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Abstract
We introduce a calculus describing the movement of processes and devices, includ-
ing movement through administrative domains.
Keywords: Agents, process calculi, mobility, wide-area computation.

1  Introduction
There are two distinct areas of work in mobility: mobile computing, concerning computation
that is carried out in mobile devices (laptops, personal digital assistants, etc.), and mobile com-
putation, concerning mobile code that moves between devices (applets, agents, etc.). We aim to
describe all these aspects of mobility within a single framework that encompasses mobile
agents, the ambients where agents interact and the mobility of the ambients themselves.

The inspiration for this work comes from the potential for mobile computation over the
World-Wide Web. The geographic distribution of the Web naturally calls for mobility of com-
putation, as a way of flexibly managing latency and bandwidth. Because of recent advances in
networking and language technology, the basic tenets of mobile computation are now techno-
logically realizable. The high-level software architecture potential, however, is still largely un-
explored, although it is being actively investigated in the coordination and agents communities.

The main difficulty with mobile computation on the Web is not in mobility per se, but in
the handling of administrative domains. In the early days of the Internet one could rely on a flat
name space given by IP addresses; knowing the IP address of a computer would very likely al-
low one to talk to that computer in some way. This is no longer the case: firewalls partition the
Internet into administrative domains that are isolated from each other except for rigidly con-
trolled pathways. System administrators enforce policies about what can move through firewalls
and how. 

Mobility requires more than the traditional notion of authorization to run or to access infor-
mation in certain domains: it involves the authorization to enter or exit certain domains. In par-
ticular, as far as mobile computation is concerned, it is not realistic to imagine that an agent can
migrate from any point A to any point B on the Internet. Rather, an agent must first exit its ad-
ministrative domain (obtaining permission to do so), enter someone else’s administrative do-
main (again, obtaining permission to do so) and then enter a protected area of some machine
where it is allowed to run (after obtaining permission to do so). Access to information is con-
trolled at many levels, thus multiple levels of authorization may be involved. Among these lev-
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els we have: local computer, local area network, regional area network, wide-area intranet and
internet. Mobile programs must be equipped to navigate this hierarchy of administrative do-
mains, at every step obtaining authorization to move further. Similarly, laptops must be
equipped to access resources depending on their location in the administrative hierarchy. There-
fore, at the most fundamental level we need to capture notions of locations, of mobility and of
authorization to move.

Today, it is very difficult to transport a working environment between two computers, for
example, between a laptop and a desktop, or between home and work computers. The working
environment might consist of data that has to be copied, and of running programs in various
stages of active or suspended communication with the network that have to be shut down and
restarted. Why can't we just say “move this (part of the) environment to that computer” and carry
on? When on a trip, why couldn't we transfer a piece of the desktop environment (for example,
a forgotten open document along with its editor) to the laptop over a phone line? We would like
to discover techniques to achieve all this easily and reliably.

With these motivations, we adopt a paradigm of mobility where computational ambients
are hierarchically structured, where agents are confined to ambients and where ambients move
under the control of agents. A novelty of this approach is in allowing the movement of self-con-
tained nested environments that include data and live computation, as opposed to the more com-
mon techniques that move single agents or individual objects. Our goal is to make mobile
computation scale-up to widely distributed, intermittently connected and well administered
computational environments.

This paper is organized as follows. In the rest of Section 1 we introduce our basic concepts
and we compare them to previous and current work. In Section 2 we describe a calculus based
exclusively on mobility primitives, and we use it to represent basic notions such as numerals and
Turing machines. In Section 3 we extend our calculus with local communication, and we show
how we can represent more general communication mechanisms as well as the π-calculus, some
λ-calculi, and firewall-crossing. Both Section 2 and Section 3 include an operational semantics.

1.1  Ambients

An ambient, in the sense in which we are going to use this word, has the following main char-
acteristics:

• An ambient is a bounded place where computation happens. The interesting property
here is the existence of a boundary around an ambient. If we want to move computations
easily we must be able to determine what should move; a boundary determines what is
inside and what is outside an ambient. Examples of ambients, in this sense, are: a web
page (bounded by a file), a virtual address space (bounded by an addressing range), a
Unix file system (bounded within a physical volume), a single data object (bounded by
“self”) and a laptop (bounded by its case and data ports). Non-examples are: threads
(where the boundary of what is “reachable” is difficult to determine) and logically relat-
ed collections of objects. We can already see that a boundary implies some flexible ad-
dressing scheme that can denote entities across the boundary; examples are symbolic
links, Uniform Resource Locators and Remote Procedure Call proxies. Flexible address-
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ing is what enables, or at least facilitates, mobility. It is also, of course, a cause of prob-
lems when the addressing links are “broken”.

• An ambient is something that can be nested within other ambients. As we discussed, ad-
ministrative domains are (often) organized hierarchically. If we want to move a running
application from work to home, the application must be removed from an enclosing
(work) ambient and inserted in a different enclosing (home) ambient. A laptop may need
a removal pass to leave a workplace, and a government pass to leave or enter a country.

• An ambient is something that can be moved as a whole. If we reconnect a laptop to a
different network, all the address spaces and file systems within it move accordingly and
automatically. If we move an agent from one computer to another, its local data should
move accordingly and automatically.

More precisely, we investigate ambients that have the following structure:

• Each ambient has a name. The name of an ambient is used to control access (entry, exit,
communication, etc.). In a realistic situation the true name of an ambient would be
guarded very closely, and only specific capabilities would be handed out about how to
use the name. In our examples we are usually more liberal in the handling of names, for
the sake of simplicity.

• Each ambient has a collection of local agents (also known as threads, processes, etc.).
These are the computations that run directly within the ambient and, in a sense, control
the ambient. For example, they can instruct the ambient to move.

• Each ambient has a collection of subambients. Each subambient has its own name,
agents, subambients, etc.

In all of this, names are extremely important. A name is:

• something that can be created, passed around and used to name new ambients.

• something from which capabilities can be extracted.

1.2  Technical context: systems

Many software systems have explored and are exploring notions of mobility. Among these are:

• Obliq [5]. The Obliq project attacked the problems of distribution and mobility for in-
tranet computing. It was carried out largely before the Web became popular. Within its
scope, Obliq works quite well, but is not really suitable for computation and mobility
over the Web, just like most other distributed paradigms developed in pre-Web days. 

• Telescript [21]. Our ambient model is partially inspired by Telescript, but is almost dual
to it. In Telescript, agents move whereas places stay put. Ambients, instead, move
whereas agents are confined to ambients. A Telescript agent, however, is itself a little
ambient, since it contains a “suitcase” of data. Some nesting of places is allowed in Tele-
script.
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• Java [12]. Java provides a working paradigm for mobile computation, as well as a huge
amount of available and expected infrastructure on which to base more ambitious mo-
bility efforts. 

• Linda [7]. Linda is a “coordination language” where multiple processes interact in a
common space (called a tuple space) by dropping and picking up tokens asynchronously.
Distributed versions of Linda exist that use multiple tuple spaces and allow remote op-
erations over those. A dialect of Linda [8] allows nested tuple spaces, but not mobility
of the tuple spaces.

1.3  Technical context: formalisms

Many existing calculi have provided inspiration for our work. In particular:

• The Chemical Abstract Machine [3] is a semantic framework, rather than a specific for-
malism. Its basic notions of reaction in a solution and of membranes that isolate subso-
lutions, closely resemble ambient notions. However, membranes are not meant to
provide strong protection, and there is no concern for mobility of subsolutions. Still, we
adopt a “chemical style” in presenting our calculus.

• The π-calculus [17] is a process calculus where channels can “move” along other chan-
nels. The movement of processes is represented as the movement of channels that refer
to processes. Therefore, there is no clear indication that processes themselves move. For
example, if a channel crosses a firewall (that is, if it is communicated to a process meant
to represent a firewall), there is no clear sense in which the process has also crossed the
firewall. In fact, the channel may cross several independent firewalls, but a process
could not be in all those places at once. Nonetheless, many fundamental π-calculus con-
cepts and techniques underlie our work.

• Enrichments of the π-calculus with locations have been studied, with the aim of captur-
ing notions of distributed computation. In the simplest form, a flat space of locations is
added, and operations can be indexed by the location where they are executed. Riely and
Hennessy [19] and Sewell [20] propose versions of the π-calculus extended with primi-
tives to allow computations to migrate between named locations. The emphasis in this
work is on developing type systems for mobile computation based on existing type sys-
tems for the π-calculus. Riely and Hennessy's type system regulates the usage of channel
names according to permissions represented by types. Sewell's type system differenti-
ates between local and remote channels for the sake of efficient implementation of com-
munication.

• The join-calculus [10] is a reformulation of the π-calculus with a more explicit notion of
places of interaction; this greatly helps in building distributed implementations of chan-
nel mechanisms. The distributed join-calculus [11] adds a notion of named locations,
with essentially the same aims as ours, and a notion of distributed failure. Locations in
the distributed join-calculus form a tree, and subtrees can migrate from one part of the
tree to another. A significant difference from our ambients is that movement may happen
directly from any active location to any other known location.
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• LLinda [9] is a formalization of Linda using process calculi techniques. As in distributed
versions of Linda, LLinda has multiple distributed tuple spaces. Multiple tuple spaces
are very similar in spirit to multiple ambients, but Linda’s tuple spaces do not nest, and
there are no restrictions about accessing a tuple space from any other tuple space.

• A growing body of literature is concentrating on the idea of adding discrete locations to
a process calculus and considering failure of those locations [2, 11]. This approach aims
to model traditional distributed environments, along with algorithms that tolerate node
failures. However, on the Internet, node failure is almost irrelevant compared with in-
ability to reach nodes. Web servers do not often fail forever, but they frequently disap-
pear from sight because of network or node overload, and then they come back.
Sometimes they come back in a different place, for example, when a Web site changes
its Internet Service Provider. Moreover, inability to reach a Web site only implies that a
certain path is unavailable; it implies neither failure of that site nor global unreachability.
In this sense, an observed node failure cannot simply be associated with the node itself,
but instead is a property of the whole network, a property that changes over time. Our
notion of locality is induced by a non-trivial and dynamic topology of locations. Failure
is only represented, in a weak but realistic sense, as becoming forever unreachable.

• The spi calculus [1] extends the π-calculus with cryptographic primitives. The need for
such extensions does not seem to arise immediately within our ambient calculus. Some
of the motivations for the spi calculus extension are already covered by the notion of en-
capsulation within an ambient. However, we do not know yet how extensively we can
use our ambient primitives for cryptographic purposes.

1.4  Summary of our Approach

With respect to previous work on process calculi, we can characterize the main differences in
our approach as follows. In each of the following points, our emphasis is on boundaries and their
effect on computation.

• The existence of separate locations is represented by a topology of boundaries. This to-
pology induces an abstract notion of distance between locations. Locations are not uni-
formly accessible, and are not identified by globally unique names.

• Process mobility is represented as crossing of boundaries. In particular, process mobility
is not represented as communication of processes or process names over channels.

• Security is represented as the ability or inability to cross boundaries. In particular, secu-
rity is not directly represented by cryptographic primitives or access control lists.

• Interaction between processes is by shared location within a common boundary. In par-
ticular, interaction cannot happen without proper consideration of boundaries and their
topology.
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2  Mobility
We begin by describing a minimal calculus of ambients that includes only mobility primitives.
Still, we shall see that this calculus is quite expressive. In Section 3 we then introduce commu-
nication primitives that allow us to write more natural examples.

2.1  Mobility Primitives

We first introduce a calculus in its entirety, and then we comment on the individual construc-
tions. The syntax of the calculus is defined in the following table. The main syntactic categories
are processes (including both ambients and agents that execute actions) and capabilities.

Mobility Primitives

Free names

We write P{n←m} for the substitution of the name m for each free occurrence of the name
n in the process P. Similarly for M{n←m}.

Syntactic conventions

n names

P,Q ::=
(νn)P
0
P | Q

processes
restriction
inactivity
composition

!P replication
n[P]
M.P

ambient
action

M ::=
in n
out n
open n

capabilities
can enter n
can exit n
can open n

fn((νn)P) � fn(P) – {n}
fn(0) � �

fn(P | Q) � fn(P) ∪ fn(Q)
fn(!P) � fn(P)
fn(n[P]) � {n} ∪ fn(P)
fn(M.P) � fn(M) ∪ fn(P)

fn(in n) � {n}
fn(out n) � {n}
fn(open n) � {n}

(νn)P | Q is read ((νn)P) | Q
!P | Q is read (!P) | Q
M.P | Q is read (M.P) | Q
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Abbreviations

The first four process primitives (restriction, inactivity, composition and replication) are
commonly found in process calculi. To these we add ambients, n[P], and the exercise of capa-
bilities, M.P. Next we discuss these primitives in detail.

2.2  Explanations

We begin by introducing the semantics of ambients informally. A reduction relation P����Q de-
scribes the evolution of a process P into a new process Q.

Restriction
The restriction operator:

creates a new (unique) name n within a scope P. The new name can be used to name ambients
and to operate on ambients by name.

As in the π-calculus [17], the (νn) binder can float outward as necessary to extend the scope
of a name, and can float inward when possible to restrict the scope. Unlike the π-calculus, the
names that are subject to scoping are not channel names, but ambient names. 

The restriction construct is transparent with respect to reduction; this is expressed by the
following rule:

Inaction
The process:

is the process that does nothing. It does not reduce.

Parallel
Parallel execution is denoted by a binary operator that is commutative and associative:

It obeys the rule:

This rule directly covers reduction on the left branch; reduction on the right branch is obtained
by commutativity.

Replication
Replication is a technically convenient way of representing iteration and recursion. The process:

(νn1...nm)P � (νn1)...(νnm)P
n[] � n[0]
M � M.0 (where appropriate)

(νn)P

P ���� Q � (νn)P ���� (νn)Q

0

P | Q

P ���� Q � P | R ���� Q | R
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denotes the unbounded replication of the process P. That is, !P can produce as many parallel
replicas of P as needed, and is equivalent to P | !P. There are no reduction rules for !P; in par-
ticular, the term P under ! cannot begin to reduce until it is expanded out as P | !P.

Ambients
An ambient is written:

where n is the name of the ambient, and P is the process running inside the ambient.
In n[P], it is understood that P is actively running, and that P can be the parallel composi-

tion of several processes. We emphasize that P is running even when the surrounding ambient
is moving. Running while moving may or may not be realistic, depending on the nature of the
ambient and of the communication medium through which the ambient moves, but it is consis-
tent to think in those terms. We express the fact that P is running by a rule that says that any
reduction of P becomes a reduction of n[P]:

In general, an ambient exhibits a tree structure induced by the nesting of ambient brackets.
Each node of this tree structure may contain a collection of (non-ambient) processes running in
parallel, in addition to subambients. We say that these processes are running in the ambient, in
contrast to the ones running in subambients. The general shape of an ambient is, therefore:

To emphasize structure we may display ambient brackets as boxes. Then the general shape
of an ambient is:

Nothing prevents the existence of two or more ambients with the same name, either nested
or at the same level. Once a name is created, it can be used to name multiple ambients. More-
over, !n[P] generates multiple ambients with the same name. This way, for example, one can
easily model the replication of services.

Actions and Capabilities
Operations that change the hierarchical structure of ambients are sensitive. In particular such op-
erations can be interpreted as the crossing of firewalls or the decoding of ciphertexts. Hence
these operations are restricted by capabilities. Thanks to capabilities, an ambient can allow other
ambients to perform certain operations without having to reveal its true name. With the commu-
nication primitives of Section 3, capabilities can be transmitted as values.

!P

n[P]

P ���� Q � n[P] ���� n[Q]

n[P1 | ... | Pp | m1[...] | ... | mq[...]] (Pi ≠ ni[...])

...

m1

n

P1 | ... | Pp | ...

mq

 | ... | 
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The process:

executes an action regulated by the capability M, and then continues as the process P. The pro-
cess P does not start running until the action is executed. For each kind of capability M we have
a specific rule for reducing M. P. These rules are described below case by case.

We consider three kinds of capabilities: one for entering an ambient, one for exiting an am-
bient and one for opening up an ambient. Capabilities are obtained from names; given a name
m, the capability in m allows entry into m, the capability out m allows exit out of m and the ca-
pability open m allows the opening of m. Implicitly, the possession of one or all of these capa-
bilities is insufficient to reconstruct the original name m from which they were extracted.

Entry Capability
An entry capability, in m, can be used in the action:

which instructs the ambient surrounding in m. P to enter a sibling ambient named m. If no sibling
m can be found, the operation blocks until a time when such a sibling exists. If more than one m
sibling exists, any one of them can be chosen. The reduction rule is:

Or, by representing ambient brackets as boxes:

If successful, this reduction transforms a sibling n of an ambient m into a child of m. After
the execution, the process in m. P continues with P, and both P and Q find themselves at a lower
level in the tree of ambients.

Exit Capability
An exit capability, out m, can be used in the action:

which instructs the ambient surrounding out m. P to exit its parent ambient named m. If the par-
ent is not named m, the operation blocks until a time when such a parent exists. The reduction
rule is:

M. P

in m. P

n[in m. P | Q] | m[R] ���� m[n[P | Q] | R]

out m. P

m[n[out m. P | Q] | R] ���� n[P | Q] | m[R]

in m.P | Q

n

R

m

| ���� P | Q

n

 | R

m
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That is:

If successful, this reduction transforms a child n of an ambient m into a sibling of m. After
the execution, the process in m. P continues with P, and both P and Q find themselves at a higher
level in the tree of ambients.

Open Capability
An opening capability, open m, can be used in the action:

This action provides a way of dissolving the boundary of an ambient named m located at the
same level as open, according to the rule:

That is:

If no ambient m can be found, the operation blocks until a time when such an ambient ex-
ists. If more than one ambient m exists, any one of them can be chosen.

An open operation may be upsetting to both P and Q above. From the point of view of P,
there is no telling in general what Q might do when unleashed. From the point of view of Q, its
environment is being ripped open. Still, this operation is relatively well-behaved because: (1)
the dissolution is initiated by the agent open m. P, so that the appearance of Q at the same level
as P is not totally unexpected; (2) open m is a capability that is given out by m, so m[Q] cannot
be dissolved if it does not wish to be (this will become clearer later in the presence of commu-
nication primitives).

2.3  Operational Semantics

We now give an operational semantics of the calculus of section 2.1, based on a structural con-
gruence between processes, �, and a reduction relation ����. We have already discussed all the
reduction rules, except for one that connects reduction with equivalence. This is a semantics in
the style of Milner’s reaction relation [16] for the π-calculus, which was itself inspired by the
Chemical Abstract Machine of Berry and Boudol [3]. 

Processes of the calculus are grouped into equivalence classes by the following relation, �,
which denotes structural congruence (that is, equivalence up to trivial syntactic restructuring).

open m. P

open m. P | m[Q] ���� P | Q

����out m. P | Q

n

 | R

m

P | Q

n

R

m

|

����Q

m

open m. P | P | Q
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Structural Congruence

In addition, we identify processes up to renaming of bound names:

By this we mean that these processes are understood to be identical (for example, by choosing
an appropriate representation), as opposed to structurally equivalent.

Note that the following terms are distinct:

The behavior of processes is given by the following reduction relation. The first three rules
are the one-step reductions for in, out and open. The next three rules propagate reductions across
scopes, ambient nesting and parallel composition. The final rule allows the use of equivalence
during reduction. Finally, ����* is the chaining of multiple reduction steps.

Reduction

P � P
P � Q � Q � P
P � Q, Q � R � P � R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P � Q � (νn)P � (νn)Q
P � Q � P | R � Q | R
P � Q � !P � !Q
P � Q � n[P] � n[Q]
P � Q � M.P � M.Q

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)

P | Q � Q | P
(P | Q) | R � P | (Q | R)
!P � P | !P

(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)

(νn)(νm)P � (νm)(νn)P
(νn)(P | Q) � P | (νn)Q if n � fn(P)
(νn)(m[P]) � m[(νn)P] if n ≠ m

(Struct Res Res)
(Struct Res Par)
(Struct Res Amb)

P | 0 � P
(νn)0 � 0
!0 � 0

(Struct Zero Par)
(Struct Zero Res)
(Struct Zero Repl)

(νn)P = (νm)P{n←m} if m � fn(P)

!(νn)P  � (νn)!P replication creates new names
n[P] | n[Q]  � n[P | Q] multiple n ambients have separate identity

n[in m. P | Q] | m[R] ���� m[n[P | Q] | R]
m[n[out m. P | Q] | R] ���� n[P | Q] | m[R]
open n. P | n[Q] ���� P | Q

(Red In)
(Red Out)
(Red Open)

P ���� Q � (νn)P ���� (νn)Q
P ���� Q � n[P] ���� n[Q]
P ���� Q � P | R ���� Q | R

(Red Res)
(Red Amb)
(Red Par)
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Morris-style contextual equivalence [18] is a standard way of saying that two processes
have the same behavior: two processes are contextually equivalent if and only if whenever they
are inserted inside an arbitrary enclosing process, they admit the same elementary observations.

In our setting, we formulate contextual equivalence in terms of observing the presence of
top-level ambients. We say that a process P exhibits an ambient named n, and write P	n, just if
P is a process containing a top-level ambient named n. We say that a process P eventually ex-
hibits an ambient named n, and write P
n, just if after some number of reductions, P exhibits
an ambient named n. Formally, we define:

Next we define contextual equivalence in terms of the predicate P
n. Let a context C() be a pro-
cess containing zero or more holes, and for any process P, let C(P) be the process obtained by
filling each hole in C with a copy of P (names free in P may become bound). Let contextual
equivalence be the relation P � Q defined by:

Finally, we write P ����*� Q if there exists an R such that P ����* R and R � Q. 
In the Appendix, we give a proof of the equation (νn)n[P] � 0 if n � fn(P), illustrating proof

techniques for contextual equivalence. More advanced and convenient techniques are presented
in [13]. That equation allows us to garbage collect some inactive ambients, and is assumed in
some of the examples in section 2.4.

2.4  Examples

In this section, we demonstrate some of the expressive power of the ambient calculus, and we
discuss some expressiveness issues.

Locks
We can use open to encode locks. Let release n. P be a non-blocking operation that releases a
lock n and continues with P. Let acquire n. P be a potentially blocking operation that attempts
to acquire a lock n, and that continues with P if and when the lock is released. These operations
can be defined as follows:

Given two locks n and m, two processes can “shake hands” before continuing with their ex-
ecution:

P’ � P, P ���� Q, Q � Q’ � P’ ���� Q’ (Red �)

����* reflexive and transitive closure of ����

P	n � P � (ν m1...mi) (n[P’] | P”) where n � {m1...mi}
P
n � P ����* Q and Q	n

P � Q � for all n and C(), C(P)
n ⇔ C(Q)
n

acquire n. P � open n. P
release n. P � n[] | P

acquire n. release m. P | release n. acquire m. Q
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Mobile Agent Authentication
A process at the top level of an ambient can be said to be privileged because it can directly affect
the movement of the surrounding ambient and can open subambients. Suppose that such a priv-
ileged process wants to leave its Home ambient, then come back and be reinstated as a privileged
process. The Home ambient cannot allow just any visitor to become privileged, for security rea-
sons, so the original process must somehow be authenticated.

A solution is given below. The top level process creates a new name, n, to be used as a
shared secret between itself and the Home ambient; open n is left in place to authenticate the
process when it comes back. The process then leaves Home in the form of an Agent ambient. On
its return inside Home, the Agent ambient exposes an n ambient, that is opened by open n to re-
instate the continuation P of the original process at the top level of Home.

Here is a trace of the computation:

This example illustrates the creation of a shared secret (n) within a safe location, (Home),
the distribution of the secret over the network (carried along by Agent), and the authentication
of incoming processes based on the shared secret.

Firewall Access
This is another example of a mobile agent trying to gain access to an ambient. In this case,
though, we assume that the ambient, a firewall, keeps its name completely secret, thereby re-
quiring authentication prior to entry.

The agent crosses a firewall by means of previously arranged passwords k, k’, and k”. The
agent exhibits the password k’ by using a wrapper ambient that has k’ as its name. The firewall,
which has a secret name w, sends out a pilot ambient, k[out w. in k’. in w], to guide the agent
inside. The pilot ambient enters an agent by performing in k’ (therefore verifying that the agent
knows the password), and is given control by being opened. Then, in w transports the agent in-
side the firewall, where the password wrapper is discarded. The third name, k”, is needed to con-
fine the contents Q of the agent and to prevent Q from interfering with the protocol.

Home[
(νn)(open n | 

Agent[out home. in home. n[out Agent. open Agent. P]])
]

Home[(νn)(open n | Agent[out home. in home. n[out Agent. open Agent. P]])]
� (νn) Home[open n | Agent[out home. in home. n[out Agent. open Agent. P]]]
���� (νn) (Home[open n] | Agent[in home. n[out Agent. open Agent. P]])
���� (νn) Home[open n | Agent[n[out Agent. open Agent. P]]]
���� (νn) Home[open n | n[open Agent. P] | Agent[]]
���� (νn) Home[0 | open Agent. P | Agent[]]
���� (νn) Home[0 | P | 0]
� Home[P]
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The final effect is that the agent physically crosses into the firewall; this can be seen below
by the fact that Q is finally placed inside w. (For simplicity, this example is written to allow a
single agent to enter.) Assume (fn(P) ∪ fn(Q)) ∩ {k, k’, k”} = � and w � fn(Q):

There is no guarantee here that any particular agent will make it inside the firewall. Rather, the
intended guarantee is that if any agent crosses the firewall, it must be one that knows the pass-
words.

We use an equation to express the security property of the firewall. If (fn(P) ∪ fn(Q)) ∩ {k,
k’, k”} = � and w � fn(Q), then we can show that the interaction of the agent with the firewall
produces the desired result up to contextual equivalence.

Since contextual equivalence takes into account all possible contexts, the equation above states
that the firewall crossing protocol works correctly in the presence of any possible attacker that
may try to disrupt it. The assumption that an attacker does not already know the password is rep-
resented by the restricted scoping of k, k’, k”.

This equation is proven using techniques presented in a further paper [13].

Movement from the Inside or the Outside: Subjective vs. Objective
One may consider alternative primitives to the ones we have adopted in the ambient calculus. In
particular, there are two natural kinds of movement primitives for ambients. The distinction is
between “I make you move” from the outside (objective move) or “I move” from the inside (sub-
jective move). Subjective moves, the ones we have already seen, obey the rules:

Objective moves (indicated by an mv prefix), can be defined by the rules:

The objective moves have simpler rules. However, they operate only on ambients that are
not active; they provide no way of moving an existing running ambient. The subjective moves,
in contrast, cause active ambients to move and, together with open, can approximate the effect
of objective moves (as we discuss later).

Another kind of objective moves one could consider is:

Firewall �   (νw) w[k[out w. in k’. in w] | open k’. open k”. P]
Agent � k’[open k. k”[Q]]

Agent | Firewall
� (νw) (k’[open k. k”[Q]] | w[k[out w. in k’. in w] | open k’. open k”. P])
����* (νw) (k’[open k. k”[Q] | k[in w]] | w[open k’. open k”. P])
����* (νw) (k’[k”[Q] | in w] | w[open k’. open k”. P])
����* (νw) (w[(k’[k”[Q]] | open k’. open k”. P])
����* (νw) w[Q | P]

(ν k k’ k”) (Agent | Firewall) � (νw) w[Q | P]

n[in m. P | Q] | m[R] ���� m[n[P | Q] | R]
m[n[out m. P | Q] | R] ���� n[P | Q] | m[R]

mv in m. P | m[R] ���� m[P | R]
m[mv out m. P | R] ���� P | m[R]
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These are objective moves that work on active ambients. However they are not as simple as the
previous objective moves and, again, they can be approximated by subjective moves and open.

In evaluating these alternative operations, one should consider who has the authority to
move whom. In general, the authority to move rests in the top-level agents of an ambient, which
naturally act as control agents. Control agents cannot be injected purely by subjective moves,
since these moves handle whole ambients. With objective moves, instead, a control agent can
be injected into an ambient simply by possessing an entry capability for it. As a consequence,
objective moves and entry capabilities together provide the unexpected power of entrapping an
ambient into a location it can never exit:

This is an argument against taking this form of objective moves as primitive.

Dissolution
The open capability confers the right to dissolve an ambient from the outside and reveal its con-
tents. It is interesting to consider an operation that dissolves an ambient from the inside, called
acid:

Acid gives a simple encoding of objective moves:

Therefore, acid is as dangerous as objective moves, providing the power to entrap ambients. 
However, open can be used to define a capability-restricted version of acid that does not

lead to entrapment. This is a form of planned dissolution:

to be used with a helper process open acid (an abbreviation for open acid. 0) as follows:

This form of acid is sufficient for uses in many encodings where it is necessary to dissolve
ambients. Encodings are carefully planned, so it is easy to add the necessary open instructions.
The main difference with the liberal form of acid is that acid n must name the ambient it is dis-
solving. More precisely, the encoding of acid n requires an exit and an open capability for n.

Objective Moves
Objective moves are not directly encodable. However, specific ambients can explicitly allow
objective moves. Here we assume that enter and exit are two distinguished names, chosen by
convention:

mv n in m. P | n[Q] | m[R] ���� P | m[n[Q] | R]
m[mv n out m. P | n[Q] | R] ���� m[P | R] | n[Q]

entrap m � (ν k) (k[] | mv in m. in k. 0)
entrap m | m[P] ����* (νk) k[m[P]]

m[acid. P | Q] ���� P | Q

mv in n.P � (νq) q[in n. acid. P]
mv out n.P � (νq) q[out n. acid. P]

acid n. P � acid[out n. open n. P]

n[acid n. P | Q] | open acid ����* P | Q
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These definitions are to be used, for example, as follows:

Moreover, by picking particular names instead of enter and exit, ambients can restrict who can
do objective moves in and out of them. These names work as keys k, to be used together with
allow k:

Synchronization on Named Channels
In CCS [15], all communication between processes is reduced to synchronization on named
channels. In CCS, channels have no explicit representation other than their name. In the ambient
calculus, we represent a CCS channel named n as follows:

A CCS channel n has two complementary ports, which we shall write as n? and n!. (We use
a slightly non-standard notation to avoid confusion with the notation of the ambient calculus.)
These ports are conventionally thought of as input and output ports, respectively, but in fact dur-
ing synchronization no value passes in either direction. Synchronization occurs between two
processes attempting to synchronize on complementary ports. Process n?.P attempts to synchro-
nize on port n? and then continues as P. Process n!.P attempts to synchronize on port n! and then
continues as P. We can encode these CCS processes as follows:

Choice
A major feature of CCS [15] is the presence of a non-deterministic choice operator (+). We do
not take + as a primitive, in the spirit of the asynchronous π-calculus, but we can approximate
some aspects of it by the following definitions. The intent is that n�P + m�Q reduces to P in
the presence of an n ambient, and reduces to Q in the presence of an m ambient.

allow n � !open n
mv in n.P � (νk) k[in n. enter[out k. open k. P]]
mv out n.P � (νk) k[out n. exit[out k. open k. P]]
n�[P] � n[P | allow enter] (n� allows mv in)
n
[P] � n[P] | allow exit (n
 allows mv out)
n�
[P] � n[P | allow enter] | allow exit (n�
 allows both mv in and mv out)

mv in n.P | n�
[Q] ����* n�
[P | Q]
n�
[mv out n.P | Q] ����* P | n�
[Q]

mv ink n.P � k[in n. P]
mv outk n.P � k[out n. P]

n�
[]

n?.P � mv in n. acquire rd. release wr. mv out n. P
n!.P � mv in n. release rd. acquire wr. mv out n. P

n�P + m�Q � (ν p q r) (
 p[in n. out n. q[out p. open r. P]] |
 p[in m. out m. q[out p. open r. Q]] |
 open q | r[])
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For example, assuming {p, q, r} ∩ fn(R) = �, we have:

The use of � in this property, required for removing inert ambients, is justified by the equation
discussed in Appendix.

From choice we can derive boolean conditionals. A boolean is represented by one of two
flags: flag tt for true and flag ff for false. (We assume that at most one of them is present at any
time.) Boolean flags and conditionals are represented as follows:

Note that a boolean flag is consumed every time a branch is taken.

Renaming
We can use open to encode a subjective ambient-renaming operation called be:

For example:

However, this operation is not atomic: a movement initiated by Q may disrupt it. If it is pos-
sible to plan ahead, then one can add a lock within the ambient named n to synchronize renaming
with any movement by Q.

Seeing
We can use open and be to encode a see operation that detects the presence of a given ambient:

With this definition, P gets activated only if its r capsule can get back to the same place. That
is, P is not activated if it is caught in the movement of n and ends up somewhere else.

The previous definition of see can detect any ambient. If an ambient wants to be seen (that
is, if it contains allow see), then there is a simpler definition:

Iteration
The following iteration construct has a number of branches (mi)Pi and a body Q. Each branch
can be triggered by exposing an ambient mi[] in the body, which is then replaced by a copy of Pi.

(n�P + m�Q) | n[R]  ����*� P�| n[R]

flag n � n[]
if tt P, if ff Q � tt � open tt. P + ff � open ff. Q

n be m. P � m[out n. open n. P] | in m

n[n be m. P | Q] �  n[m[out n. open n. P] | in m | Q]
���� m[open n. P] | n[in m | Q]
���� m[open n. P | n[Q]]
���� m[P | Q]

see n. P � (ν r s) (r[in n. out n. r be s. P] | open s)

see n. P � (ν seen) (mv insee n. mv outseen n. P | open seen)

rec (m1)P1 ... (mp)Pp in Q �

(ν m1 ... mp) (!open m1. P1 | ... | !open mp. Pp | Q)
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Numerals
We represent the number i by a stack of nested ambients of depth i. For any natural number i,
let i be the numeral for i:

The open op process is needed to allow ambients named op to enter the stack of ambients to op-
erate on it. To show that arithmetic may be programmed on these numerals, we begin with an
ifzero operation to tell whether a numeral represents 0 or not.

Next, we can encode increment and decrement operations.

The incsucc operation increments a non-zero numeral i. It does so by inserting an operator at the
top-level of i that moves i into a further layer of succ ambients, thus producing i+1. Much of the
complexity of the definition is due to activating the continuation P only after the increment.

These definitions satisfy:

The use of � in the statement of these properties derives from the use of � in the properties of
choice, and was previously discussed.

Given that iterative computations can be programmed with replication, any arithmetic op-
eration can be programmed with inc, dec and iszero.

Turing Machines
We emulate Turing machines in a direct “mechanical” style. A tape consists of a nested se-
quence of squares, each initially containing the flag ff[]. The first square has a distinguished
name to indicate the end of the tape to the left:

end�
[ff[] | sq�
[ff[] | sq�
[ff[] | sq�
[ff[] | ... ]]]]
The head of the machine is an ambient that inhabits a square. The head moves right by entering
the next nested square and moves left by exiting the current square. The head contains the pro-
gram of the machine and it can read and write the flag in the current square. The trickiest part
of the definition concerns extending the tape. Two tape-stretchers, stretchLft and stretchRht, are
placed at the beginning and end of the tape and continuously add squares. If the head reaches

rec (m1)P1 ... (mp)Pp in mi[] ����* rec (m1)P1 ... (mp)Pp in Pi

0 � zero[] i+1 � succ[open op | i]

ifzero P Q � zero�P + succ�Q
0 | ifzero P Q ����*� 0 | P
i+1 | ifzero P Q ����*� i+1 | Q

inc.P � ifzero (inczero.P) (incsucc.P)
inczero.P � open zero. (1 | P)
incsucc.P � (ν p q) (p[succ[open op]] | open q. open p. P |

 op[in succ. in p. in succ. 
(q[out succ. out succ. out p] | open op)])

dec.P � (ν p) (op[in succ. p[out succ]] | open p. open succ. P)

i | inc.P ����*� i+1 | P i+1 | dec.P ����*� i | P
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one end of the tape and attempts to proceed further, it remains blocked until the tape has been
stretched.

3  Communication
Although the pure mobility calculus is powerful enough to be Turing-complete, it has no com-
munication or variable-binding operators. Such operators seem necessary, for example, to com-
fortably encode other formalisms such as the λ-calculus and the π-calculus.

Therefore, we now have to choose a communication mechanism to be used to exchange
messages between ambients. The choice of a particular mechanism is to some degree orthogonal
to the mobility primitives: many such mechanisms can be added to the mobility core. However,
we should try not to defeat with communication the restrictions imposed by capabilities. This
suggests that a primitive form of communication should be purely local, and that the transmis-
sion of non-local messages should be restricted by capabilities.

To focus our attention, we pose as a goal the ability to encode the asynchronous π-calculus.
For this it is sufficient to introduce a simple asynchronous communication mechanism that
works locally within a single ambient.

3.1  Communication Primitives

We again start by displaying the syntax of a whole calculus. The mobility primitives are essen-
tially those of section 2, but the addition of communication variables changes some of the de-

head �

head[!open S1. state #1 (example)
mv out head. jump out to read flag

if tt (ff[] | mv in head. in sq. S2[]), head right, state #2
if ff (tt[] | mv in head. out sq. S3[]) | head left, state #3

 ... | more state transitions
 S1[]] initial state

stretchRht �  stretch tape right
(νr) r[!open it. mv out r. (sq�
[ff[]] | mv in r. in sq. it[]) | it[]]

stretchLft �  stretch tape left
!open it. mv in end.

(mv out end. end�
[sq�
[] | ff[]] |
 in end. in sq. mv out end. open end. mv out sq. mv out end. it[])

| it[]

machine �

stretchLft | end�
[ff[] | head | stretchRht]
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tails. More interestingly, we add input ((x).P) and output (�M�) primitives and we enrich the
capabilities to include paths.

Mobility and Communication Primitives

Free names (revisions and additions)

Free variables 

We write P{x←M} for the substitution of the capability M for each free occurrence of the
variable x in the process P. Similarly for M{x←M’}.

P,Q ::=
(νn)P
0
P | Q
!P
M[P]
M.P
(x).P
�M�

processes
restriction
inactivity
composition
replication
ambient
capability action
input action
async output action

M ::=
x
n
in M
out M
open M
ε
M.M’

capabilities
variable
name
can enter into M
can exit out of M
can open M
null
path 

fn(M[P]) � fn(M) ∪ fn(P)
fn((x).P) � fn(P)
fn(�M�) � fn(M)

fn(x) � �

fn(n) � {n}
fn(ε) � �

fn(M.M’) � fn(M) ∪ fn(M’)

fv((νn)P) � fv(P)
fv(0) � �

fv(P | Q) � fv(P) ∪ fv(Q)
fv(!P) � fv(P)
fv(M[P]) � fv(M) ∪ fv(P)

fv(x) � {x}
fv(n) � �

fv(in M) � fv(M)
fv(out M) � fv(M)
fv(open M) � fv(M)

fv(M.P) � fv(M) ∪ fv(P)
fv((x).P) � fv(P) – {x}
fv(�M�) � fv(M)

fv(ε) � �

fv(M.M’) � fv(M) ∪ fv(M’)
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New syntactic conventions

3.2  Explanations

Communicable Values
The entities that can be communicated are either names or capabilities. In realistic situations,
communication of names should be rather rare, since knowing the name of an ambient gives a
lot of control over it. Instead, it should be common to communicate restricted capabilities to al-
low controlled interactions between ambients.

It now becomes useful to combine multiple capabilities into paths, especially when one or
more of those capabilities are represented by input variables. To this end we introduce a path-
formation operation on capabilities (M. M’). For example, (in n. in m). P is interpreted as in n.
in m. P.

Note also that, for the purpose of communication, we have added names to the collection
of capabilities. A name is a capability to create an ambient of that name. 

We distinguish between ν-bound names and input-bound variables. Variables can be in-
stantiated with names or capabilities. In practice, we do not need to distinguish these two sorts
lexically, but we often use n, m, p, q for names and w, x, y, z for variables.

Ambient I/O
The simplest communication mechanism that we can imagine is local anonymous communica-
tion within an ambient (ambient I/O, for short):

An output action releases a capability (possibly a name) into the local ether of the surrounding
ambient. An input action captures a capability from the local ether and binds it to a variable
within a scope. We have the reduction:

This local communication mechanism fits well with the ambient intuitions. In particular,
long-range communication, like long-range movement, should not happen automatically be-
cause messages may have to cross firewalls.

Still, this simple mechanism is sufficient, as we shall see, to emulate communication over
named channels, and more generally to provide an encoding of the asynchronous π-calculus.

A Syntactic Anomaly
To allow both names and capabilities to be output and input, there is a single syntactic sort that
includes both. Hence, a meaningless term of the form n. P can arise, for instance, from the pro-
cess ((x). x. P) | �n�. This anomaly is caused by the desire to denote movement capabilities by
variables, as in (x). x. P, and from the desire to denote names by variables, as in (x). x[P]. We
permit n. P to be formed, syntactically, in order to make substitution always well defined. A type
system distinguishing names from movement capabilities can avoid this anomaly [6].

(x).P | Q is read ((x).P) | Q

(x).P input action
�M� async output action

(x).P | �M� ���� P{x←M}
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3.3  Operational Semantics

For the extended calculus, the structural congruence relation is defined as in section 2.3, with
the understanding that P and M range now over larger classes, and with the addition of the fol-
lowing equivalences:

Structural Congruence

We now also identify processes up to renaming of bound variables:

Finally, we have a new reduction rule:

Reduction

Now that processes may contain input-bound variables, we need to modify our definition
of contextual equivalence as follows: let P � Q if and only if for all n and for all C() such that
fv(C(P)) = fv(C(Q)) = �, C(P)
n ⇔ C(Q)
n.

3.4  Examples

Cells
A cell cell c w stores a value w at a location c, where a value is a capability. The cell is set to
output its current contents destructively, and is set to be “refreshed” with either the old contents
(by get) or a new contents (by set). Note that set is essentially an output operation, but it is a
synchronous one: its sequel P runs only after the cell has been set. Parallel get and set operations
do not interfere.

It is possible to code an atomic get-and-set primitive:

Records
A record is a named collection of cells. Since each cell has its own name, those names can be
used as field labels:

P � Q � M[P] � M[Q] (Struct Amb)
P � Q � (x).P � (x).Q (Struct Input)
ε.P � P
(M.M’).P � M.M’.P

(Struct ε)
(Struct .)

(x).P = (y).P{x←y} if y � fv(P)

(x).P | �M� ���� P{x←M} (Red Comm)

cell c w � c�
[�w�]
get c (x). P � mv in c. (x). (�x� | mv out c. P)
set c �w�. P � mv in c. (x). (�w� | mv out c. P)

get-and-set c (x) �w�. P � mv in c. (x). (�w� | mv out c. P) 
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A record can contain the name of another record in one of its fields. Therefore sharing and cycles
are possible.

Routable Packets
We define packet pkt as an empty packet of name pkt that can be routed repeatedly to various
destinations. We also define route pkt with P to M as the act of placing P inside the packet pkt
and sending the packet to M; this is to be used in parallel with packet pkt. Note that M can be a
compound capability, representing a path to follow. Finally, forward pkt to M is an abbreviation
that forwards any packet named pkt that passes by to M.

Here we assume that P does not interfere with routing.

Remote I/O
Our basic communication primitives operate only within a given ambient. We now show exam-
ples of communication between ambients. In addition, in section 3.5 we treat the specific case
of channel-based communication across ambients.

It is not realistic to assume direct long-range communication. Communication, like move-
ment, is subject to access restrictions due to the existence of administrative domains. Therefore,
it is convenient to model long-range communication as the movement of “messenger” agents
that must cross administrative boundaries. Assume, for simplicity, that the location M allows I/
O by providing !open io. By M–1 we indicate a given return path from M.

To avoid transmitting P all the way there and back, we can write input as:

To emulate Remote Procedure Call we write (assuming res contains the result):

This is essentially an implementation of a synchronous communication (RPC) by two asynchro-
nous communications (�a� and �x�).

3.5  Encoding the π-calculus

One of our benchmarks of expressiveness is the ability to encode the asynchronous π-calculus.

record r(l1=v1 ... ln=vn) � r�
[cell l1 v1| ... | cell ln vn]
getr r l (x). P � mv in r. get l (x). mv out r. P
setr r l �v�. P � mv in r. set l �v�. mv out r. P

packet pkt � pkt[!(x). x | !open route]
route pkt with P to M � route[in pkt. �M� | P]
forward pkt to M � route pkt with 0 to M

@M�a� � io[M. �a�] remote output at M
@M(x)M–1. P � (νn) (io[M. (x). n[M–1. P]] | open n) remote input at M

@M(x)M–1. P � (νn) (io[M. (x). n[M–1. �x�]] | open n) | (x). P

@M arg�a� res(x) M–1. P �

(νn) (io[M. (�a� | open res. (x). n[M–1. �x�])] | open n) | (x). P
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This encoding is moderately easy, given the I/O primitives. We first discuss how to represent
named channels: this is the key idea for the full translation.

A channel is simply represented by an ambient: the name of the channel is the name of the
ambient. This is very similar in spirit to the join-calculus [10] where channels are rooted at a
location. Communication on a channel is represented by local communication inside an ambi-
ent. The basic technique is a variation on objective moves. A conventional name, io, is used to
transport input and output requests into the channel. The channel opens all such requests and lets
them interact.

These definitions satisfy the expected reduction n(x).P | n�M������* P{x←M} in the presence of
a channel buffer buf n: 

We can fairly conveniently use the above definitions of channels to embed communication
on named channels within the ambient calculus (provided the name io is not used for other pur-
poses). Communication on these named channels, though, only works within a single ambient.
In other words, from our point of view, a π-calculus process always inhabits a single ambient.
Therefore, the notion of mobility in the π-calculus (communication of names over named chan-
nels) is different from our notion of mobility.

To make the idea of this translation precise, we fix a formalization of the asynchronous π-
calculus given by the following tables. We consider a formulation where names n bound by re-
striction are distinct from variables x bound by input prefix. We have separate functions fn and
fv for free names and free variables respectively.

The Asynchronous π-calculus

buf n � n[!open io] a channel buffer
(ch n)P � (νn) (buf n | P) a new channel
n(x).P � (νp) (io[in n. (x). p[out n. P]] | open p) channel input
n�M� � io[in n. �M�] async channel output

buf n | n(x).P | n�M�

�  (νp) (n[!open io] | io[in n. (x). p[out n. P]] | open p | io[in n. �M�])
����* (νp) (n[!open io | io[(x). p[out n. P]] | io[�M�]] | open p)
����* (νp) (n[!open io | (x). p[out n. P] | �M�] | open p)
���� (νp) (n[!open io | p[out n. P{x←M}]] | open p)
���� (νp) (n[!open io] | p[P{x←M}] | open p)
���� (νp) (n[!open io] | P{x←M})
�  buf n | P{x←M}

P,Q ::=
(νn)P
P | Q
!P
M(x).P
M�M’�

processes
restriction
composition
replication
input action
async output action
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Free Names and Free Variables

Structural Congruence

Reduction

The encoding of the asynchronous π-calculus into the ambient calculus is given by the fol-
lowing translation. We translate each top-level process in the context of a set of names S that, in
particular, can be taken to be the set of free names of the process.

M ::=
x
n

expressions
variable
name

fn((νn)P) � fn(P) – {n}
fn(P | Q) � fn(P) ∪ fn(Q)
fn(!P) � fn(P)
fn(M(x).P) � fn(M) ∪ fn(P)
fn(M�M’�) � fn(M) ∪ fn(M’)
fn(x) � �

fn(n) � {n}

fv((νn)P) � fv(P)
fv(P | Q) � fv(P) ∪ fv(Q)
fv(!P) � fv(P)
fv(M(x).P) � fv(M) ∪ ( fv(P) – {x})
fv(M�M’�) � fv(M) ∪ fv(M’)
fv(x) � {x}
fv(n) � �

P � P
P � Q � Q � P
P � Q, Q � R � P � R

(Struct Refl)
(Struct Symm)
(Struct Trans)

P � Q � (νn)P � (νn)Q
P � Q � P | R � Q | R
P � Q � !P � !Q
P � Q � M(x).P � M(x).Q

(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Input)

P | Q � Q | P
(P | Q) | R � P | (Q | R)
!P � P | !P

(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)

(νn)(νm)P � (νm)(νn)P
(νn)(P | Q) � P | (νn)Q if n � fn(P)
(νn)P � P if n � fn(P)

(Struct Res Res)
(Struct Res Par)
(Struct Res fn)

n�m� | n(x).P ���� P{x←m} (Red Comm)

P ���� Q � (νn)P ���� (νn)Q
P ���� Q � P | R ���� Q | R

(Red Res)
(Red Par)

P’ � P, P ���� Q, Q � Q’ � P’ ���� Q’ (Red �)
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Encoding of the Asynchronous π-calculus

This encoding includes the choice-free synchronous π-calculus, since it can itself be encoded
within the asynchronous π-calculus [4, 14]. Moreover, since the λ-calculus can be encoded in
the asynchronous π-calculus [4], we can indirectly encode the λ-calculus.

The encoding respects the semantics of the asynchronous π-calculus, in the sense that a re-
duction step in the asynchronous π-calculus can be emulated by a number of reduction steps and
equivalences in the ambient calculus, as shown by the next proposition. It would be of interest
to study questions of whether the translation preserves or reflects behavioral equivalences, but
this would require more semantic machinery than we have developed in this paper. 

We assume that io is not a name of the π-calculus.

Lemma (Substitution)
�P�{x←m} = �P{x←m}�

�

Proposition
(1) If P ���� P’ holds in π and S is a set of names, then �P�S � �P’�S.
(2) If P ���� P’ holds in π and S ⊇ fn(P), then �P�S �����*� �P’�S.

Proof

Throughout this proof, we use basic properties of �, such as the fact that it is an equiva-
lence, a congruence, and that it includes ��������(Proposition 5-3). The places where ��is used
critically are the cases for (Struct Res fn) and (Red ����).

(1) We show by induction on the length of the derivation of P ���� P’ that �P� � �P’�. Then, �P�S

� �P’�S (that is, �S� | �P� � �S� | �P’�) follows by congruence of �.

(Struct Refl), (Struct Symm), (Struct Trans), (Struct Par), (Struct Repl),  
(Struct Par Comm), (Struct Par Assoc), (Struct Repl Par). 

Directly from the definitions and induction hypotheses.

(Struct Res) Q ���� Q’ � (νn)Q ���� (νn)Q’.

By induction hypothesis, �Q� � �Q’�. Since � is a congruence, we obtain that (νn)(n[!open
io] | �Q�) � (νn)(n[!open io] | �Q’�). That is, �(νn)Q� � �(νn)Q’�.

(Struct Res Res) (νn)(νm)Q ���� (νm)(νn)Q.

�P�S � �S� | �P�
�{n1, ..., nk}� � n1[!open io] | ... | nk[!open io]

where S is a set of names

�(νn)P� � (νn) (n[!open io] | �P�)
�P | Q� � �P� | �Q�

�!P� � !�P�
�M(x).P� � (νp) (io[in M. (x). p[out M. �P�]] | open p)
�M�M’�� � io[in M. �M’�]
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�(νn)(νm)Q� = (νn)(n[!open io] | (νm)(m[!open io] | �Q�)) ���� (νm)(m[!open io] | (νn)
(n[!open io] | �Q�)) = �(νm)(νn)Q�.

(Struct Input)  Q ���� Q’ � M(x).Q ���� M(x).Q’.

By induction hypothesis, �Q� � �Q’�. By the congruence property of �, we have (νp) (io[in
M. (x). p[out M. �Q�]] | open p) � (νp) (io[in M. (x). p[out M. �Q’�]] | open p). That is,
�M(x).Q� � �M(x).Q’�.

(Struct Res Par)  (νn)(Q’ | Q”) � Q’ | (νn)Q” if n � fn(Q’).

Note that either fn(�Q’�) = fn(Q’) or fn(�Q’�) = fn(Q’) ∪ {io}, and that n ≠ io by global
convention. Therefore, n � fn(Q’) implies n � fn(�Q’�). Then, �(νn)(Q’ | Q”)� =
(νn)(n[!open io] | (�Q’� | �Q”�)) ���� �Q’� | (νn)(n[!open io] | �Q”�) = �Q’ | (νn)Q”�.

(Struct Res fn) (νn)Q � Q if n ∉ fn(Q).

As in the previous case, n � fn(�Q�). Then, �(νn)Q� = (νn)(n[!open io] | �Q�) ���� �Q� |
(νn)n[!open io] . By Theorem 5-12, we have that (νn)n[!open io] � 0. Therefore, �(νn)Q�

� �Q�.

(2) By induction on the length of the derivation of P ���� P’.

(Red Comm)  n�m� | n(x).Q ���� Q{x←m}. 

We need to show that if S ⊇ fn(n����m���� | n(x).Q), then �n����m���� | n(x).Q�S �����*� �Q{x←m}�S.
We have �n����m���� | n(x).Q�S = �S� | io[in n. �m�] | (νp) (io[in n. (x). p[out n. �Q�]] | open p).

By assumption, S includes n, and therefore �S� includes n[!open io]. Then, by the compu-
tation shown at the beginning of this section and by reflexivity of �, we obtain �n����m���� |
n(x).Q�S �����*� �S� | �Q�{x←m}. By the substitution lemma above, the right-hand side is
equal to �S� | �Q{x←m}�, which is equal to �Q{x←m}�S.

(Red Res)  Q ���� Q’ � (νn)Q ���� (νn)Q’.

We need to show that if S ⊇ fn((νn)Q), then �(νn)Q�S �����*� �(νn)Q’�S.

If S ⊇ fn((νn)Q), then S∪{n} ⊇ fn(Q). Since we identify terms up to renaming of bound
variables, we can assume that n�S.

By induction hypothesis, �Q�S∪{n} �����*� �Q’�S∪{n}. 

By repeated uses of (Red Res) and congruence of �, we derive that (νn)�Q�S∪{n}

�����*� (νn)�Q’�S∪{n}. Since (νn)�Q�S∪{n} = (νn)(�S∪{n}� | �Q�) � (νn)(n[!open io] | �S�
| �Q�) � �S� | �(νn)Q� = �(νn)Q�S, and similarly (νn)�Q’�S∪{n} � �(νn)Q’�S, we obtain that
�(νn)Q�S �����*� �(νn)Q’�S.

(Red Par)  Q ���� Q’ � Q | R ���� Q’ | R.

By induction hypothesis �Q�S �����*� �Q’�S. By repeated uses of (Red Par) and congruence
of �, we have �Q�S | �R� �����*� �Q’�S | �R�, that is �Q | R�S �����*� �Q’ | R�S.

(Red ����)  Q’ � Q, Q ���� R, R � R’ � Q’ ���� R’.

By induction hypothesis and (1): �Q’�S � �Q�S, �Q�S �����*� �R�S, �R�S � �R’�S. By tran-
sitivity of ��we have �Q’�S �����*� �R’�S.

�
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As a corollary, we obtain that P ���� P’ implies �P�fn(P) �����*� �P’�fn(P).

4  Conclusions
We have introduced the informal notion of mobile ambients, and we have discussed how this
notion captures the structure of complex networks and the behavior of mobile computation. 

We have then investigated an ambient calculus that formalizes this notion simply and pow-
erfully. Our calculus is no more complex than common process calculi, but supports reasoning
about mobility and, at least to some degree, security.

On this foundation, we can now envision new programming methodologies, programming
libraries and programming languages for global computation.

5  Appendix
In this appendix we assemble enough tools to prove the equation (νn)n[P] � 0, where n � fn(P).

We begin with some basic facts about structural congruence:

5-1  Lemma
If P ���� Q and Q	n then P	n.

Proof

If Q	n then Q ���� (νm1, ..., mk)(n[Q’] | Q”) with n � {m1, ..., mk}. By transitivity, P ���� (νm1,
..., mk)(n[Q’] | Q”) and therefore P	n.

�

5-2  Lemma
If P ���� Q and Q
n then P
n.

Proof

By definition, Q
n implies Q ����* R and R	n. Given (Red ����) and Lemma 5-1, it follows
that P ����* R, and therefore that P
n.

�

5-3  Proposition
If P ���� Q then P � Q.

Proof

Consider any context C and any name n, and suppose that C(P)
n. We show that C(Q)
n.
By an induction on the size of C(), we get that C(P) ���� C(Q). By Lemma 5-2, this and
C(P)
n imply C(Q)
n. We may symmetrically show that C(Q)
n implies C(P)
n. Hence,
P � Q.

�
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The next proposition asserts that any name eventually exhibited when a context is filled
with 0 is also eventually exhibited when the context is filled with any process R. A formal proof
may be derived using constructions developed elsewhere [13].

5-4  Proposition
If C(0)
n then C(R)
n for any R.

�

We now construct a family of relations, Se, where e is a finite set of names. We intend that
P Se Q implies P and Q are almost identical, except that for any name n � e, any occurrence of
n in P takes the form n[R], with n � fn(R), and the corresponding position in Q is filled with 0.
By showing that the relationship P Se Q is preserved by structural congruence and reduction we
can prove our main theorem.

Let e range over finite sets of names. Let Se be the smallest relation on processes given by
the following rules.

Relation Se on Processes

5-5  Lemma
If P Se Q and fn(M) ∩ e = � then P{x←M} Se Q{x←M}.

Proof

By induction on the derivation of P Se Q.

�

5-6  Lemma
If P ���� Q then fn(P) = fn(Q), and if P ���� Q then fn(Q) ⊆ fn(P).

Proof

By induction on the derivations of P ���� Q and P ���� Q.

�

5-7  Lemma
If P ���� Q and Q Se Q’ then there is P’ with P Se P’ and P’ ���� Q’.

(S Firewall) (S Res) (e’ is either e or e∪{m}) (S 0)

n � e fn(P) ∩ e = � P Se’ Q m � e

n[P] Se 0 (νm)P Se (νm)P 0 Se 0

(S Par) (S Repl) (S Amb)

P1 Se Q1 P2 Se Q2 P Se Q P Se Q m � e

P1 | P2 Se Q1 | Q2 !P Se !Q m[P] Se m[Q]

(S Action) (S Input) (S Output)

P Se Q fn(M) ∩ e = � P Se Q fn(M) ∩ e = �

M.P Se M.Q (x).P Se (x).Q �M� Se �M�
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Proof

By induction on the derivation of P ���� Q, we prove for all P and Q that P ���� Q implies the
following:

(1) If P Se P’ then there is Q’ with Q Se Q’ and P’ ���� Q’.

(2) If Q Se Q’ then there is P’ with P Se P’ and P’ ���� Q’.

(Struct Refl) Trivial.

(Struct Symm) Here P ���� Q derives from Q ���� P. For part (1), suppose P Se P’. By induction
hypothesis (2), there is Q’ with Q Se Q’ and Q’ ���� P’, and therefore, P’ ���� Q’. Part (2) follows
by a symmetric argument using induction hypothesis (1).

(Struct Trans) Here P ���� R and R ���� Q. For part (1), suppose P Se P’. By induction hypothesis,
there is R’ with R Se R’ and P’ ���� R’. Again, by induction hypothesis, there is Q’ with Q Se

Q’ and R’ ���� Q’. By (Struct Trans), P’ ���� Q’. Part (2) follows by a symmetric argument.

(Struct Res) Here P = (νm)P1, Q = (νm)Q1 and P1 ���� Q1. For part (1), suppose (νm)P1 Se P’.
This can only have been derived using (S Res). Therefore m � e and there is e’, which
equals either e or e∪{m}, and P’1 such that P’1 such that P’ = (νm)P’1 and P1 Se’ P’1. By
induction hypothesis, P1 ���� Q1 implies there is Q’1 such that Q1 Se’ Q’1 and P’1 ���� Q’1. Let
Q’ = (νm)Q’1. By (S Res), Q Se Q’. By (Struct Res), P’ = (νm)P’1 ���� (νm)Q’1 = Q’. Part (2)
follows by a symmetric argument.

(Struct Par) Here P = P1 | R, Q = Q1 | R and P1 ���� Q1. For part (1), suppose P1 | R Se P’. This
can only have been derived using (S Par), with P’ = P’1 | R’, P1 Se P’1 and R Se R’. By in-
duction hypothesis, there is Q’1 with Q1 Se Q’1 and P’1 ���� Q’1. Let Q’ = Q’1 | R’. By (S Par),
Q Se Q’ By (Struct Par), P’ ���� Q’. Part (2) follows by a symmetric argument. 

(Struct Repl)  Similar to the case for (Struct Par).

(Struct Amb) Here P = n[P1], Q = n[Q1] and P1 ���� Q1. For part (1), suppose n[P1] Se P’. This
may be derived using one of two rules:

(S Firewall) Here P’ = 0, n � e and fn(P1) ∩ e = �. Let Q’ = 0, so that P’ ���� Q’. By Lemma

5-6, fn(Q1) = fn(P1), so fn(Q1) ∩ e = �. Hence, Q = n[Q1] Se 0 = Q’.

(S Amb) Here P’ = n[P’1], P1 Se P’1 and m � e. By induction hypothesis, there is Q’1 with

Q1 Se Q’1 and P’1 ���� Q’1. Let Q’ = n[Q’1]. By (Struct Amb), P’ ���� Q’. By (S Amb), Q

Se Q’.

Part (2) follows by a symmetric argument.

(Struct Action) Similar to the case for (Struct Par).

(Struct Input) Similar to the case for (Struct Par).

(Struct Res Amb) Here P = (νn)m[R], Q = m[(νn)R] and m ≠ n. For part (1), suppose (νn)m[R]
Se P’. This can only be derived using (S Res), from m[R] Se’ P’1, P’ = (νn)P’1, n � e and
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with e’ equal either to e or e∪{n}. Moreover, the judgment m[R] Se’ P’1 can be derived us-
ing one of the following rules:

(S Firewall) Here m � e’, P’1 = 0 and m � fn(R). Let Q’ = 0. By (Struct Zero Res), P’ =

(νn)0 ���� Q’. From m � fn(R) it follows that m � fn((νn)R). Moreover, m � e’ and m ≠
n imply m � e. Therefore, by (S Firewall), Q = m[(νn)R] Se 0 = Q’.

(S Amb) Here m � e’, P’1 = m[R’] and R Se’ R’. So P’ = (νn)m[R’]. Let Q’ = m[(νn)R’]. By

(Struct Res Amb), m ≠ n implies P’ ���� Q’. By (S Res), (νn)R Se (νn)R’. From m � e’

and m ≠ n it follows that m � e. Hence, by (S Amb), Q = m[(νn)R] Se m[(νn)R’] = Q’.

For part (2), suppose m[(νn)R] Se Q’. This can be derived using one of the following rules:

(S Firewall) Here m � e, fn((νn)R) ∩ e = � and Q’ = 0. Let P’ = (νn)0. We may assume

that the bound name n is not in e, so from fn((νn)R) ∩ e = � it follows that fn(R) ∩ e

= �. By (S Firewall), this and m � e imply that m[R] Se 0. By (S Res), we get (νn)m[R]

Se (νn)0, that is, P Se P’. By (Struct Res Zero), P’ ���� 0, that is, P’ ���� Q’.

(S Amb) Here m � e, (νn)R Se Q’1 and Q’ = m[Q’1]. The judgment (νn)R Se Q’1 can only

be derived by (S Res), from R Se’ R’ with Q’1 = (νn)R’, e’ either e or e∪{n}, and n �

e. So Q’ = m[(νn)R’]. Let P’ = (νn)m[R’]. By (Struct Res Amb), P’ ���� Q’. Since m � e

and m ≠ n, we get m � e’. Therefore, by (S Amb), m[R] Se’ m[R’]. Moreover, since n

� e we get (νn)m[R] Se (νn)m[R’] by (S Res). In all, we have P Se P’ and P’ ���� Q’.

(Struct Par Comm), (Struct Par Assoc), (Struct Repl Par), (Struct Res Res), (Struct
Res Par), (Struct Res Res), (Struct Zero Par), (Struct Zero Res), (Struct Zero Repl),
(Struct ε), (Struct .).  We omit the details of the argument for these axioms. None of them

mentions ambients, and so they are easy to deal with.

�

5-8  Lemma
Whenever P Se Q and P ���� P’ there is Q’ such that P’ Se Q’ and either Q ���� Q’ or Q ���� Q’.

Proof

By induction on the derivation of P ���������������� P’.

(Red In) In this case P = m[in p.P1 | P2] | p[P3] and P’ = p[m[P1 | P2] | P3]. Only (S Par) can
derive P Se Q, so there are R1 and R2 with m[in p.P1 | P2] Se R1, p[P3] Se R2 and Q = R1 | R2.
Either (S Firewall) or (S Amb) can derive m[in p.P1 | P2] Se R1. 

In case (S Firewall), m � e, fn(in p.P1 | P2) ∩ e = � (and therefore p � e) and R1 = 0. Since
p � e, p[P3] Se R2 must be derived by (S Amb), and not by (S Firewall), so there is Q3 such
that R2 = p[Q3] and P3 Se Q3. Therefore Q = 0 | p[Q3]. Let Q’ = p[0 | Q3] and we have Q ����
Q’. By (S Firewall), m[P1 | P2] Se 0, since m � e and since we get fn(P1 | P2) ∩ e = � from
fn(in p.P1 | P2) ∩ e = �. By (S Par), m[P1 | P2] Se 0 and P3 Se Q3 imply m[P1 | P2] | P3 Se 0
| Q3. By (S Amb), this and p � e imply P’ = p[m[P1 | P2] | P3] Se Q’. 
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In case (S Amb), m � e, R1 = m[R3] and in p.P1 | P2 Se R3. By (S Par) and (S Action), there
are Q1 and Q2 such that P1 Se Q1, P2 Se Q2, R3 = in p.Q1 | Q2 and p � e. The latter implies
that (S Amb), but not (S Firewall), can derive p[P3] Se R2. Therefore there is Q3 such that
R2 = p[Q3] and P3 Se Q3. In summary, we have shown that Q = n[in p.Q1 | Q2] | p[Q3]. Let
Q’ = p[m[Q1 | Q2] | Q3]. By (Red In), Q ���������������� Q’. By (S Amb) and (S Par), Pi Se Qi for i � 1..3
implies that P’ Se Q’.

(Red I/O) In this case, P = �M� | (x).P3 ���������������� P3{x←M} = P’. Since only (S Par) can derive P Se

Q, Q = Q1 | Q2 with �M� Se Q1 and (x).P3 Se Q2. Since these two relationships may only be
derived by (S Output) and (S Input), respectively, it must be that Q1 = �M� with fn(M) ∩ e
= �, and Q2 = (x).Q3 with P3 Se Q3. In summary, Q = �M� | (x).Q3. Let Q’ = Q3{x←M}. By
(Red I/O), Q ���������������� Q’. By Lemma 5-5, P3 Se Q3 implies P3{x←M} Se Q3{x←M}, that is, P’
Se Q’. 

(Red Par) In this case, P = P1 | P2, P1 ���������������� P’1 and P’ = P’1 | P2. Since only (S Par) can derive
P Se Q, Q = Q1 | Q2 with P1 Se Q1 and P2 Se Q2. By induction hypothesis, P1 Se Q1 and P1

���������������� P’1 imply there is Q’1 with P’1 Se Q’1 and either Q1 ���������������� Q’1 or Q1 ���� Q’1. Let Q’ = Q’1 |
Q2. By (S Par), P’ Se Q’. If Q1 ���������������� Q’1, (Red Par) implies Q ���������������� Q’. If Q1 ���� Q’1, (Struct Par)
implies Q ���� Q’. 

(Red Amb) In this case, P = m[P1], P1 ���������������� P’1 and P’ = m[P’1]. Either (S Firewall) or (S Amb)
can derive m[P1] Se Q. In case (S Amb), the proof is similar to the proof for (Red Par). In
case (S Firewall), m � e, fn(P1) ∩ e = � and Q = 0. Let Q’ = 0. By Lemma 5-6, P1 ���������������� P’1

implies fn(P’1) ⊆ fn(P1), so fn(P’1) ∩ e = �. By (S Firewall), P’ = m[P’1] Se 0 = Q’ and Q
= Q’. 

(Red ����) In this case, P ���� P”, P” ���������������� P”’ and P”’ ���� P’. By Lemma 5-7, P Se Q and P ���� P” imply
there is Q” such that Q ���� Q” and P” Se Q”. By induction hypothesis, P” Se Q” and P” ����������������

P”’ imply there is Q”’ such that P”’ Se Q”’ and either Q” ���������������� Q”’ or Q” ���� Q”’. By Lemma
5-7, P”’ Se Q”’ and P”’ ���� P’ imply there is Q’ such that Q”’ ���� Q’ and P’ Se Q’. From Q ����
Q”, either Q” ���������������� Q”’ or Q” ���� Q”’, and Q”’ ���� Q’, we obtain either Q ���� Q’ by (Struct Trans),
or Q ���������������� Q’ by (Red ����).

(Red Out), (Red Open), (Red Res). Omitted. Cases (Red Out) and (Red Open) have proofs
similar to (Red In). Case (Red Res) has a proof similar to (Red Par).

�

5-9  Lemma
If P	n and P S� Q then Q	n.

Proof

By definition, P	n implies that P ��������(νm1, ..., mk)(n[P’] | P”) with n � {m1, ..., mk}. By Lem-
ma 5-7, this and P S� Q implies there is Q0 with (νm1, ..., mk)(n[P’] | P”) S� Q0 and Q0 ���� Q.
The judgment (νm1, ..., mk)(n[P’] | P”) S� Q0 can only have come from k applications of the
rule (S Res); therefore, Q0 = (νm1, ..., mk)Q1 with e ⊆ {m1, ..., mk} and (n[P’] | P”) Se’ Q1.
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The latter judgment can have come from an application of the rule (S Par), and therefore
Q1 = Q2 | Q” with n[P’] Se Q2 and P” Se Q”. We know that n ��{m1, ..., mk} and therefore
n � e. Hence the judgment n[P’] Se Q2 must have come from an application of (S Amb) and
not from (S Firewall). Therefore, Q2 = n[Q’] with P’ Se Q’. In all, we have that Q0 = (νm1,
..., mk)(n[Q’] | Q”). So Q ���� (νm1, ..., mk)(n[Q’] | Q”), which is to say that Q	n.

�

5-10  Lemma
If P
n and P S� Q then Q
n.

Proof

By definition, P
n implies that P ����* P’ and P’	n. By Lemma 5-8, P ����* P’ and P S� Q
imply there is Q’ with P’ S� Q’ and either Q ����* Q’ or Q ���� Q’. By Lemma 5-9, P’	n and
P’ S� Q’ imply that Q’	n. By definition of 
, either Q ����* Q’ or Q ���� Q’ imply that Q
n.

�

5-11  Proposition
If P S� Q and C(P)
n then C(Q)
n.

Proof

By an induction on the size of C(), we get that C(P) S� C(Q). By Lemma 5-10, C(P)
n and
C(P) S� C(Q) imply C(Q)
n.

�

Using Propositions 5-4 and 5-11 we can prove the desired equation:

5-12  Theorem
For any process P and any name n � fn(P), (νn)n[P] � 0.

Proof

For any context C() and any name m we show that: 

C((νn)n[P])
m ⇔ C(0)
m

We prove the two directions separately. First, suppose that C((νn)n[P])
m. By (S Fire-
wall), n � fn(P) implies n[P] S{n} 0. By (S Res), this implies (νn)n[P] S� (νn)0. By Propo-
sition 5-11, C((νn)n[P])
m implies that C((νn)0)
m. By (Struct Res Zero), we get C((νn)0)
���� C(0). By Lemma 5-2, this implies that C(0)
m. Second, suppose that C(0)
m. By Prop-
osition 5-4, C(0 | (νn)n[P])
m. Hence, (νn)n[P] � 0.

�

The construction of S� lets us prove other firewall equations, not derivable from Theorem
5-12. For example, we can prove that (νn)(n[P] | n[Q]) � 0 if n � fn(P | Q).
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