init s1 0 | 

init s2 2 | 

 

r2 + x0 ->{k} x0 + r1 | 

r1 + x0 ->{k} x0 + r0 | 

s0 + x0 ->{k} x0 + s1 | 

s1 + x0 ->{k} x0 + s2 | 

 

s2 + x2 ->{k} x2 + s1 | 

s1 + x2 ->{k} x2 + s0 | 

r0 + x2 ->{k} x2 + r1 | 

r1 + x2 ->{k} x2 + r2 | 

 

x2 + r0->{k} r0 + x1 | 

x1 + r0->{k} r0 + x0 | 

x0 + s0->{k} s0 + x1 | 

x1 + s0->{k} s0 + x2  

(* CCr cme *) 

directive sample 5.0 100 

directive simulation cme 

 

rate k = 1; 

 

init x0 2 | 

init x1 0 | 

init x2 1 | 

init r0 2 | 

init r1 0 | 

init r2 1 | 

init s0 1 | 

init s1 0 | 

init s2 2 | 

 

r2 + x0 ->{k} x0 + r1 | 

r1 + x0 ->{k} x0 + r0 | 

s0 + x0 ->{k} x0 + s1 | 

s1 + x0 ->{k} x0 + s2 | 

 

s2 + x2 ->{k} x2 + s1 | 

s1 + x2 ->{k} x2 + s0 | 

r0 + x2 ->{k} x2 + r1 | 

r1 + x2 ->{k} x2 + r2 | 

 

x2 + r0->{k} r0 + x1 | 

x1 + r0->{k} r0 + x0 | 

x0 + s0->{k} s0 + x1 | 

x1 + s0->{k} s0 + x2  
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GW 

 

(* GW *) 

directive sample 5.0 100 

directive simulation deterministic 

 

rate k = 1; 

  

init z0 2 | 

init z1 0 | 

init z2 1 | 

init r0 2 | 

init r1 0 | 

init r2 1 | 

init s0 1 | 

init s1 0 | 

init s2 2 | 

init y0 1 | 

init y1 0 | 

init y2 2 | 

  

y0 + z0 ->{k} z0 + y1 | 

y1 + z0 ->{k} z0 + y2 | 

r2 + z0 ->{k} z0 + r1 | 

r1 + z0 ->{k} z0 + r0 | 

s0 + z0 ->{k} z0 + s1 | 

s1 + z0 ->{k} z0 + s2 | 

  

z2 + r0 ->{k} r0 + z1 | 

z1 + r0 ->{k} r0 + z0 | 

  

z0 + s0 ->{k} s0 + z1 | 

z1 + s0 ->{k} s0 + z2 | 

  

y2 + y0 ->{k} y0 + y1 | 

y1 + y0 ->{k} y0 + y0 | 

r0 + y0 ->{k} y0 + r1 | 

r1 + y0 ->{k} y0 + r2 | 

s2 + y0 ->{k} y0 + s1 | 

s1 + y0 ->{k} y0 + s0   

(* GW cme *) 

directive sample 5.0 100 

directive simulation cme 

  

rate k = 1; 

  

init z0 2 | 

init z1 0 | 

init z2 1 | 

init r0 2 | 

init r1 0 | 

init r2 1 | 

init s0 1 | 

init s1 0 | 

init s2 2 | 

init y0 1 | 

init y1 0 | 

init y2 2 | 

  

y0 + z0 ->{k} z0 + y1 | 

y1 + z0 ->{k} z0 + y2 | 

r2 + z0 ->{k} z0 + r1 | 

r1 + z0 ->{k} z0 + r0 | 

s0 + z0 ->{k} z0 + s1 | 

s1 + z0 ->{k} z0 + s2 | 

  

z2 + r0 ->{k} r0 + z1 | 

z1 + r0 ->{k} r0 + z0 | 

  

z0 + s0 ->{k} s0 + z1 | 

z1 + s0 ->{k} s0 + z2 | 

  

y2 + y0 ->{k} y0 + y1 | 

y1 + y0 ->{k} y0 + y0 | 

r0 + y0 ->{k} y0 + r1 | 

r1 + y0 ->{k} y0 + r2 | 

s2 + y0 ->{k} y0 + s1 | 

s1 + y0 ->{k} y0 + s0   

NCC 

 

(* NCC *) 

directive sample 5.0 100 

directive simulation deterministic 

 

rate k = 1;    

  

init z0 2 | 

init z1 0 | 

init z2 1 | 

  

init s0 1 | 

init s1 0 | 

init s2 2 | 

  

init r0 2 | 

init r1 0 | 

init r2 1 | 

  

init q0 1 | 

init q1 0 | 

init q2 2 | 

  

init p0 2 | 

init p1 0 | 

init p2 1 | 

  

init y0 1 | 

init y1 0 | 

init y2 2 | 

  

z0 + s0 ->{k} s0 + z1 | 

z1 + s0 ->{k} s0 + z2 | 

z2 + r0 ->{k} r0 + z1 | 

z1 + r0 ->{k} r0 + z0 | 

  

s2 + y0 ->{k} y0 + s1 | 

s1 + y0 ->{k} y0 + s0 | 

s0 + z0 ->{k} z0 + s1 | 

s1 + z0 ->{k} z0 + s2 | 

  

r2 + z0 ->{k} z0 + r1 |  

r1 + z0 ->{k} z0 + r0 | 

r0 + y0 ->{k} y0 + r1 | 

r1 + y0 ->{k} y0 + r2 |  

  

y2 + q0 ->{k} q0 + y1 | 

y1 + q0 ->{k} q0 + y0 | 

y0 + p0 ->{k} p0 + y1 | 

y1 + p0 ->{k} p0 + y2 |  

  

q2 + y0 ->{k} y0 + q1 | 

q1 + y0 ->{k} y0 + q0 | 

q0 + z0 ->{k} z0 + q1 | 

q1 + z0 ->{k} z0 + q2 | 

  

p2 + z0 ->{k} z0 + p1 | 

p1 + z0 ->{k} z0 + p0 | 

p0 + y0 ->{k} y0 + p1 | 

p1 + y0 ->{k} y0 + p2 

(* NCC cme *) 

directive sample 5.0 100 

directive simulation cme 

  

rate k = 1;    

  

init z0 2 | 

init z1 0 | 

init z2 1 | 

  

init s0 1 | 

init s1 0 | 

init s2 2 | 

  

init r0 2 | 

init r1 0 | 

init r2 1 | 

  

init q0 1 | 

init q1 0 | 

init q2 2 | 

  

init p0 2 | 

init p1 0 | 

init p2 1 | 

  

init y0 1 | 

init y1 0 | 

init y2 2 | 

  

z0 + s0 ->{k} s0 + z1 | 

z1 + s0 ->{k} s0 + z2 | 

z2 + r0 ->{k} r0 + z1 | 

z1 + r0 ->{k} r0 + z0 | 

  

s2 + y0 ->{k} y0 + s1 | 

s1 + y0 ->{k} y0 + s0 | 

s0 + z0 ->{k} z0 + s1 | 

s1 + z0 ->{k} z0 + s2 | 

  

r2 + z0 ->{k} z0 + r1 |  

r1 + z0 ->{k} z0 + r0 | 

r0 + y0 ->{k} y0 + r1 | 

r1 + y0 ->{k} y0 + r2 |  

  

y2 + q0 ->{k} q0 + y1 | 

y1 + q0 ->{k} q0 + y0 | 

y0 + p0 ->{k} p0 + y1 | 

y1 + p0 ->{k} p0 + y2 |  

  

q2 + y0 ->{k} y0 + q1 | 

q1 + y0 ->{k} y0 + q0 | 

q0 + z0 ->{k} z0 + q1 | 

q1 + z0 ->{k} z0 + q2 | 

  

p2 + z0 ->{k} z0 + p1 | 

p1 + z0 ->{k} z0 + p0 | 

p0 + y0 ->{k} y0 + p1 | 

p1 + y0 ->{k} y0 + p2 

Fig S5.1 – Networks and their simulation scripts. A Influence network diagram. B LBS script for ODE simulation. C LBS script 

for CME simulation.  

LBS is the Language for Biochemical Systems: 

http://homepages.inf.ed.ac.uk/gdp/publications/Lang_Bio_Sys_Design_Spec.pdf,  

which is part of the GEC simulation tool: http://research.microsoft.com/gec. 

 

 

 

 


