
 

1

 

Mobile Computation

 

Luca Cardelli

 

Digital Equipment Corporation, Systems Research Center

 

Moving code, off-line and on-line

 

Looking back a few years, we may notice that we finally abandoned assembly language
programming in almost every domain. How did that happen? In part, improvements
in compiler technology and hardware speed made high-level languages competitive.
But the main reason is that assembly code is inherently not portable: one cannot recom-
pile it for a new architecture. Since recompilation is an off-line process, let us say that
assembly code is 

 

not off-line portable

 

. The main problems this causes are:

 

¥ It is difficult to automatically translate assembly code to new architectures (with reason-
able performance).

¥ New architectures have been emerging faster than any feasible rate of manual recoding
for legacy software. 

 

New techniques can handle legacy assembly code, such as emulation and emulation-
backed translation. But the combination of the two problems above has overwhelmed
any consideration based on absolute coding efficiency. As a result, new programs are
now written in off-line portable languages: they are routinely recompiled for different
architectures. 

We can now draw an interesting analogy. Until very recently no major language
was 

 

on-line portable

 

. That is, one could not take a running program and port it to a dif-
ferent architecture while the program was running. This, however, is precisely what
must happen with network computations, because:

 

¥ It is difficult to recompile source code on the fly for a new architecture (with reasonable
performance).

¥ Connections to computers based on unknown architectures are established faster than
the time it takes to recompile source code.

 

Techniques have emerged to get some of the advantages of both off-line and on-line
portability, such as just-in-time compilation and run-time linking. But the emphasis is
now on mobility and quick compilation, not on optimized code generation.

Mobility poses a new basic question: what is the effect of taking a running compu-
tation and moving it to another network site? In most current languages, this makes lit-
tle sense; the mechanisms for doing so are usually unavailable, and the effect would
likely be unpredictable. In order to move computations we need languages and models
where mobility makes sense; that is, where its effects are well defined.



 

2

 

Traditional languages and traditional compiler technology are not well suited for
the world of network computing. Languages that are not off-line portable have already
been abandoned (effectively, except for legacy and specialized tasks). In a similar way,
languages that are not on-line portable will be abandoned because they do not provide
what is increasingly perceived as basic functionality: mobility. 

 

Moving computation, not just code

 

The framework we are interested in is that of 

 

mobile computation

 

; that is, the notion that
a computation starting at some network node may continue execution at some other
network node. This framework involves much more than just moving code. Pure code
mobility is useful, and has been used to great advantage in the form of Java applets, but
it is also limiting. Fortunately, the other necessary components of mobile computation
have already been widely studied and used.

The popular Remote Procedure Call (RPC) model is based on the notion of 

 

control
mobility

 

: a thread of control originating at some network node continues execution at
some other network node, and then comes back. No code is moved in this process, just
control, so the question of on-line code mobility does not arise. 

The RPC model implements also 

 

data mobility

 

: data is exchanged over the network
in the form of parameters and results of RPC calls. This data must be on-line portable:
data structures are 

 

marshaled

 

 (converted to portable form) at the originating side, sent
over the network, and 

 

unmarshaled

 

 at the receiving site into corresponding data struc-
tures, possibly within a different computer architecture.

Some RPC systems also provide 

 

link mobility

 

: the endpoint of a network connection
can be sent over another network connection. The receiving party is then connected to
the other endpoint.

Unlike RPC, mobile computation is based on the movement of code, not just the
running of code that already exists in network nodes. The other components of RPC,
however, are all very important. In mobile computation, control must move as well: the
code that is transferred must be run. Data must also move, in order to preserve the state
of mobile computations across moves. Network links must also move, since they are
part of the state of the computation (at least, in models of mobility that support remote
connections).

If code is represented as data (e.g. as the instruction stream of an interpreted vir-
tual machine), then data mobility immediately implies code mobility. Therefore, mo-
bile computation can be implemented rather easily over the RPC model by
representing mobile code as mobile data, and taking advantage of the other facilities
already provided by RPC. In fact, mobile computation can be implemented on top of
various transport mechanisms, although in each case it may acquire some peculiarities
of the transport. RPC is currently the most convenient substrate on which to implement
mobile computation. HTTP can also be used, resulting in a more Web-oriented seman-
tics of mobility. Thread and address space transport has been provided in the past by



 

3

 

some operating systems and programming languages, but usually only within a single
computer architecture.

 

How computation moves

 

I wish to compare three relatively well-defined and distinct models of mobile compu-
tation. Other models certainly already exist, and more will be developed in the future.
These three models differ in what kind of entities can be transmitted over the network.

The most basic form of mobility consists in just moving code; this model is repre-
sented by Tcl [3] and Java [2] (pre- Remote Method Invocation). In these languages, an
architecture-independent representation of program code (source text, or bytecodes) is
shipped over the network and interpreted remotely. When code moves, the current
state of the computation (if any) is lost, and connections that the computation had at
the originating site vanish. State and connectivity must be reestablished at the receiv-
ing site. Control is reestablished by dynamic binding or dynamic linking.

A 

 

computation

 

, however, is more than just code: it is code plus the context of its ex-
ecution. A computation, in this sense, can be represented as a 

 

closure

 

, which is the run-
time description of a running procedure. Obliq [1] takes the approach of moving clo-
sures: the code and the necessary context in which the code operates are transmitted.
The context may include data, active network connections which are preserved on
transmission, and new connections that are created to keep the closure in touch with
the site it leaves behind. In this approach live, active, computations can move, and their
meaning is preserved upon transmission. Control is reestablished by running the clo-
sure at the receiving site, possibly supplying arguments that provide local information.

Telescript [4] takes the approach of moving 

 

agents

 

. Agents are similar to closures
in that they carry their context with them as they move from location to location, and
are reanimated at each location. Agents, however, are meant to be completely self-con-
tained. They do not communicate remotely with other agents; rather they move to
some location and communicate locally when they get there.

Obliq is in a sense the most general of these three models: a closure with no data is
just code; a closure with no connections is an agent. On a local area network this level
of generality is very convenient. However, the Obliq model is also the most fragile
when used in full generality over the Web: the rich set of connections created by Obliq
computation may be easily upset by network unreliability. In contrast, the pure code
and pure agent models can at least survive intermittent connectivity failures. Even
those models, though, are supplemented in practice with forms of remote connectivity,
making them partially vulnerable to network instability. It is not clear yet how this ten-
sion between generality and reliability can be solved.

 

Fundamental issues

 

The very notion of mobile computation is evolving rapidly. We should expect to see the
emergence of new forms of mobile computation, and of new way of using existing



 

4

 

mechanisms. I conclude by listing some basic questions that should be asked of any
present or future mobile computation scheme.

 

¥ What does a mobile computation do? 

 

This is the simple issue of meaning. It has been
common to extend existing implementation models to network programming
with little regard for clean and consistent semantics. What are the meaningful
models for mobile computation?

 

¥ Where does computation happen? 

 

In any model of mobility one must take the no-
tion of multiple locations as fundamental. It should be possible to determine, in
principle, where each piece of the computation happens.

 

 

 

Location has an ob-
servable influence on behavior, on resource usage, and on the relative costs of
computation versus communication. Knowing where computation happens is
necessary in order to program mobile computations effectively.

 

¥ What is the programmerÕs view of mobility? 

 

There are many ready answers: distrib-
uted objects, closures, threads, continuations, agents, actors, etc. In fact, a pro-
grammerÕs model should be tested against the unusual realities of network
programming (especially on the Web). In the long term, the prevalent models
are unlikely to be exactly any of the above.

 

¥ How is security handled? 

 

The main obstacle to the acceptance of mobile computa-
tion for commercial applications is the issue of security, which is peculiar to
code mobility. The basic technology of security is well understood, but it is not
yet clear how to deploy that knowledge into languages and implementations,
and how to check that security is truly respected. What is the syntax, static
checking, semantics, and logic of security?

 

References

 

[1] Cardelli, L., 

 

A language with distributed scope

 

. 

 

Computing Systems, 

 

8

 

(1), 27-59. MIT
Press. 1995.

[2]

 

Gosling, J., B. Joy, and G. Steele, 

 

The Java language specification

 

. Addison-Wes-
ley. 1996.

 

[3] Ousterhout, J.K., 

 

Tcl and the Tk toolkit

 

. Addison-Wesley. 1994.
[4] White, J.E., 

 

Telescript technology: the foundation for the electronic marketplace

 

.
White Paper. General Magic, Inc. 1994.


