

Migratory Applications

Krishna A. Bharat

Graphics, Visualization & Usability Center
College of Computing, Georgia Tech.

Atlanta, GA 30332-0280
E-mail: kb@cc.gatech.edu

Luca Cardelli

Digital, Systems Research Center
130, Lytton Avenue

Palo Alto, CA 94301
E-mail: luca@src.dec.com

ABSTRACT

We introduce a new genre of user interface applications that
can migrate from one machine to another, taking their user
interface and application contexts with them, and continue
from where they left off. Such applications are not tied to one
user or one machine, and can roam freely over the network,
rendering service to a community of users, gathering human
input and interacting with people. We envisage that this will
support many new agent-based collaboration metaphors.
The ability to migrate executing programs has applicability
to mobile computing as well. Users can have their applica-
tions travel with them, as they move from one computing
environment to another. We present an elegant programming
model for creating migratory applications and describe an
implementation. The biggest strength of our implementation
is that the details of migration are completely hidden from
the application programmer; arbitrary user interface appli-
cations can be migrated by a single ÒmigrationÓ command.
We address system issues such as robustness, persistence
and memory usage, and also human factors relating to appli-
cation design, the interaction metaphor and safety.

KEYWORDS:

Application Migration, Collaborative
Work, Interactive Agents, Application Checkpointing,
Mobile Computing, Ubiquitous Computing, Safety.

1 INTRODUCTION

The goal of the human-computer interaction community is
to make powerful applications easy to use, while retaining
their full potential. For this purpose metaphors have been
devised; metaphors like overlapping windows, direct manip-
ulation, and hypermedia. A successful metaphor hides com-
plexity, and allows users to accomplish their tasks with little
effort. Often, a metaphor requires advances in technology
before it can be effectively implemented. Conversely, a new
technology often needs the introduction of new metaphors to
harness it.

As the infrastructure for ubiquitous computing comes into
being, new demands will be placed on the way applications

cope with the needs of mobile and distributed users. New
metaphors will be necessary to cope with these demands.

We introduce a new genre of user interface applications:

migratory applications

 can migrate from one host to
another, maintaining intact the state of their user interface.
After migration, a former host may shut down without
affecting the application. We discuss how application
migration can be implemented at the programming lan-
guage/environment level. Our approach places some
demands on the programming environment, but almost
none on the application programmer. No restrictions are
placed, in principle, on the type of the application being
migrated. The entire migration operation can be realized by
the execution of a single command. The same technique use
for transmitting an application can be used to save the run-
ning application to Þle and transmit it over other channels to
be resumed at a later time.

Application migration is useful in the context of many
agent-based collaboration metaphors. For example:

1. Applications that follow a user across physical locations:
the

ubiquitous computing

metaphor. For ÒeagerÓ behavior,
some applications could use a location sensing device such
as an Òactive badgeÓ, to automatically follow the user.

2. Applications that serve a group of people by travelling to
each personÕs site in turn (e.g. a meeting scheduler): the

electronic secretary

 metaphor.

3. Applications that interact with people on a userÕs behalf
and carry out an agenda: the

interactive agent

 metaphor.

4. Communication over email that is interactive and intelli-
gent: the

 interactive message

 metaphor. Unlike previous
implementations of Òactive mailÓ [6], the recipient is able to
forward the interactive message after interacting with it.

In addition to self-induced migration as described so far, it is
equally easy to allow a program to be migrated under exter-
nal control. We could Òdrag-and-dropÓ programs from one
machine to another in the same manner that we move Þles
between folders, and windows between screens.

Section 2 describes our approach to programming migra-
tory applications. In Section 3, we show how this paradigm
was applied in the Visual Obliq environment [3] to support
the migration of (arbitrary) user interface applications. In
Section 4 we provide a walk-through of the process of cre-

ating a migratory application. In Section 5 we discuss some
issues raised by migration. Section 6 lists related work. In
Section 7 we draw some conclusions.

2 PROGRAMMING MODEL

Our programming model is based on the facilities available
in the Obliq distributed scripting language [7].

2.1 Network Semantics

In Obliq, arbitrary data, including procedures, can be trans-
mitted over the network. A piece of Obliq data can be seen
as a graph where some nodes are

mutable

 (meaning that
they have local state that can be modiÞed by assignment)
and where other nodes are

immutable

 (meaning that they
cannot be modiÞed). For example, the program text of a
procedure is immutable and cannot be modiÞed, while
Þelds in an object are mutable because they can be assigned
new values.

2.1.1 Network Transmission.

When a data graph is
passed to a remote procedure, or returned from a remote
procedure, we say that it is transmitted over the network.

The meaning of transmitting a data graph is the following
(see Figure 1). Starting from a given root, the graph is cop-
ied from the source site to the target site up to the point
where mutable nodes or network references are found.
Mutable nodes (indicated by shaded boxes) are not copied;
in their place, network references to those nodes are gener-
ated. Solid pointers represent either local or remote refer-
ences. Existing network references are transmitted
unchanged, without following the reference. Sharing and
circularities are preserved.

For example, an Obliq

object

 (one of the basic data struc-
tures) is never copied over the network on transmission,
since objects have state. A network pointer to the object is
transmitted in its place. The object can then be referenced
remotely through that network pointer; for example, one of
its methods may be remotely invoked.

Arrays and updatable variables are similarly not copied on
transmission, since they have state.

Obliq procedures are Þrst-class data and, like other data,
have a value that can be manipulated and transmitted. The
value of a procedure is called a

closure

; it consists of the
program text of the procedure, plus a table of values for the
global variables of the procedure. Figure 2 shows the clo-
sure for a procedure incrementing a global variable x; the
variable x denotes a mutable location containing 0.

ToFrom

Transmit

Figure 1: Transmission of a data graph

The closure table contains a single entry, indicated by Òwhere
x = ...Ó:

The transmission of a closure (Figure 3) follows the same
rules as the transmission of any data graph. When a closure is
transmitted, all the program text is copied, since it consists of
immutable data. The associated collection of values for free
variables is copied according to the general rule. In particu-
lar, the locations of global updatable variables are not copied:
network references are generated to their location, so that
they can be remotely updated.

2.1.2 Network Copy.

In contrast to the default transmis-
sion mechanism, which stops at mutable nodes and network
references, a special primitive is provided to perform a

net-
work copy

 of a data graph. This primitive makes a complete
local copy of a possibly mutable and distributed graph.

Network copy is useful, for example, when moving a user
interface along with a migrating application.

A user interface is normally closely bound to site-dependent
resources, such as windows and threads. Since these
resources cannot migrate, a stand-alone snapshot of the user
interface is Þrst assembled. The snapshot consists of some
complex data structure, including a representation of the cur-
rent state of all the live windows of the application. This data
structure, resembling the graph in the picture above, can be
copied over to the target site, and then converted back to a live
interface.

2.2 Agents

An agent is a computation that may

hop

 from site to site over
the network [19]. We review the concepts of agents, agent
servers, suitcases, and brieÞngs. In Section 2.3, we describe

0

proc() x:=x+1; x end
where x =

x =

Figure 2: The closure of a procedure

proc ... x ... end
where x=

x =

From
proc ... x ... end
where x= To

Transmit

Figure 3: Transmission of a closure

ToFrom

Copy

Figure 4: Network Copy

an Obliq implementation of agent hopping.

A

suitcase

 is a piece of data that an agent carries with it as
it moves from site to site. It contains the long-term memory
of the agent. It may include a list of sites to visit, the tasks
to perform at each site, and the results of performing those
tasks.

A

brieÞng

 is data that an agent receives at each site, as it
enters the site. It may include advice for the agent (e.g. Òtoo
busy now, try this other siteÓ), and any site-dependent data
such as local Þle systems and databases.

An

agent server

, for a given site, is a program that accepts
code over the network, executes the code, and provides it
with a local brieÞng.

A

hop instruction

 is used by agents to move from one site
to the next. This instruction has as parameters an agent
server, the code of an agent, and a suitcase. The agent and
the suitcase are sent to the agent server for execution.

Finally, an

agent

 is a user-deÞned piece of code parameter-
ized by a suitcase and a brieÞng. All the data needs of the
agents should be satisÞed by what it Þnds in either the suit-
case or the brieÞng parameters. At each site, the agent
inspects the brieÞng and the suitcase to decide what to do.
After performing some tasks, it typically executes a hop
instruction to move to the next site.

If an agent has a user interface, it takes a snapshot of the
interface, stores it in the suitcase during the hop, and
rebuilds the interface from the snapshot at the destination.

2.3 Agent Migration

As we said in the previous section, an agent is a procedure
parameterized with a suitcase and a brieÞng; the suitcase
travels with the agent from site to site, while a fresh brieÞng
is provided at each site. We assume that the agent code is
self-contained (that is, it has no free variables).

Agents move from site to site by executing a hop instruc-
tion:

(* deÞnition of the recursive procedure

agent

*)

let

rec

 agent =

proc

(suitcase, briefing)

(*

work at the current site

*)
(*

decide where to go next *)

hop(nextSite, agent, suitcase);

(* run

agent

at

nextSite

with

suitcase

*)

end

;

In Obliq, agents, suitcases, brieÞngs, and hop instructions
are not primitive notions. They can be fully understood in
terms of the network semantics of Section 2.1.

Agents are just procedures of two parameters. Suitcases
and brieÞngs are arbitrary pieces of data, such as objects.
Each agent is responsible for the contents of its suitcase,
and each agent server is responsible for the contents of the

brieÞng. Agent servers are simple compute servers whose
main task is to run agents and supply them with appropriate
brieÞngs (and maybe check the agentÕs credentials).

The hop instruction can be programmed in Obliq as follows:

let

 hop =

proc

(agentServer, agent, suitcase)
agentServer(

(1)

proc

(briefing)

fork

(

(2)

proc

()

(3)

agent(

copy

(suitcase), briefing);

end

);
ok

end

);

end

;

Suppose a call

hop(agentServer, agent, suitcase)

 is
executed at a source site. Here,

agentServer

is (a network
reference to) a remote compute server at a target site.

The call

agentServer(...)

 has the effect of shipping the
procedure

(1)

 to the remote agent server for execution. At the
target site, the agent server executes the closure for procedure

(1)

 by supplying it with a local brieÞng.

Next, at the target site, the execution of the body of

(1)

 causes
procedure

(2)

 to be executed by a forked thread. Immediately
after the fork instruction, procedure

(1)

 returns a dummy
value (

ok

), thereby completing the call to

hop

 that originated
at the source site.

The source site is now disengaged, while the agent computa-
tion carries on at the target site. The thread of computation at
the target site is driven by the agent server. At the target site,
the forked procedure

(2)

 Þrst executes

copy

(suitcase)

.
The suitcase, at this point of the computation, is usually a net-
work pointer to the former suitcase that the agent had at the
source site. The copy instruction (an Obliq primitive) makes
a complete local copy of the suitcase, as described earlier.
Therefore, the result of

copy

(suitcase)

 is a suitcase whose
state is local to the target site, suitable for local use by the
agent.

ToFrom

proc(brieÞng)
fork((2))

end
where agent =
and suitcase =

agentServer =

Suitcase

proc(suitcase,
brieÞng)

Do work; hop(...);
end

BrieÞng(1)

Transmit

Figure 5: The hop instruction - Part I

Agent
Server

After the copying of the suitcase, the agent migration is
complete. The source site could now terminate or crash
without affecting the migrated agent.

Finally

(3), the agent is invoked with the local suitcase and
the local brieÞng as parameters. The program text of the
agent was copied over as part of the closure of procedure
(1). Since the agent has no free variables, it can execute
completely locally, based on the suitcase and the brieÞng.

In the special case when the suitcase contains the entire
application state, we have a migratory application.

3 APPLICATION MIGRATION

We used the agent migration paradigm described in the pre-
vious section to implement migratory applications in
Visual Obliq.

3.1 Visual Obliq

Visual Obliq is an environment for rapidly constructing
user interface applications by direct manipulation [18]. It
consists of:

¥ An interactive application builder that allows the user
interface to be drawn and programmed. The builder
generates code in Obliq.

¥ Runtime support, consisting of libraries and network
services.

In previous work [3] we showed how the Visual Obliq envi-
ronment supported the construction of distributed, multi-
user applications (II, in Figure 7), in addition to traditional,
non-distributed applications (I).

ToFrom

agent(copy(suitcase),
brieÞng)

where brieÞng =
and agent =

Suitcase
proc(suitcase,

brieÞng)
Do work; hop(...);
end

BrieÞng

and suitcase =

Copy

Figure 6: The hop instruction - Part II

Agent
Server

Static Migratory

Non
Distributed

I

II IV

III

Distributed

Figure 7: The space of networked applications

Here we describe how the environment was extended to sup-
port the creation of migratory, non-distributed applications
(III). This was done in a manner transparent to the user,
allowing any non-distributed application (in I) to be migrated
by a single command. Migratory multi-user applications
(IV) are signiÞcantly more complicated to implement, since
connectivity needs to be maintained as the migration hap-
pens. We have yet to tackle this class of applications.

The support for distribution in II (described in [3]) has little
in common with the support for migration. Hence we do not
describe it here. However Visobliq, the GUI builder used to
draw and program the interface has remained the same.

3.1.1 Visobliq. Figure 8 shows Visobliq in action. The
window on the left (in the background) is called the design
window, and the window on the right (in the foreground) is
known as the attribute sheet. The design window has a pal-
ette of widgets at the top, and a drawing area below, where
widgets may be pieced together to form application win-
dows. The application windows thus designed are called
forms. The Þgure shows a single form being designed, con-
taining the following widgets: a video-player, a button, a
browser, and a Þle-browser. Widget geometry and the hierar-
chical nesting of widgets within a form can be manipulated
interactively. All other resources are speciÞed via the
attribute sheet.

Double-clicking on a widget causes the resources of the wid-
get to be loaded into the attribute sheet, for modiÞcation by
the programmer. This includes attributes that determine the
appearance and interactive behavior of the widget, as well as
any code that is attached to the widget. When the resources
have been modiÞed, the programmer presses the ÔApplyÕ but-
ton to make the changes take effect.

Pressing the ÔRunÕ button causes the application to execute
within an internal interpreter for testing and debugging. The
ÔCodeÕ menu option provides a facility to output code in
Obliq, for stand-alone execution within a Visual Obliq inter-
preter. We talk more about the interpreter and its special fea-
tures to support migration in Section 3.3.

Figure 8: The Visobliq application builder

3.1.2 Programming a single-user application. Each
form deÞnes a class of window objects, and can be multiply
instantiated at run-time. Every instance of a form receives
a unique index, and can be referenced through a global
array that bears the formÕs name. For example, if the form
being designed in Figure 8 were called MainWin, there
would be an array called MainWin[...], containing refer-
ences to instances of MainWin created at run-time.Widgets
are implemented as objects nested inside the form instance.
Suppose the button labeled ÔCaptureÕ were named Cap-
tureBtn, the programmer would refer to the button within
instance n of MainWin as MainWin[n].CaptureBtn.

While building a single-user application in Visobliq, the
programmer is asked to write four types of code in Obliq:

i. Callback code, which is attached to a widget

ii. Form support code, which is associated with a form.

iii. Global code. Any other code needed by the applica-
tion can be placed here.

iv. Initialization code, which is executed when the pro-
gram starts up and creates the initial form instances.
After this the execution is fully input driven.

The above programming framework is general enough for
the construction of most single-user UI applications.

3.2 Implementing Migration

The programmer makes the application migrate to a new
site by executing the migration command within a call-
back. SpeciÞcally, one of the following commands is exe-
cuted:

• MigrateTo(Host)

• MigrateToServer(ServerName, Host)

The Þrst command migrates the application to a default
agent server called ÔVOMigrateÕ, on the machine named
Host. VOMigrate continues the application from where it
left off, and does not provide any brieÞng. This is sufÞcient
for basic application migration. The second command
causes the application to migrate to a customized
agent server called ServerName, on the machine named
Host. In both cases the agent server is run by the user who
receives the application after it migrates.

3.2.1 The Migration Command. The semantics of the
migration command is that it returns true if the application
is migrated successfully, and false upon failure. If it suc-
ceeds, the local instance of the application terminates the
moment the callback Þnishes. The user interface is
destroyed and the entire application state gets garbage-col-
lected. In the event of failure, the application continues to
execute locally as if nothing happened.

The migration command executes the following steps:

i. It Þrst contacts the agent server at the destination to
ensure that the migration can happen. Upon failure it
returns immediately with a false value.

Otherwise...

ii. It checkpoints the state of the user-interface into the
Obliq objects that make up the widget hierarchy.

This step is necessary because widgets in Visual Obliq are
high-level Òinterface objectsÓ in Obliq, which realize their
presentation using lower-level interactors in the local UI
toolkit. Currently, the only toolkit that is supported is Trestle
[12], but if Obliq were ported to a different environment, the
local toolkit would be used. Hence, Visual Obliq widgets do
not maintain all of their state explicitly. In particular they do
not maintain an up-to-date copy of attributes that can be
changed interactively by the user (e.g. the geometry). These
attributes are retrieved from the underlying toolkit whenever
needed; either when the programmerÕs code requires them,
or when the user interface state is being checkpointed.

iii. The user interface is destroyed, breaking links to the
UIMS.

iv. Links to the local runtime are explicitly removed.

v. Visobliq prepares a suitcase, and executes the hop
instruction discussed in Section 2.3. Recall that a suit-
case is a data structure that gets copied to the destina-
tion. In this case, the suitcase contains a reference to
each of the form-instance arrays in the program.

If the hop instruction executes successfully, true is returned.
Upon failure (if the network operation raises an exception),
the command rebuilds the user interface from the saved state,
in the same way that the agent server at the destination would
have, and returns false.

The hop instruction causes the agent server to perform a net-
work copy of suitcase. Since the suitcase contains references
to all form-instance arrays, this involves copying every piece
of data that is reachable from a form-instance. It is easy to see
that this will copy over every piece of the application state
that is relevant to future execution. If a piece of data is not
accessible from any form-instance, it will never be used, and
so it is not copied.

At the source site, due to step iii, all links between the inter-
preterÕs UI threads and the application are destroyed. Once
the existing callbacks exit, the application state becomes
inaccessible to any thread in the system. The Obliq inter-
preter has automatic garbage-collection. Hence shortly after
migration, the application state gets garbage collected.

Step iv ensures that the application state has no references to
the Visual Obliq runtime when it is copied. This was done to
prevent the runtime from being copied as well. At the new
host, the local runtime is patched in, causing the local envi-
ronment to take effect.

3.2.2 The Agent Server. The agent server is an extended
Visual Obliq interpreter. In addition to an internal UIMS
thread, the agent server has a ÔmigrationÕ thread to assist
incoming agents.

When an application migrates in (at step 1 in Figure 9), the
agent performs the following operations:

i. It performs a network copy of suitcase, causing the
entire application state to be copied over.

ii. References to the local Visual Obliq runtime are
added.

iii. For each form-instance in the application, it rebuilds
its user interface based on its saved state. Callbacks
are re-attached. This sets up links between the appli-
cation and the local UIMS thread.

When an application migrates out (step 2), links from the
UIMS are broken, and soon its state is garbage-collected
(step 3). In this manner, the agent server allows applica-
tions to migrate in and out of the host repeatedly, without
running out of memory. Multiple applications can co-exist
within the interpreter, because they will not have links to
each other.

User-deÞned agent servers are created by extending the
default agent server to provide application-speciÞc brieÞng
and access control. To be useful, the agent server needs to
have a user interface of its own to help the user monitor and
regulate the activities of migratory applications. For exam-
ple, the user might stipulate: ÒI will entertain only applica-
tions of type XÓ; ÒI will be back at time YÓ; ÒIf you get an
agent from so-and-so, provide Þle Z as inputÓ. This presup-
poses an underlying mechanism for authentication and
encryption. There is work in progress to provide secure
communication and authentication at the Network Objects
layer [5] Ð the transport layer for Visual Obliq.

In practice, there are likely to be other locale-speciÞc
resources, such as Þle-handles and network connections,
that need to be preserved during migration. The replication
of such resources cannot be automated since it is highly
application and situation dependent. For instance, it is not
clear how open Þles should be treated. One option would be
to have the system reopen all open Þles upon reaching the
destination, but often the two sites may not share a common
Þle-system. Hence, we let the application programmer deal
with the checkpointing and reinstantiation of such
resources. The programmer is given the option of adding

UIMS

Migration

Thread

Migrates Migrates Garbage

In Out Collected

Created
UI UI

Destroyed

 Thread

Duration of Visit
2 31

Figure 9: Operation of an Agent Server

code to two system-deÞned routines: PreMigrate() and
PostMigrate(), which are invoked before and after migra-
tion respectively.

3.3 The Visual Obliq runtime

The ÔVisual Obliq interpreterÕ is simply the Obliq interpreter
with a set of support libraries (known as the runtime) pre-
loaded. The original purpose of the runtime was to provide
access to the local UI library and implement abstractions
needed by distributed applications.

Recently the runtime was redesigned and extended to meet
the needs of migratory applications.

Firstly, since the runtime is closely tied to the local environ-
ment, it was decided that it would not be copied when the
application migrates. Hence, all access to the runtime is
through handles which are local to the interpreter in which
the application is currently resident. The handles are
removed before migration, and get patched in when the
application arrives at a new host. Hence, all operations that
involve local system resources such as the network, proces-
sor, Þle-system and the UI toolkit, are customized to the local
environment.

In addition, the runtime provides the following facilities:

3.3.1 Migration Support. It implements the migration
commands described earlier. The runtime at the source
accesses the agent server using a remote-object access mech-
anism known as ÔNetwork ObjectsÕ [5]. Then it checkpoints
the local interface. At the target site, the agent server copies
the application state over and uses the local runtime to
rebuild the interface.

The two operations on the interface are implemented thus:

a) Checkpointing the user interface. This is done by
walking the Visual Obliq widget hierarchy for each
form-instance in the application, and copying relevant
state information from the UI toolkit into the Obliq
widget. Any attribute that cannot be modiÞed by the
user (and can only be modiÞed under program control)
need not be checkpointed, since the widget will
already have the latest value.

b) Rebuilding the user interface. The same mecha-
nism used to create the original user interface is used to
rebuild it at new sites. The routine walks the Visual
Obliq widget hierarchy for each form-instance and cre-
ates for each widget therein, a corresponding interface
using interactors in the local toolkit. In doing so it may
adhere to the checkpointed geometrical attributes or
decide to override them, e.g. if the application migrates
to a portable computer with a substantially smaller
screen, dimensions might shrink. This provides the
ßexibility needed to cope with the differences between
individual machines, while preserving the appearance
of the interface as far as possible.

In our present implementation, we have another inter-
vening layer, FormsVBT [2]. FormsVBT allows Visual

Obliq widgets to be described in terms of symbolic
expressions representing the hierarchical arrange-
ment of (smaller) UI components. The runtime gen-
erates the symbolic expression corresponding to each
Visual Obliq widget by replacing tokens in a tem-
plate with the attributes of the widget. Users can cus-
tomize the appearance of the widgets displayed by
their agent server by manipulating the template.

Once the user interface has been rebuilt, the runtime
re-attaches callbacks so that interaction can resume.

3.3.2 Safety. The runtime is responsible for safety, and
protects the user from attacks and privacy violations by the
applications that migrate in. It does this by disabling all
unsafe commands (namely commands that could be used to
damage the userÕs environment and/or violate privacy), and
instead provides safe alternatives that are subject to user-
speciÞed checks before execution.

In Obliq, all unsafe operations are readily identiÞed by the
fact that they require the use of ÒaccessÓ handles to system
resources. For instance a processor handle is needed by
routines that create new processes and execute system
calls. Similarly there are handles to provide various levels
of access to the Þle-system. The Visual Obliq runtime hides
all system handles after having deÞned a ÒsafeÓ version of
each routine that uses a handle. The safe-routines have the
handles bound inside them. An alien program can access a
safe-routine but not the handles within it. These routines
are considered safe because they compare their op-code
and argument list with patterns in a user-speciÞed conÞgu-
ration Þle (called .vorestrict), to decide which opera-
tions are to be allowed and which are to be blocked.

Operations that are allowed by the conÞguration Þle are
executed in the regular manner. When a blocked operation
is encountered, the runtime notiÞes the user that the pro-
gram is attempting something illegal and aborts the appli-
cation. When an unsafe operation falls in neither category
(which is the default case when no preferences have been
speciÞed) the runtime rewrites the operation in a human
intelligible form, and pops up a notice to ask the user if it
should be allowed to go through.

Unlike in Safe-Tcl [13], where a special ÒSafeÓ interpreter
is required, we are able to implement safety entirely at the

#allow
processNew ls /tmp/*
ÞleWrOpen /tmp/*
#block
processNew rm processNew([ÒxvÓ,...]);

blocked

allowed

neither

Figure 10: Safe Routines in Visual Obliq

user level. Most users would use a default .vorestrict Þle
provided by the system administrator. The ability to custom-
ize the Þle and relax the restrictions is useful within work-
groups, where there is a high level of trust.

3.4 Variants

A variant of migration is cloning. An application is cloned by
network copying it to the new site without destroying it at the
original site. One possible application of cloning is in debug-
ging. When a bug is encountered in an application, the user
can send a clone of the application to the person responsible
for debugging it, instead of a mere Ôbug reportÕ. Another
application would be a divide-and-conquer agent mecha-
nism, wherein an agent splits into multiple agents that inter-
act independently with various users, and later merge or
resynchronize.

Obliq provides a pickle operation, which is very similar to the
network copy. Instead of replicating the data-graph, it writes
it to a buffer. The contents of the buffer can be saved to a Þle
or transmitted over another transport e.g. e-mail. At a later
point in time, it can be converted back into the original data-
graph, by the complementary unpickle operation. This
allows Visual Obliq programs to checkpoint their state to Þle
when necessary. If agents are expected to be persistent and
endure machine crashes, they will need the ability to period-
ically save their state to stable storage, and resume from a
saved conÞguration when the machine restarts.

4 A COMPLETE EXAMPLE

We present a small survey agent in its entirety, to demonstrate
how easy it is to create a migratory application in Visual
Obliq. The agent has an agenda consisting of a list of hosts to
visit.

At each host it presents the user with two top-level forms:
CommentsForm, shown in Figure 11, and SurveyForm,
shown in Figure 12 . SurveyForm has two questions to be

CommentsForm Comments

SuggestBtn Transcript DoneBtn
(read only)

Figure 11: CommentsForm, a top-level form

answered by the user, and CommentsForm has an editor
widget at the top, where comments may be typed in.

When a user Þnishes with the questionnaire she clicks on
the button labeled ÒDoneÓ to send the agent on to the next
user. The read-only ÒTranscriptÓ window maintains a log of
the input given by each user. When the agent has visited all
hosts in its agenda, it will return to the host where it
started.The initial list of users and hosts to visit is supplied
by the person who starts the application. Subsequently,
other users may add to the agenda. Users and hosts are
added to the agenda via the Suggest form (Figure 13),
which is popped up by clicking on the ÒSuggest SomeoneÓ
button (in CommentsForm).

By default, the application is conÞgured to create one
instance of each top-level form when it starts up. In this
case CommentForm[0] and SurveyForm[0] will be cre-
ated. So no user speciÞed initialization code is necessary.

The global code (shown below) contains a counter, Num-
Visited, to keep track of the number of hosts visited, and
the arrays, people[...] and hosts[...], to keep track of
the agenda. The host name of the originating site is saved in
OrginalHost.
var NumVisited = 0, people = [], hosts = [];

 . The annotations represent widget names in Visobliq

SurveyForm Qn1

Success Qn2 (read only)

Figure 12: SurveyForm, another top-level form

SuggestForm

Agenda

AddBtn

Name

Host

Figure 13: SuggestForm, a popup in CommentsForm

let OriginalHost = volibLocal.getHostName();

The following callbacks are added:

Clicking on SuggestBtn causes SuggestForm to pop up. At
design time, SuggestForm is anchored to CommentsForm.
This causes SuggestForm to become a Þeld within Com-
mentsForm. In Visual Obliq, SELF is used within a callback to
refer to the current form. Hence the callback for SuggestBtn
is as follows:

 SELF.SuggestForm.show();

When AddBtn is clicked, the contents of the typein Þelds,
Name and Host, are appended to the arrays, people and
hosts respectively, and also to the browser named Agenda.

let name = SELF.Name.getText();
let host = SELF.Host.getText();
people := people @ [name];
hosts := hosts @ [host];
SELF.Agenda.append(name & “ (“ & host & “)”);

The callback for the slider named Success copies the current
slider value into the typein Þeld named Qn2 :

let n = SELF.Success.getValue();
SELF.Qn2.putText(fmt_int(n));

When the button labeled ÒDoneÓ is clicked, the userÕs com-
ments and responses (to the questions in SurveyForm[0])
are appended to the editor Transcript. The editor, Com-
ments, contains the userÕs comments. The answer to the first
question is the name of the currently selected choice inside
the frame named Qn1. The names of the three choices are Yes,
Maybe and No (not shown). The answer to the second question
is the text inside the typein Þeld named Qn2. Then the desti-
nation host, dest, is computed and the migration command
is invoked. If the migration succeeds the loop is exited; oth-
erwise it tries to migrate to the next host. The code to do this
is as follows:

let comments = SELF.Comments.getText();
SELF.Comments.putText(

“<Please Type Your Comments Here>”);
SELF.Transcript.appendText(people[NumVisited]
& “ said\n” & comments & “\n”
& “ Qn 1: “ & SurveyForm[0].Qn1.getChoice()
& “ Qn 2: “ & SurveyForm[0].Qn2.getText());

loop
if SELF.Agenda.numElements() is NumVisited
then
dest := OriginalHost;

else
dest := hosts[NumVisited];

 NumVisited := NumVisited + 1;
end;
if MigrateTo(dest) then exit end

end;

The application programmer perceives the migration com-
mand as a primitive operation. In reality the operation
MigrateTo(dest) involves:

¥ Contacting the VOMigrate agent server on dest.

¥ Checkpointing and destroying the user interface.

¥ Performing a network copy of suitcase, an array
containing references to CommentsForm[...] and
SurveyForm[...]. This causes Comments-
Form[0], SurveyForm[0] and all the global code
to be copied over as well.

¥ Rebuilding the interface at dest; reattaching call-
backs.

5 ISSUES RAISED BY MIGRATION

The ability to migrate applications can substantially
change the way we view programs, and the way we interact
with them.

¥ Interaction Techniques. The distinction between
executing programs and data becomes blurry with
the ability to migrate and checkpoint applications.
Applications can now be treated as Þrst-class objects
on the desktop, and subject to direct manipulation in
the same manner as Þles and folders. For instance,
the iconic representation of an application could be
dragged-and-dropped (or cut-and-pasted) from one
region to another, causing it to move between
machines and disks.

¥ Privacy. The ability to operate on an application
from afar raises privacy and access-control issues.
Does the person who started the application have
ÒyankÓ and ÒkillÓ privileges? Most people would not
like others to know what applications they have on
their desktop; yet users would like to keep track of
the agents they have sent out. It should be possible to
restrict access to users within a group.

¥ Secrecy. Then there is the issue of privacy in the
reverse direction. The user who receives an agent
may violate the privacy of the sender by examining
its hidden agenda. For instance a car dealership may
wish to send an agent to a client, with a list of cars
and a strategy to negotiate the price. It should not be
possible for the client to learn what the strategy is, by
examining the agent code or modifying the inter-
preter. It seems impossible to prevent this from hap-
pening in software. It could possibly be achieved by
having a trusted third-party implement the interpreter
in hardware, with encryption of the agent code.

¥ Protocol. In any agent-human interaction there is the
issue of protocol. How long does an agent wait for a
user to respond before deciding to move on? Does it
leave a note? How does it know if the user is busy or
away? It could look at the idle time. How does a user
prevent unwanted agents from bothering him, while
keeping the door open for acceptable agents? Do
agents have a classiÞcation?

¥ Heterogeneity. If applications are to migrate between
diverse architectures, the widget set needs to be chosen
carefully so that it can be rendered efÞciently in all
environments. When rebuilding an interface, the
checkpointed state should be interpreted in the light of
available resources and local preferences. Fonts and
labels need to change to match the local language.

6 RELATED WORK

Application migration most closely resembles the work on
process migration in Operating Systems [14, 20], although
the aim of process migration is to do load-balancing and
improve parallelism. Process migration is usually imple-
mented at a low level, making no assumptions about the
application structure, or even about the programming lan-
guage. The machine architecture and environment are
assumed to be very similar, if not identical, at the two ends of
the migration. Process migration is unable to cope directly
with applications that keep part of their state externally, e.g.
when much of the user interface state information is stored
within a window system server (as in the X window system).

Our priorities are very different. Our focus is on heterogene-
ity (interoperabilty with diverse machine architectures), cus-
tomization to the local environment (the user interface
should be built using the local UI toolkit), and the ßexibility
that comes with implementing migration at the programming
language level. In our system, the application programmer
can implement new migration strategies by re-programming
the migration mechanism. For instance migration could be
limited to selected parts of an application by appropriately
modifying the suitcase. Split and merge techniques could be
used to deploy agents in parallel.

One of the strengths of our design is that migration is com-
pletely captured by the semantics of the programming lan-
guage. This makes it easy to comprehend the program and
troubleshoot it if it does not behave as expected. Also, heter-
ogeneity is not a problem, since correct implementations of
the language are guaranteed to interoperate.

Migratory applications may also be viewed as mobile, inter-
active agents. The term ÒagentÓ has been used with many dif-
ferent meanings. There are agents in AI, in databases, and in
application software; classiÞcation and search agents (robots
and knowbots) in information retrieval [10, 11, 15]; agents
within adaptive applications and learning-by-demonstration
systems [9]; and assistants in design automation and help
systems [4]. Typically, these mobile agents are not interac-
tive; for example, search agents operate silently on behalf of
a client which interacts with the user. Conversely, interactive
agents are usually not mobile across machines; they are usu-
ally ÒsymbioticÓ and exist within some application context or
workspace; for example, helpers in learning-by-demonstra-
tion systems such as Eager [8], and ÒBalloon HelpÓ on the
Macintosh desktop [1].

Agents that support collaborative work on the other hand
require to be mobile or at least distributed, and also need a

user interface to interact with users. A major advantage of
our design is that any single-user application in Visual
Obliq can be turned into a mobile, interactive agent by
invoking the migration command. When not in use, an
agent can write its state to disk and be restarted when
needed.

Obliq resembles Java [17], with its object oriented, multi-
threaded features, but also has integrated support for dis-
tributed objects which Java lacks. HotJava [16] and Safe-
Tcl [13] have taken steps to ensure safe execution of exter-
nal code. Safe-Tcl supports virtually no end-user customi-
zation; HotJava allows users to restrict the execution of
incoming programs, based on the host they came from
(using access-lists). A difference between the execution of
external programs in these systems and the migratory
applications in Visual Obliq is that in the former case the
applications always begin executing from a default (start)
state when they arrive at an interpreter, instead of continu-
ing from where they left off as in our case. Hence it would
not be possible to forward an arbitrary program to a new
user after interacting with it, as one could with a piece of
annotated electronic mail.

7 CONCLUSIONS

The ability to migrate applications has several applications.
In a world of ubiquitous computing, users may like their
applications follow them Ð from home to work and to a col-
leagueÕs machine. A migratory, interactive application can
act as an agent, moving from one userÕs machine to another,
interacting with each user, and carrying out an agenda.
Such agents may be short-lived, if they are deployed by a
user or a group for a speciÞc task. They could be long-lived
as well and perform a role in a work-group as a human col-
league would. All of this presupposes a mechanism to
migrate arbitrary applications between machines.

We have presented a distributed language semantics that
supports application migration, and an architecture for
migratory applications. The architecture has been incorpo-
rated into the Visual Obliq application programming envi-
ronment [3]. We have yet to explore the full potential of this
paradigm in collaborative work, but we have successfully
migrated a number of small to medium size applications. In
these cases, the migration operation took between 5 and 45
seconds over a local area network, depending on the pro-
gram size and network trafÞc.

8 ACKNOWLEDGEMENTS

We thank Marc H. Brown for founding the Visual Obliq
project and being a great source of help and encourage-
ment.

9 REFERENCES

[1] Apple, ÒHuman Interface GuidelinesÓ, Addison-
Wesley, 1994.

[2] Avrahami, G., Brooks, K.P., and Brown, M.H., ÒA

Two-View Approach to Constructing User Inter-
facesÓ, Computer Graphics, 23(3):137-146, 1989.

[3] Bharat, K., and Brown, M.H., ÒBuilding Distributed
Multi-User Applications By Direct ManipulationÓ,
Proc. ACM Symposium on User Interfaces Software
and Technology, Marina Del Rey, 1994, pp. 71-82.

[4] Bharat, K. and Sukaviriya, P., ÒAnimating User Inter-
faces with Animation ServersÓ, Proc. of UISTÕ93.
pp. 69-79.

[5] Birrell, A.D., G. Nelson, S. Owicki, and E. Wobber,
ÒNetwork objectsÓ. Proc. 14th Symposium on Operat-
ing Systems Principles. 1993.

[6] Borenstein, N. and M.T. Rose, ÒMIME Extensions for
Mail-Enabled Applications: application/Safe-Tcl and
multipart/enabled-mailÓ, Draft, Bellcore, Dover
Beach Consulting, September, 1993.

[7] Cardelli, L., ÒA Language with Distributed ScopeÓ,
Computing Systems, 8(1), 27-59. MIT Press. 1995.

[8] Cypher, A., ÒEAGER: Programming Repetitive Tasks
by ExampleÓ, Proc. of CHI Ô91, 1991, pp. 33-39.

[9] Cypher, A. [Ed], ÒWatch What I Do - Programming by
DemonstrationÓ, MIT Press, 1993.

[10] Emtage, A. and Deutsch, P., ÒArchie: An Electronic
Directory Service for the InternetÓ, Proc. USENIX
Winter 1992 Conference, 1992, pp. 93-110.

[11] Goldberg, D., Nichols, D., Oki, B. and Terry, D.,
ÒUsing Collaborative Filtering to Weave an Informa-
tion TapestryÓ, Communications of the ACM, 35(12),
pp. 61-70, 1992.

[12] Manasse, M.S. and G. Nelson, ÒTrestle reference man-
ualÓ. Research Report #68. Digital Equipment Corpo-
ration, Systems Research Center. 1991.

[13] Ousterhout, John K., ÒScripts and Agents: The New
Software High GroundÓ, Invited Talk at the Winter
1995 USENIX Conference, New Orleans, LA, January
19, 1995.

[14] Powell, M. and Miller, B., ÒProcess Migration in
DEMOS/MPÓ, Proc. of 9th ACM Symposium on Oper-
ating System Principles, 1983, pp. 110-119.

[15] Sheth, B., and Maes, P., ÒEvolving Agents for Person-
alized Information FilteringÓ, Proc. of IEEE Confer-
ence on AI for Applications. 1993.

[16] Sun Microsystems, ÒHotJava Browser: A White
PaperÓ, Sun Microsystems White Paper, 1994.

[17] Sun Microsystems, ÒThe Java Language: A White
PaperÓ, Sun Microsystems White Paper, 1994.

[18] Shneiderman, B., ÒDirect Manipulation: A Step
Beyond Programming LanguagesÓ, Computer, 16(8),
1983, pp. 57-68

[19] White, J.E., ÒTelescript technology: the foundation for
the electronic marketplaceÓ, White Paper, General
Magic, Inc. 1994.

[20] Zayas, E., ÒAttacking the Process Migration Bottle-
neckÓ, Proc. of 11th ACM Symposium on Operating
Systems Principles, 1987, pp. 13-24.

