Manipulating Trees with Hidden Labels

Luca Cardelli®!, Philippa Gardner®? and Giorgio Ghelli®?

& Microsoft Research, Cambridge, UK
b Department of Computing, Imperial College London, UK

¢ Dipartimento di Informatica, Universita di Pisa, Italy

Abstract

We define an operational semantics and a type system for manipulating semistructured data that contains
hidden information. The data model is simple labeled trees with a hiding operator. Data manipulation is based
on pattern matching, with types that track the use of hidden labels.

Keywords: Operational Semantics, Type Systems, Semistructured Data, Information Hiding.

1 Introduction

1.1 Languages for Semistructured Data

Semistructured data [1], such as XML, is inspiring a new generation of program-
ming and query languages based on more flexible type systems [29, 5, 6, 17].
Traditional type systems are grounded on mathematical constructions such as
cartesian products, disjoint unions, function spaces, and recursive types. The
type systems for semistructured data, in contrast, resemble grammars or logics,
with associative products, untagged unions and Kleene star operators. The the-
ory of formal languages, for strings and trees for example, provides a wealth of
ready results, but it does not account in particular for functions. Some integra-
tion of the two approaches to type systems is necessary.

Towards this integration, Pierce has introduced a typed pattern-matching
language XDuce for analysing trees [29], where the types are regular expression
types which extend the DTDs associated with XML. Castagna extended this
work in his language CDuce incorporating first-order logical analysis in the
types [5]. Calcagno, Cardelli and Gordon go one step further by using Ambient
Logic formulae as the types [12]. All these languages are designed to manipulate

Email: luca@microsoft.com
Email: pg@doc.ic.ac.uk

3 Email: ghelli@di.unipi.it

130 L. Cardelli, P. Gardner, G. Ghelli

simple tree data. In this paper, we introduce a substantial typed pattern-match-
ing language for manipulating more complex trees, building on the work in [12]
by incorporating the notion of private location.

We believe that the distinction between public and private locations is a nat-
ural feature of semistructured data. A public location can be accessed by anyone:
for example, a URI is a public location. By contrast, a private location has re-
stricted access: for example, the XML identifiers in a XML document are typi-
cally regarded as private to that document. In this paper, we study a more com-
positional tree model, consisting of both public and private names: for example,
if we regard XML as a data store that can be manipulated rather than as a static
document, then this distinction becomes important; another example is a dis-
tributed bibliography with public locations for accessing published work and pri-
vate locations for hiding work in progress. We model public and private locations
using names and name hiding, applying known concepts arising from the n-cal-
culus [30] to this non-standard setting of semistructured data. Our approach
treats the identity of a private name as unimportant, provided the distinctions
between it and other (public or private) names are preserved.

Our typed pattern-matching language pulls together techniques for dealing
with hidden names from many sources. Pitts argues that the transposition [33],
or swapping, of names is more fundamental than substitution for manipulating
free and bound names, and with Gabbay uses transpositions to develop the
typed functional language FreshML [24]. Transpositions play a significant role
in our language. Gabbay and Pitts also invented a freshness quantifier for rea-
soning about bound names [25,33]. Caires and Cardelli [10,11] use this fresh-
ness quantifier to develop a logic for reasoning about the pi-calculus, extending
the ideas of Ambient Logic and previous work of Dam [21] to account for name
hiding. We use this freshness quantifier in a substantial way, in particular ap-
plying key results of [10,11] in our treatment of transpositions. We also use a no-
tion of dependent types for names, which we believe was first shown to be trac-
table in [28].

In the remainder of the introduction, we give a detailed description of the key
features of our pattern-matching language. This paper is an extension of our
conference paper [15], incorporating a considerable amount of additional detail.

1.2 Data Model and Pattern Matching Language

We use the simplest tree model possible for studying public and private loca-
tions. Our trees are simple rooted trees, with the locations given by edge labels
(names) which may be hidden. Locations are not unique, since this would re-
quire factoring in partial composition of trees which is a minor, but irritating,
addition to the theory. Our ideas will apply to locations in many other data mod-
els, such as graph nodes, addresses in heaps, and identifiers in structures com-
bining trees and graphical links such as our trees-with-pointers model [13,16]
and XML (XML identifiers and idrefs). In fact, we believe the manipulation of

L. Cardelli, P. Gardner, G. Ghelli 131

hidden resources in all these data structures is fundamental.

The data model we investigate here has the following constructors. Essen-
tially, we extend a simple tree model (such as XML) in a general and orthogonal
way with a hiding operator.

0 the tree consisting of a single root node;
n[P] a tree with a single edge from the root, labeled n, leading to P;
P | @ the root-merge of two trees (commutative and associative);
(vn)P a tree P where the label n is hidden/private/restricted.

As in n-calculus, we call restriction the act of hiding a name.

Trees are inspected by pattern matching. For example, program (1) below in-
spects a tree ¢t having shape n[P] | @, for some P,, and produces P | m[Q)]. Here
n,m are constant (public) labels, x,y are pattern variables, and T is both the pat-
tern that matches any tree and the type of all trees. It is easy to imagine that,
when parameterized in ¢, this program should have the type indicated.

match t as (n[x:T] | y:T) then (x | m[y]) (1)
transforms a tree ¢t =n[P] | @ into P | m[Q)]
expected typing: (n[T] | T) —» (T | m[T))

Using the same pattern match as in (1), let us now remove the public label n
and insert a private one, p, that is created and bound to the program variable z
at “run-time”:

match t as (n[x:T] | y:T) then (vz) (x | z[y]) (2)
transforms t=n[P] | @ into (vp) (P | p[Q)) for a fresh label p
expected typing: (n[T] | T) > (Hz. (T | 2[T]))

In our type system, the hidden name quantifier H is the type construct corre-
sponding to the data construct v [10]. More precisely, Hz.%2 means that there is
a hidden label p denoted by the variable z, such that the data is described by
z<p}. (Scope extrusion [30] makes the relationship non trivial, see Sections 2
and 4.) Because of the Hz.9 construct, types contain name variables; that is,
types are dependent on names.

The first two examples pattern match on the public name n. Suppose instead
that we want to find and manipulate private names. The following example is
similar to (2), except that now a private label p from the data is matched and
bound to the variable z.

match t as ((vz) (z[x:T] | y:T)) then x | z[y] 3

transforms ¢ = (vp)(p[P] | &) into (vp)(P | p[Q])
expected typing: (Hz. (z[T] | T)) » (Hz. (T | z[T]))

The restriction (vp) in the result is not apparent in the program: it is implicitly
applied by a match that opens a restriction, so that the restricted name does not
escape.

As the fourth and remaining case, we convert a private name in the data into
a public one. The only change from (3) is a public name m instead of z in the re-
sult:

132 L. Cardelli, P. Gardner, G. Ghelli

match t as ((v2) z[x:T] | y:T)) then x | b[y] (4)
transforms ¢ = (vn) (n[P] | @) into (vr)(P | b[Q))
expected typing: (Hz.z[T] | T) » (Hz. T | b[T])

This program transforms a tree of the shape (vn) (n[P] | &) into P | b[Q)]; pro-
vided, though, that P,@ do not contain n. In general we cannot eliminate the (vn)
restriction from the result, so the result will have the form (vi)(P | b[Q]) even
though z appears nowhere after then in the program text. Again, such restric-
tion is automatically reapplied as a result of opening it via pattern matching.
The resulting type should now be:

(Hz.2[T] | T) > (Hz. T | b[T])

Where Hz. T | b[T] is not the same as T | b[T] even though z appears nowhere
in the rest of the type, because the name denoted by z may appear in the data
denoted by the two T.

As an example of an incorrectly typed program consider the following at-
tempt to assign a simpler type to the result of example (4), via a typed let biding:

let w: (T | m[T]) =match t as ((vz) (z[x:T] | y:T)) then x | m[y]

Here we would have to check that Hz. (T | m[T]) is compatible with (T | m[T]).
This would work if we could first show that Hz. (T | m[T]) is a subtype of (Hz. T)
| (Hz. m[T]), and then simplify. But such a subtyping does not hold since, e.g.,
(vp)([0] | m[p[0]]) matches the former type but not the latter, because the re-
striction (vp) cannot be distributed.

1.3 Transpositions

So far, we have illustrated the manipulation of individual private or public
names by pattern matching and data constructors. However, we may want to re-
place throughout a whole data structure a public name with another, or a public
one with a private one, or vice versa. We could do this by recursive analysis, but
it would be very difficult to reflect what has happened in the type structure, like-
ly resulting in programs of type T—T. So, we introduce a transposition facility
as a primitive operation, and as a corresponding type operator. In the simplest
case, if we want to transpose (exchange) a name n with a name m in a data struc-
ture t we write {(n<>m). If ¢t has type &4, then t(n<>m) has type A(n<>m). We de-
fine rules to manipulate type level transpositions; for example we derive that, as
types, n[0](n<>m) = m[0].

Transposition types are interesting when exchanging public and private la-
bels. Consider the following program and its initial syntax-driven type:

re:n[T]. (v2) x(m<>z) : n[T]->Hz.n[T](m<z) (= n[T]-n[T]) (5)
This program takes data of the form n[P], creates a fresh label p denoted by z,
and swaps the public m with the fresh p in n[P], to yield (vp)n[P](m<>p), where

the fresh p has been hidden in the result. Since n is a constant different from m,
and p is fresh, the result is in fact (vp)n[P(m<>p)]. The result type can be simi-

L. Cardelli, P. Gardner, G. Ghelli 133

larly simplified to Hz.n[T(m<«>z)]. Now, swapping two names in the set of all
trees, T, produces again the set of all trees. Therefore, the result type can be fur-
ther simplified to Hz.n[T]. We then have that Hz.n[T] = n[T], since a restriction
can be pushed through a public label, where it is absorbed by T. Therefore, the
type of our program is n[T]—n[T].

Since we already need to handle name-dependent types, we can introduce,
without much additional complexity, a dependent function type ITw. 4. This is
the type of functions Aw:N.¢ that take a name m (of type N) as input, and return
a result of type A{w<«m}. We can then write a more parametric version of exam-
ple (5), where the constant n is replaced by a name variable w which is a param-
eter:

Aw:N. Ae:w[T]. (vz) x(m<>z) : Hw. (w[T] = Hz. w[T](m<«>2)) (6)

Now, the type Hz. w[T](m<«>z) simplifies to Hz. w(m<>z)[T], but no further, since
m can in fact be given for w, in which case it would be transposed to the private z.

Transpositions are emerging as a unifying and simplifying principle in the
formal manipulation of binding operators [33]. If some type-level manipulation
of names is of use, then transpositions seem a good starting point.

1.4 General Structure

The type system of our calculus has, at the basis, tree types. Function types are
built on top of the tree types in standard higher-order style. This separation be-
tween trees and functions greatly simplifies our technical development. The tree
types are unusual: they are the formulas of a spatial logic. Therefore, we can
write types such as these that combine logical, structural and functional opera-
tors:

T —» -0 for any input produce a non-zero output
(@ A=0) | n[B]) > (n[4] | B) a structural transformation on trees

A subtyping relation is defined between types. On tree types, subtyping is de-
fined as a sound approximation to logical implication; that is, ¥ <: B implies
A—=B. For example, we have the basic subtyping 4 <: T for all 4. Subtyping is
then extended to function types by the usual contravariant rule. This means
that a logical implication check needs to be used during static typechecking,
whenever a subtyping check is required.

Tree data is manipulated via pattern matching constructs that perform “run-
time type checks”. Since tree types are formulas, we have the full power of the
logic to express the pattern matching conditions. Those run-time type checks are
executed as run-time satisfaction checks (F). For example, one of our matching
construct is a test to see whether the value denoted by expression ¢ has type %:

t?(x:4).u,v

This construct first computes the tree P denoted by the expression ¢, and then
performs a test P E 4. If the test 1s successful, it binds P to x and executes u; oth-

134 L. Cardelli, P. Gardner, G. Ghelli

erwise it binds P to x and executes v. The variable x can be used both inside
u and v, but in u it has type 4, while in v it has type —%4.

For example, the following program inspects an arbitrary tree (i.e., anything
of type T). If the tree is 0 it returns the tree a[0], otherwise it returns the input
tree. Hence the result is never 0, and the result type can be set to —0.

AT, x2(y:0). a[0],y : T— -0

To summarize, our formulas are used as a very expressive type system for
tree data, within a typed A-calculus. A satisfaction algorithm is used to analyze
data at run time, and an entailment algorithm is needed during static
typechecking. In absence of polymorphism, type are ground, which facilitates
matters. With name-dependent types (necessary to handle a restriction con-
struct), types can contain variables of sort Name, but this can be handled with-
out much difficulty. At run-time, all values and types are ground. As usual, the
type system checks whether an open term has a type: it can do so without addi-
tional difficulties, even though the basic satisfaction test we have is for closed
terms (i.e., values).

1.5 Related and Future Work

It should be clear from Section 1.2 that sophisticated type-level manipulations
are required for our data model, involving transposition types (which seem to be
unique to our work), hiding quantifiers, and dependent types. Furthermore, we
work in the context of a data model and type system that is “non-structural”,
both in the sense of supporting grammar-like types (with A v —) and in the sense
of supporting n-calculus-style extruding scopes. In both these aspects we differ
from FreshML [34], although we base much of our development on the same
foundations [33]. Our technique of automatically rebinding restrictions side-
steps some complex issues in the FreshML type system, and yet seems to be
practical for many examples. FreshML uses “apartness types” 9#w, which can
be used to say that a function takes a name denoted by w and a piece of data 4
that does not contain that name. We can express that idiom differently as ITw.
(4 A -©w) — B, where ©w [10] means “contains free the name denoted by w”.

Our calculus is based on a pattern matching construct that performs run-
time type tests; in this respect, it is similar to the XML manipulation languages
XDuce [29] and CDuce [5]. However, those languages do not deal with hidden
names, whose study is our main goal. XDuce types are based on tree grammars:
they are more restrictive than ours but are based on well-known algorithms.
CDuce types are in some aspects richer than ours: they mix the logical and func-
tional levels that we keep separate; such mixing would not easily extend to our
Hx.%4 types. Other differences stem from the data model (our P | @ is commuta-
tive), and from auxiliary programming constructs.

The database community has defined many languages to query semistruc-
tured data [1,3,6,8,17,19,22,23], but they do not deal with hidden names. The
theme of hidden identifiers (OIDs) has been central in the field of object-oriented

L. Cardelli, P. Gardner, G. Ghelli 135

database languages [2, 4]. However, the debate there was between languages
where OIDs are hidden to the user, and lower-level languages where OIDs are
fully visible. The second approach is more expressive but has the severe problem
that OIDs lose their meaning once they are exported outside their natural scope.
We are not aware of any proposal with operators to define a scope for, reveal, and
rehide private identifiers, as we do in our calculus.

In TQL [17], the semistructured query language closest to this work, a pro-
grammer writes a logical formula, and the system chooses a way to retrieve all
pieces of data that satisfy that formula. In our calculus, such formulas are our
tree types, but the programmer has to write the recursion patterns that collect
the result (as in Section 8). The TQL approach is best suited to collecting the sub-
trees that satisfy a condition, but the approach we explore here is much more ex-
pressive; for example, we can apply transformations at an arbitrary depth,
which is not possible in TQL. Other query-oriented languages, such as XQuery
[6], also support structural recursion.

As a major area of future work, our subtyping relation is not prescribed in
detail here (apart for the non-trivial subtypings coming from transposition
equivalence). Our type system is parameterized by an unspecified set of Vali-
dEntailments, which are simply assumed to be sound for typing purposes. The
study of related subtyping relations (a.k.a. valid logical implications in spatial
logics [11]) is in rapid development. The work in [12] provides a complete sub-
typing algorithm for ground types (i.e. not including Hz.%), and other algorithms
are being developed that include Kleene star [20]. Such theories and algorithms
could be taken as the core of our ValidEntailments. But adding quantifiers is
likely to lead to either undecidability or incompleteness. In the middle ground,
there is a collection of sound and practical inclusion rules [10,11] that can be use-
fully added to the ground subtyping relation (e.g., Hz.n[4] <: n[Hz.4] for example
(5)). By parameterizing over the ValidEntailments, we show that these issues
are orthogonal to the handling of transpositions and hiding.

2 Tree Values

Our programs manipulate values; either name values (from a countable set of
names A), tree values, or function values (i.e., closures). In this section, we de-
scribe tree values and name transpositions.

Definition 2-1 (Tree Values)

A Names: a countable set of names n, m, p, ...
PQ.R ::= Tree values

0 void

P|Q composition

n[P] location

(vn)P restriction

136 L. Cardelli, P. Gardner, G. Ghelli

Definition 2-2 (Name Occurrences and Free Names)

All names: na(P) Free names: fn(P)

na(0) £ { fn(0) £ §

na(P | @) £ na(P) L na(Q) (P | Q) = fn(P) U fr(Q)
na(n[P]) £ {n} U na(P) fn(n[P]) £ {n} L fn(P)
na((vn)P) & {n} U na(P) m((vn)P) & fn(P) - {n}

We define an actual transposition operation on tree values, Ps(m<>m’), that
blindly swaps free and bound names m,m’within P. (By an actual transposition
we mean an operation on terms, while a formal transposition is a syntactic con-
struct within terms.) The interaction of transpositions with binders such as
(vn)P supports a general formal treatment of bound names [33].

Definition 2-3 (Actual Transposition of Names and Tree Values)

ne(n<>m)=m Os(m<>m) =0
ne(meon)=m (P | @e(me>m’) = Po(me>m’) | Qe(m<>m)
ne(meom’) =n if n#m and nzm’ n[Ple(m<>m’) = ne(m<>m’)[Pes(m<>m’)]

((vn)P)e(m<>m’) = (vne(m<>m’))Pe(m<>m’)

Lemma 2-4 (Distribution of Transpositions)

(1) pe(n<>n)e(m<>m’) = pe(m<>m’)e(ne(m<>m’)<>n's(m<>m?))
pe(ne>n’e(mc>m’) = pe(me(nen’)co>m’s(ne>n’))e(n>n’)

(
2) Po(n<>n)e(m<>m’) = Po(m<>m)e(ne(m<>m’)<>n's(m<>m’)
Pe(ne>n’)o(me>m’) = Peo(me(ne>n')<>m’s(n<>n))e(nen’)

Transpositions are used in the definition of a-congruence and capture-avoiding
substitution. Structural congruence is analogous to the standard definition for
n-calculus [30]; the “scope extrusion” rule for v over -| - is written in an equiva-
lent equational style. Over the tree values, we define a structural congruence re-
lation = that factors out the equivalence laws for | and 0, and the scoping laws
for restriction.

Definition 2-5 (Structural Congruence on Tree Values)

a-congruence, =4, is the least equivalence relation on tree values such that:
P=,P A Q=Q = Pl Q=@F1Q)
P=, P = n[P] =, n[P]
P=, P = ((vn)P) =, (vn)P)
(vn)P =, (vm)(Ps(n<>m)) where m¢na(P)

N.B.: This notion of a-congruence can be shown equivalent to the standard
one. Structural congruence, =, is the least equivalence relation on tree values
such that:

P=P AQR=Q@"=> P|Q=F"1Q)
P=P = n[P] =n[P]
P=P = ((vn)P) = (vn)P)

L. Cardelli, P. Gardner, G. Ghelli 137

P=,Q = P=Q (vn)0=0

Pl Q=Q|P (vn)ym[P] = m[(vn)P] if n#m
PlQIR=P| QIR va)(P | (vn)Q) = ((vr)P) | ((vn)Q)
P|0=P (vn)(vm)P = (vm)(vn)P

Lemma 2-6 (Structural Congruence Properties)

If P = @ then fn(P)=fn(Q)
If P= Q then Po(me>m’) = Qe(me>m)).

Definition 2-7 (Free Name Substitution on Tree Values)

0{n<m} =0

(P | @{n<—m} = P{n<m} | Q{n<—m}

p[Pl{in<m} = p{n<m}[P{n<mj]

((vp)P){n<=m} = (vq)(Pe(p>q)){n<—m}) for g¢ na((vp)P)in,m}

N.B.: different choices of ¢ in the last clause, lead to a-congruent results.

3 Terms and High Values

3.1 Syntax

Our A-calculus is stratified in terms of low types and high types. The low types
are the tree types and the type of names, N. (Basic data types such as integers
could be added to low types.) The novel aspects of the type structure are the rich-
ness of the tree types, which come from the formulas of spatial logics [18, 10],
and the presence of transposition types. We then have higher types over the low
types: function types and name-dependent types. The precise meaning of types
is given in Section 4.

The same stratification holds on terms, which can be of low or high type, as
1s more apparent in the operational semantics of Section 5 and in the type rules
of Section 7.

Definition 3-1 (Syntax)

Var Variables: a countable set of variables x, y, z, ...
NN = Name Expressions

x name variable

n name constant

N I>DNT) name transposition

AB = Tree Types

0 void

NA] location

A\ DB composition

Hx.9 hiding quantifier (x:N)

©9 occurence

138 L. Cardelli, P. Gardner, G. Ghelli

F false

ANDB conjunction

A= DB implication

A N> transposition

FGAH = High Types

A tree types

N name type

F>G function types (7=N)

[1x.G name dependent function types (x:N)
t,u,v = Terms

0 void

Nu] location

t|lu composition

(vx)t restriction (binding x)

HM>N) term transposition

t+(Ny:A)).u location match (binding y only)
t+(x:4 | y:B).u composition match (binding x,y)
t+((vx)y:A).u restriction match (binding x,y) (auto-rebind u)
t?(x:49).u,v tree type test (binding x)

x high variable

9 name expression (incl. name variables)
A Ft function (binding x)

t(u) application

Underlined variables indicate binding occurrences. The scoping rules should
be clear: in location match y scopes u; in composition match x and y scope u; in
restriction match x scopes &4 and u, and y scopes u; in tree type test x scopes u
and v.

The various matching constructs can be combined, for example, to obtain a
more convenient case statement:

case t of analyze the value R of ¢:

0. uy, if R =0, run u;, else

nlx:4]. us, if R = n[P] and PF %, bind P to x and run usy, else

x4 | y:B). us, fR=P|Qand P4, Q E B, bind Pto x, @ to y and run us,

(Vx)y: 4. uy, else if R = (vn)P and P E SA{x<n}, bind n to x and Pto y
then run w4 to obtain a result @ and return (vn)@
(here n is chosen fresh)

else us else run u;

1>

can be translated as:

t?2(z1: 0). uy,

t?(z2: n[4]). zo+(n[x:A]).us,
t?2(zs: A | B). z3+(x:A | y:B).us,
t?(z4: Hx.). z4+((vx)y:A).uy:B,

Us

We define name sets, such as na(%4), and actual transpositions on all syntax,
such as te(n<>m), in the obvious way (there are no name binders in the syntax).
We also define free-variable sets fu(-) on all syntax (based on the mentioned

L. Cardelli, P. Gardner, G. Ghelli 139

binding occurrences), and capture-avoiding substitutions of name expressions
for variables.

Definition 3-2 (Actual Transposition on All Syntax)

DNe(n<>m), Ae(ne>m), Fo(ne>m), and te(n<>m) transpose the names n and m
in N, 94, % and .

Definition 3-3 (Variables Substitution on Names and Types)

MNa— My, Ax<M, and R}, are the capture-avoiding substitutions of
97 for x in N, 4, and F .

Name expressions, tree types, and terms all include (formal) transposition
operations that are part of the syntax; they represent (actual) transpositions on
data, indicated by the « symbol.

The tree types are formulas in a spatial logic, so we can derive the standard
types (formulas) for negation -4 2 4=F and disjunction AvB £ —(—Ar—B).

The terms include a standard A-calculus fragment, the basic tree construc-
tors, and some matching operators for analyzing tree data. The tree type test con-
struct (distinguished by the character ‘?) performs a run-time check to see
whether a tree has a given type: if tree ¢ satisfies type ¥ then u is run with x of
type ¥ bound to t; otherwise v is run with x of type —% bound to ¢. In addition,
one needs matching constructs (distinguished by the character ‘+’) to decompose
the tree: composition match splits a tree in two components, location match
strips an edge from a tree, and restriction match inspects a hidden label in a tree.
A zero match is redundant because of the tree type test construct. These multiple
matching constructs are designed to simplify the operational semantics and the
type rules. In practice, one would use a single case statement with patterns over
the structure of trees, but this can be encoded.

In the quantifier Hx.% and in the restriction match construct, the type ¥ is
dependent on variable x (denoting a hidden name). This induces the need for
handling dependent types, and motivates the I1x.G dependent function type con-
structor. The type dependencies, however, are restricted to name variables,
which may be replaced only by name expressions (that is, not by general compu-

tations on names). Because of this, these dependent types are relatively easy to
handle.

3.2 High Values

High values are the results of evaluating terms; they can be either names, trees,
or closures. Name transpositions are defined on all values. Closures are triples
of a term ¢ (Section 3.1) with respect to an input variable x (essentially, Ax.f) and
a stack for free variables. A stack p is a list of bindings of variables to values.

140 L. Cardelli, P. Gardner, G. Ghelli

Definition 3-4 (High Values and Stacks)

(1) A stack is a finite map p from variables in Var to high values F. We write g
for the empty map, and p[x<«F] for the map that is p except for mapping x to F.
(2) High values are defined as follows:

F,.G H ::= High Values
n name values
P tree values
(p, x, t) function values

(3) Transpositions of function values and stacks are defined as follows:

(p, x, yo(ne>n’) 2 (pe(n>n’), x, to(n<>n’)
go(n>n’) £ ¢
plxFlo(neon) £ pe(ne>n)[xFe(nen)] (x¢dom(p))

Definition 3-5 (Name Occurrences and Free Names)

All names: na(F) Free names: fn(F)
na(n) £ {n} fn(n) & {n}

na(P): see tree values fn(P): see tree values
na((p, x, t)) & na(t)una(p) mp, x,) & fn@®)ufn(p)
na(P) = Uxedom(p) na(P(x)) fn(P) = Uxedom(p) fn(P(x))

4 Satisfaction

The satisfaction relation, written E, relates values to types, and thus provides
the semantic meaning of typing that is enforced by the type system of Section 7.
For type constructs such as A and =, this is related to the standard notion of sat-
isfaction from logic. Over tree types we have essentially the satisfaction relation
studied in [18, 10], extended to hiding and transpositions. Satisfaction is then
generalized to high types, where it is defined in terms of the operational seman-
tics U, of Section 5, which is defined in terms of the satisfaction relation over tree
types only.

Definition 4-1 (Satisfaction)

On Name Expressions: n Ex 9, for 9¥ closed (no free variables), is defined by:
nkExm iff m=n
nEN N iff Am,m’. m Eny M and m’Exy P and ne(m<«<>m’) Ey 9

On Tree Types: P Fr 94, for 4 closed, is defined by:

PEr O iff P=0

P Er N9 iff An,P.nExyNand P=n[Pland P’ 4

PEr A | B iff 3P, P”. P=P | P’and P’y % and P’Er B
PEr Hx.S iff 3n,P’. P=(vn)P’ and n¢na(®d) and P’y S{x<n}
PEr ©9% iff An. n Exy 9 and nefn(P)

PEr F never

PErAAB iff Py and Pk B

PEr A =3B iff PFr 99 implies P Fp B

PEr QM) if Am,m’. m Exy 97 and m’Exy P and Po(m<>m’) Ex A4

L. Cardelli, P. Gardner, G. Ghelli 141

On High Types: F Ey %, for #closed, is defined by:

FEg N iff FEn 9Y for some 9Y

FEg 4 iff FErA

HEy 76 (#=N) iff H=(p,z, t)and VF,G. (FEg F A ¢ Up[y_m G)=GFg G
HEgx. G iff H={(p, 2z, t) and Vn,G. ¢ Up[2<_n] G = GFyGlxen}

(We will omit the subscripts on E.) The constructs Hx.%2 and ©9¥ are derived op-
erators in [10], and are taken here as primitive, in the original spirit of [9]. In
the definition of Hx.%7, the clause P=(vn)P’pulls a restriction (even a dummy one)
from elsewhere in the data, via scope extrusion (Definition 2-5). The type Hw.Qw
1s the type of non-redundant restrictions, with the quantifier Hw revealing a re-
stricted name n, and ©w declaring that this n is used in the data. The meaning
of formal transpositions relies on actual transpositions. At high types, a closure
(p, 2, t) satisfies a function type #—G if, on any input satisfying %, every output
satisfies G; similarly for Ilx. G.

Proposition 4-2 (Tree Satisfaction Under Structural Congruence)

IfPEAand P= @ then Q F 4.

Lemma 4-3 (Tree Satisfaction Under Actual Transposition)

If n E 9 then ne(mem’) E Ne(me>m).
If PE 4 then Pe(mo>m’) E Ao(me>m).

This Lemma is not extended to high types because it would depend on the oper-
ational semantics of Section 5. Moreover, this extension is not needed, because
transposition tends to be useful when reasoning about restriction, which is not
defined on high types.

5 Operational Semantics

We give a big step operational semantics that is later used for a subject reduction
result (Theorem 7-4). This style of semantics, namely a relation between a pro-
gram and all its potential final results, is sufficient to clarify the intended be-
havior of our operations. It could be extended with error handling. Alternatively,
a small step semantics could be given. In either case, one could go further and
establish a type soundness theorem stating that well-typed programs (preserve
types and) do not get stuck. All this is relatively routine, and we opt to give only
the essential semantics.

The operational semantics is given by a relation ¢ Up F between terms f,
stacks p, and values F, meaning that ¢ can evaluate to F'on stack p. An auxiliary
relation, 9 | o 1, deals with evaluation of name expressions. The semantics of
run-time tests makes use of the satisfaction relation from Section 4. We use, ¢ Up
P to indicate that ¢ evaluates to a tree value. We use ¢ ,= P as an abbreviation

for ¢ Up @ and @ = P, for some Q.

142 L. Cardelli, P. Gardner, G. Ghelli

Definition 5-1 (Operational Semantics)

(NRed x) (NRed n) (NRed <)
xedom(p) p(x)eA Nlpn Mlym P, m’

x 1y px) ni,n NM>DT) L, ne(me>m)
(Red 0) (Red 9[)) (Red |) (Red v)
Nlon tU, P tU, P ul, Q@ ne¢nalt,p) tlypenP
0 Up 0 Nt] Up n[P] t|lu Up P| Q@ (vx)t Up (vn)P
(Red <) (Red =)
tUpP Wipm W'J/pm’ %J/pn tUpEn[P] PEp() uUp[w_p]F
H{ M) Up Peo(m<>m)) t+(Ny:4)).u Up F
(Red +1) (Red +v)
¢ UPE P | P’ PEp(A) P’Ep(B) n¢nat,Au,p) t UpE (vn)P PE p[x<n]($)
xzy ulppepiyer F x2y uVppenpyer @
t+(x:A4 | y:B).u Up F t=+((vx)y:4).u Up vn)@
(Red ?E) (Red 7¥)
t Up P PEp&) u Up[ﬂ_p] F t Up P PE—p®) v Up[x(_p] F
t?(x:49).u,v Up F t?(x:4).u,v Up F
(Red x) Red) (Red) (Red App)
xedom(p) Nlyn tboprx,) wl, G 'l pea H
xlUyp) NUn reFel, (o, x 0) tw) U, H

We now comment on some properties of the operational semantics.

The operations (Red + -) and (Red ? -) may, at run time, execute satisfaction
tests on dependent types that have been instantiated during execution. E.g.,
note the role of x in Ax:N. £?(y:x[0]).u,v, which, by (Red ?F), requires a satisfaction
test of the form PE —p(x[0]), where ¢ Up P and where the dependent type variable
x must be bound in p.

In these rules, p(%4) replaces every free variable xe dom(p) in 4 with p(x). The
rules are applicable only if p(%49) is a well-formed type (otherwise, the rules are
stuck): the type rules of Section 7 guarantee this well-formedness condition.

The matching reductions are nondeterministic. Hence we have a nondeter-
ministic big step semantics, which gives no information on the existence of di-
vergent reduction paths.

Reduction 1s not closed up to = (0 does not reduce to 0]0), nor up to =, (see
(Red v) and (Red +v), which exclude some of the bound names that can be re-
turned). But this is a matter of choice that has no effect on our results.

The following lemma is crucial in the subject reduction cases for (Red v) (The-
orem 7-4). Only this transposition lemma is needed there, not a harder substitu-
tion lemma.

L. Cardelli, P. Gardner, G. Ghelli 143

Lemma 5-2 (Reduction Under Transposition)

If 99 \Lp m then Me(ne>n) ip.[m_mq me(nen’).
If ¢ Up F then te(n<>n’) Up.[m_)nj Feo(ne>n)).

6 Transposition Equivalence and Apartness

We define a type equivalence relation on name expressions and tree types, which
in particular allows any type transposition to be eliminated or pushed down to
the name expressions that appear in the type. The main aim of this section is to
establish the soundness of such an equivalence relation, which is inspired by
[25,11]. A crucial equivalence rule, (EqN <> Apart) (Definition 6-2), requires the
notion of apartness of name expressions, meaning that the names that those ex-
pressions denote are distinct. (C.f. examples (5) and (6) in Introduction.) Apart-
ness of name expressions depends on apartness of variables and names; we keep
track of such relationships via a freshness signature.

Definition 6-1 (Freshness Signature)

A freshness signature ¢ is an ordered list of names followed by an ordered list
of distinct variables annotated with a quantifier Q that is either V or H. (For ex-
ample: n,m,m,p,Vx,Hy,Hz,Vw.)

Notation: dom(d) is the set of variables in ¢; na() is the set of names in ¢; ¢p(x) is
the symbol V or H associated to x in ¢. We write x<,y if x#y and x precedes y in ¢.
We write ¢ (¢ covers) when fu(N)cdom(p) and fn(N)cna(d); similarly for
o4 and ¢o%F. We write S#S’ for disjointness of sets of names and variables.
Next we define three equivalence relations between name expressions, ~n,
tree types, ~1, and high types, ~y (often omitting the subscripts), and an apart-
ness relation on name expressions, #. These relations are all indexed by a fresh-
ness signature that is understood to cover the free variables and names occur-
ring in the expressions involved. Whether an equivalence or apartness holds, de-
pends crucially on such freshness signature; consider the following examples:

n#,,m by (Apart Names)
n#, He X by (Apart Name Var)
X HyxHy Y by (Apart Vars)
y #n,Vx,Hy X,y #n,Vx,Hy n = y[x(_”/"] ~n,Vx,Hy Y by (EqN <~ Apart)
YHuyaHyx = Y(yon) #yvny x(y>n) by (Apart Congr)
n ~n,Vx,Hy y[)“—)n], y[y(—)n] #n,Vx,Hy x[.y<_>n]

= n#p vy Hy X(yn) by (Apart Equiv)

A notion of apartness of names from types is not necessary, since transpositions
on types can be distributed down to transpositions on name expressions.

144 L. Cardelli, P. Gardner, G. Ghelli

Definition 6-2 (Equivalence and Apartness)

Name expression equivalence, ¥ ~yy 97, (abbrev. 9¥ ~,) and apartness, 9¥#,
91, are the least relations on name expressions such that ¢oN 97, and:

NN = DY (Apart Symm)
nzEm = n#ym (Apart Names)
dx)=H = n#yx (Apart Name Var)
x<yy and ¢()=H = x#,y (Apart Vars)
N AN Py P AQ~Q = N PoQ) #y M P Q) (Apart Congr)
N~ and N and M~y = N (Apart Equiv)
Do~ oY (EgN Refl)
DN~o M = Pl~y (EgN Symm)
N~ M and N~y P = N~ P (EgN Trans)
N~y N, M~y M, P~y P = NMSP) ~y N (Me>P) (EqN <> Congr)
NNSN) ~y M (EgN < App)
MPLSD) ~y N (EgN < Id)
NS ~y N> (EgN <> Symm)
NMSPTYN PSS) ~4 N (EgN < Inv)
MMPISPT VPP ~y M PSPY M PSP VSN (P>P)) (EgN < ©)
Nt and NN = NPISD) ~4 N (EgN <> Apart)

Tree type equivalence, A~y B, (abbre\?. A~y B),
are the least relations on tree types such that ¢o% %8, and:

A~y A (EqT Refl)
AyB = B~yA (EqT Symm)
A~yB and B~yC = A~yC (EqT Trans)
N~ and A~A = N[A] ~y N[A] (EqT 9] Congr)
A~A and B~yB = A| B~yA | B (EqT | Congr)
A~¢A and B~yB = ANB~yA AND (EqT A Congr)
A~oA and B~yB = A= B~yA =B (EqT = Congr)
A~y A = Hx. A~y Hx. A (EqT H Congr)
N~Ng N = ON ~, O (EqT © Congr)
O(Me>MT) ~4 0 (EqT 0)
DEANPISDPT) ~ DS [APISN)] EqT] ©)
(A | BYMASM) ~y ADISPT) | B(P>PT) (EqT | ©)
F(PeoP7) ~4 F (EqT F <)
(A N B) MM ~y ADISPT) N B(PI>DT) (EqT A)
(A= BY M) ~¢y AMSN) = B> (EqT = ©)
(Hx. A (PI>PT) ~, (EqT H «)
Hx.(ARx—x(P>V Ple>M)) - with xé fo(PL,T)
(©M(PIASPT) ~y O PT>PT)) (EqT © v)
A PHSPYMHPT) ~y AMSM)PV >P (M) (EqT <> <)
Hx. S ~4 Hy. Aix<—y} with y¢fu(4) (EqT H-a)

High type equivalence, 7~y G, (abbrev. ¥~ 0),
are the least relations on high types such that ¢=>%G, and:

FyF (EqH Refl)
F~G = Gy F (EqH Symm)
F~yG and G~y H = F~yH (EqH Trans)

L. Cardelli, P. Gardner, G. Ghelli 145

A~1y B = A~mp B (EqH % Congr)
Fry T NG~ G = F5G ~y F-G (EqH — Congr)
F~pvn G = Ix. F~4IIx. G (EqH IT Congr)
x. G ~4 Ty. Glae—y} with y¢fu(G) (EqH T-a)

For (EqT H <) see [11], where it is shown that a similar property holds for quan-
tifiers.

There are interesting type transpositions that do not simplify away, such as
this one: ITx. x(n<>m)[T], which is a latent substitution. However, for Hx.
x(n<>m)[T], which is the same as Hx. (x[T](n<>m)), we have an equivalence with
(Hx. x[T])(n<>m). This is really saying that swapping an H-bound name via two
concrete names cound not have any effect, because the bound name must be
fresh with respect to the concrete names. This swapping of H and <> is the most
interesting rule about type transpositions, and only works if the transposition
does not mention the bound variable. (In Hy.T(n<>y) we have such an entagle-
ment with bound variables, but that type can be simplified through another
path: T(n<>y) ~ T and hence Hy.T(n<y) ~ Hy.T.)

The full story about H and <« is that (Hx. 9)(«>) ~ Hx. A>T for x
not in M9, “except that the transpostion is never applied to the occurrences
of x”. This is expressed by two rules, which combined give rule (EqT H «)); one
pushing the transposition inside the quantifier:

(Hx. 9)(Pe>PT) ~ Hx. A(Pl>M) where x¢ fo(Pl>NT)
and one saying that a transposition has no effect on bound variables:
Hx. 4 ~ Hx. B{x<x (P>} where x¢ fu(M>IT)

Such a rule is sound for all quantifiers. If 3x. %{x}, then also Jx. D{x(m<«>n)}: if in
the first case x=n or x=m, then in the second case take x=m or x=n. Similarly, if
Vx. x}, then also Vx. B{x(m<>n)}: if something holds for any x, then it also holds
for any x(m<>n), which is the same set. Finally, if Hx. %, then also Hx.
Hx(m<«>n)}: if in the first case x denotes a fresh name, even if we happen to pick
n or m for it, then in the second case we can pick a different fresh name, and
x(m<>n) has no effect on it.

Remark: Transpositions seem to be a problem for dependent types:
(ITx. x(m<>n)[0]) = (ITx. x[0){x<—x(m<>n)}) is not the same as (ITx. x[0]),

so the cancellation rule does not apply. We do not allow transpositions on high
types.

Definition 6-3 (Valuation)

(1) If e:Var—A is a finite map, then we say that ¢ is a valuation.

(2) We indicate by &(9%), () the homomorphic extensions of € to name expres-
sions and tree types, with the understanding that in such extension &(x) = x for
x¢dom(e).

3) If fu(9Y) < dom(e) then we say that ¢ 1s a ground valuation for 9, and we write
¢ grounds 9%, similarly for ¢4 and %

146 L. Cardelli, P. Gardner, G. Ghelli

(4) We indicate by &(¢) the freshness signature obtained by:
(@) = ¢
&(n,¢) = n,e(9)
e(9,Qx) = &(x),e(9) if xedom(e), and £(9),Qx otherwise
N.B.: if ¢ 2 ¥ then &(dp) 2 (D).

We say that a valuation ¢ satisfies a freshness signature ¢ if it respects the fresh-
ness constraints of ¢, in the following sense:

Definition 6-4 (Freshness Signature Satisfaction)

ek ¢ iff dom(e) = dom(d)
and Vxedom(g). ¢(x)=H = &(x)¢na(o)
and Vyedom(e). Vxedom(¢). (x<4py A ¢(y)=H) = (xedom(e) A e(x)=e(y))
In ¢ E ¢ we do not require dom(¢p) < dom(e), to allow for partial valuations. But

we require any partial valuation that instantiates an H variable to instantiate
all the variables to the left of it (with distinct names).

Lemma 6-5 (Composition of Signature Satisfaction)
e1FdAeEe(9) implies dom(e)#dom(e;) A 081 E ¢

Note that if the third condition of Definition 6-4 is changed to the apparently
more natural:

Vx,yedom(e). (x<py A d(y)=H) = e(x)=e(y)
(allowing uninstantiated variables to the left of H variables) then Lemma 6-5
fails. Consider ¢=Vx,Hy, €,=y»n, e,=x+=n; then ¢ E ¢, & E 1(p)=n,Vx, but g, =
y=n, x*n i# .

Equivalence and apartness are preserved by (partial) valuation:

Proposition 6-6 (Instances of Equivalance and Apartness)

(1) If N#y, M then VeRd. e(DN) #ey) ().
@) If N ~4 N then VeFd. e(D) ~4) ().
(3) If A~y B then VekFd. e(A) ~¢) (D).
@ If (—f"'(b G then VeFd. &(F) ~e9) £(6).

We now study the relationship between satisfaction and transposition equiv-
alence: for example, situations like P F 4 and 4 ~; ‘3. Fortunately, here % must
be closed, and we require B to be closed too, so ¢ does not play a significant role.

Proposition 6-7 (Soundness of Closed Type Equivalence)

(1) fPEA and 4 ~4 B (B closed) then P F B.
@ If FE“Z7and 4~y G (G closed) then F'E G.

Proposition 6-8 (Soundness of Equivalence and Apartness)

If ¥ #, M then VeFd. (e grounds NI = g(N) # e().

L. Cardelli, P. Gardner, G. Ghelli 147

If ¥ ~4 M then VeFd. (e grounds NI = g(N) = e(M).
If 4 ~4 B then VeF¢. (e grounds A,8) = VP. PF &(A) = PF &(D).
If F~4 G then Vek¢. (e grounds 7,G) = VF. FE e(F) = FE &G).

7 Type System

We now present a type system that is sound for the operational semantics of Sec-
tion 5. Subtyping includes the transposition equivalence of Section 6 (see rule
(Sub Equiv)), and an unspecified collection of ValidEntailments that may cap-
ture aspects of logical implication. Apart from the flexibility given by subtyping
through rule (Subsumption), the type rules for terms are remarkably straight-
forward and syntax-driven.

The type system uses environments E that have a slightly unusual struc-
ture. They are ordered lists of either names (covering all the names occurring in
expressions; see rule (NExpr n)), or variables (covering all the free variables of
expressions; see rule (Term x)). Variables have associated type and freshness in-
formation of the form x:#if =N, and Qux:F (either Vx:F or Hx:F) if 7/=N. We write
dom(E) and na(E) for the set of variables and the set of names defined by E. We
group names to the left and variables to the right; hence we write n,E for the ex-
tension of K with a name n, and we write E,x:¥ and E,Qx:N for the extension of
E with a new variable association (provided that x¢dom(E)), where # may de-
pend on dom(E). We write E(x) for the (open) type associated to xedom(E) in E.
A freshness signature (Definition 6-1) can be extracted as follows:

Definition 7-1 (Freshness Signature of an Environment)

fs(%) @ fs(E, Qx:N) & fs(E), Qx
fs(n, E) n, fs(E) fs(E, x:F) £ fs(E)

> >

Through fs(E), in typing rule (Sub Equiv), and through rule (Env n), typing en-
vironments are connected to the freshness signatures used in transposition
equivalence.

Definition 7-2 (Type Rules)

Environments. Rules for E ¢ (that is, E is well-formed).

(Env ¢) (Env n) (Env xeN) (Env x¢N)
EFo EFo Qe{V,H} x¢dom(E) ErF %N x¢dom(E)
gFo n ErFo E QxNFo E xF+o

Names. Rules for E by 9% (that is, 9Y is a name expression in E).
(NExpr n) (NExpr x) (NExpr <)
EF o nena(E) EFo Ex=N EbNnY EEN EFNOT

E |_N n E |_N X E l_N %[%(—)gﬂ]

148 L. Cardelli, P. Gardner, G. Ghelli

Tree Types. Rules for E br &4 (that is, 4 is a tree type in E).

(Type 0) (Type M) (Type |)
EFo El—N% El—Tg El—Tg EFT@
Erro0 E Fp N[44 EtrSd | B
(Type F) (Type ») (Type =)
Ero E"TQ EI—T(B EI—TQ El—TCB
El—TF El—TSZi/\(B El—TgZ(B
(Type H) (Type ©) (Type <)
E,Hx:NI—TQZ El—NgX El—Tg El—N% EFN%'
EbrHxS E bp ©9% E brp APDT)
Types. Rules for E - F (that is, Fis a type in E).
(Type Tree)(Type N) (Type —) (Type IT)
Etra Ero E-F EFG N E VxNFG
E+-9 E-N E+ 955G ErTIx. G
Subtyping. Rules for E - F<: G (that is, “is a subtype of G in E).
(Sub Tree) (Sub Equiv)
Etrd EbrB (A, fs(E), ByeValidEntailments E+F EFG F~xm G
E-A<:B E-F<:G
(Sub N) (Sub —) (Sub IT)
EFo E-F<F E-G<G FF'2N E VxNFG<: G
EFN<N EFF5G<F-G ErIx.G<:1Ix. G
Terms. Rulesfor E-t: 7 (thastype 7 in E, with Etpt : A2 ErpyAAEFt:9A).
(Term 0) (Term N]) (Term |)
Ero Ern9Y Ebpt:4 Etrt:49 Ebru:B
EFO0:0 E+FNt] : N[Ertlu:%913
(Term v) (Term <)

E HxNbFrt: 4 Etpt: 49 EWND ERNOT
EF (vo)t : Hx.94 E F (NPT « AM>DT)

(Term +9)) (Term +|)
Etpt . NA E yAtu:F Etpt:A| B E x4 yBru:F
Ert=Ny“A).u:F Ett+=xA | y:B)u:F
(Term +v) (Term ?)
Etrt:Hxd E HxN,yAtru:B Ebrt: B E xAtu:F E x—AFv:F
EF t+((vx)y:%).u : Hx.B EFt?2xAD.uv:F
(Term x) (Term %) (Term A) (Term App)

EFo xedom(E) Ern 9y E xF+t:G N Ert:995G Eru:F
Etx:Ex) EF9Y:N EF) :Ft . 755G Ettw:G

L. Cardelli, P. Gardner, G. Ghelli 149

(Term Deph) (Term DepApp) (Subsumption)
E VxNFt:G Ert:TIx.G EbFN9Y Er-t:F EF9<:G
EFXxN.t:1Ix. G EFt() : Glaen} Ert:G

Here are some comments on these type rules:

As we already mentioned, the type system includes dependent types, with bind-
ing operators Hx.%4 (the type of hiding in trees) and Ix.# (the type of those func-
tions Ax:N.t such that the type Zof ¢ may depend on the input variable x).

The subtyping relation is parameterized by a set ValidEntailments, assumed to
consist of triples (4,9,8) that are sound (Ve E¢. (¢ grounds A,B) = VP. P E &(%)
= PFE ¢(B)).

(Sub Tree) is the base case for tree subtyping, using ValidEntailments. (Sub
Equiv) is the base case for subtyping of high types, using transposition equiva-
lence from Section 6.

In (Term ?), we inspect the run time type of ¢. Hence ¢ can have any static type
B, but we require it to be well-typed, hence the assumption E b ¢ : B.

The use of x:—4 in (Term ?) means x:4=F, but this assumption is not very useful
without a rich theory of subtyping: see discussion in Section 1.5. On the other
hand, there are no significant problems in executing run-time type tests such as
P E -4 (see Definition 4-1), e.g., resulting from ¢?(x:—%).u,v. A more informative
typing of x for the third assumption of this rule is x:BA—%4, but we lack a compel-
ling use for it.

In (Term ~9[]) (and (Term +|), (Term ?)) we do not need extra assumptions
E + “%to avoid the escape of y (and x,y, and x) into %, because these are not vari-
ables of type N, and “Fcannot depend on them. We do not need the extra assump-
tion in (Term +v) for x because there we rebind the result type.

In (TermDepApp) we require the argument 9 to be a name expression, not an
expression of type N, so we can do a substitution G{x<9} into the type. Note that
EFt: N means that ¢ can be any computation of type N, unlike E Fy V.

A stack satisfies an environment, p F E, if p(x) F p(E(x)) for all x’s in dom(E);
note the extra p(-) used to bind the dependent variables in E(x). Here p(‘#) or p(%9)
means that p is used as a valuation (Definition 6-3). In addition, though, we re-
quire p to satisfy the freshness requirements of the H-quantified variables in E.

Definition 7-3 (Environment Satisfaction)
p E E, for a stack p and environment E, is defined as follows:

p E ny, ..., npalways
pEE, x4 iff Ap’x,F. p = p’[x<F] A x¢dom(p) Ap ' EE’ A FE p' ()
pFE E’, VeNiff p’x,n. p=p’lxcn] A x¢dom(@)Ap EE’
p E E’, He:Niff 3p’x,n. p = p'lx<n] A x¢dom() Ap' EE’
A n¢na(E) A n¢gna(p’)

150 L. Cardelli, P. Gardner, G. Ghelli

Finally, we obtain:

Theorem 7-4 (Subject Reduction)

1) f EF-F<:Gand p E E and F Ey p(#) then F Fy p(Q).

@ If EFy Y and p FE E and 9% ip n then n Ex p(YY).

@ IfEFt: % and pE E and ¢ Up F, then F kg p(F).

Proof
We show the (Term v) case of (3), which is by induction on the derivation of
Ert:F
We have E+ (vx)t : Hx.4 and p E E and (vx)t Up F. We have from (Term v) E,
Hx:N Fr ¢ : 4, and from (Red v) F =(vn)P and ¢ Up[x(_n] P for n¢na(t,p). Since
n could appear in %4, blocking the last step of this proof, take n’¢ na(t,4,p,P),
so that F' =, (vi)Pe(n<>n’). By Lemma 5-2 te(n<>n’) Up[ﬂ_n].[m_mj Pe(ne>n?,
thatis ¢ Up[x(—n’J Pes(ne>n’). We have p[x<n’] E E,Hx:N. By Ind Hyp, Pe(n<>n)
E plx<—n’(%4), that is, Pe(n<>n’) E p\x(A){x<—n’}. Since F = (vi)Ps(n<>n’) and
n’¢na(p\x(4)), by Definition 4-1, F E Hx.p\x(%). That is, F'F p(Hx.%9). O

8 Examples

We discuss some programming examples, using plausible (but not formally
checked) extensions of the formal development of the previous sections. In par-
ticular, we use recursive types, rec X. 4, existential types 3x.%4 where x ranges
over names (these are simpler to handle than Hx.%), and a variant of location
matching, t+(x[y:¥4]).u, that binds labels x from the data in addition to contents
y (its typing requires existential types). Examples of transposition types have
been discussed in the Introduction; here we concentrate on pattern matching,
using some abbreviations:

test t as w:A then u else vfor t?(w:A). u, v
match t as (pattern) then u else vfort?(w:B). (w+(pattern).u), v
where B is the type naturally extracted from paitern.

We also use nested patterns, in the examples, which can be defined in a similar
way. We use standard notations for recursive function definitions. We some-
times underline binding occurrences of variables, for clarity. We explicitly list
the subtypings, if any, that must be included in Valid Entailments for these ex-
amples to typecheck (none are needed for the examples in Section 1.2).

Basic. Duplicating a given label, and duplicating a hidden label:

Ae:N. Ay:x[T]. x[y] : Tx. (x[T] — x[x[T]])
Az:(Hx.x[T]). z=((vx)y:x[T]). x[y] : (Hx.x[T]) » (Hx.x[x[T]])

Collect. Collect all the subtrees that satisfy ¥, even under restrictions:
let type Result =rec X. 0 vAv (X | X) vHx.X

let rec collect(x: T): Result =
(test x as w:A then w else 0) |

L. Cardelli, P. Gardner, G. Ghelli 151

(test x as w:0 then 0 else

match x as (v:—0 | w:—0) then collect(y) | collect(w) else
match x as (v[w:T]) then collect(w) else

match x as (vy)w:©y) then collect(w) else 0)

Recall that, in the last match, a (vy) is automatically wrapped around the result;
hence the Hx.X in the definition of Result. The typing w:©y (instead of w:T) is
used to reduce nondeterminism by forcing the analysis of non-redundant restric-
tions. Similarly, the pattern —0 | —0 is used to avoid vacuous splits where one
component is 0. In general, the splitting of composition is nondeterministic; in
this case the result may or may not be uniquely determined depending on the
shape of 4. The subtypings needed here are 4<: T, 4 <: 4v3B and rec fold/unfold.

Removing Dangling Pointers. We can encode addresses and pointers in the
same style as in XML. An address definition is encoded as addr[n[0]], where
addris a conventional name, and n is the name of a particular address. A pointer
to an address is encoded as ptr[n[0]], where ptr is another conventional name.
Addresses may be global, like URLs, or local, like XML’s IDs; local addresses are
represented by restriction: (vn) ... addr[n[0]] ... ptr[n[0]] A tree should not
contain two address definitions for the same name, but this assumption is not
1mportant in our example.

We write a function that copies a tree, including both public and private ad-
dresses, but deletes all the pointers that do not have a corresponding address in
the tree. Every time a ptr[n[0]] is found, we need to see if there is an addr[n[0]]
somewhere in the tree. But we cannot search for addr[n[0]] in the original tree,
because n may be a restricted address we have come across. So, we first open all
the (non-trivial) restrictions, and then we proceed as above, passing the root of
the restriction-free tree as an additional parameter. The search for addr[n[0]]
can be done by a single type test for Somewhere(addr[n[0]]), where Some-
where(#A) 2 rec X. (4 | T)vay.(y[X] | T).

let rec deDangle(x: T): T =
match x as (vy)w:©y) then deDangle(w) else f (x, x)
and f (x: T, root: T): T =
test x as w:0 then 0 else
match x as (v:—0 | w:—0) then f (y, root) | f (w, root) else
match x as (ptr[y[0]]) then

test root as w:Somewhere(addr[y[0]]) then ptr[y[0]] else 0 else
match x as (z[w:T]) then z[f (w, root)] else 0

Note that deDangle automatically recloses, in the result, all the restrictions that
it opens. The subtypings needed here are just 4 <: T.

9 Conclusions

We have introduced a language and a rich type system for manipulating trees
with public and private locations. We stripped our tree model to the absolute ba-

152 L. Cardelli, P. Gardner, G. Ghelli

sics, since the theory was complicated enough for this simple case. We believe
that our distinction between public and private locations is an important feature
of web data, and that our use of names and name hiding to model locations is
fundamental. We believe the techniques and results described here will easy
transfer other, more complex models of semistructured data: for example, our
trees-with-pointers model which includes unique locations and trees with graph-
ical links [13,16].

Our key contribution is a subject reduction theorem, capturing the interplay
between the type system, the operational semantics and the satisfaction relation
1n this complex setting involving name binding transpositions and hiding quan-
tification. We are not aware of previous uses of transpositions in structural op-
erational semantics although it does fall within the general framework of [33].
We believe ours is the first language with explicit transpositions in the syntax
of terms and types. Our formal development could have been carried out within
a metatheory with transpositions, as advocated in [26,33]. In this case, Lemmas
4-3 and 5-2 would just follow from the metatheory, and one would be less ex-
posed to mistakes associated with a-conversion. We have not gone that far, but
should seriously consider this option in the future.

Acknowledgments. Thanks to Murdoch J. Gabbay for illuminating discus-
sions on transpositions, and to Luis Caires who indirectly influenced this paper
through earlier work with the first author. Moreover, Gabbay and Caires helped
simplify the technical presentation.

References

[1] S. Abiteboul, P. Buneman, D. Suciu: Data on the Web. Morgan Kaufmann Publishers, 2000.

[2] S.Abiteboul, P. Kanellakis: Object identity as a query language primitive. Journal of the ACM, 45(5):798-
842, 1998. A first version appeared in SIGMOD'89.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener: The Lorel Query Language for Semistruc-
tured Data. International Journal on Digital Libraries, 1(1), pp. 68-88, April 1997.

[4] M.P. Atkinson, F. Bancilhon, et al.: The Object-Oriented Database System Manifesto. Building an Ob-
ject-Oriented Database System, The Story of 02, 1992, pp. 3-20.

[6] V. Benzaken, G. Castagna, A. Frisch: CDuce: a white paper. PLAN-X: Programming Language Technol-
ogies for XML, Pittsburgh PA, Oct. 2002. http://www.cduce.org.

[6] S.Boag, D. Chamberlin, M.F. Fernandez, D. Florescu, J. Robie, J. Siméon: XQuery 1.0: An XML Query
Language, W3C Working Draft, 2002, http://www.w3.org/TR/xquery.

[7] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler: Extensible Markup Language (XML) 1.0 (Second
Edition), W3C document, http://www.w3.org/TR/REC-xml.

[8] P.Buneman, S.B. Davidson, G.G. Hillebrand, D. Suciu: A Query Language and Optimization Techniques
for Unstructured Data. SIGMOD Conference 1996, pp. 505-516.

[9] L. Caires: A Model for Declarative Programming and Specification with Concurrency and Mobility. Ph.D.
Thesis, Dept. de Informatica, FTC, Universidade Nove de Lisboa, 1999.

[10] L. Caires, L Cardelli: A Spatial Logic for Concurrency: Part I. Information and Computation, Vol 186/2
November 2003. pp 194-235.

[11] L. Caires, L. Cardelli: A Spatial Logic for Concurrency: Part II. Theoretical Computer Science, 322(3),
September 2004. pp. 517-565

[12] C. Calcagno, L. Cardelli, A.D. Gordon: Deciding Validity in a Spatial Logic for Trees. Journal of Func-

[13]
(14]

[15]
(16]
(17]
(18]

(19]
[20]
[21]

(22]
(23]
(24]
(25]
(26]
(27
(28]
(29]

(30]
(31]
(32]

[33]

(34]

L. Cardelli, P. Gardner, G. Ghelli 153

tional Programming, Vol 15, Cambridge University Press, 2005. pp 543-572.
C. Calcagno, P. Gardner and U. Zarfaty: Context Logic & Tree Update, Proc. POPL 2005.

C. Calcagno, H. Yang, P.W. O'Hearn: Computability and Complexity Results for a Spatial Assertion Lan-
guage for Data Structures. Proc. FSTTCS 2001, pp. 108-119.

L. Cardelli, P. Gardner, G. Ghelli: A Spatial Logic for Querying Graphs. Proc. ICALP’02, Peter Widmayer
et al. (Eds.). LNCS 2380, Springer, 2002. pp 597-610.

L. Cardelli, P. Gardner and G. Ghelli: Querying Trees with Pointers. Unpublished notes, 2003; talk at
APPSEM 2001.

L. Cardelli, G. Ghelli: A Query Language Based on the Ambient Logic. Proc. ESOP’01, David Sands (Ed.).
LNCS 2028, Springer, 2001, pp. 1-22.

L. Cardelli, A.D. Gordon: Anytime, Anywhere. Modal Logics for Mobile Ambients. Proc. of the 27th ACM
Symposium on Principles of Programming Languages, 2000, pp. 365-377.

S. Cluet, S. Jacqmin, and J. Simeon: The New YATL: Design and Specifications. INRIA, 1999.
E. Cohen: Validity and Model Checking for Logics of Finite Multisets. Draft.

M. Dam: Proof Systems for Pi-Calculus Logics. In R. de Queiroz (ed.), Logic for Concurrency and Synchro-
nisation, Trends in Logic, Logica Library, Kluwer, 2003, pp. 145-212

D. Florescu, A. Deutsch, A. Levy, D. Suciu, M. Fernandez: A Query Language for XML. In Proc. of Eighth
International World Wide Web Conference, 1999.

D. Florescu, A. Levy, M. Fernandez, D. Suciu, A Query Language for a Web-Site Management System.
SIGMOD Record , vol. 26 , no. 3 September, 1997. pp. 4-11.

M.J. Gabbay: A Theory of Inductive Definitions with a-Equivalence: Semantics, Implementation, Pro-
gramming Language. Ph.D. Thesis, University of Cambridge, 2000.

M.dJ. Gabbay, A.M. Pitts, A New Approach to Abstract Syntax Involving Binders. Proc. LICS1999. IEEE
Computer Society Press, 1999. pp 214-224.

M.J. Gabbay: FM-HOL, A Higher-Order Theory of Names. In Thirty Five years of Automath, Heriot-Watt
University, Edinburgh, April 2002. Inforal Proc., 2002.

A.D. Gordon: Notes on Nominal Calculi for Security and Mobility. R.Focardi, R.Gorrieri (Eds.): Founda-
tions of Security Analysis and Design. LNCS 2171. Springer, 1998.

A.D. Gordon, A. Jeffrey: Typing Correspondence Assertions for Communication Protocols. MFPS 17,
Elsevier Electronic Notes in Theoretical Computer Science, Vol 45, 2001.

H. Hosoya, B. C. Pierce: XDuce: A Typed XML Processing Language (Preliminary Report). WebDB (Se-
lected Papers) 2000, pp: 226-244

R. Milner: Communicating and Mobile Systems: the n-Calculus. Cambridge U. Press, 1999.
P.W. O'Hearn, D. Pym: Logic of Bunched Implication. Bulletin of Symbolic Logic 5(2), 1999. pp 215-244.

P.W. O'Hearn, J.C. Reynolds, H. Yang: Local Reasoning about Programs that Alter Data Structures.
Proc. CSL 2001, pp. 1-19.

A.M. Pitts: Nominal Logic, A First Order Theory of Names and Binding. Proc. TACS 2001, Naoki Koba-
yashi and Benjamin C. Pierce (Eds.). LNCS 2215. Springer, 2001. pp 219-242.

A.M. Pitts, M.J. Gabbay: A Metalanguage for Programming with Bound Names Modulo Renaming. R.
Backhouse and J.N. Oliveira (Eds.): MPC 2000, LNCS 1837, Springer, pp. 230-255.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

