The Modula-3 Type System

Luca Cardelli
Jim Donahué
Mick Jordan
Bill Kalsow
Greg Nelson

Abstract This paper begins with an overview of the language and
then focuses on three aspects of its type system: the uniform

This paper presents an overview of the programminiescription of type compatibility in terms of a subtype

language Modula-3, and a more detailed description of it
type system.

elation, the use of structural equivalence, and an extension of
the type system to support object-oriented programming.

1 Introduction 2 Language Overview

é)ne of our main goals was increased robustness through
éafety from unchecked runtime erressforbidden operations

H]at violate an invariant of the runtime system and lead to an
unpredictable computation.

A classic unchecked runtime error is to free a record that is
(#]elflerencecd (l;y ac&ve:jploinzters. Tg a(\;ct))id this Sanger, Moglulﬁl-s
; P : ollows Cedar, Modula-2+, an eron by automatically
the language, focusing primarily upon its type system. freeing unreachable records. This affects the type system,

Modula-3 is a direct descendent of Mesa [Blodula-2 . :
[14], Cedar [5], and Modula-2+ [9, 10]. It also resembles itsSince the type rules for references must be strict enough to

cousins Object Pascal [13], Oberon [15], and Euclid [6].make garbage collection possible at runtime.

Since these languages already have more raw material th?n?hnotther v]\c/ell-knqwrtl unchﬁclked runt|rtr;]e terrobr IS tto tﬁss;gn
fits comfortably into a readable fifty-page language '© € 1&g Of a variant record in a way that Subverts the type

definition, which we were determined to produce, we didntSystem. Distinguishing subversive assignments from benign

need to be inventive. On the contrary, we had to leave margSSIgnments in the language definition is error-prone and
good ideas out rbitrary. The objects and classes first introduced by Simula

Instead of exploring new features, we studied the feature] and adopted in Oberon and Object Pascal are more general

from the Modula family of languages that have provent an variant records, and they are safe, so we have discarded

themselves in practice and tried to simplify them and fit themyariant rep_ords and gdopted objects. . .
In addition to being safer than variant records, objects

into a harmonious language. We found that most of the ;
successful features were aimed at one of two main goaléypes allow a measure of polymorphism for data structures

greater robustness, and a cleaner, more systematic ty Ee lists, qu.eues,'and trees. For examplg, a procedu're that
system reverses a list object can safely be applied both to lists of

integers and to lists of reals. All Modula-3 objects are
references (unlike in C++ [12]). Modula-3 allows only single
inheritance (unlike Owl [11]).

Generally the lowest levels of a system cannot be
programmed with complete safety. Neither the compiler nor
the runtime system can check the validity of a bus address for
Permission to copy without fee all or part of this material is granted provided_"1 p_erlph_eral dewce, nor can they limit the ensu!ng haVO_C if it
that the copies are not made or distributed for direct commercial advantagés invalid. This presents the language designer with a
the ACM copyright notice and the title of the publication and its date appeargilemma. If he holds out for safety, then low level code will
and notice is given that copying is by permission of the Association forhave to be programmed in another language. But if he adopts
Computing Machinery. To copy otherwise, or to republish, requires a fee . ’ .
and/or specific permission. unsafe features, then his safety guarantee becomes void
everywhere. In this area we have followed the lead of Cedar

© 1989 ACM0-89791-294-2/89/0001/0202 $1.50 and Modula-2+ by adopting a small number of unsafe

The design of the programming language Modula-3 was
joint effort by the Digital Systems Research Center and th
Olivetti Research Center, undertaken with the guidance an
inspiration of Niklaus Wirth. The language is defined by the
Modula-3 Repor{3], and is currently being implemented by
the Olivetti Research Center. This paper gives an overview

"DEC Systems Research Center (SRC)
Olivetti Research Center

features that are allowed only in modules that are explicity3 The Subtype Relation
labeled unsafe. In a safe module, the compiler guarantees the

absence of unchecked runtime errors; in an unsafe mOdUIe’I\iﬁodula-s is “strongly-typed”. Ideally, this means that the
IS tlile prol\g/ylra(;nznegf reSpogS'b'“tg to avou_i themA . value space is partitioned into types, variables are restricted to
From Modula-2+ we adopted exceptions. An exception,,q yajyes of a single type, and operations are restricted to
exits all procedure call levels between the point at which it '%pply to operands of a fixed sequence of types. In actuality
“raised” and the point at which it is “handled”. Exceptions arelthings are more complicated. A variable of tjpes] can '

a good way to handle any runtime error that is not necessariy . : .
A . afely be assigned to a variable of tfe€EGER but not vice
fatal. The alternative is to use error return codes, but this has y g o R

)) versa. Operations like absolute value apply botREaLs and
the drawback that programmers don't consistently test fO[NTEGEFs instead of t inale t loadi Th
them. In the Unix/C world, the frequency with which , instead of to a single type (overloading). The

programs omit tests for error returns has become somethirfjPes of literals (for exampl$iIL) may -be amblguoug. .The
of a standing joke. Instead of breaking at an error, too man§/P€ of an expression may be determined by how it is “S‘?d
programs continue on their unpredictable way. Raising at@/9et-typing). Type mismaiches may cause automatic
exception is a more robust way to signal an error, since it wilfOnversions instead of errors (as when a fractional real is
stop the computation unless there is an explicit handler for it ©Unded upon assignment to an integer). ,
Naturally we retained modules, which are separate We adopted severgl principles in prder to keep Modula-3's
program units with explicit interfaces. But we relaxed thelYP€ system as uniform as pos_,SIbIe. First, there are no
Modula-2 rule that there be a one-to-one correspondencdmPiguous types or target-typing: the type of every
between interfaces and the modules that implement them. RXPression is determined only by its subexpressions, not by its

module can implement a collection of interfaces; an interfacé&'S€: Serc]ond, there are ?0 aUtOImatIChconversmrTs. In some
can be implemented by a collection of modules. cases therepresentationof a value changes when it is

We also retained opaque types, which hide the@ssigned (for example, when assigning to a field of a packed
representation of a type from its clients,. In Modula-3. as inf€cord) but the abstract value itself is transferred without
some but not all implementations of Modula-2, variables with®"ange. Third, the rules for type compatibility are defined in

opaque types must be references. If the hidden representatiffiif ™S Of @ single subtype relation, written *. A naive plan
changes but the interface remains the same, client moduld@" doing this goes as follows:
will not need to be reprogrammed, or even recompiled. A i)
type that is not opaque is called concrete. It is possible to * defineT <:U by rules relating to the syntax dandu;
reveal some but not all of the structure of a type, by declaring i
it to be an “opaque subtype” of a given concrete object type. * define, for each type, the set of values of that type.
The concurrency features of Modula-2 provide runtime o)
support for coroutines. In Modula-3 we have upgraded thes# Such a way that these definitions satisfy
features to support threads of control that can be executed] .
concurrently on a multiprocessor. The features are a * ValuesetruleT < U ifand only if every value of type
simplified version of the Mesa extensions to Hoare’s monitors T iS @ value of type),
[4, 7] whose formal semantics have been specified in Larch
[1]. Waiting, signaling, and locking a monitor have Hoare’s * Natural assignment rule: A is assignable to d if and
semantics, but the requirement that a monitored data structure only if T<: U
be an entire module is relaxed: it can be an individual record
or any set of variables instead. The programmer is responsible This plan would lead to a highly uniform type system, but
for acquiring the appropriate lock before accessing theinfortunately it is too simple. For example, the natural
monitored data. assignment rule would forbid the assignment ofNTEGER
The language provides a syntactic construct for acquiring o a[0..9] ; but the conventional policy is to allow such an
lock, executing a statement, and releasing the lock. Except fassignment, compiling a runtime check. We have no doubts
this statement, the concurrency features are all specified that the conventional policy is the best one, so the natural
means of a “required interface”, which is just like an ordinaryassignment rule will not do. Any assignment satisfying the
interface except that all Modula-3 implementations mustnaturalassignment rule is allowed, but in addition there are
implement it. Thus concurrency adds little linguistic more liberal rules for ordinal types (integers, enumerations,
complexity. and subranges), references, and arrays. These will be
Modula-3 provides a few convenience features that are natescribed below.
provided by Modula-2: default values for procedure We were also forced to drop half of the value set rulg: if
arguments, keyword parameters in procedure callss: U , then every value of typ€ is also a value of typs,
constructors for record and array values, and the ability t@ut the converse does not hold. This still provides a criterion
specify an initial value for a variable at the point of its for checking that a syntactic subtype rule is consistent with
declaration. the semantics of the types involved, but it allows us to leave

out some subtype relations that are logically possible but Notice that the valueNIL is a member of all reference
pragmatically unattractive, because they would force thaypes. This does not mean that the typaéliaf is ambiguous:

implementation to do too much work. its type iSNULL, which is assignable to all reference types by
We will now describe the subtype rules for each class ofhe natural assignment rule.
types. The TYPECASEstatement can be used to determine the
referent type of a variable of tyfREFANY but there is no
3.1 Ordinal types. corresponding operation for variables of tys@DRESS This

difference reflects the fact that traced references must be

Subrange types are subtypes of their “base” types, since eattgged for the benefit of the garbage collector.
member of a subrange is also a member of the correspondingUntraced references are provided for several reasons.

base type: Low-level code may require pointers to device control blocks
that do not reside in the system storage pool; linking with
[n..m] <: INTEGER if n andmare integers code that was compiled from another language may require
[a.b] < E if a andb are from the pointers that are not valid traced references; and untraced
enumeration type references can provide significant performance advantages.

Most operations on untraced references are type-safe.

Moreover, two subrange types are in subtype relation whehiowever, reclaiming the storage for an untraced reference is a

their respective sets of values are in inclusion relation: potential unchecked runtime error, and so is not allowed in
safe modules.

Object types are also reference types, but their subtyping

[a..b] <:[c..d] iffa.b] is a (possibly empty) rules will be described in a later section.

subset ofc..d]

Note that partially overlapping subranges are completely3.4 Procedure types.
unrelated.
Modula-3's procedure types are very similar to those in
Modula-2, consisting essentially of a signature specifying the
result type and the mode and type of each parameter. There
For the subtype rule for sets we simply use the value set rule”’1re some minor differences: a Modula-3 procedurg signature
also specifies the set of exceptions that can be raised by the
i procedure, and allows the formal parameters to be named and
SETOFT<:SETOFT if T<T given default values.
The subtype rule for procedure types T and U is:

This rule is very natural, although open to the objection that it
requires the implementation to convert between T<U if:
representations for some assignment operations. ' '

3.2 Set types.

e T and U have the same number of parameters, and
3.3 Reference types. corresponding parameters have the same type and mode.

A reference type is eithéracedor untraced.A member of a * T and U have identical return types, or neither has a

traced reference type is traced by the garbage collector; that return type.

is, the implementation stores its referent in a system-managed

storage pool, determines at runtime when all traced references « The exception set af contains the exception settf

to it are gone, and then reclaims its storage. A member of an

untraced reference type is not traced by the garbage collector. The reader may wonder why we did not follow the
The typeREF T is the type of all traced references to well-known “arrow rule”, in which (writingT -> U for the

variables of typed; the typeUNTRACED REF T is the type of type of all functions from type to typeU)
all untraced references to variables of type The type

REFANYis the type of all traced references; the t(yp®RESS (T ->U) < (T'->U’)
is the type of all untraced references; and the el is the if T<T andUu<U
type containing onlyIL .
The subtype rules for reference types are again determinekhe arrow rule cannot be used &R parameters, since they

by the value set rule: are in a sense both arguments and results. Even for value
parameters and results the rule has undesirable consequences.
NULL <: REF T <: REFANY Suppose for example th@it<: U and thatT is a procedure
NULL < UNTRACED REF T <: ADDRESS that takes &), while q is a procedure variable declared to take

aT. The arrow rule allows the assignmgnt P, sinceP is ARRAY | OF T <: ARRAY JOF T
less “choosy” tham. It follows that the actual of type that if NUMBER(l) = NUMBER(J)
the compiler produces in the calling sequence to g must also
be a valid actual of typ&, since this will be expected by the i.€. the arrays must have identical sizes and element types.
body ofP. Notice that the rule requires that the element types be
Thus if the arrow rule is used for procedure types, therdentical, even though the value set rule would only require
whatever representation is used for variables of typeust that the element type on the left be' a subtype of the element
also be used for variables of any subtypeUofhis policy ~ YPe on the right. For example, consider:
would rule out biased implementations of subrange types, for 1y
example. It is incompatible with the subtype rule given - aARrAY [0..999] OF [0..255];
previously for sets. It would mean that fixed arrays passed by y = ARRAY [0..999] OF INTEGER;
value would have to be treated like open arrays, that is, with
an additional integer specifying the length. None of thesgyery sequence of a thousand integers in the r@angss]
consequences is decisively bad, but the arrow rule is ng§ 3 sequence of a thousand integers, so the value set rule
decisively good. We decided not to break with convention. \yould requireT <: U . But this would require complicated
On the other hand, the subtype rule for procedures does ngbyersions to implement assignment and parameter passing,
require the exception sets to be equal. This generality has nQ |east ifT is represented differently from, as is likely in

undesirable consequences for the implementation. many implementations. This complexity is the main reason
For convenience in handling procedure variabhs, is that we dropped half of the value set rule.

also allowed as a procedure; thus we have the additional rule: Another point to note about the array subtype rule is that
the domain types andJ don’t need to be the same; they only

NULL <: PROCEDURE(A): B RAISES E need to have the same length. An awvajue isa sequence;
_ an arrayvariable consists of a value together with a method
for any arguments, result typeB, and exception sé of indexing it: indexes are automatically decreased by the
lower bound of the index set of the variable’s type.
3.5 Packed types. Consequently the set of values of an array variable depends

only on the length of the index set, and the subtyping rule
above is consistent with the half of the value set rule that we
are keeping. The advantage of this approach is that it allows
all open arrays to have lower bound zero, which reduces
bookkeeping at runtime. This may seem overly parsimonious,

TYPET=BITSnFOR U declares that typ€ has the same
values adJ, but record fields and array elements of typeill
occupy exactlyn bits. The subtyping rules for packed types

are. but the approach comes from Modula-2, where it has worked
BITSNFORT<: T well. .
T<BITSNnFORT The declaratiomYPE T = ARRAY OF E declaresT to be

an open array type. The valuesTadre sequences of variables
These rules are natural consequences of that fact tad U of type E. Open array variables are always indexed by
have the same values. They make it possible to assigntegers starting at zero.
unpacked values to packed fields, and vice versa. It may seemObviously we need the rule
surprising tha andU can be subtypes of one another without
being identical, but this is appropriate when distinct types ARRAY | OF T <. ARRAY OF T

represent the same set of values.)]
which allows a fixed array actual to be bound to an open array

formal. Since Modula-3 allows multidimensional open arrays,

3.6 Array types. we also need the rules

As in Modula-2, array types can Ered or open.The length ARRAY JOF ARRAY IOF T

of a variable with a fixed array type is determined at compile <: ARRAY OF ARRAY OF T

time. The length of a variable with an open array type is

determined at run time, when the variable is allocated or ARRAY OF ARRAY | OF T

bound. It cannot be changed thereafter. Assignments are <:ARRAY OF ARRAY OF T

allowed between fixed and open arrays, with a run-time check

that the lengths agree. These don't follow from the first rule, because in general the
TYPE T = ARRAY | OF E declaresT to be the type of array rule requires that the elements types be identical.

fixed arrays with index type and element typg. The index Ge_neralizing ton dimensiqns, we obtain the following rule,

type must be an ordinal type. The subtype rule is: which subsumes the previous three:

ARRAY | 1 OF ... ARRAY I nOFT This decision may be surprising. Of the languages
<: (ARRAY OF) N mentioned in the introduction, only Euclid uses structural
' equivalence. It seems at first that structural equivalence is
where thd ; are ordinal types or omitted. (Omittets create worse fqr the programmer, since It weakens typgcheckmg by
introducing the danger of accidental type coincidences, and

open array types.) . .) . . L
worse for the implementation, since it requires a non-trivial

Finally, the relation<: can be defined as the smallest . .
) " : S computation to determine whether two types are structurally
reflexive and transitive relation that satisfies the rules

; : . equivalent. So why not stick with name equivalence?
presented above (and the rules for objects in Section 5). the objectiony that structural eql?ivalence weakens

) typechecking by creating accidental type coincidences has
3.7 Assignment rules. some truth in it, but the truth is more complicated than it first
appears. For example, consider
A typeT is assignabldo a typeU if one of the following

conditions apply. TYPE

Subrangel = [0..255];
Subrange?2 = [0..255];

Refl = POINTER TO INTEGER,;
Ref2 = POINTER TO INTEGER;

e T<:U (The natural assignment rule).

» T andU are ordinal types with at least one member in

common. In Modula-2, these declarations produce four distinct types.

But although all types are created distinct, some types are
more distinct than others. A variable of typegbrangel can

be assigned to a variable of ty@abrange2 , since the
assignment rule for ordinal types is based on the structure of
i . . . o the type. A variable of typRefl cannot be assigned to a

In the first case, no run-time error is possible, sindeisfa variable of type Ref2, since the assignment rule for

subtype olJ, then everyr is au. _) references requires type identity, and ignores the structure of
In the second case, a conventional range check is made o, type.

ensure that the particularis a member of. . We have met name-equivalence purists who get uneasy
The third case allows, for example, assignif@EEANYIO ahqyt this, and even try to change the rules to prevent

a REF T. It also allows assigning aARRAY OF T t0 an assignments betweeSubrangel andSubrange2 . After all,

ARRAY | OF T . In this case a run-time check is requiredit certainly is true that assignments betwsebrangel and

either on the type of the reference or on the length of thgprange2 are sometimes bugs, and to let them slip by the

array. _ o compiler seems like a concession of defeat by all who believe
The third rule is unconventional: in Cedar, Modula-2+, and, static typing. But this leads to type systems in which a

Oberon, the rules for references allow a supertype to bﬁ)..lO] can't be assigned to[@..11] or to anINTEGER
assigned to a subtype only by using an expMARROW Tpiqis very awkward, and probably impractical.

operation. But this strictness with references is somewhat There is a fundamental trade-off between convenience and
inconsistent with the lenient rule for ordinal types. safety. If you want the convenience that [@.255]

Furthermore, based on our survey of Modula-2+ prograr‘nsatutomatically inherits all the attributes of MTEGER then

the conventional rule does not seem to make programs safﬁgJu face the danger that you may accidentally use an
or more readable. INTEGER attribute that is not an attribute of the type
)] represented by this instance[0f255] . Modula-2 already
4 Type |dent|ty has a mechanism for hiding attributes of a type, namely the
opaque type machinery. It seems like a mistake for a subrange
Two types are identical if their definitions are the same whergleclaration to be doing the work of an opaque type
expanded; that is, when all names in the type definition ar@eclaration. So name-equivalence purists can relax: if a
replaced by their definitions. In the case of recursive typesprogrammer erroneously assigns a Subrangel to a
the expansion is infinite. In other words, Modula-3 usesSubrange2 and complains that the type system let it through,
structural equivalence, while Modula-2 uses namethey can tell her that she should have used an opaque type.
equivalence. (The term “name equivalence” is a misnomer: it If this argument applies tSubrangel and Subrange2 ,
doesn’t mean that types are the same only if they have thehy not to Refl and Ref2? In Modula-3, the rule for
same name; it means that each occurrence of a typassigning references is based on the subtype relation (like all
constructor produces a new type. But it's a popular misnomegssignment rules). Because of objects, Modula-3 reference
so we'll use it.) types have a rich subtype structure, just like the ordinal types.
The subtype rules make Refl a subtype ofRef2, and

U< T andT is an array type or reference type
(including an object type, but excludimg®DDRESSIn
safe modules).

therefore assignable ®ef2 , whether they are distinct types problem, as programmers who have been bitten by it can
or not. testify.
Of course, a language with structure-based assignment
rules can still use name equivalence. For example, i ;
Modula-2 the typesubrangel andSubrange2 are distinct, 5 ObJeCt types

even though they are assignable. The results are a little Odﬁjhe object types of Modula-3 are essentially Simula classes.

?;rrf;?egfﬂi;selggb?:ngg;ualIgal\r/lac:gi:i;f t?ilgniasn?:;al tl?ofa The challenge we faged is tq integratg Fhem into the type

: . ’ . system so that they fit well with the existing procedure and
value parameter, but not for a vanaple parameter. This See"l]gference types. This section first motivates the two essential
more of a quirk than a useful protection. aspects of object types, inheritance and methods, then

In other words, the more structure-based assignment rule escribes how they fit together in Modula-3, and finally
the weaker the argument that name equivalence prevenfy . hc an efficient implementation

accidental type coincidences. Since Modula-3's type system
is based on a subtype relation, this argument for retainin% .
name equivalence was not persuasive. .1 Inheritance.

In contrast, there is a strong argument for switching to
structural equivalence, which is that structural equivalencéonsider the type declarations
makes sense between types that occur in different programs
while name equivalence makes sense only between types thal
occur in the same program. This advantage becomes
significant when type safety is extended to distributed
systems (via remote procedure call) or to permanent data
storage systems.

For example, DEGRC'’s Topaz system includes a package
called Pickles for storing typed data on the disk. The call
Pickle.Write(r, f) writes the data structure referenced
by r into the filef , preserving any circularities, substructure
sharing, and the types of the records involved. The preserve"’H‘
data is called a “pickle”. The calickle. Read(r, f)
sets the referengeto a reconstruction of the value pickled in
the filef . (The run-time information that makes this possible ecord, without disturbing thi field.

consists of a a single “typecode” that identifies the type of) X o i i
This example illustrates the basic idea of inheritance of

each reference, which needs to be maintained for the garba%%, .
collector, anyway.) The question now arises: when is it typePPI€ct types. In Modula-3, the type construo@BJECT is

safe for a pickle written by prograffrom a variable of type llké REF RECORDbut while the referent of REF RECORD

T to be read by another prograninto a variable of type? must consist exactly Qf the fields declared in Fhe recprd type,
With structural equivalence, the answer is obvious: the"€ referent of the object type may have additional fields not

operation is type-safe if andU are the same type. that is, if Mmentioned in the object type. Also, theBJECT type

they have the same structure. Without structural equivalenc&€onstructor can be used to extend an object type with

there is no satisfactory answer. Requiring thandU have additional fields as well as to create a new type from scratch.

the same name doesn’'t work, since in different programézor example, to achieve the subtype relati@n<: A , the

different types can have the same name. Requiringrthatl YP€S above should be declared:

U have the same structure (that is, using name equivalencerYPEA:OBJECT 2 REAL END:

within a program but structural equivalence for pickles) typg ag=a OBJECT b: BOOLEAN END:

doesn’t work, since it would allow two structurally equivalent

refere.nces with distinct typepocjes to be pickled and then. r.ead Here is an example of inheritance used to produce a

back into two references with identical typecodes. Requiringgsaple queue implementation. First, the interface:

that T and U have the same name and the same structure

works after a fashion; it is the current policy for the pickles TYPE

package. But it has serious drawbacks. It means that changing Queue = RECORD head, tail: QueueElem END;

the name of a type can invalidate a previously-created pickle. QueueElem = OBJECT link: QueueElem END;

Since names have to be generated arbitrarily for anonymous

types that appear in pickles, a pickle can also be invalidated PES;ESXF?E Queue; x: QueueElem);

just py reordering type declarat|o.ns.or by giving a name to a Delete(VAR g: Queué): QueueElem; '

previously anonymous type. This is not just a theoretical clear(VAR q: Queue):

YPE
A = REF RECORD a: REAL END;
AB = REF RECORD a: REAL; b: BOOLEAN END;

Loosely speaking, a valuehas typeAB if it is the address
of a word in memory containing aa field of type REAL
followed by a word containing b field of type BOOLEAN
Similarly, a valuex has typeA if it is the address of a word in
memory containing aa field of typeREAL Thus evenAB is
A that is, loosely speakingB <: A .

In fact, in any conventional implementation, passingA\Bn
actual to a procedure whose formal is of types safe and
meaningful: the procedure operates on thdield of the

6

The implementation of the procedures relies only on theNEw(gcd,
link field of a QueueElem; it does not depend on any proc = PrintGCD, n = Ill, m := 259)
additional fields that might be present in particular subtypes.
The implementation is obvious and will not be listed. Here isUnfortunately, the initialization ofcd.proc in the last line
an example client: is illegal, since the declared argument typedat.proc is
an arbitrary closure, while PrintGCD demands a
GCDClosure . Even if Modula-3 had used the arrow rule for
procedure subtyping, storing a choosy procedure value into a

TYPE IntQueueElem =
QueueElem OBJECT val: INTEGER END;

VAR permissive procedure variable would not be type-safe.
q: Queue; It is awkward to work around this: we have to change
x: IntQueueElem; PrintGCD to take an arbitrary closure and narrow it at

runtime to a GCDClosure . (By “narrowing”, we mean
checked runtime type conversion.) The code would have to

Elear(q); ; .

NEW(x. val := 6); look like this:

Insert(q, x);

@.% PROCEDURE PrintGCD(cl: Closure);
x := Delete(q) gég?\lcl: GCDClosure :=cl;

. . . . Print (GCD(gcl.n, gcl.m
Passing to Insert is safe, since evenyitQueueElem is a END P(rintGC(:gl]D' gel.m)

QueueElem. Assigning the result dbelete to x cannot be
guaranteed valid at compile-time, but the assignment willt s jritating as well as awkward, since in the program at

produce a checked runtime error if the source value is not gang it actually is safe to store the choosy procedure value in
member of the target type. ThugtQueueElem bears the the permissive variable. The reason is that the only argument
same relation t@ueueElem as[0.9] bears tONTEGER hat the program ever suppliesctproc iscl itself. Given
Notice that the runtime check on the resulDefete(q) i this, it is easy to see that the initializationgofi.proc to

not redundant, since other subtypesQufeueElem can be prniGeD “ought to be” type-safe: at the time it is compiled,

inserted intay. the type ofgcd is known to be not just @losure but also a
GCDClosure . By assumptiongcd is the only value that will

5.2 Methods. ever be passed ted.proc |, so it is all right for it to demand
aGCDClosure .

We begin with a simple example: how to implement a This problem illustrates the typechecking aspects of the
closure, which is simply a procedure bundled up with arrole of “methods” in object-oriented programming. The idea
argument record. For example, the formal parameter tdehind methods is that a general operatias applied to a
Thread.Fork , which creates a new thread of control, is aspecific objectv by calling a version of that is customized
closure. The first definition that comes to mind is: for v (called v's P method). That isP(v, ... simply
translates tov.P(v, ...) . The Closure example is the
special case in which there is only one method and the
method’s only argument is the object itself.

This method approach is most useful in conjunction with
inheritance, since the suite of methods for a particular subtype
Bf v will generally require extra data fields in addition to the
data fields of the supertype. But, as we can see from the
Closure example, the subtype methods will always need to
be declared to accept objects of the supertype, and to narrow
their arguments to the subtype at runtime. Thus errors that
could be caught at compile time will not be caught until run
time, which is unfortunate.

TYPE Closure =
OBJECT proc: PROCEDURE(self: Closure) END;

where the idea is that each subtypeCafsure will extend
the record with whatever additional data fields are appropriat
to that subtype. In this representation, a closdre is
activated by callingl.proc(cl)

To test this definition, let us try to build a closure which,
when activated, will compute and print the greatest common
divisor of 111 and 259:

TYPE GCDClosure =

Closure OBJECT n, m: INTEGER END; . .
5.3 Objects in Modula-3.

PROCEDURE PrintGCD(cl: GCDClosure);

BEGIN Print(GCD(cl.n, cl.m)) END PrintGCD; The solution to the problem is to extend the type system to
support object-oriented programming. Here's how this is done
VAR gcd: GCDClosure; in Modula-3.

An object is eithemNIL or a reference to a data record The “=proc ”is optional. If present, it specifies a default
paired with a method suite, which is a record of proceduremethod value used when allocating objects of typeif
that will each accept the object as a first argument. We wilkbsent, the default method valueis .
just describe traced objects; untraced objects, which are Using methods, the typelosure would be defined like
produced by adding the keywordNTRACEDto the type this:
declaration, are entirely analogous.
The signatures of the initial methods of the method suite TYPE Closure = OBJECT METHODS proc() END;
are determined by the object type, but the method suite can
contain additional methods, just like the data record. Methodshe rest of the example needs no change. The initialization of
are simply procedures; there is no separate space of meth@gk proc method toPrintGCD is allowed, since the type of
values. _ _ the first parameter to the methodsQDClosure) is a
Since the only way to call a method in an object's methodspertype of the type of the object being allocated (also
suite is to pass the object itself as the first argument, the firgicpciosure).
parameter can be of any type that contains the object. The resta consequence of this design is that the method signatures

of the method's signature must determine a subtype of thgre statically determined by an object's type (except for the
method declaration in the object type. More precisely, > argument), but the method values are not determined
procedurep satisfies a method declaration with signaige il the object is allocated. The values cannot be changed
for an objeck if p isNIL or if: thereafter.

The declaration of an object type with a supertype has the
* p is a top-level procedure whose first parameter hasgrm:
modeVALUE and whose type contains the vakyeand
TYPET =
« if p’s first parameter is dropped, the resulting procedure Supertype OBJECT

; f th i FieldExtension
g)i/g)e is a subtype of the procedure type determined by METHODS

MethodRevision

END
Notice that this definition allows the type of the first

parameter of the method to vary with the type of the Objec\t/vhereSupertype is an object typeFieldExtension is a

containing the method. The notion of *satisfies” is used 10 o aqditional field declarations, andethodRevision is

define the set of values.of an obje_ct type. First we consi;ieé list of additional declarations and method overrides of the
the declaration of an object type without a supertype, WhIC|’]lorm.

has the form:

TYPE T = m - = proc
o,%fjggst wheremis the name of a method of the supertypemod is
METHODS a top-level procedure that is a legal default for mettoih
MethodList type T. Each method override specifies thabc is the
END default value used for methad when allocating objects of
type T. If a method is not overridden, its defaultTinis the
whereFieldList is a list of field declarations, exactly as in ggme as its default in the supertype.
a record type, andMethodList is a list of method An object is a member of the type if its data record
declarations. Each method declaration has the form: contains the fields of the supertype, followed by the fields
declared inFieldExtension , possibly followed by other
m sig := proc fields; and its method suite contains procedures that satisfy

the method declarations in the supertype, followed by
where m is an identifier (the method namejig is a procedures that satisfy the method declarations in
procedure signature, angroc is a top-level procedure MethodRevision , possibly followed by other procedures.
constant. Notice that all Modula-3 methods are “virtual methods”. If
An objectx is a member of the type if it is NIL or a it is known that a certain method will have a constant value
traced reference to a data record that contains the fieldsr all objects of some type, then it might as well be declared

declared inFieldList , possibly followed by other fields, as an ordinary procedure in the interface containing the type
paired with a method suite that contains procedures thateclaration.
satisfy the method declarations MethodList , possibly The subtype rule for objects is simply the value set rule:

followed by other procedures.
NULL <: TOBJECT ...END<: T

OBJECT ... END <: REFANY attempts to create an object with andata record and a
UNTRACED OBJECT ... END <: ADDRESS method that expects akB; since not evenA is anAB, the
))) method is too choosy for the object in which it is placed. The
That is,NIL is a member of every object type, and every qgit would not be a member of the ty@ so this call to
supertype contains its subtypes. Also, every object is @ews a static error.

reference, traced or untraced. Here is an example that illustrates the use of default

_ method values and method overrides:
5.4 Notation and examples.

TYPE Window =
If r is an object, thenf designates the data field namfed OBJECT
in r's data record. Ifmis one ofr’'s methods, then the Meé_treﬁggsecm‘g'e
expression.m(...) denotes the_: procedure a_pplicatimhs(mouse(e: ClickEvent) := IgnoreClick:
m methodijr,...) . If T is an object type anais the name expose(e: ExposeEvent) := IgnoreExpose
of one of T's methods, theriT.m denotesT's default m END;

method. The last notation is convenient when a subtype
method must invoke a default method of one of its TYPE TextWindow =

supertypes. Window OBJECT
As an example, consider the following declarations: text: Text.T;
style: TextWindowStyle

TYPE METHODS

A = OBJECT a: INTEGER; METHODS p() END; expose = ExposeTextWindow

AB = A OBJECT b: INTEGER END; END;
PROCEDURE Pa(self: A) = ... ; If no methods are specified when an object of type
PROCEDURE Pab(self: AB) = ... ; TextWindow is allocated, its mouse method will be

IgnoreClick and its expose method wil be
ExposeTextWindow . These procedures must be de-clared

))) elsewhere. The proceduBxposeTextWindow can demand
Obviously AB <: A . Since neitherA nor AB has default 5 toytwindow as its first parameter, bugnoreExpose

method values, the method values must be specified when tl%t‘?\dlgnoreClick must accept anwindow.
objects are allocated. The proceduprasandPab are suitable

values for thep methods of objects of types and AB. For .
example: 5.5 Implementation.

VAR a: A; ab: AB; ...

NEW(ab, p := Pab) To solidify _the preqeding ideas we sketch one possible
implementation of objects.
creates an object with akB data record and a method that Ag (?b.![ecctj (ian be ;epTrﬁsented ads. the a(?jdntess of thebflrs'[t
expects anAB; it is an example of an object of types. word ofits data record. The preceeding word stores an objec
T header containing a type code unique to the object type.
Similarly,) . .

These type codes are small integers; there is one of them for
each object type and for each traced reference type. (A similar
object header can be used for all records in the heap, whether
they are objects or not.) The word before the object header
stores a reference to the method suite for the object. An
advantage of this scheme is that if the object has no methods,
this word can be omitted. It also allows objects to share
method suites, which will be the common case.

NEW(ab, p :=Pa) . If o is an objectd one of its data fields, and one of its
which creates an object with & data record and a method ethods. then in this representation:

that expects aA. Since evenAB is anA, the method is not
too choosy for the object in which it is placed. The result is a o.d
valid object of typeAB. In contrast, '

NEW(a, p := Pa)

creates an object with ai data record and a method that
expects am, it is an example of an object of type A more
interesting example is:

is Mem[o +d]

o.m is Mem[Mem[o — 2] + m]

TYPECODE is M -1

NEW(a, p := Pab) © emfo —1]
where we assume that fields and methods are represented by
offsets in the natural way.

The more interesting problem is to efficiently test if an[4]
objecto has typeT, as is required for narrowing and typecase
statements.

The simplest implementation of narrowing main-tains an
arrayst indexed by typecodetftc] is the typecode for the
supertype of the object type whose typecode isor NIL if
there is no supertype. To testafis aT, a loop is used to
compute whether the typecode foappears in the sequence

[5]

(6]

TYPECODE(0), StTYPECODE(0)],
St[S{TYPECODE(0)]], ... NIL

Let us call this sequence tbapertype patlior o’s type, and

its length thedepthof o’s type. Faster implementations of [7
narrowing exploit the observation that the depth of each type
is determined at compile time, and can therefore be stored
with the corresponding typecode. Thus if the typecode for
appears in the supertype path for a typét does so at the [8]
positiondepth(U) - depth(T) . This means that narrowing

can be implemented in constant time, if the supertype path for
each type is represented as a sequential array. Since supert)ts]e
paths are not usually too long, this is an attractive strategy. |
the unusual case of an object type with a very long supertype
chain, only a prefix of the chain, up to some maximum length,
would be stored sequentially. If at runtime the difference irg[0
depth exceeds the length of the sequentially stored prefix 11]
the chain, the implementation must fall back on the linked
list.

[11]
References
[1] A.D. Birrell, J.V. Guttag, J.J. Horning, R. Levin.
Synchronization Primitives for a Multiprocessor: A
Formal SpecificationOperating Systems Revie?l 5, [12]

November 1987. Also published as SRC Research Report
20, August 1987.

[13]
[2] Graham M. Birtwistle, Ole-Johan Dabhl, Bjorn Myhrhaug,
and Kristen Nygaard. Simula Begin. Auerbach,
Philadelphia PA, 1973. [14]

Luca Cardelli, Jim Donahue, Lucille Glassman, Mick
Jordan, Bill Kalsow, and Greg Nelsdviodula-3 Report.
Digital Systems Research Center, SRC-31, 1988.

(3] 15]

10

C.A.R. Hoare. Monitors: An Operating System
Structuring ConcepCommunications of the ACW/ 10,
October 1974.

Butler W. Lampson. A Description of the Cedar
Language. Xerox Palo Alto Research Center, CU-83-15,
December 1983.

Butler W. Lampson, James J. Horning, Ralph L. London,
James G. Mitchell, and Gerald J. Popek. Report on the
Programming Language Euclid. Xerox Palo Alto
Research Center, CSL81-12, October 1981.

] Butler W. Lampson and David D. Redell. Experience

with Processes and Monitors in Me€zommunications
of the ACM23 2, February 1980.

James G. Mitchell, William Maybury, and Richard
Sweet. Mesa Language Manual. Xerox Palo Alto
Research Center, CSL-78-1, February 1978.

Paul Rovner, Roy Levin, and John Wick. On Extending
Modula-2 For Building Large, Integrated Systems.
Digital Systems Research Center, SRC-3, January 1985.

Paul Rovner. Extending Modula-2 to Build Large,
Integrated SystemslEEE Software3 6, November
1986.

Craig Schaffert, Topher Cooper, and Carrie Wilpolt.
Trellis Object-Based Environment Language Reference
Manual. DEC Eastern Research Lab, DEC-TR-372,
1985.

Bjarne Stroustruplhe C++ Programming
LanguageAddison-Wesley, 1986.

Larry Tesler, Apple Computers. Object Pascal
Report. Structured Language World 9 3, 1985.

Niklaus Wirth.Programming in Modula-2.
Springer-Verlag, Third Edition, 1985.

N. Wirth. From Modula to Oberon and The
Programming Language Oberon. Institut fur Informatik,
ETH Zurich 82, September 1987.

