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Abstract. We introduce Modular Markovian Logic (MML) for compositional
continuous-time and continuous-space Markov processes. MML combines oper-
ators specific to stochastic logics with operators that reflect the modular structure
of the semantics, similar to those used by spatial and separation logics. We present
a complete Hilbert-style axiomatization for MML, prove the small model prop-
erty and analyze the relation between the stochastic bisimulation and the logical
equivalence relation induced by MML on models.

1 Introduction
Complex networks (e.g., embedded systems, communication networks, the Internet
etc.) and complex systems (e.g., biological, ecological, social, financial, etc.) are of-
ten modelled as stochastic processes, to encapsulate a lack of knowledge or inherent
randomness. Such systems are frequently modular in nature, consisting of parts which
are systems in their own right. Their global behaviour depends on the behaviour of their
parts and on the links which connect them. Understanding such systems requires inte-
gration of local stochastic information in a formal way, in order to address questions
such as: ”to what extent is it possible to derive global properties of the system from the
local properties of its modules?”.

This is a problem of fundamental importance in complex systems that has been
usually addressed semantically: probabilistic and stochastic process algebras [3], for in-
stance, aim at describing compositionally the behaviour of a system from the behaviours
of its susbsystems taking into account various types of synchronization or communica-
tion. This approach is quite restrictive, as process algebras are not logics: one cannot
express basic logical operations such as conjunction, disjunction, implication or nega-
tion of properties. Usually, to do this, people use logics such as temporal logics [15],
modal µ-calculus [22] or Hennessy-Milner logic [20] to express properties of transition
systems. But these are global properties only and no logic framework developed so far
allows reasoning on stochastic systems and subsystems at the same time.

In this paper we develop a logical framework called Modular Markovian Logic
(MML) that tackles this problem by organizing qualitative and quantitative properties of
stochastic systems in hierarchical, modular structures, thereby proving global properties
from the local properties of modules. Formally, if ”process P has the property φ” is
denoted by P 
 φ and ”⊗” is the composition operator, we aim to establish a framework
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containing modular proof rules of the form
P1 
 φ1, ..., Pk 
 φk

P1⊗...⊗Pk 
 ρ
C(ρ, φ1, .., φk), where

C is a logical constraint.
To gain this level of expressivity, MML combines stochastic operators similar to

the ones of Aumann’s system [1, 16] with modular operators similar to the ones used
in spatial logics [6, 7] and in separation logics [31]. For an observable action a and
a positive rational r, the operator ”La

r ” of MML expresses the fact that a process can
perform an a-transition with the rate1 at least r. In addition, the composition operator
”|” joins logical terms and directly expresses properties of the combined subsystems,
and dually, the quotient operator ” − ” quantifies over possible environments satisfying
given specifications.

On the semantic level, we introduce the modular Markov processes (MMPs) which
are (continuous-) labelled Markov processes [14, 29] enriched with an algebraic struc-
ture. This algebra defines the composition of Markovian systems and establishes the
relation between a system and its subsystems. The composition of behaviours satis-
fies a general synchronization pattern which subsumes most of the classical notions of
parallel composition found in process algebras.

We define the modular Markovian logic for a semantics based on MMPs. We inves-
tigate the relation between stochastic bisimulations of MMPs and logical equivalence
induced by MML over the class of MMPs. We present a complete Hilbert style axiom-
atization of MML for the Markovian semantics and prove the small model property.
Research context. Labelled Markov process (LMPs) are introduced in [13, 4, 14, 29]
and they generalize most of the models of Markovian systems. A similar concept,
Harsanyi type space (HTS), has been studied in the context of belief systems [17, 28].
MMPs are built on top of these, by exploiting their equivalence proved in [11]. In addi-
tion, MMPs have inbuilt an algebraic structure that exyends, for continuous space and
time, the concepts of the Markov chain algebra [5].

Probabilistic logics have been studied both for LMPs (probabilistic versions of tem-
poral and Hennessy-Milner logics [14, 12, 29]) and for HTSs (Aumann’s system [1,
16]). The first class focuses on model checking and logical characterization of stochas-
tic bisimulation, while for Aumann’s system also axiomatization issues have been ad-
dressed [19, 32]. In [10] we have proposed a completely axiomatized stochastic logic
that combines features of the two classes of logics. In this paper we extend the stochas-
tic logic with modular operators that allow us, in addition, to investigate the algebraic
structures of the models.

Modular logics, such as spatial logics [6, 7] and separation logic [31] have been
developed for concurrent nondeterministic systems, but to the best of our knowledge,
no stochastic or probabilistic version of these have been studied.

The paper is organized as follows. Section 2 introduces basic concepts used in the
paper. Section 3 defines MMPs and their bisimulation. Section 4 presents MML and re-
sults concerning the relationship between logical equivalence and bisimulation. Section
5 contains the axiomatic system of MML, the soundness and completeness metatheo-

1 The rate of a transition is the parameter of an exponentially distributed random variable that
characterizes, for Markovian processes, the duration of the transition.



rems and the small model property. In addition to the conclusive remarks, the paper has
an Appendix containing some proofs which have not been included in the paper.

2 Preliminary definitions

In this section we establish the terminology used in the paper.
Given a set M, Σ ⊆ 2M that contains M and is closed under complement and count-

able union is a σ-algebra over M; (M, Σ) is a measurable space and the elements of Σ
are measurable sets. Ω ⊆ 2M is a base for Σ if Σ is the closure of Ω under complement
and countable union; we write Ω = Σ.

A relation R ⊆ M × M is non-wellfounded if there exists {mi ∈ M | i ∈ N} such that
for each i ∈ N, (mi,mi+1) ∈ R; otherwise it is wellfounded. A subset N ⊆ M is R-closed
iff {m ∈ M | ∃n ∈ N, (m, n) ∈ R} ⊆ N. If (M, Σ) is a measurable space and R ⊆ M × M,
Σ(R) denotes the set of measurable R-closed subsets of M.

A measure on (M, Σ) is a function µ : Σ → R+ such that µ(∅) = 0 and for {Ni|i ∈
I ⊆ N} ⊆ Σ with pairwise disjoint elements, µ(

⋃
i∈I Ni) =

∑
i∈I µ(Ni).

Let ∆(M, Σ) be the class of measures on (M, Σ). We organize it as a measurable
space by considering the σ-algebra generated, for arbitrary S ∈ Σ and r > 0, by the sets
{µ ∈ ∆(M, Σ) : µ(S ) ≥ r}.

Given two measurable spaces (M, Σ) and (N, Θ), a mapping f : M → N is measur-
able if for any T ∈ Θ, f −1(T ) ∈ Σ. We use ~M → N� to denote the class of measurable
mappings from (M, Σ) to (N, Θ).

Central for this paper is the notion of an analytic set. We only recall the main def-
inition and mention the properties of analytic sets used in our proves. For detailed dis-
cussion on this topic related to Markov processes, the reader is referred to [29] (Section
7.5) or to [11] (Section 4.4).

A metric space (M, d) is complete if every Cauchy sequence converges in M.
A Polish space is the topological space underlying a complete metric space with a

countable dense subset. Note that any discrete space is Polish.
An analytic set is the image of a Polish space under a continuous function between

Polish spaces. Note that any Polish space is an analytic set.
There are some basic facts about analytic sets that we use in this paper. Firstly,

an analytic set, as measurable space, has a denumerable base with disjoint elements.
Secondly, IfM1,M2 are analytic sets with Σ1, Σ2 the Borel algebras generated by their
topologies, then the product spaceM = M1 ×M2 with the Borel algebra Σ generated
by the product topology is an analytic set.

3 Modular Markov processes

For the beginning we introduce continuous Markov processes (CMPs) for a finite set
A of actions. CMPs are coalgebraic structures that encode stochastic behaviors. If m
is the current state of the system, N a measurable set of states and a ∈ A, θ(a)(m) is a
measures on the state space and θ(a)(m)(N) ∈ R+ represents the rate of an exponentially
distributed random variable that characterizes the duration of an a-transition from m



to arbitrary n ∈ N. Indeterminacy is resolved by races between events executing at
different rates.

Definition 1 (Continuous Markov processes). Given an analytic set (M, Σ), where Σ
is the Borel algebra generated by the topology, an A-continuous Markov kernel is a
tuple K = (M, Σ, θ), where θ : A → ~M → ∆(M, Σ)�.
If m ∈ M, (K ,m) is anA-continuous Markov process2.

Let K be the class ofA-CMKs;K ,Ki,K
′ are used to range overA-CMKs. Stochas-

tic bisimulation follows the line of Larsen-Skou bisimulation [25, 12, 29].

Definition 2 (Stochastic Bisimulation). Given K = (M, Σ, θ) ∈ K, a rate-bisimulation
relation on K is a relation R ⊆ M × M such that (m, n) ∈ R iff for any C ∈ Σ(R) and
any a ∈ A, θ(a)(m)(C) = θ(a)(n)(C).
Two processes (K ,m) and (K , n) are stochastic bisimilar, written m ∼K n, if they are
related by a rate-bisimulation relation.

Two processes (K ,m) and (K ′,m′) are stochastic bisimilar, written (K ,m) ∼ (K ′,m′),
iff m ∼K]K ′ m′, where K ]K ′ is the disjoint union of K and K ′.

3.1 Synchronization

To define the modular Markov processes we need a general notion of synchronization
of CMPs. For this, we assume extra structure on the setA of actions.

Firstly, we consider a synchronisation function ∗ that is a partial function ∗ : A ×
A ↪→ A which associates to some a, b ∈ A an action a ∗ b ∈ A interpreted as the syn-
chronisation of a and b. In this way we can mimic various synchronisation paradigms:
for CCS-style [27] we ask that a ∗ a = τ, where τ ∈ A is a special action; for CSP-
style [21] we ask that a ∗ a = a; for interleaving and ACP-style [2] we assume that
there exists a reflexive transition δ ∈ A such that a ∗ δ = a for any a ∈ A. Similarly,
most classical notions of parallel composition in process algebras may be expressed by
a suitable synchronization function. In fact, the only formal requirement is that ∗, as an
operation, is commutative (a ∗ b = b ∗ a).

Secondly, we assume a function • : R+ × R+ → R+ that computes, given the rates
r and s of the actions a and b respectively, the rate r • s of the synchronisation a ∗ b.
Examples of such function are the mass action law used with stochastic Pi-calculus
[30, 9] and other models of bio-chemical interactions and the minimal rate law used by
PEPA [18] for applications in performance evaluation. The formal requirements are:
• : R+ × R+ → R+ is a continuous function that, as an operation, is commutative

(r• s = s•r), associative ((r• s)•t = r•(s•t)) and bilinear ((r1 +r2)• s = (r1• s)+(r2• s)
and s • (r1 + r2) = (s • r1) + (s • r2)).

These two functions define the synchronization of two CMPs as follows.

2 θ(α) is a measurable mapping between (M, Σ) and ∆(M, Σ). This is equivalent with the con-
ditions on the two-variable rate function used in [14] to define continuous Markov processes
(see, e.g. Proposition 2.9, of [11]).



Definition 3. For i = 1, 2, letKi = (Mi, Σi, θi) ∈ K and ∆i ⊆ Σi denumerable bases with
disjoint elements. K = (M, Σ, θ) is the product of K1 and K2, written K = K1 × K2, if
M = M1 × M2, Σ = Σ1 × Σ2 and θ : A → [M → [Σ → R+]] is defined, for mi ∈ Mi,
a ∈ A and S =

⋃
k∈K⊆N

U1
k × U2

k ∈ Σ for U i
k ∈ ∆i, by

θ(a)((m1,m2))(S ) =

b∗c=a∑
(b,c)∈A2

∑
k∈K

θ1(b)(m1)(U1
k ) • θ2(c)(m2)(U2

k ).

The properties of • guarantee that the previous sum is convergent and independent
of the choice of the bases. Because • is bilinear, r • 0 = 0.K represents the result of the
synchronization of K1 and K2: θ calculates the rate of a by summing all the possible
synchronizations b ∗ c = a between K1 and K2.

Lemma 1. If K1,K2 ∈ K, then K1 × K2 ∈ K.

If (K1,m1) and (K2,m2) are CMPs, then (K1 × K2, (m1,m2)) is a CMP called the
synchronization of (K1,m1) and (K2,m2).

3.2 Parallel composition

For introducing a concept of parallel composition that is general enough to include
most of the similar concepts, we assume that the support set of the Markov kernel has
an algebraic structure called modular structure.

Definition 4 (Modular structure). A tuple (M,≡,⊗) is a modular structure on a set M
if ≡⊆ M × M is an equivalence relation and ⊗ : M × M ↪→ M is a partial operation
which, with respect to ≡, is
– a congruence, i.e., if m0 ≡ m1, then m0⊗m2 is defined iff m1⊗m2 is defined and
m0⊗m2 ≡ m1⊗m2,
– associative, i.e., (m0⊗m1)⊗m2 ≡ m0⊗(m1⊗m2),
– commutative, i.e., m0⊗m1 ≡ m1⊗m0,
– modular, i.e., if m0⊗m1 ≡ n0⊗n1, then for arbitrary i, j ∈ {0, 1},
either mi ≡ n j and m1−i ≡ n1− j,
or there exists m ∈ M such that mi ≡ n j⊗m and n1− j ≡ m1−i⊗m;
– wellfounded, i.e., the relation {(m, n) | ∃n′ ∈ M,m ≡ n⊗n′} is wellfounded.

Process algebras are examples of modular structures where ≡ is the structural con-
gruence or some bisimulation relation, while ⊗ is, for instance, the parallel composi-
tion. In these cases wellfoundness expresses the fact that any process (modulo (Nil):
P ≡ P⊗0) can be decomposed into a finite number of processes that cannot be, fur-
ther, decomposed; and modularity guarantees the uniqueness of this decomposition up
to structural congruence. In process algebras these hold, modulo (Nil), due to the in-
ductive definition of the set of processes.

For modular structures, we lift the signature to sets by defining, for arbitrary N,N′ ⊆
M, N⊗N′ = {m ∈ M | m ≡ n⊗n′ for some n ∈ N, n′ ∈ N′} and N ⊗− N′ = {m ∈ M |
∀n′ ∈ N′ and ∀n ≡ m⊗ n′, n ∈ N}. Moreover, if Σ ⊆ 2M , let Σ⊗Σ = {N⊗N′ | N,N′ ∈ Σ}
and Σ ⊗− Σ = {N ⊗− N′ | N,N′ ∈ Σ}.



Definition 5 (Modular Markov process). An A-modular Markov kernel is a tuple
M = (K ,≡,⊗), whereK = (M, Σ, θ) ∈ K and (M,≡,⊗) is a modular structure such that
its algebraic structure
• preserves the Borel-algebras, in the sense that

1. Σ⊗Σ ⊆ Σ, 2. Σ ⊗− Σ ⊆ Σ;
• preserves the behaviours of modules and their synchronization, i.e.,

3. ≡⊆∼, 4. (K ,m0⊗m1) ∼ (K ×K , (m0,m1)).
If m ∈ M, (M,m) is a modular Markov process.

Condition 4 requires that (K ,m0 ⊗m1) is bisimilar with the synchronization of
(K ,m0) and (K ,m1).

M is called the support ofM, denoted sup(M). Let M be the class of A-modular
Markov kernels (MMKs); we useM,N ,Mi,M

′ to range overM.
Next we prove that for MMKs stochastic bisimulation is a congruence.

Theorem 1 (Congruence). Given (K ,≡,⊗) ∈ M, if m ∼K m′ and both m⊗n and m′⊗n
are defined, then m⊗n ∼K m′⊗n.

4 Modular Markovian Logic

In this section we introduce Modular Markovian Logic (MML).
The formulas of MML are the elements of the set L introduced by the following

grammar, for arbitrary a ∈ A and r ∈ Q+.

φ := >
... ¬φ

... φ ∧ φ
... La

rφ
... φ|φ

... φ − φ.
The semantics is given by the satisfiability relation ” 
 ” defined forM ∈ M and

m ∈ sup(M), inductively as follows.
M,m 
 > always;
M,m 
 ¬φ iff it is not the case thatM,m 
 φ;
M,m 
 φ ∧ ψ iffM,m 
 φ andM,m 
 ψ;
M,m 
 La

rφ iff θ(a)(m)(~φ�M) ≥ r, where ~φ�M = {m ∈ M|M,m 
 φ};
M,m 
 φ1|φ2 iff m ≡ m1⊗m2 andM,mi 
 φi, 1 = 1, 2;
M,m 
 φ1 − φ2 iff [m′′ ≡ m⊗m′ andM,m′ 
 φ2] impliesM,m′′ 
 φ1.

”|” and ” − ” are polyadic modalities of arity 2. ” − ” is the adjoint of ”|”. The formula
La

rφ is interpreted as “the rate of an a-transition from the current state to a state satis-
fying φ is at least r”. Notice that the semantics of La

rφ is well defined only if ~φ�M is
measurable. This is guaranteed by the next lemma.

Lemma 2. For any φ ∈ L and anyM = (M, Σ, θ) ∈ M, ~φ�M ∈ Σ.

When it is not the case thatM,m 
 φ, we writeM,m 1 φ. A formula φ is satisfiable
if there existsM ∈ M and m ∈ sup(M) such thatM,m 
 φ. If ¬φ is not satisfiable, φ
is valid, denoted by 
 φ.

Let
�

i=1..n

φi =

i, j∧
i, j=1..n

(φi → ¬φ j) and ⊥ = ¬>. For each k ∈ N, let k = ¬(>|>|..|>︸   ︷︷   ︸
k+1

);

M,m 
 k iff m can be decomposed in maximum k modules.



Regarding the expresivity of MML, there are some interesting derived operators that
can be defined.

φ1 ‖ φ2 = ¬(¬φ1|¬φ2) is the De Morgan dual of ”|”;M,m 
 φ1 ‖ φ2 iff m ≡ m1⊗m2
impliesM,mi 
 φ1 orM,m j 
 φ2, {i, j} = {1, 2}.

φ1 ∗ φ2 = ¬(¬φ1 − ¬φ2) is the De Morgan dual of ”−”; M,m 
 φ1 ∗ φ2 iff there
existsM, n 1 φ2 and m′ ≡ m⊗n such thatM,m′ 1 φ1.

Let ◦φ = ⊥ − (¬φ). Notice that it encodes the validity of φ in a MMK,M,m 
 ◦φ
iff for any n ∈ sup(M),M, n 
 φ.

Similarly, the De Morgan dual of ”◦” encodes the satisfiability in a MMK: •φ =

¬ ◦ ¬φ,M,m 
 •φ iff there exists n ∈ M,M, n 
 φ.
In the rest of this section we focus on the logical equivalence induced by MML on

MMPs and its relation to stochastic bisimulation on MMPs. The next theorem states
that ≡ preserves the satisfiability of L formulas.

Theorem 2. ForM ∈ M and m, n ∈ sup(M), if m ≡ n, then
for all φ ∈ L, M,m 
 φ iffM, n 
 φ.

Let L∗ ( L be defined by the grammar φ := >
... ¬φ

... φ ∧ φ
... La

rφ. The next theorem
reproduces a similar result presented in [14, 29].

Theorem 3. GivenM ∈ M and m, n ∈ sup(M),
if [for any φ ∈ L∗, M,m 
 φ iffM, n 
 φ], then m ∼ n.

5 A complete Hilbert-style axiomatization for MML

Tables 1, 2 and 3 contain a Hilbert-style axiomatization for MML.
The stochastic axioms in Table 1 have been proposed in [10] where we have proved

that they form a complete axiomatization for CMPs. These axioms are similar, but more
complex due to stochasticity, than the ones proposed in [32] for Harsanyi type spaces.
As in the probabilistic case, we have infinitary rules (R2) and (R3) that encode the
Archimedean properties of Q. However, a finitary axiomatization is possible on the
lines of [19] at the price of defining some complex operators, as shown in [23].

Table 1: Stochastic Axioms Table 2: Structural Axioms
(A1): ` La

0φ
(A2): ` La

r+sφ→ La
rφ

(A3): ` La
r (φ ∧ ψ) ∧ La

s(φ ∧ ¬ψ)→ La
r+sφ

(A4): ` ¬La
r (φ ∧ ψ) ∧ ¬La

s(φ ∧ ¬ψ)→ ¬La
r+sφ

(R1): If ` φ→ ψ then ` La
rφ→ La

rψ
(R2): If ∀r < s, ` φ→ La

rψ then ` φ→ La
sψ

(R3): If ∀r > s, ` φ→ La
rψ then ` φ→ ⊥

(A5): ` (φ|ψ)|ρ→ φ|(ψ|ρ)
(A6): ` φ|ψ→ ψ|φ
(A7): ` φ|⊥ → ⊥
(A8): ` φ|(ψ ∨ ρ)→ (φ|ψ ∨ φ|ρ)
(R4): If ` φ→ ψ then ` φ|ρ→ ψ|ρ
(R5): If ` φ→ φ|> then ` φ→ ⊥
(R6): ` φ→ (ψ − ρ) iff ` φ|ρ→ ψ

The structural axioms in Table 2 are similar to the axioms proposed in [26] for a
spatial logic on CCS semantics. The main difference is rule (R5) which rejects models
that do not respect the modularity conditions. An example is the rule (Nill): P ≡ P|0
which allows processes with (trivial) non-wellfounded structure. However, one can eas-
ily make an MMP from a process algebra term by simply taking the quotient of the
class of processes by (Nill) and similar rules.



To introduce the modular axioms in Table 3 we fix some notations. πk is the set of
permutations of {1, .., k}. For a ∈ A, let a∗ = {(bi, ci) | i ∈ Ia}. If {(ri, j

k ) | i ∈ I, k ∈ K, j ∈

{0, 1}}, {(si, j
k ) | i ∈ I, k ∈ K, j ∈ {0, 1}} ⊆ Q+, let rI

K • sI
K =
∑
i∈I

k∈K∑
j∈{0,1}

(ri, j
k ) • (si, j

k ).

Table 3: Modular axioms

(R7): If I is finite and ` 1→
∨
i∈I

φi, then ` k →
s<k∨
i j∈I

φi1 |...|φis .

(R8): If `
j=0,1∧
i=1..k

(φ j
i → 1) and ` φ0

1|..|φ
0
k → φ1

1|..|φ
1
l , then k = l and

`
∨
σ∈πk

∧
i=1..k

φ0
i ↔ φ1

σ(i)

(R9): If K is finite and ` (
�
k∈K

φ0
k) ∧ (

�
k∈K

φ1
k) ∧ (

∨
k∈K

φ0
k |φ

1
k → ρ), then

`

 i∈Ia∧
k∈K

∧
j=0,1

Lbi

(ri, j
k )
φ

j
k

 |
 i∈Ia∧

k∈K

∧
j=0,1

Lci

(si, j
k )
φ

1− j
k

→ La
(rI

K•s
I
K )ρ

(R10): If K is finite and ` (
�
k∈K

φ0
k) ∧ (

�
k∈K

φ1
k) ∧ (ρ→

∨
k∈K

φ0
k |φ

1
k), then

`

 i∈Ia∧
k∈K

∧
j=0,1

¬Lbi

(ri, j
k )
φ

j
k

 |
 i∈Ia∧

k∈K

∧
j=0,1

¬Lci

(si, j
k )
φ

1− j
k

→ ¬La
(rI

K•s
I
K )ρ

The rules (R7) and (R8) encode the wellfoundness and the modularity of the models.
The rules (R9) and (R10) are logical versions of classical expansion laws for parallel
operator. (R9) states that the rate of the a-transitions from m to ~ρ� is at least the sum,
after k ∈ K, of all •-products of the rates of b and c-transitions (for a = b ∗ c) from
m1 and m2 to ~φ j

k� and ~φ1− j
k � respectively ( j = 0, 1), given that m ≡ m1⊗m2 and ~ρ�

covers
⋃
k∈K

~φ
j
k�⊗~φ

1− j
k �. For instance, ` (Lb

rφ ∧ Lc
uψ)|(Lc

sψ ∧ Lb
vφ) → Lb∗c

(r•s)+(u•v)φ|ψ and

` Lb
r>|L

c
s> → Lb∗c

r•s> are instances of (R9). Similarly, (R10) states that the rate of the
a-transitions from m to ~ρ� is strictly bigger than the sum, after k ∈ K, of all •-products
of the rates of b and c-transitions (for a = b ∗ c) from m1 and m2 to ~φ j

k� and ~φ1− j
k �

respectively ( j = 0, 1), given that m ≡ m1⊗m2 and ~ρ� is covered by
⋃
k∈K

~φ
j
k�⊗~φ

1− j
k �.

` (¬Lb
r> ∧ ¬Lc

u>)|(¬Lc
s> ∧ ¬Lb

v>) → ¬La
(r•s)+(u•v)(>|>) is an instance of (R10) given

that b, c are the only actions such that a = b ∗ c.
We say that a formula φ is provable, denoted by ` φ, if it can be proved from the

previous axioms (using also Boolean rules). We say that φ is consistent, if φ→ ⊥ is not
provable. Given a set Φ,Ψ ⊆ L, Φ proves Ψ if from the formulas of Φ and the axioms
we can prove all ψ ∈ Ψ ; we write Φ ` Ψ . Φ is consistent if it is not the case that Φ ` ⊥.
For a sublanguage L ⊆ L, we call Φ L-maximally consistent if Φ is consistent and no
formula of L can be added to it without making it inconsistent.

Theorem 4 (Soundness). The axiomatic system of MML is sound for the Markovian
semantics, i.e., for any φ ∈ L, if ` φ then 
 φ.



In what follows we prove the finite model property for MML by constructing a
model for a given consistent formula. This result will eventually prove that the ax-
iomatic system is also complete for the Markovian semantics, meaning that everything
that is true for all the models can be proved. Before proceeding, we fix some notations.

For n ∈ N, n , 0, let Qn = {
p
n : p ∈ N}. If S ⊆ Q is finite, the granularity of S ,

gr(S ), is the lowest common denominator of the elements of S .
The modal depth of φ ∈ L is defined by md(>) = 0, md(¬φ) = md(φ), md(La

rφ) =

md(φ) + 1 and md(φ ∧ ψ) = md(φ|ψ) = md(φ − ψ) = max(md(φ),md(ψ)).
The structural depth of φ ∈ L is defined by sd(¬φ) = sd(La

rφ) = sd(φ), sd(φ ∧ ψ) =

max(sd(φ), sd(ψ)) and sd(φ|ψ) = sd(φ − ψ) = sd(φ) + sd(ψ) + 1.
The granularity of φ ∈ L is gr(φ) = gr(R), where R ⊆ Q+ is the set of indexes r of the
operators La

r present in φ; the upper bound of φ is max(φ) = max(R).
For Λ1, Λ2 ⊆ L, Λ1|Λ2 = {φ1|φ2 : φi ∈ Λi, i = 1, 2}. φ is a generator for Λ1 if φ ` Λ1.
For arbitrary n ∈ N, let Ln be the sublanguage of L that uses only modal operators La

r
with r ∈ Qn and Lk

n = {ψ ∈ Ln | sd(ψ) ≤ k}. For Λ ⊆ L, let [Λ]n = {φ ∈ Ln : Λ ` φ} and
[Λ]k

n = {φ ∈ Lk
n : Λ ` φ}.

Consider a consistent formula ψ ∈ L with gr(ψ) = n and sd(ψ) = e.
Let L[ψ] = {φ ∈ Le

n | max(φ) ≤ max(ψ),md(φ) ≤ md(ψ)} and L0[ψ] = L[ψ] ∩ L0
n.

In what follows we construct Mψ ∈ M such that each Γ ∈ sup(Mψ) is a consis-
tent set of formulas that contains an L[ψ]-maximally consistent set and each L[ψ]-
maximally consistent set is contained in some Γ ∈ sup(Mψ). And we will prove that for
φ ∈ L[ψ], φ ∈ Γ iffMψ, Γ 
 φ.

Let Ω0[ψ] be the set of L0[ψ]-maximally consistent sets of formulas. Ω0[ψ] is fi-
nite and any Λ ∈ Ω0[ψ] contains finitely many nontrivial formulas3; in the rest of this
construction we only count non-trivial formulas while ignoring the rest.

For each Λ ∈ Ω[ψ], such that {φ1, ..., φi} is the set of its non-trivial formulas, we
construct Λ+ ⊇ [Λ]0

n with the property that ∀φ ∈ Λ and a ∈ A there exists ¬La
rφ ∈ Λ

+.
The step [φ1 and Λ:] (R3) guarantees that ∃r ∈ Qn s.t. [Λ]0

n ∪ {¬La
rφ1} is consistent. Let

ya
1 = min{s ∈ Qn : [Λ]0

n ∪ {¬La
sφ1} is consistent} and xa

1 = max{s ∈ Qn : La
sφ1 ∈ [Λ]0

n}

((R3) guarantees the existence of max). (R2) implies that ∃r ∈ Q \ Qn s.t., xa
1 < r < ya

1
and {¬La

rφ1} ∪ [Λ]0
n is consistent. Let n1 = gran{1/n, r}. Let sa

1 = min{s ∈ Qn1 : [Λ]0
n1
∪

{¬La
sφ1} is consistent}, Λa

1 = Λ ∪ {¬La
s1
φ1} and Λ1 =

⋃
a∈A

Λa
1.

We repeat this step of the construction for [φ2 and Λ1],..,[φi and Λi−1] and we obtain
Λ ⊆ Λ1 ⊆ ... ⊆ Λi, where Λi is a consistent set containing a finite set of nontrivial
formulas. Let nΛ = gran{1/n1, .., 1/ni}. We make this construction for all Λ ∈ Ω0[ψ].
Let p = gran{1/nΛ : Λ ∈ Ω0[ψ]}. Notice that p > n. Let Λ+ = [Λi]p ∪ {1} (this is
consistent) and Ω+[ψ] = {Λ+ : Λ ∈ Ω0[ψ]}. The construction is finite.

Remark 1. For each Λ ∈ Ω0[ψ], φ ∈ Λ and a ∈ A, there exist s, t ∈ Qp, s < t, such that
La

sφ,¬La
rφ ∈ Γ

+. Moreover, there exists a generator f ∈ Λ+ of Λ+. For each Λ we fix
such a generator and let F be the set of all generators of the elements of Ω+[ψ].

3 By nontrivial formulas we mean the formulas that are not obtained from more basic consistent
ones by boolean derivations.



(R5) guarantees that for any φ ∈ L there exists k ∈ N such that ` φ → k. Let
k = minφ∈L0[ψ]{k, ` φ→ k}. Let Ω[ψ] = {[Λ+

i1
|...|Λ+

il
]p for Λ+

i j
∈ Ω0[ψ], j = 1..l, l ≤ k}.

Lemma 3. Any consistent formula φ ∈ L[ψ] is contained in at least one Π ∈ Ω[ψ].
For arbitrary Π1, Π2 ∈ Ω[ψ], there exists a unique Π ∈ Ω[ψ] such that Π1|Π2 ⊆ Π .
F ∗ = { fi1 |...| fil where fi j ∈ F , j = 1..l, l ≤ k} is a set of generators for all Π ∈ Ω[ψ].

Let Ωp be the set of Lp-maximally consistent sets of formulas and σ : Ω[ψ] → Ωp

be an injection such that for any Π ∈ Ω[ψ], Π ⊆ σ(Π). We denote by Ωp[ψ] = σ(Ω[ψ]).
For φ ∈ L[ψ], let ~φ� = {Γ ∈ Ωp[ψ] : φ ∈ Γ}.

Lemma 4. (1) Ωp[ψ] is finite. (2) 2Ωp[ψ] = {~φ� | φ ∈ L[ψ]}.
(3) For any φ1, φ2 ∈ L[ψ], ` φ1 → φ2 iff ~φ1� ⊆ ~φ2�.
(4) For any Γ ∈ Ωp[ψ], φ ∈ L[ψ] and a ∈ A, there exist
x = max{r ∈ Qp : La

rφ ∈ Γ}, y = min{r ∈ Qp : ¬La
rφ ∈ Γ} and y = x + 1/p.

Ωp[ψ] will be the support of Mψ. It has the property that for each consistent φ ∈
L[ψ] there exists Γ ∈ Ωp[ψ] such that φ ∈ Γ and for each Γ and a ∈ A, there exists
r ∈ Qp such that La

rφ,¬La
r+1/pφ ∈ Γ. This is still not sufficient to define θψ.

Let Ω be the set of L-maximally consistent sets of formulas and π : Ωp → Ω an
injection such that for any Γ ∈ Ωp, Γ ⊆ π(Γ); let Γ∞ = π(Γ).

Lemma 5. For any Γ ∈ Ωp[ψ], any φ ∈ L[ψ] and any a ∈ A, there exist
x∞ = sup{r ∈ Q : La

rφ ∈ Γ
∞} = in f {r ∈ Q : ¬La

rφ ∈ Γ
∞} and x ≤ x∞ < y.

We denote by aΓφ = x∞ defined for φ ∈ L[ψ], Γ ∈ Ωq[ψ] and a ∈ A.

Lemma 6. Mψ = (Kψ,=, ⊗) ∈ M, where Kψ = (Ωp[ψ], 2Ωp[ψ], θψ) with θψ defined for
arbitrary φ ∈ L[ψ], Γ ∈ Ωp[ψ], a ∈ A by θψ(a)(Γ)(~φ�) = aΓφ , and ⊗ defined for
arbitrary Γ, Γ′, Γ′′ ∈ Ωp[ψ] by [Γ = Γ′⊗Γ′′ iff Γ′|Γ′′ ⊆ Γ].

Now we can prove the Truth Lemma.

Lemma 7 (Truth Lemma). If φ ∈ L[ψ] and Γ ∈ Ωp[ψ], then [Mψ, Γ 
 φ iff φ ∈ Γ].

Proof. Induction on the structure of φ. The Boolean cases are trivial.
The case φ = La

rφ
′: (=⇒) Suppose that Mψ, Γ 
 La

rφ
′ and La

rφ
′ < Γ. Because Γ is

L[ψ]-maximally consistent, ¬La
rφ
′ ∈ Γ. Let y = min{r ∈ Qp : ¬La

rφ
′ ∈ Γ}. Then, from

¬La
rφ
′ ∈ Γ, we obtain r ≥ y. ButMψ, Γ 
 La

rφ
′ is equivalent with θψ(a)(Γ)(~φ′�) ≥ r,

i.e. aΓφ′ ≥ r. On the other hand, in Lemma 4 we proved that aΓφ′ < y - contradiction.
(⇐=) Suppose that La

rφ
′ ∈ Γ. Then r ≤ aΓφ , implying θψ(a)(Γ)(~φ�) ≥ r.

The case φ = φ1|φ2: (=⇒) IfMψ, Γ 
 φ1|φ2, then Γ = Γ1⊗Γ2 andMψ, Γi 
 φi, i = 1, 2.
The inductive hypothesis implies that φi ∈ Γi and because Γ1|Γ2 ⊆ Γ , φ1|φ2 ∈ Γ.
(⇐=) If φ1|φ2 ∈ Γ, then Axiom (A7) guarantees that there exists Γi with φi ∈ Γi and
Γ1|Γ2 ⊆ Γ, i.e. Γ = Γ1⊗Γ2. The inductive hypothesis givesMψ, Γi 
 φi.
The case φ = φ1 − φ2: (=⇒) Suppose that Mψ, Γ 
 φ1 − φ2. Then, Mψ, Γ2 
 φ2
impliesMψ, Γ⊗Γ2 
 φ1. Using the inductive hypothesis, φ2 ∈ Γ2 implies φ1 ∈ Γ|Γ2,
i.e. ` f |φ2 → φ1, where f is the generators of Γ. Further, (R4) proves ` f → (φ1 − φ2).
(⇐=) φ2 − φ1 ∈ Γ implies ` f → (φ2 − φ1) and from Rule (R4), ` f |φ2 → φ1. Hence,
Γ2 ∈ ~φ2� implies φ1 ∈ Γ⊗Γ2. The inductive hypothesis ends the proof.



The previous lemma implies the small model property for our logic.

Theorem 5 (Small model property). For any consistent formula φ, there existsM ∈
M with the cardinality of sup(M) bound by the structure of φ, and m ∈ sup(M) such
thatM,m 
 φ.

The small model property proves the completeness of the axiomatic system.

Theorem 6 (Completeness). MML is complete with respect to the Markovian seman-
tics, i.e. if 
 ψ, then ` ψ.

Proof. We have shown that any consistent formula has a model. We prove that this is
sufficient for completeness. Indeed, [
 ψ implies ` ψ] is equivalent with [0 ψ implies
1 ψ], that is equivalent with [the consistency of ¬ψ implies that there exists a model
M such that M,m 1 ψ], that is equivalent with [the consistency of ¬ψ implies the
satisfiability of ¬ψ]. This last term is equivalent to our working hypothesis.

6 Conclusions and future work

In this paper we introduce Modular Markovian Logic, a new logic that combines fea-
tures of stochastic and modular logics. Its semantics is in terms of modular Markov
processes which are compositional continuous-time and continuous-space Markov pro-
cesses. MML is appropriate for specifying and verifying modular properties of stochas-
tic systems and to prove global properties from local properties of subsystems. For
instance modular proof rules as the ones bellow can be given as instances of (R9).

P 
 Lb
r>, P′ 
 Lc

s>

P⊗P′ 
 Lb∗c
r•s>

and
P 
 Lb

rφ ∧ Lc
uψ, P′ 
 Lc

sψ ∧ Lb
vφ

P⊗P′ 
 Lb∗c
(r•s)+(u•v)ρ

(` φ|ψ→ ρ).

Similarly, if b, c are unique such that a = b∗c and P, P′ are unique such that P′′ ≡ P⊗P′,
the rule bellow is based on an instance of (R10).

P 
 ¬Lb
r> ∧ ¬Lc

u>, P′ 
 ¬Lc
s> ∧ ¬Lb

v>

P′′ 
 ¬La
(r•s)+(u•v)(>|>)

In this paper we present a complete Hilbert-style axiomatization for MML and prove
the small model property. For future work we intend to focus on decidability and com-
plexity problems as well as on axiomatizations of model checking and possible proce-
dures to automatize the proof of modular rules.
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Appendix

In this appendix we have collected the proofs of the major results presented in the paper.

Proof (Proof of Lemma 1). We have to prove that θ : A → ~M → ∆(M, Σ)�.
We prove first that for each a ∈ A and each (m, n) ∈ M1 × M2, θ(a)((m, n)) is a

measure. It is trivial to check that θ(a)((m, n))(∅) = 0.
Suppose that S =

⋃
i∈I S i, where S i ∈ Σ, S i ∩ S j = ∅ for i , j. We prove that

θ(a)((m, n))(S ) =
∑

i∈I θ(a)((m, n))(S i).
Let ∆i be the denumerable bases of Σi, i = 1, 2. Then,

S i =
⋃
j∈Ji

U i
j × V i

j and S =
⋃
i∈I

⋃
j∈Ji

U i
j × V i

j,

where U i
j ∈ ∆1, V i

j ∈ ∆2. Now, because • is distributive, we obtain

θ(a)((m, n))(S ) =
∑

b∗c=a

∑
i∈I

∑
j∈Ji

θ1(b)(m)(U i
j) • θ2(c)(n)(V i

j) =

∑
i∈I

∑
b∗c=a

∑
j∈Ji

θ1(b)(m)(U i
j) • θ2(c)(n)(V i

j)] =
∑
i∈I

θ((m, n))(τ)(S i).

This proves that θ(a)((m, n)) ∈ ∆(M, Σ).
Because θ(a)((m, n)) is a measure, we also obtain that the sum is convergent, being

monotonic and bound.
It remains to prove that for any a ∈ A, θ(a) : M → ∆(M, Σ) is a measurable

function. For this, it is sufficient to show that for fixed a ∈ A, S ∈ Σ and r ∈ Q+,
{(m, n) ∈ M | θ(a)((m, n))(S ) ≤ r} ∈ Σ. Assume that S =

⋃
i∈I Ui × Vi with Ui ∈ ∆1 and

Vi ∈ ∆2.
The most general nontrivial case is to assume that there exist k, l ∈ I such that

m ∈ Uk and n ∈ Vl. Then,

θ(a)((m, n))(S ) =
∑

b∗c=a

θ1(b)(m)(Ul) • θ2(c)(n)(Vk).

Hence, {(m, n) ∈ M | θ(a)((m, n))(S ) ≤ r} =

{sb |b∈A}⊆Q+⋃
∑

b∗c=a
(sb • sc ) ≤ r

{m ∈ M1 | θ1(b)(m)(Ul) ≤ sb} × {n ∈ M2 | θ2(c)(n)(Vk) ≤ sc}].

and because θi(a) are measurable for i = 1, 2, we obtain the desired result.

Proof (Theorem 1). We define the relation ≈ as follows. If m1 ∼K m2 and m1⊗n,m2⊗n
are defined, then (m1, n) ≈ (m2, n). It is sufficient to prove that ≈ is a rate bisimulation.

Suppose that K = (M, Σ, θ). Let Θ = Σ × Σ and consider an arbitrary C ∈ Θ(≈). If
we denote by ρ the transition function ofK×K , we need to prove that ρ(a)((m1, n))(C) =



ρ(a)((m2, n))(C) for any a ∈ A. Actually, it is sufficient to prove this for arbitrary
C = S 1 × S 2, where S 1 ∈ Σ(∼) and S 2 ∈ Σ. We have

ρ(a)((mi, n))(S 1 × S 2) =
∑

b∗c=a

θ(b)(mi)(S 1) • θ(c)(n)(S 2).

Because m1 ∼K m2 and S 1 ∈ Σ(∼), for each b ∈ A, θ(b)(m1)(S 1) = θ(b)(m2)(S 1).
Consequently, ≈ is a rate bisimulation.

Proof (Lemma 2). Induction on the structure of φ.
The case φ = La

rψ: ~La
rψ�M = (θ(a))−1({µ ∈ ∆(M, Σ)|µ(~ψ�M) ≥ r}). From the induc-

tive hypothesis, ~ψ�M ∈ Σ, hence, {µ ∈ ∆(M, Σ)|µ(~ψ�M) ≥ r} is measurable in ∆(M, Σ)
and because θ(a) is a measurable mapping, we obtain that ~La

rψ�M is measurable.
The cases φ = φ1|φ2: ~φ~= ~φ1�⊗~φ2� and because ~φ1�, ~φ2� ∈ Σ and Σ⊗Σ ⊆ Σ, we
get ~φ� ∈ Σ.
The cases φ = φ1−φ2: ~φ� = ~φ1�⊗

−~φ2� and because ~φ1�, ~φ2� ∈ Σ and Σ⊗−Σ ⊆ Σ,
we get ~φ� ∈ Σ.

Proof (Theorem 2). Induction on the structure of φ ∈ L. The Boolean cases are trivial.
The case φ = La

rψ: m ≡ n implies m ∼ n and consequently θ(a)(m)(C) = θ(a)(n)(C)
for any C ∈ Σ(∼). But from the inductive hypothesis we have that ~ψ�M ∈ Σ(∼), hence
θ(a)(m)(~ψ�M) = θ(a)(m′)(~ψ�M).

The case φ = φ1|φ2:M,m 
 φ1|φ2 iff m ≡ m1⊗m2 andM,mi 
 φi, i = 1, 2. From
the transitivity of ≡ we obtain n ≡ m1⊗m2 and furtherM, n 
 φ1|φ2.

The case φ = φ1 − φ2:M,m 
 φ1 − φ2 iffM,m2 
 φ2 impliesM,m⊗m2 
 φ1. But
m⊗m2 ≡ n⊗m2 which, in the context described before, impliesM, n 
 φ1 − φ2.

Proof (Theorem 3). This proof reproduces at stochastic level the proof of Lemma 7.16
presented in [29] for probabilistic systems. Before starting the proof, we introduce some
additional concepts and present some results that are needed for our proof. One of them
is the zigzag morphism, similar to [12, 29], which is a functional analogue of the concept
of bisimulation and will be the cornerstone of the completeness proof.
[Zigzag morphism] GivenM = (M, Σ, θ),M′ = (M′, Σ′, θ′) ∈ M, a zigzag morphism
is a function f : M → M′ that is surjective, measurable and for all a ∈ A, m ∈ M and
S ′ ∈ Σ′,

θ(a)(m)( f −1(S ′)) = θ′(a)( f (m))(S ′).

Because ≈ is an equivalence relation, we can take for a given (M, Σ) the quotient
(M≈, Σ≈) constructed as follows. M≈ is the set of all equivalence classes of M; there
exists a projection π : M → M≈ which maps each element to its equivalence class. π
determines a σ-algebra Σ≈ on M≈ by S ∈ Σ≈ iff π−1(S ) ∈ Σ. We call π the canonical
projection from (M, Σ) into (M≈, Σ≈).

We state now a few results that allow us to prove the theorem.



Given a set X, a family of subsets Π ⊂ 2X closed under finite intersection is called
π-system. A family of subsets Λ ⊂ 2X is a λ-system if contains X and is closed under
complementation and countable union of pairwise disjoint sets.
[Dynkin’s λ − π theorem]: If Π is a π-system and Λ is a λ-system, then Π ⊂ Λ implies
Π ⊆ Λ, where Π is the σ-algebra generated by Π .

Dynkin’s theorem allows us to prove the next lemma.
[Lemma A.] Suppose that Π ⊆ 2X is a π-system with X ∈ Π and µ, ν are two measures
on (X, Π). If µ and ν agree on all the sets in Π , then they agree on Π .

We also present two more lemmas (see, e.g., [29] Section 7.7).
[Lemma B.] Let (M, Σ) be an analytic set and let Σ0 be a countably generated sub-σ-
algebra of Σ which separates points in M, i.e., for any m, n ∈ M, m , n, there exists
S ∈ Σ0 such that m ∈ S = n. Then Σ0 = Σ.
[Lemma C.] Let (M, Σ) be an analytic set and let ≡ be an equivalence relation on M.
If there exists a sequence f1, f2, ... of real-valued Borel functions on M such that m ≡ n
iff for all i, fi(m) = fi(n), then (M≡, Σ≡) is an analytic set.
[Proposition D].For any M = (M, Σ, θ) ∈ M, there exists M≈ = (M≈, Σ≈, θ≈) ∈ M
such that the canonical projection π : (M, Σ, θ)→ (M≈, Σ≈, θ≈) is a zigzag morphism.

Now we prove Proposition D. For the beginning we show that (M≈, Σ≈) is an an-
alytic set. Let L∗(A) = {φi|i ∈ N}. Because ~φi�M is measurable, the characteristic
functions 1φi : M → {0, 1} are measurable and m ≈ n iff [∀i ∈ N, 1φi (m) = 1φi (n)].
Lemma C proves further that (M≈, Σ≈) is an analytic set.

Let B = {π(~φi�M|i ∈ N}. We show that B = Σ≈. Obviously, B ⊆ Σ≈, because
for any π(~φi�M) ∈ B, π−1(π(~φi�M)) ∈ Σ. Notice that B separates points in M≈: let
C,D ∈ M≈, C , D and let m ∈ π−1(C), n ∈ π−1(D); because m 0 n, there exists
φ ∈ L∗(A) such that m ∈ ~φ�M = n. Hence, we can apply Lemma B and we obtain
B = Σ≈.

Now we define θ≈ such that π is a zigzag. Notice first that π is measurable and sur-
jective by definition. For each C ∈ Σ≈ and α ∈ A, let θ≈(α)(m≈)(C) = θ(α)(m)(π−1(C)).

This definition is correct: let m, n ∈ m≈, we prove that θ(α)(m) and θ(α)(n) agree on
Σ≈. We show first that they agree on ~φ�M ∈ B. Suppose that we have θ(α)(m)(~φ�M) <
r < θ(α)(~φ�M). Then, M,m 
 ¬Lαr φ while M, n 
 Lαr φ - impossible. Because B is
closed under finite intersection (~φ�M ∩ ~ψ�M = ~φ ∧ ψ�M) and M = ~>�M ∈ B, we
apply Lemma A and obtain that θ(α)(m) and θ(α)(n) agree on Σ≈.

Now we only need to prove that for any α ∈ A, θ≈(α) is measurable. Let C ∈ Σ≈

and A a Borel set of R+. We have

(θ≈)−1({µ ∈ ∆(M≈, Σ≈)|µ(B) ∈ A}) = π((θ(α))−1({ν ∈ ∆(M, Σ)|ν(π−1(B)) ∈ A})).

But {ν ∈ ∆(M, Σ)|ν(π−1(B)) ∈ A} is measurable in ∆(M, Σ) and because θ(α) is measur-
able we obtain that (θ(α))−1({ν ∈ ∆(M, Σ)|ν(π−1(B)) ∈ A}) ∈ Σ implying π((θ(α))−1({ν ∈
∆(M, Σ)|ν(π−1(B)) ∈ A})) ∈ Σ≈. And this concludes the proof of Proposition D.

Now we have the ingredients to prove Theorem 3.
We prove that ≈ is a rate bisimulation. As before, it is sufficient to prove it for the

caseM =M′. Let C ∈ Σ(≈). Then, C = π−1(π(C)), where π is the canonical projection.
Because π is measurable, we get that π(C) ∈ Σ≈.



If m ≈ m′, then π(m) = π(m′). Hence, θ(a)(m)(C) = θ(a)(m)(π−1(π(C))) = θ≈(a)(π(m))(π(C)),
because π is a zigzag morphism. But θ≈(a)(π(m))(π(C)) = θ≈(a)(π(m′))(π(C)) and
θ≈(a)(π(m′))(π(C)) = θ(a)(m′)(C). This proves that θ(a)(m)(C) = θ(a)(m′)(C) and it
concludes the proof.

Proof (Lemma 3). We have that `
∧
f∈F

( f → 1) and using rule (R8) we obtain `
s≤k�
fi∈F

f1|...| fs.

A consequence of applying (R8) is also that for anyΠ1, Π2 ∈ Ω[ψ], there exists a unique
Π ∈ Ω[ψ] such that Π1|Π2 ⊆ Π .

For each consistent φ ∈ L[ψ] there exists k ≤ k such that ` φ → k. From the
construction of the maximally-consistent sets we have ` 1 →

∨
f∈F

f ; we can apply

(R7) and obtain that for each k ∈ N, ` k →
s<k∨
fi∈F

f1|...| fs. Hence, for each consistent

φ ∈ L[ψ] there exists k ≤ k such that ` φ →
s<k∨
fi∈F

f1|...| fs. And because `
s≤k�
fi∈F

f1|...| fs,

simple Boolean reasoning proves that there exists f1|...| fs ∈ F
∗ with s ≤ k such that

` f1|..| fs → φ. Hence, φ is contained in at least one set Π ∈ Ω[ψ] and F ∗ is the set of
generators for the elements of Ω[ψ].

Proof (Lemma 4). (4) The existence of x and y derives from the construction of Ωp[ψ]
and the Rules (R2), (R3).
Because Γ is consistent and La

xφ,¬La
yφ ∈ Γ, x , y. If x > y, La

xφ ∈ Γ entails (Axiom
(A2)) La

yφ ∈ Γ, contradicting the consistency of Γ.
Hence, x < y. If x + 1/p < y, then La

x+1/pφ < Γ (because x < x + 1/p ∈ Qq and Γ is
Lp-maximally consistent), i.e. ¬La

x+1/pφ ∈ Γ implying that x + 1/p ≥ y - contradiction.

Proof (Lemma 5). As before, the existence of sup and inf is guaranteed by the con-
struction and the Rules (R2) and (R3). Let x∞ = sup{r ∈ Q : La

rφ ∈ Γ∞} and
y∞ = in f {r ∈ Q : ¬La

rφ ∈ Γ
∞}.

Suppose that x∞ < y∞. Then there exists r ∈ Q such that x∞ < r < y∞. This implies
that ¬La

rφ ∈ Γ
∞ (from the definition of x∞) and La

rφ ∈ Γ
∞ (from the definition of y∞) -

impossible because Γ∞ is consistent.
Suppose that x∞ > y∞. Then there exists r ∈ Q such that x∞ > r > y∞. As Γ∞ is

maximally consistent we have either La
rφ ∈ Γ

∞ or ¬La
rφ ∈ Γ

∞. The first case contradicts
the definition of x∞ while the second the definition of y∞.

Obviously, x ≤ x∞ ≤ y. We cannot have x∞ = y because else La
x∞φ,¬La

x∞φ ∈ Γ
contradicting the consistency of Γ.



Proof (Lemma 6). For the beginning we prove that Kψ ∈ K. This result is a direct
consequence of the construction ofKψ. Firstly notice that because the space is discrete,
is Polish, hence analytic set.

The central problem is to prove that for arbitrary Γ ∈ Ωp[ψ] and a ∈ A, the function
θψ(a)(Γ) : 2Ωp[ψ] → R+ is well defined and a measure on (Ωp[ψ], 2Ωp[ψ]). Next, we show
that θψ(a) ∈ ~Ωp[ψ]→ ∆(Ωp[ψ], 2Ωp[ψ])� and conclude the proof.

θψ(a)(Γ) is well defined: suppose that for φ1, φ2 ∈ L[ψ] we have ~φ1� = ~φ2�. Then,
from Lemma 4, ` φ1 ↔ φ2 and from Rule (R1) ` La

rφ1 ↔ La
rφ2. This entails aΓφ1

= aΓφ2

and guarantees that θψ(a)(Γ) is well defined.
Now we prove that θψ(a)(Γ) is a measure.
For showing θψ(a)(Γ)(∅) = 0, we show that for any r > 0, ` ¬La

r⊥. This is sufficient,
as Axiom (A1) guarantees that ` La

0⊥ and ~⊥� = ∅. Suppose that there exists r > 0 such
that La

r⊥ is consistent. Let ε ∈ (0, r)∩Q. Then Axiom (A2) gives ` La
r⊥ → La

ε⊥. Hence,
` La

r⊥ → (La
r (⊥ ∧ ⊥) ∧ La

ε (⊥ ∧ ¬⊥)) and applying the Axiom (A3), ` La
r⊥ → La

r+ε⊥.
Repeating this argument we can prove that ` La

r⊥ → La
s⊥ for any s and Rule (R3)

confirms the inconsistency of La
r⊥.

We show now that if A, B ∈ 2Ωp[ψ] with A∩B = ∅, then θψ(a)(Γ)(A) + θψ(a)(Γ)(B) =

θψ(a)(Γ)(A ∪ B). Let A = ~φ1�, B = ~φ2� with φ1, φ2 ∈ L[ψ] and ` φ1 → ¬φ2. Let
x1 = θψ(a)(Γ)(A), x2 = θψ(a)(Γ)(B) and x = θψ(a)(Γ)(A∪B). We prove that x1 + x2 = x.

Suppose that x1 + x2 < x. Then, there exist ε1, ε2 ∈ Q
+ such that x′1 + x′2 < x, where

x′i = xi +εi for i = 1, 2. But this implies that La
x′i
φi < Γ

∞ (from the definition of xi), hence
¬La

x′i
φi ∈ Γ

∞. Further, using Axiom (A4), we obtain ¬La
x′1+x′2

(φ1 ∨ φ2) ∈ Γ∞, implying
(from the definition of x) that x′1 + x′2 ≥ x - contradiction.

Suppose that x1 + x2 > x. Then, there exist ε1, ε2 ∈ Q
+ such that x′′1 + x′′2 > x, where

x′′i = xi − εi for i = 1, 2. But this implies (from the definition of xi) that La
x′′i
φi ∈ Γ

∞.
Further, Axiom (A3) gives La

x′′1 +x′′2
(φ1 ∨ φ2) ∈ Γ∞, i.e. x′′1 + x′′2 ≤ x - contradiction.

Now we prove thatMψ ∈ M.
From Remark 3 we know that ⊗ is welldefined. Associativity and commutativity is

guaranteed by the axioms (A5) and (A6) while the structural granularity by Rule (R6)
applied to F .

It remains to prove that (Mψ, Γ
′⊗Γ′′) ∼ (Mψ×Mψ, (Γ′, Γ′′)). This requires to prove

that Γ′|Γ′′ ⊆ Γ implies that for arbitrary φ ∈ L[ψ],

θψ(a)(Γ)(~φ�) =
∑

b∗c=a

g′,g′′∈F ∗∑
~φ�=~g′ |g′′�

θψ(b)(Γ′)(~g′�) • θψ(c)(Γ′′)(~g′′�).

Let x = θψ(a)(Γ)(~φ�) and xb
g′ = θψ(b)(Γ′)(~g′�), xc

g′′ = θψ(c)(Γ′′)(~g′′�). We need

to prove that x =
∑

b∗c=a

g′,g′′∈F ∗∑
~φ�=~g′ |g′′�

xb
g′ • xc

g′′ .

We have Lb
xb

g′
g′ ∈ Γ′ and Lc

xc
g′′

g′′ ∈ Γ′′ for all g′, g′′ ∈ F ∗ such that ~φ� = ~g′|g′′�.

But ~φ� = ~g′|g′′� implies `
∧

~φ�=~g′ |g′′�

g′|g′′ → φ and because the elements of F ∗ are

mutually disjoint and Γ′|Γ′′ ⊆ Γ, we can apply Rule (R7) and obtain



La
(
∑

b∗c=a
∑g′ ,g′′∈F ∗

~φ�=~g′ |g′′� xb
g′•x

c
g′′ )
φ ∈ Γ. Hence,

x ≥
∑

b∗c=a

g′,g′′∈F ∗∑
~φ�=~g′ |g′′�

xb
g′ • xc

g′′ .

Suppose that x >
∑

b∗c=a

g′,g′′∈F ∗∑
~φ�=~g′ |g′′�

xb
g′ • xc

g′′ . Because • is continuous, there exist

εb
g′ , ε

c
g′′ > 0 such that

x >
∑

b∗c=a

g′,g′′∈F ∗∑
~φ�=~g′ |g′′�

(xb
g′ + εb

g′ ) • (xc
g′′ + εc

g′′ ).

We have ¬Lb
xb

g′+ε
b
g′

g′ ∈ Γ′ and ¬Lc
xc

g′′+ε
c
g′′

g′′ ∈ Γ′′ for all g′, g′′ ∈ F ∗ such that

~φ� = ~g′|g′′�. But ~φ� = ~g′|g′′� also implies `
∧

~φ�=~g′ |g′′�

φ → g′|g′′ and because

the elements of F ∗ are mutually disjoint and Γ′|Γ′′ ⊆ Γ, we can apply Rule (R8) and
obtain ¬La

(
∑

b∗c=a
∑g′ ,g′′∈F ∗

~φ�=~g′ |g′′� xb
g′•x

c
g′′ )
φ ∈ Γ. Hence,

x <
∑

b∗c=a

g′,g′′∈F ∗∑
~φ�=~g′ |g′′�

(xb
g′ + εb

g′ ) • (xc
g′′ + εc

g′′ ), - contradiction!


