ML under Unix

Luca Cardelli

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

ML is a statically-scoped functional programming language. Functions are
first class objects which can be passed as parameters, returned as values and
embedded in data structures. Higher-order functions (i.e. functions receiving or
producing other functions) are used extensively.

ML is an interactive language. An ML session is a dialogue of questions and
answers with the ML system. Interaction is achieved by an incremental compiler,
which has some of the advantages of interpreted languages (fast turnaround dialo-
gues) and of compiled languages (high execution speed).

ML is a strongly typed language. Every ML expression has a type, which is deter-
mined statically. The type of an expression is usually automatically inferred by
the system, without need of type definitions. The ML type system guarantees that
any expression that can be typed will not generate type errors at run time. Static
typechecking traps at compile-time a large proportion of bugs in programs.

ML has a polymorphic type system which confers on the language much of the
flexibility of type-free languages, without paying the conceptual cost of run-time
type errors or the computational cost of run-time typechecking.

ML has a rich collection of data types. Moreover the user can define new abstract
data types, which are indistinguishable from the system predefined types. Abstract
types are used extensively in large programs for modularity and abstraction.

ML has an exception-trap mechanism, which allows programs to handle uniformly
system and user generated exceptions. Exceptions can be selectively trapped, and
exception handlers can be specified.

ML programs can be grouped into modules, which can be separately compiled.
Dependencies among modules can be easily expressed, and the sharing of common
submodules is automatically guaranteed. The system keeps track of module ver-
sions to detect compiled modules which are out of date.

This manual describes an implementation of ML running on VAX under the Unix
operating system.

Unix is a trade mark of Bell Laboratories.
VAX is a trade mark of Digital Equipment Corporation.

5.1.2. Parallel bindings
5.1.3. Recursive bindings
5.2. Type bindings
5.2.1. Simple bindings
5.2.2. Parallel bindings
5.2.3. Recursive bindings
5.3. Abstract type declarations
5.4, Sequential declarations
5.5. Private declarations
5.6. Import declarations
5.7. Lexical declarations
6. I/O streams
7. Modules
7.1. Module hierarchies
7.2. Module sharing
7.3. Module versions
8. The ML system
8.1. Entering the system
8.2. Loading source files
8.3. Exiting the system
8.4. Error messages
8.5. Monitoring the compiler
8.6. Garbage collection and storage allocation
Appendix A: Lexical classes
Appendix B: Keywords
Appendix C: Predefined identifiers
Appendix D: Predefined type identifiers
Appendix E: Precedence of operators and type operators
Appendix F: Metasyntax
Appendix G: Syntax of lexical entities
Appendix H: Syntax
Appendix I: Escape sequences for strings
Appendix J: System installation
Appendix K: Introducing new primitive operators
Appendix L: System limitations
Appendix M: VAX data formats
Appendix N: Ascii codes
Appendix O: Transient
References

ML Pose 0, 9/9/83

of date.

1.1. Expressions

ML is an expression-based language; all the standard programming constructs (conditionals,
declarations, procedures, etc.) are packaged into expressions yielding values. Strictly speaking
there are no statements: even side-effecting operations return values.

It is always meaningful to supply arbitrary expressions as arguments to functions (when the type
constraints are satisfied), or to combine them to form larger expressions in the same way that sim-
ple constants can be combined.

Arithmetic expressions have a fairly conventional appearance; the result of evaluating an expres-
sion is presented as a value and its type separated by a colon:

expression: 3+5*2

result: 16 :int
Sequences of characters enclosed in quotes ‘" are called strings:
expression: "this is it";

result: "this is it" : string

Tuples of values are built by an infix operator ‘,” (comma); the type of a tuple is given by the infix
type operator #, which denotes cartesian products.

expression: 3.4;

result: 3,4 :int # int
expression: 3.4,5;

result: 3,4,5:int # int # int

Lists are enclosed in square brackets and their elements are separated by semicolons. The list type
operator is a suffix: int list means list of integers.

expression: [1: 2 3 415

result: [1;2; 3; 4] : int list
expression: [3.4; 5,8}

result: [(3,4); (5,6)) ; (int # int) list

Conditional expressions have the ordinary if-then-else syntax (but else cannot be omitted):

expression: if true then 3 else 4;
result: 3:int
expression: if (if 3 = 4 then false else true)

then false

-7 -

infix operator; expressions like f 3 + 4 are parsed like (f 3) + 4 and not like f (3 + 4).

The function g above has a pair of arguments, & and b; in this case parentheses are needed for,
otherwise g 8,4 is interpreted as (g 8], 4.

The identifiers f and g are plain variables which denote functions. Function variables do not need
to be applied to arguments:

expression: f.f3

result: fun,4 : (int —> int) # int
declaration: valh == g

binding: val h: (int # int) —> int

In the first example above, f is returned as a function and is paired with a number. Functional
values are always printed fun, without showing their internal structure. In the second example, g
is bound to h as a whole function. Instead of val h == g we could also have written val h(a,b)
== gla,bl.

Variables are statically scoped, and their types cannot change. When new variables are defined,
they may ‘hide’ previously defined variables having the same name, but they never ‘affect’ them.
For example:

declaration: valfx==8+ x

binding: val f;int —> int
declaration: val 8 == [1;2:3];

binding: val a == [1:2:3] : int list
expression: £ 9

resuit: 4:int

here the function f uses the top-level variable a, which was bound to 3 in a previous example.
Hence f is a function from integers to integers which returns its argument plus 3. Then a is rede-
fined at the top level to be a list of three integers; any subscquent reference to a will yield that list
(unless a is redefined again). But f is not effected at all: the old value of a was ‘frozen’ in f at the
moment of its definition, and f keeps adding 3 to its arguments.

This kind of behavior is called lexical or static scoping of variables. It is quite common in block-
structured programming languages, but it is rarely used in languages which, like ML, are interac-
tive. The use of static scoping at the top-level may sometimes be counterintuitive. For example, if
a function f calls a previously defined function g, then redefining g (e.g. to correct a bug) will not
change f, which will keep calling the old version of g.

1.3. Local scopes

Declarations can be made local by embedding them between the keywords let and in in a scope-
block construct. Following the keyword in there is an expression, called the body of the scope-
block, terminated by the keyword end. The scope of the declaration is limited to this body.

expression: let vala ==
andb ==

1.4. Lists

List are homogeneous, i.e. all their elements must have the same type. It is possible to create lists
of any type, e.g. lists of strings, lists of lists of integers, lists of functions (of some given type),
etc. Many functions dealing with lists can work on lists of any kind (e.g. computing the length),
and they do not have to be rewritten every time a new kind of list is needed. Other list functions
are more specialized, like taking the sum of all the elements in a list. Even specialized functions
can often be quickly defined from general list utilities; for example, summation can be defined by
distributing the integer sum operation by a general fold function which folds lists under binary
operations.

The fundamental list operations are nil, the empty list, and the infix : (cons), which appends an
element (its left argument) to the head of a list (its right argument). The square-brackets notation
for lists (e.g. [1;2;31), is an abbreviation for a sequence of cons operations terminated by nil;
hence [] is another way of writing nil. The system always uses the square-brackets notation when
printing lists.

nil is N
1212 3] is [1;2; 3]
1u2:3 i is {1:2; 31

Other predefined operations on lists include:

@ null, which returns true if its argument is nil, and false on any other list.
® hd, which returns the first element of a non-empty list.

® tl, which strips the first element from the head of a non-empty list.

® @ (append), which concatenates lists.

null {1 is true

null [1; 2; 31 is false

hd [1: 2; 3] is 1

ti[1; 2 3] is 2 3]

1:21@] is [1; 21

Il @I3; 4] is [3; 41

[1; 2] @ [3; 4] is [1:2: 3: 4]
1.5. Functions

All functions take exactly one argument and deliver exactly one result. However arguments and
results can be arbitrary structures, thereby achieving the effect of passing multiple arguments and
returning multiple results. For example:

declaration: val plus(a,b) == a + b;

the function plus above takes a single argument (a,b), which is a pair of values. This could seem
to be a pointless distinction, but consider the two following ways of using plus:

expression: plus(3,4);
expression: let valx == 3,4
in plus x end;

The first use of plus is the standard one: two arguments 3 and 4 seem to be supplied to it. How-
ever we have seen that ‘.’ is a pair-building operator, and it constructs the pair 3.4 before applying
plus to itt. This is clearer in the second use of plus, where plus receives a single argument,

+ This is true conceptually; in practice a compiler can optimize away the extra pair constructions in most situa-
tions.

« 11 =

declaration: val rec summation nil == 0 |
summation (head : taill == head + summation tail,
binding: val summation : int list —> int

The patterns are evaluated sequentially from left to right. When a pattern matches the argument,
the variables in the pattern are bound to the respective parts of the argument, and the correspond-
ing action is executed. It there are several patterns matching some argument, only the first one is
activated. If all patterns fail to match some argument, a run-time exception ~zurs.

1.6. Polymorphism

A function is said to be polymorphic when it can work uniformly over a class of arguments of dif-
ferent data types. For example consider the following function, computing the length of a list:

declaration: val rec length nil == 0|
length (% = tail) == 1 + length tail;

binding: val length : 'a list —> int
expression: length [1; 2; 3], length ["a"; "b"; "¢"; "d"J;
result: 3.4 . int#int

The type of length contains a type variable (‘a), indicating that any kind of list can be used; e.g.
an integer list or a string list. Any identifier or number prefixed by a prime *’, and possibly con-
taining more primes, is a type variable.

A type is called polymorphic, or a polytype, if it contains type variables, otherwise it is called
monomorphic, or a monotype. A type variable can be replaced by any ML type to form an instance
of that type, for example, int list is a monomorphic instance of 'a list. The instance types can con-
tain more type variables, for example ('b # 'c) list is a polymorphic instance of 'a list.

Several type variables can be used in a type, and each variable can appear several times, expressing
contextual relationships between compenents of a type; for example, 'a # 'a is the type of all pairs
having components of the same type. Contextual constraints can also be expressed between argu-
ments and results of functions, like in the identity function, which has type 'a —> 'a, or the fol-
lowing function which swaps pairs:

declaration: val swaplx,y) ==y, X

binding: val swap : (a # 'b) —> (b # 'a)
expression: swapl(l],"abec");

result: "abe",[1 : string # (a list)

Incidentally, you may notice that the empty list [1 is a polymorphic object of type 'a list, in the
sense that it can be considered an empty integer list, or an empty string list, etc..

In printing cut polymorphic types, the ML system uses the type variables ‘a, 'b, etc. in succession
(they are pronounced ‘alpha’, ‘beta’, etc.), starting again from 'a at every new top-level declara-
tion. After 'z there are "a, .. "z, "a, .. "z, etc., but these are rarely necessary. Type variables
are really anonymous objects, and it is not important how they are expressed as long as the contex-

tual relations are clear.
Several primitive functions are polymorphic. For example, we have already encountered the list

e

- i3

declaration: val comp {f,g} x == f (g x);

binding: val caomp ; ((a —>'b) # (c —>'all —-> (¢ —>'h)
declaration: val fourtimes == compl(twice,twice);

binding: val fourtimes : int —> int

expression: fourtimes 5;

result: 20 int

Function composition comp takes two functions f and g as arguments, and returns a function
which when applied to an argument x yields f (g x). Composing twice with itself, by partially
applying comp to the pair twice,twice, produces a function which multiplies numbers by four.
Function composition is also a predefined operator in ML; it is called o (infix), so that the compo-
sition of f and g can be written f 0 g.

Suppose now that we need to partially apply a function f which, like plus, takes a pair of argu-
ments. We could simply redefine f as val f 8 b == fla,b): the new f can be partially applied, and
uses the old f with the expected kind of arguments.

To make this operation more systematic, it is possible to write a function which transforms any
function of type, ('a # 'b) —> ‘c (which requires a pair of arguments) into a function of type ‘a
—> ('b —> 'c) (which can be partially applied); this process is usually called currying a function:

declaration: val curry f a b == fla,b);

binding: valcurry : (Ca #'bB) —>'c) —> (a —> (b —>"'c)
declaration: val currypius == curry plus;

binding: val curryplus : int —> (int —> int)

declaration: val successor == curryplus 1;

binding: val successor @ int —> int

The higher-order function curry takes any function f defined on pairs, and two arguments a and
b, and applies f to the pair (a,b). If we now partially apply curry to plus, we obtain a function
curryplus which works exactly like pius, but which can be partially applied.

1.8. Exceptions

Certain primitive functions may raise exceptions on some arguments. For example, division by zero
interrupts the normal flow of execution and escapes at the top level with an error message inform-
ing us that division failed:

expression: 1div0;

exception: Exception: div

Another common exception is raised when trying to extract the head of an empty list:

expression: hd {1;

-5 -

Compound types are built by iype operators like # (cartesian product), list (list) and —> (function
space). Type operators are usually infix or suffix: int # int, int list and int —> int are the types
of integer pairs, lists and functions. Strictly speaking, basic types are type operators which take no
arguments. Type operators can be arbitrarily nested: e.g. ((int —> int) list) list is the type of lists
of lists of integer functions.

Type variables can be used to express polymorphic types. Polytypes are mostly useful as types of
functions, although some non-functional objects, like [1 : ‘a list, are also polymorphic. A typical
example of polymorphic function is hd : 'a list —> ‘s, which extracts the first element {of type 'a)
of a list (of type ‘a list, in general). The type of hd tells us that hd can work on any list, and that
the type of the result is the same as the type of the elements of the list.

Every type denotes a domain, which is a set of objects, all of the given type; for example int # int
is (i.e. denotes) the domain of integer pairs, and int —> int is the domain of all integer functions.
An object can have several types, i.e. it can belong to several domains. For example the identity
function (fun x. x) has type int —> int as it maps any object (of type integer) to itself (of type
integer), but it is also has the type bool —> bool for the same reason. The most general type for
the identity function is 'a —> 'a because all the types of the identity are instances of it. 'a —> 'a
gives more information than int —> int, for instance, because the former encompasses all the
types that the identity function can have and thus expresses all the ways that the identity function
can be used. Hence 'a —> 'a is a ‘better’ type for (fun x. x), although int —> int is not wrong.
The ML typechecker always determines the ‘best’ type for an expression, i.e. the one which
corresponds to the smallest domain, given the information contained in that expression.

A type constraint can be appended to an expression, in order to specify the type of the expression:

expression: 3 :int;

result: 3:int

expression: [3.4; (5,8) :int # int];

result: [(3,4); (5,811 : (int # int) list

In the above examples, the type specifications following “’ do not really have any effect. The types
are independently inferred by the system and checked against the specified types. Any attempt to
specify a type incorrectly will result in a type error:

expression: 3 : bool;

type error: Type Clash in: 3 : bool
Looking for: boaol
| have found : int

However, a type specification can restrict the types inferred by the system by constraining
polymorphic objects or functions:

expression: [1:int list;

result: [1:int list
expression: (fun x. X) : int —> int;
result: fun:int —> int

note that the type normally inferred for [is ‘a list and for (fun x. x) is 'a —> 'a.

« 17 «

amount (checkibank,centg)) == cents;
binding: val amount : money —> int
Note that quarter is not a constructor, and we cannot have a clause ‘amount quarter == 25’ in

the above definition (quarter would be interpreted as a normal variable, like x).

A type can be entirely made of constants, in which case we have something similar to Pascal
enumeration types. A type can also have a single constructor; then the iype definition can be con-
sidered as an abbreviation for the type following of.

declaration: type color == red | biue | yellow;

declaration: type point == point of int # int;

If the definition of a type involves type variables, the type is called parametric and all the type
variables used on the right hand side of the == must be listed on the left hand side as type param-
eters: here are type operators with one and two type parameters:

declaration: type 'a predicate == predicata of 'a —> bool
and Cb,’c) leftprojection == Izftprojection of (b # 'c) —> 'g;

bindings: type 'a predicate == 'a —> boal
con predicate : {a —> boal) —> (a predicate)
type {'b,’c) leftprojection == leftprojection of (b # '¢) —>'b
con leftprojection : (Cb # 'c) —> 'b) —> (b,’c) leftprojection

Recursive types are introduced by the keyword rec. Here is how the predefined list type is
defined:

declaration: type rec ‘s list == nil | :: of 'a # 'a list;

bindings: type ‘a list == nil | : of 'a # (a list)
con nil ; 'a list
con = : (a # Ca list)) —> (a list)

1.11. Abstract types

An abstract data type is a type with a set of operations defined on it. The structure of an abstract
type is hidden from the user of the type, together with the all the constructors of the underlying
structure. The associated operations are the only way of creating and manipulating objects of that
type. However, the hidden structure and constructors are available while defining the operations.

An abstract data type provides an interface between the use and the implementation of a set of
operations. The structure of the type, and the implementation of the operations, can be changed
while preserving the external meaning of the operations.

For example we can define an abstract type (additive-) color which is a combination of three pri-
mary colors which can each have an intensity in the range 0..15:

declaration: abstype color == blend of int # int # int
with val white == blend(0,0,0)
and red == blend(15,0,0)
and blue == blend(0,15,0)
and yellow == blend(0,0,15)

£

-19.

1.12. Interacting with the ML system
ML is an interactive language. It is entered by typing ml as a Unix command, and it is exited by

0

typing Control-D.

Once the system is loaded, the user types phrases (i.e. expressions, top level declarations or com-
mands), and some result or acknowledgement is printed. This cycle is repeated over and over,
until the system is exited.

Every top-level phrase is terminated by a semicolon. A plirase can be distributed on several lines
by breaking it at any position where a blank character is accepted. Several phrases can also be writ-
ten on the same line.

There is no provision in the ML system for editing or storing programs or data which are created
during an ML session. Hence ML programs and definitions are usually prepared in text files and
loaded interactively. The use of a multi-window editor like Emacs is strongly suggested: one win-
dow may contain the ML system, and other windows contain ML definitions which can be modi-
fied (without having to exit ML) and reloaded when needed, or they can even be directly pasted
from the text windows into the ML window.

An ML source file looks exactly like a set of top-level phrases, terminated by semicolons. A file
prog.mi containing ML source code can be loaded by the use top-level command:

use "prog.mi”;

where the string surrounded by quotes can be any Unix file name or path. The files loaded by use
may contain more use commands (up to a certain stacking depth), so that the loading of files can
be cascaded. The file extension .mi is normally used for ML source files, but this is not compul-
sory.

When working interactively at the top level, the first two characters of every line are reserved for
system prompts.

—vala==
andfx==x+1;
>vala==3:int

| val f:int —> int

-a+1;
4:int

‘— " is the normal system prompt, indicating that a top-level phrase is expected, and ¢ °’ is tlie con-
tinuation prompt indicating that the phrase on the previous line has not been completed. Again,
all the top level expressions and declarations must be terminated by a semicolon.

In the example above, the system responded to the first definition by confirming the binding of the
variables a and f; ‘>’ marks the confirmation of the a new binding, followed ‘|’ on the subse-
quent lines when many variables are defined simultanecusly. In general, the prompts >’ and ‘|’
are followed by a variable name, an == sign, the new value of the variable, a *’, and finally the
type of the variable. If the value is a functional object, then the == sign and the value are omit-
ted.

When an expression is evaluated, the system responds with a blank prompt ¢ °, followed by the
value of the expression (just fun for functions), a “’ and the type of the expression.

Every phrase-answer pair is followed by a blank line.

The variable it is always bound to the value of last expression evaluated; it is undefined just after
loading the system, and is not affected by declarations or by computations which for some reason
fail to terminate.

e

-21-

— type t == ‘noway
Unbound Type Variable: ‘noway

Type errors show the context of occurrence of the error and the two types which could not be
matched. The context might not correspond exactly to the source code because it is reconstructed
from internal data structures.

- 3 + true;

Type Clash in: {3 + true)
Looking for : int

| have found : beol

The example above is a common matching type error. A different kind of matching error can be
generated by self-application, and in general by constructs leading to circularities in the type struc-
tures:

- fun x. xx

Type Clash in: 03

Attempt to build a seif-referential type
by equating var: ‘a

to type expr: ‘a—>'b
—vaeirec f$ == f;
Type Clash in: == {fun (). f}

Attempt to build a self-referential type

by equating var: 'a
to type expr: ‘b ->"'s

Less common error messages are described in section "Error messages”.

2. Lexical matters

The following lexical entities are recognized: identifiers, keywords, integers, strings, delimiters,
type variables and comments. See appendix "Syntax of lexical entities” for a definition of their syn-
tax.

An identifier is either (i) a sequence of letters, numbers, primes “’ and underscores ‘_’ not starting
with a digit, or (i) a sequence of special characters (like *, @, /, etc.).

Keywords are lexically like identifiers, but they are reserved and cannot be used for program vari-
ables. The keywords are listed in appendix "Keywords".

Integers are sequences of digits.

Strings are sequences of characters delimited by string quotes ‘. String quotes and non-printable
characters can be introduced in strings by using the escape character ‘\’. The details of the escape
mechanism are described in appendix "Escape sequences for strings”.

Type variables are only accepted in type expressions. They are identifiers starting with the charac-
ter *’. For example: ', ™, "1 'tyvar, etc.

Delimiters are parentheses ((, [, } and 1), and other one-character punctuation marks like ‘.’ and
%’. Delimiters never stick to any other character, so that no space is ever needed around them.

Comments are enclosed in curly brackets ‘{’ and ‘}’, and can be nested.

o

LT

- Tint —> int
+, —, *, div, mod . (int # int) => int (infixes)
> >=, <=, < : (int # int) —> bool (infixes)

Negative integers are wriiten "3, where “” is the complement function (while ‘—’ is difference).
Integers have unbounded precision; arithmetic exceptions can only be generated by integer division
div and module mod, which escapes with string "div" when their second argument is zero.

The integer type could in principle be defined in ML as:
declaration: type rec nat == one | succ of nat;

declaration: type int == neg of nat | zero | pos of nat;

3.4, Tuples

A tuple is a fixed-length heterogeneous sequence of values. The unity value (i.e. (J) might be con-
sidered as a zero-length tuple. There are no tuples of length one; they are identified with their
unique component. Tuples of length two or more are written as sequences of values separated by
commas:

syntax: expyq. .., exp, n=2

Tupling is an n-ary operation; in order to build non-flat tuples of tuples, parentheses must be used.
For example the following is not a 4-tuple: it is a triple, whose second component is a pair:

expression: 1. @, 3) 4

result: 1.(2.3),4 :int # (int # int) # int

The type of an n-ary tuple is an n-ary cartesian product, denoted by the symbol #. Parentheses can
be used to express non-flat cartesian products.

There are no primitive functions on tuples, except the basic use of commas to build them (note that
it is not possible to define a function which extracts the first element of a tuple for tuples of any
length). Destructuring must be done by pattern matching:

declaration: val a,b,c == 1,2,3;

result: 1:int
2:int
3:int

O oo
nn
nnon

The type of a tuple is the cartesian product of the types of its components:

typing rule: if eq:ty and .. and e,: cn
then (51....en) : !:1#.. #t:n

Tuples are one of the few really fundamental types in ML; they cannot be explained in terms of
other constructs in the language.

-25.

typing rule: ife,:tand .. and €,: ¢ then [e,: 5. en] it list

3.6. Strings
A string constant is a sequence of characters enclosed in quotes, e.g. "this is a string".

Ogeration on strings are:

" : string (constants)
size : string —> int

extract : (string # int # int) —> string
explode : string —> string list

implode : string list —> string

explodeascii :string —> int list

implodeascii 1 int list —> string

intofstring i string —> int

stringofint :int —> string

® The escape character for strings is \; the conventions used to introduce quotes and non-printable
characters inside strings are described in appendix "Escape sequences for strings”.

@ size returns the length of a string.

® extract extracts a substring from a string: the first argument is the source string, the second
argument is the starting position of the substring in the string (the first character in a string is at
position 1), and the third argument is the length of the substring; it escapes with string "extract”
if the numeric arguments are out of range.

® explode maps a string into the list of its characters, each one being a 1-character string.

® impiode maps a list of strings into a string which is their concatenation.

® explodeascii is like explode, but produces a list of the Ascii representations of the characters
contained in the string.

® implodeascii maps a list of numbers interpreted as the Ascii representation of characters into a
string containing those characters; it escapes with string "implodeascii” if the integers are not valid
Ascii codes.

® intofstring converts a numeric string to the corresponding integer number, negative numbers
start with *’; it may escape with string "intofstring” if the string is not numeric.

® stringofint converts an integer to a string representation of the necessary length; negative
numbers start with ‘.

For Ascii characters we intend here full 8-bit codes in the range 0..255.

3.7. Updatabie references

Assignment operations act on reference objects. A reference object is an updatable pointer to
another object. References are, together with arrays, the only data objects which can be side
effected; they can be inserted anywhere an update operation is needed in variables or data struc-
tures.

References are created by the operator ref, updated by := and dereferenced by !. The assignment
operator := always returns unity. Reference objects have type t ref, where t is the type of the
object contained in the reference.

ref .'a —> 'aref (constructor)
! ‘aref —>'s
= c'aref #'a —> unit (infix)

Here is a simple ezample of the use of references. A reference to the number 3 is created and
updated to contain 5, and its contents are then examined.

7 -

® array makes a constant array (all items equal to the third argument) of size n=0 (second argu-
ment) from a lowerbound (first argument). It escapes with string "array" if the size is negative.

® arrayoflist makes an array out of a list, given a lower bound for indexing.

® lowerbound returns the lower bound of an array.

® arraysize returns the size of an array.

® sub extracts the i-th item of an array. It escapes with string "sub" if the index is not in range.

® update updates the i-th element of an array with a new value. It escapes with string "update" if
the index is not in range.

® arraytolist converts an array into the list of its elements.

Arrays are not a primitive concept in ML: they can be defined as an abstract data type over lists of
assignable references. This specification of arrays, which s given below, determines the semantics
of arrays, but does not have a fast indexing operation. Arrays are actually implemented at a lower
level as contiguous blocks of memory with constant time indexing. Here is an ML specification of
arrays, semantically equivalent to their actual implementation (see sections "Lists", "Updatable
references” and "Lexical declarations” to properly understand this program).

infix sub;
infix update;

export

asbstype array
val array arrayoflist lowerbound arraysize sub update arraytolist

from
type 'a array == arr of {lowerbound:} int # {size}} int # {table:} ‘a ref list;

val rec el (n: int, (head :: tail): 'a list) : 'a ==
if n=0 then head eise elln—1,tail);

val array (b: int, length: int, item: '8} : 'a array ==
if length<O then escape "array"
else arr(lb,length,list length)
where rec val list n ==
if n=0 then [] else (ref item) :: listn—1)
end

and arrayoflist (Ib: int, list: 'a list) : 'a array ==
arr(lb,length list,map ref list)

and lowerbound (arr(lb,$,%$); 'a array) :int == Ib
and arraysize (arr($,size,$): 'a array) : int == size

and (arr(lb,size,tablel: 's array) sub (n:int) : 'a ==
let valn' == n-lb
in if "'<0 or n'>=size then escape "sub"
else i(elln’,table)}
end

and (arr(lb,size,table). 'a array) update (n: int, value: 'a) : unit ==
let vain’ == n—Ib
in if n'<0 or n'>=size then escape "update"

£

-29.

8 v {8 = v}
Q0 0 %]
k k %)
kp kv Match(p,v)
[p1;..:pn] [v7;..;vn] Match(p7,v1) U. U Match(pn,vn) n=0
Pqiby, Vi Vp Match(p1,v1) U .. U Match(p ’Vn) n=0
Example:
declaration: vail (a,b) = [c,8] == [1,2; 3,4; 5,61,
bindings: vela == 1 :int

vaib ==2:int
valc == 3,4 :int # int

The variables in a single pattern must all be distinct. Patterns are not expressions; they can only
appear as part of value declarations, functions and case expressions.

A match is a sequence of pattern-action pairs separated by vertical bars.

syntax: match ==
pat.exp | .. | pat. exp

Matches are used to destructure values and to execute fragments of code depending on the form of
values: they replace test and selection operations. The patterns in a match are matched in turn,
from left to right, against some value v. The first successful match is used to destructure v, and the
variables in the pattern are bound to the respective parts of v. Then the corresponding expression
is executed, and its result is returned as the result of the matching. If none of the patterns matches
v, then an exception "match” is raised.

Matches are not expressions; they can only appear in function expressions, case expressions and, in
a sugared form, in clausal function definitions.

3.10. Functions
Functions can be introduced by a curried definition, for partially applicable functions, or by a
clausal definition, for case analysis:

syntax: {op} fpat .. pat {: type} == exp (curried)

syntax: {op} fpat {: type} == exp | .. | Fpat{: type} == exp (clausal)

® The op keyword should be used when f is an infix; alternatively pat f pat’ can be used instead
of op f {pat,pat’).

® The pat patterns are simple (i.e. $, variables, constants or lists) or parenthesized patterns, in
particular they must be parenthesized when they have the form (pat’: type).

@ The optional type expressions refer to the type of the result of the function.

® Curried functions cannot be defined by case analysis: if needed, the arguments can be analyzed
after the ==,

Unnamed functions can be introduced as expressions by the use of the fun-notation, which is just a
match preceded by the keyword fun:

syntax: fun match

na

« 31 =

3.11. Application

There are two lexical categories of identifiers, which determine how functions are syntactically
applied to arguments: nonfix and infix. Any identifier can be declared to fall in one of these
categories: see section "Lexical declarations” about how to do this.

Nonfix identifiers are the ordinary ones; they are applied by juxtaposing them with their argument
(in this section we use £ and g for functions and a, b, ¢ for arguments):

syntax: fa

The expression & can also be parenthesized (as any expression can), obtaining the standard applica-
tion syntax f (&). It is common not to use parentheses when the argument is a simple variable, a
string (f "abc") or a list (f [1:2:3]). It is necessary to use parentheses when the argument is an
infix expression like a tuple or an arithmetic operation (f (a,b,c), f (a+b)) because the precedence
of application is normally greater than the precedence of the infix operators (f a,b and f a+b are
interpreted as (f &),b and (f al+b). Function application binds stronger than any operator: see the
appendix "Precedence of operators and type operators” for details. In case of partial application,
the form f g a, is interpreted as (f g} &, and not as f (g &); note that they are both equally mean-
ingful.

Infix identifiers can be applied in two ways:

syntax: afb

syntax: op flab)

The first form is the expected one; an infix identifier has always a type matching ('a # 'b) —> ‘c.
The second possibility derives from the fact that there must be a way of passing an infix operator f
as an argument to a function g; g{f) will produce a syntax error, but glop f] is accepted. In gen-
eral the op keyword coerces any infix identifier to a nonfix one.

The typing rule for function application states that the type of the argument must match the type of
the domain of the function:

typing rule: if frt—~>¢" and 8:& then (Fa):t

For example, (fun x. x) has the type ‘a —> 'a and all the instances of it, e.g. int —> int. Hence
(fun x. x) 3 has type int.

3.12. Conditional
The syntactic form for conditional expressions is:

syntax: if ey then es else e

The expression e, is evaluated to obtain a boolean value. If the result is true then ey is
evaluated; if the result if false then e is evaluated. Example:

expression: vai signn ==
if n <0 then ™
elseifn = 0then O
else 1;

The else branch must always be present.
The typing rule for the conditional states that the if branch must be a boolean, and that the then

£y

-33.

count := lcount-1);
iresult)
end;

3.15. Case

A case expression is just a different syntax for pattern maiching: see section "Patterns and
matches" for a description of matches.

syntax: case exp of match

The expression exp is matched against the match, which is a set of pattern-action pairs; the first
pattern to match is activated, and the corresponding action is evaluated and returned as the result
of the case expression.

declaration: type color == red | purple | yellow
and fruit == apple | plum | banana;

bindings: type color == red | purple | yellow
type fruit == apple | plum | banana

declaration: val fruitcolor (fruit: fruit): color ==
case fruit of
apple. red |
banana. yellow |
plum. purple;

binding: val fruitcolor : fruit —> color

The case construct is a convenient form of saying if fruit=apple then red else if fruit=banana
then yellow else purple.

The typing rule for case is:
typing rule: if x:t' and Pq :t' and .. and Pn: t'

and e,:tand.. ande_:t
then (case x of py. 377.. Ipn. gt

This says that all the patterns must have the same type as value being inspected, and that the
values returned for each case must have tlie same type.

3.16. Scope blocks

A scope block is a control construct which introduces new variables and delimits their scope.
Scope blocks have the same function of begin-end constructs in Algol-like languages, but they have
a fairly different flavor due to the fact of being expressions returning values, instead of groups of
statements. There are two kinds of scope blocks:

syntax: let deciaration in exp end

syntax: exp where declaration end

The let construct introduces new variable bindings in the declaration part which can be used in
the expression part (and there only). Newly introduced variables hide externally declared

-35.

trapped.

The typing rule for escape says that an exception is compatible with every type, i.e. that it can be
generated without regard to the expected value of the expression which contains it. The rules for
the trap operators state that the exception handler must have the same type as the possibly failing
expression, so that the resulting type is the same whether the exception is raised or not.

typing rules: (escaps &) :'a
if e:t and e':¢t then (e?el):t
if e:t and s/:stringlist and e':¢t then (e??s/el: ¢

if e:t and v:string and €':¢ then (e?\vel:t

3.18. Type semantics and type specification

The set of all values is called V: it contains basic values, like integers, and all the composite
objects built on elements of V, like pairs, functions, etc. The structure of V can be given by a
recursive type equation, of which there are known sclutions (+ is disjoint union, # is cartesian
product and - is continuous function space):

V = Bool+Int+ ..+ (V+WV)+V#V)+(V-V) 1]

All functions are interpreted as functions from V to V, so when we say that f has type int —>
bcol we do not mean that f has domain int and codomain bool in the ordinary mathematical sense.
Instead we mean that whenever ¢ is given an integer argument it produces a boolean result. This
leaves f free to do whatever it likes on arguments which are not integers: it might return a
boolean, or it might not. This idea leads to the following definition for function spaces:

A->B = fe€V-V]a€A implies fa € B} 2]

where - is the conventional continuous function space, while —> is the different concept that we
are defining. A and B are domains included in V, and A —> B is a domain included in V - V,
and hence embedded in V by [1].

In this way we can give meaning to monotypes like int —> int, but what about polytypes? Con-
sider the identity function (fun x. x) : 'a —> 'a; whenever it is given an argument of type 'a it
returns a result of type 'a. This means that when given an integer it returns an integer, when given
a boolean it returns a boolean, etc. Hence by [2], fun x. x belongs to the domains int —> int,
bool —> bool, and to d —> d for any domain d. Therefore fun x. x belongs to the intersection
of all those domains, i.e. to Ny d —> d (where T is the set of all domains). We can now take
the latter expression as the meaning of 'a —> 'a.

In general a polymorphic object of type ol'al belongs to all the domains ofd/ s], and hence to their
intersection.

Some surprising facts derive from these definitions. First, ‘a is not the type of all objects, as one
might expect; in fact the meaning of 'a is the intersection of all domains. The only element con-
tained in all domains is the divergent computation, which is therefore ilie only object of type 'a.
Second, 'a —> 'a, as a domain, is smaller than any of its instances, for example int —> int. In
fact any function returning an 'a when given an 'a, must return an int when given an int (i.e. ‘a
—>'a C int —> int), but an int —> int function is not required to return a boolean when given
a boolean (i.e. int —> int D 'a —> 'a). Hence a function like (fun x. x+1) : int —> int is not an
'a —> 'a.

Similarly, 'a list as a domain is smaller than int list, bool list, etc. In fact 'a list is the

«37-

" =
2,"8") = (2,"8");

[= 0 int list); =1

1:21 = 13k

(fun a,b. a=b) : string#string —> bool; fun a,b. a=b;

fun a. a = fun a. g;
setl3] = setl3];

where set is an abstract type.

4. Type expressions

A type expression is either a type variable, a basic type, or the application of a type operator to a
sequence of type expressions. Type operators are usually suffix, except for cartesian product # and
the infix operator —>.

4.1, Type variables

A type variable is an identifier starting with “’ and possibly containing other * characters. Type
variables are used to represent polymorphic types.

4.2. Type cperators
A basic type is a type operator with no parameters, like int. A parametric type operator, like —>
or list, takes one or more arguments which are arbitrary type expressions, as in 'a —> (('a list)
list). If an operator takes many parameters, these are separated by commas and enclosed in
parentheses, as in ('a, 'b) tree. See appendix "Predefined type identifiers” for a list of the prede-
fined type operators.

5, Declarations

Declarations are used to establish bindings of variables to values. Every declaration is said to
import some variables, and to export other variables. The imported variables are the ones which
are used in the declaration, and are usually defined outside the declaration (except in recursive
declarations). Thie exported variables are the ones defined in the declaration, and that are accessi-
ble in the scope of the declaration.

A declaration can be a value binding, a type binding, a sequential composition, a private declara-
tion, a module import, a lexical declaration or a parenthesized declaration.

syntax: declarstion .=
val value_binding
type type_binding
shstract_declaration
sequential_declarstion
private_declaration
import_declaration
lexical_declaration
{ declaration }

5.1. Value bindings
Value bindings define values and functions, and are prefixed by the keyword val. After val there
can be a simple definition, a parallel binding or a recursive binding.

syntax: value_binding ::=
simple_value_binding

oo

-39.

For example, note how it is possible to swap two values without using a temporary variable:
declaration: vala == 10andb == 5;

bindings: vala == 10:int
valb == 5:int

declaration: vala==bandb == g

bindings: vala == 5:int
valb == 10:int

5.1.3. Recursive bindings

The operator rec builds recursive bindings, and it is used to define recursive and mutually recur-
sive functions. The binding rec d exports the variables exported by the binding d, and imports the
variables imported by d and the variables exported by d.

syntax: recursive_value_binding .=
rec value_binding

declaration: valrec fibn == if n < 2 then 1 else fibin—1) + fib(n—2);

Note that if rec were omitted, the identifier fib on the right of == would not refer to its defining
occurrence on the left of ==, but to some previously defined fib value (if any) in the surrounding
scope.

A recursive value declaration can only define functions; simple value bindings are not allowed to
be recursive.

5.2. Type bindings
Type bindings define new types and their constructors, and are prefixed by the keyword type.
After type there can be a definition, a parallel binding or a recursive binding.

syntax: type_binding :=
simple_type_binding
parallel_type_binding
recursive_type_binding

5.2.1. Simple bindings

The simplest form of type binding,introduces a single, possibly parametric, type and its construc-
tors:

syntax: simple_type_binding ==
type_ide == type_cases
type_var type_ide == Lype_cases

(type_var, .. ,type_var) type_ide == type_cases

syntax: type_cases .=
con {of type_exp} | .. | con {of type_exp}

Here are examples of types with zero, one and two type parameters:

-

-41 -

syntax: sbstract_declaration =
abstype type_binding with declaration end

An abstract type defined by the abstype keyword is like a concrete type defined by the type key-
word, but its constructors are only available in the declaration following the with keyword.

declaration: abstype position == position of int # int
with val origin == pesition (0,0}
and stepx {positionDxy)l == positionGt+1,y}
and stepy {position(x,y)) == position{x,y+1)
end;

bindings: ebstype position
val origin == - : position
val stepx : pasition —> position
val stepy : position —> position

In this example, a position can only be achieved by small steps from the origin. We cannot ‘jump’
to an arbitrary position because there is no operation to directly build one.
Here is the definition of a parametric recursive type of binary trees with leaves of type 'a:

declaration: abstype rec 'a tree == leaf of 'a | node of 'a tree # 'a tree
with val mkleaf 8 == leaf a
and mknode (t,t'] == nodelt,t)
and isleaf (leaf $) == true | isleafinode $) == false
and left (nodelt,$)) ==
and right (node($,t)) ==
and tip (izaf a) == a
end;

bindings: sbstype ‘a tree
val mkleaf : 'a —> 'a tree
val mknode : (a tree # 'a tree) —> 'a tree
val isleaf : 'a treea —> bool
val left : ‘a tree —> 'a tree
vel right : ‘s tree —> 'a tree
val tip : ‘a tree —> ‘&

The constructors leaf and node are only known during the definition of the basic operations on
trees, and are not exported outside the abstract type definition. All users of the tree abstract type
will be unable to take advantage of the concrete representation of trees given by ‘leaf of 'a | node
of 'a tree # 'a tree’, thus making this type ‘abstract’.
The with operator can be preceded by several type definitions connected by and and rec; this
allows one to define mutually recursive abstract types:

declaration: sbstypereca == .. b ..
andb == .. 8.,
with .. end;

=3 =

declaration: expert abstype increasing_pair
val increasing_pair high low
from type increasing_pair == pair of int # int;
val increasing_psirlx,y) ==
if x>y then escape”increasing_pair"
else pairlx,y}
and low (pairlx,y)) == x
and high (pairlx,y)) ==y
end;

bindings: abstype increasing_pair
val increasing_pair : (int # int) —> increasing_pair
val lew : increasing_pair —> int
val high : increasing_pair —> int

In the first example, the variable b is unknown at the top level. The second example shows how a
variable can be made private to a function or a group of functions: only the functions increment
and fetch have access to count, so that nobody can corrupt count. The third example is an
abstract data type increasing_pair: note that the constructor pair has been hidden, so that it is
impossible to generate non-increasing pairs.

The ‘abstype tb with o’ declaration construct (see section "Abstract declarations") is just an
abbreviation for ‘export x/ from type tb; d end’, where the types defined in tb are listed in an
abstype export list in x/, and the types and values defined in d are listed in appropriate export
lists in x/.

The increasing_pair example above can be written more conveniently as:

declaration: abstype increasing_pair == pair of int # int
with val increasing_pair(x,y} ==
if x>y then escape"increasing_pair”
eise pairlx,y)
and low (pairlxyl)) == x
and high (pairb¢y) ==y
end;

bindings: abstype increasing_pair
val increasing_pair : (int # int) —> increasing_pair
val low : increasing_pair —> int
val high : increasing_pair —> int

5.6. Import declarations

The import environment operator acts on precompiled modules, and it is explained in detail in sec-
tion "Modules”. A declaration import M imports no variables from the surrounding environment,
and exports the variables exported by the module M.

syntax: import_deciaration ::=
import module_name .. module_name

declaration: import minmax;

bindings: val min : (int # int) —> int
vel max : (int # int) —> int

- 45 -

save operation on a file does not affect the streams which have been extracted from that file; it
only affects the result of a subsequent file.

® The operation stream returns a new empty stream. It accounts for temporary (unnamed) files.
Moreover, a stream-filename association can be removed by reassociating an empty stream with
that file name.

® Input operations are destructive; the characters read are removed from the stream. input takes a
stream s and a number n and returns a string of n characters reading them from the stream s. If
there are less than i characters in the stream, it waits indefinitely until more characters are writien
on the stream. The wait can be interrupted by the DEL key producing an "interrupt” exception.
caninput returns true if a stream is not empty; the input operations do not fail on empty streams,
they wait indefinitely for something to be written on the stream.

® Output operations are constructive; the characters written are appended to the end «f the
stream. output writes a string of characters at the end of a stream.

® The operation lookahesd reads characters from a stream without affecting it. The arguments
are like in the string operation extract: the first argument is the source stream, the second argu-
ment is the starting position of the string to be extracted from the stream (the first character in a
stream is at position 1), and the third argument is the length of the string to be extracted; it
escapes with string "lookahead" if the numeric arguments are out of range.

@® There are two flavors of streams, which can be called internal and external streams. Streams
returned by file and stream are internal, because ML is the only process which can access them.
Other streams, like the predefined terminal stream, are external because the ML system holds
only one end of them, while the other end belongs to some external process. Some external
streams may be read-only or write-only; the /O operations escape when trying to read from a
write-only only stream, or write to a read-only stream.

® The operation channel will be provided to open new external streams, for example to allow
direct communication between two ML systems, or between ML and an external process. The way
this will work is still to be defined.

All the above operations may escape for various I/O error. Multiplexed read and multiplexed write
operations can be obtained by passing the same stream to several readers and writers respectively
(i.e. to different parts of a program).

7. Modules

A module is a set of bindings (values, functions and types) which can be compiled and stored
away, and later imported as a declaration wherever those bindings are needed. Modules are identi-
fied by module names. Module names can syntactically be represented as simple identifiers, or as
strings containing Unix file paths (to access modules in directories other than the current one).
Here is a module called Pair which defines a type and two functions.

moedule: module Pair
body
abstype 'a pair == pair of 'a # 'a
with val newpair (a,b} == pair(a,b)
and left (pair(a,$)) == a
and right (pair($,b)) == b
end
end;

Module definitions can only appear at the top level, and they cannot rely on bindings defined in
the surrounding scope (e.g. previous top level definitions). All the bindings used by a module must
either be defined in the module itself, or imported from other modules.

The processing of a module definition is called a module compilation, whose only effect is to pro-
duce a separately compiled version of the module. Module definitions do not evaluate to values,

o ff

body
import B3;
valfa ==,
andgh == .,
end;

The first example above shows a module B1 locally imported for the private use of a function in
A1. The second example shows a module B2 imported for private use in a module A2; the export
construct guarantees that B2 is not exported from A2. The third example shows a module 83
which is imported by A3, and also reexported.

Sometimes an imported module B must be reexported from an importing module A. This happens
when a type identifier t defined in B is contained in the (types of the) bindings exported by A.
Exporting those binders without exporting B may potentially generate objects of an unknown (in
the current scope) type t, on which no operations are available. Hence the following restriction
applies: whenever a type identifier is involved in the exports of a module, its type definition must
also be exported.

There is an alternative notation for modules which are imported and reexported:

module: moduie A
includes B C
body

end;

module: module A
body
import B G;

end;

The two forms above are equivalent; the first one is just an abbreviation for the second one. The
includes keyword should be understood as the set-theoretical inclusion of the bindings of B and C;
not as the inclusion of the source lines constituting the definition of B and C.

Every module automatically imports a standard library module called /usr/lib/ml/lib, which con-
tains all the predefined ML types, functions and values (remember that a module cannot access any
outside binding, except the ones explicitly imported; this also applies to the predefined ML identif-
iers). The library module is shown as a module /usr/lib/ml/lib binding, on import:

module: maodule A
body
vala ==
end;
declaration: import A;
bindings: module /usr/lib/mi/lib
vala == 3 :int

The module /usr/lib/ml/lib binding is only an abbreviation for all the bindings defined in
{usr/lib/ml/lib.ml: they are really imported and (re-)defined at this point.

Similarly, when importing a module B which exports a module A, the bindings of A are not expli-
citly listed. Instead a module A binding is presented as an abbreviation.

EL)

- 49 -

module: module C
includes A
body
val CabsT,CrepT == absT,repT
andc == a
end;
module: module D
includes B C
body
end;
declaration: import D;
bindings: module /usr/lib/mi/lib
module B
module /usr/lib/mi/iib
module A
module /usr/lib/mi/lib
type T
valabsT: T —> int
valrepT:int —=>T
val a == (ref 3) : int ref
type T
val BabsT: T —> int
val BrepT :int => T
valb == (ref 3) : int ref
module C
module /usr/lib/ml/lib
module A
module /usr/lib/mi/lib
type T

val absT: T —=> int
valrepT:int —=> T
val a == (ref 3) : int ref

type T

val CabsT: T —> int

val CrepT:int —> T

val ¢ == (ref 3) : int ref

Note that A is imported by D through two different import paths.

Sharing of types means that the module A is not typechecked twice: if it were, than we would have
two different abstract types called T and CrepT(BabsT 3), for example, would produce a type
error.

Sharing of values means that the module A is not evaluated twice: hence b and ¢ are the same
reference variable, so that any side effect on b will be reflected on ¢, and vice versa.

Sharing of values also has the desirable effect that multiply imported functions (e.g. the library
functions) are not replicated.

-

-51 -

— export val a fromvalb == 3 end;
Unimplemented Identifier: a

— export type t from type u == int end;
Unimplementad Type Identifier: ¢

A type error occurs when iwo isomorphism types having the same name are defined, and are
allowed to interact:

— fet abstype A == A of int
with val absA n == A n end;
abstype A == A of int
with val repA (A n) == n end
in repAflabsA 3) end;
Type Clash in: {repA {ahsA 3))
Locking for : A
| have found : A
Clash between two different types having the same name: A

Equality has its own type errors:

—letvaifa==a

inf=fend;
Invalid type of args to "=" or "<>" ‘a—>"'a
| cannot compare functions

—valfa==(a = a)
Invalid type of args to "="or "<>"
| cannot compare polymorphic cbjects

— let sbstype A == int
with valabsAn == An
and repA (An} ==n
in absA 3 = absA 3 end;
Invalid type of args to "=" or "<>" A
| cannot compare abstract types

In modules, all variables must e either locally declared or imported from other modules: global
variables cannot be used:

—vala == 3;
> vala==3:int
— module A

body val b == a end;
Modules cannot have globai variables.
Unbound ldentifier: a

Modules which have never been compiled, or which are obsolete, produce a link exception:
— impert A;

Meodule A must be compiled

-53-

result of compilation, asking for a confirmation to proceed.

® CheckHeap for every subsequent top-level phrase, makes a complete consistency check of the
data in the heap, and reports problems.

® MemoryAllocation reports every Unix memory allocation or deallocation, except the ones caused
by Pascal.

@ Watch is used for internal system debugging.

® Timing at the end of every evaluation, gives the parsing time (Pars), typechecking time {Anal),
translation to abstract machine code and optimization time (Comp), translation to VAX code time
(Assm), total compilation time (Total) and run time (Run). All in milliseconds.

8.6. Garbage collection and storage allocation

Garbage collection is done by a two-spaces copying compacting garbage collector. The size of the
spaces grows as needed; garbage collection may escape with string "collect” if Unix refuses to
grant more space when needed. For technical reasons, the allocation of very large data structures
may escape with string "slloc”, even if there is still memory available.

The frequency of garbage collection depends on the amount of active data and follows a simple
adaptive algorithm; when there is little active data garbage collection is frequent, when there is
much active data garbage collection is less frequent.

Garbage collection is not interruptible: pressing the DEL key during collection has no effect until
the end of collection.

Data structures are kept in different pages according to their format. Pages are linked into three
lists: the ‘other space’ list, the ‘active’ list and the ‘free’ list. There are always as many pages in the
‘other space’ list as in the union of the ‘active’ and ‘free’ lists.

oe

o]

o

-

I e =

-55.

Delim; " Symbol; '’ Letter;
Symbol; ‘e’ Letter; 'b® Letter;
Letter; 'd" Letter; ‘e’ Letter;
Letter; ‘g Letter; ‘W Letter;
Lettar; T Letter; 'k Letter;
Latter; ‘m Letter; ‘n" Letter;
Letier; 'p" Letter; 'q Letter;
Latter 's'" Letter; 't Letter;
Letter; v Letter; ‘W Letter;
Letter; y' Letter; ' Letter;
Delim; T Symbol; Y Delim;

Symbol; DEL lilegel;

channel

-57-

Appendix C. Predefined identifiers
true Logic true
false Logic false
not Logic not
& Logic and
or Logic or
- Complement
+ Plus
= Difference
* Times
div Divide
mod Moduio
= Equal
<> Different
> Greater than
< Less than
>= Greater-eq
<= Less-eq
size String length
extract Substring extraction
explode String explosion
implode String implosion
explodeascii String to Ascii conv.
implodeascii Ascii to string conv.
° String concat.
intofstring String to int conv.
stringofint Int to string conv.
nil Empty list
s List cons
hd List head
tl List tail
null List null
length List length
@ List append
map List map
rev List reverse
fold List folding
revfold List rev folding
ref New reference
! Dereferencing
= Assignment
array New array
arrayoflist List to array
lowerbound Array iower bound
arraysize Array size
sub Array indexing
update Array update
arraytolist Array to list
o Function comp
file Stream from file
save Stream to file
stream Empty stream

External channel

Nonfix constant
Nonfix constant
Nonfix
Infix
infix
Nonfix
Infix
Infix
Infix
Infix
infix
Infix
Infix
Infix
Infix
Infix
Infix
Nonfix
Nonfix
Nonfix
Nonfix
Nonfix
Nonfix
Infix
Nonfix
Nonfix
Nonfix constant
Infix constructor
Nonfix
Nonfix
Nenfix
Nonfix
Infix
Nonfix
Nonfix
Nonfix
Nonfix
Nonfix constructor
Nonfix
Infix
Nonfix
Nonfix
Nonfix
Nonfix
Infix
Infix
Nonfix
Infix
Nonfix
Nonfix
Nonfix
Nonfix

Appendix D. Predefined type identifiers

unit
bool
int
string
#

->
list
ref
array

Unit Type

Boolean Type
Integer Type
String Typne
Cartasian Product
Function Space
List Type
Reference Type
Array Type

-59.

Nonfix
Nonfix
Nonfix
Nonfix
N-ary infix
Infix
Suffix
Suffix
Suffix

-61 -

Appendix F. Metasyntax
Strings between quotes "’ are terminals.
Identifiers are non-terminals.
Juxtaposition is syntactic concatenation.
‘! is syntactic alternative.
‘[T is the empty string.
‘[.. T is zero or one times (i.e. optionally) .. ’.
‘{{ .. Jn’ is n or more times ‘.. * (default n=0).
4 ../-- }n’ means n (default 0) or more times ‘..” separated by ‘--’.
Parentheses ‘(..)’ are used for precedence.

o

-63 -

Appendix H. Syntax
Syntactic alternatives are in order of decreasing precedence.

Phrase ==
[Exp | SimpleDec! | Module | Use | Monitor] ™",

Module ;=
"module” ModuleNama ["inciudes” {ModuleName}11 "body” Decl "end".

Use =
"use” String.

Monitor ==
"monitar”.

SimpleExp &=
{("op"i (de | Con) |
H[" {Exp / H:ll} "]l‘ |
"(" Exp ")"

Exp =
SimpleExp |
Exp SimpleExp |
Exp " Type |
Exp lde Exp |
{Exp /","}2 |
"escape” Exp |
"if" Exp "then" Exp "else” Exp |
"while" Exp "do" Exp |
"let" Decl "in" Exp "end" |
Exp "where" Decl "end" |
"case” Exp "of" Match |
Exp "?" Exp |
Exp "??" Exp Exp |
Exp "2\" Ide "." Exp.
"fun”" Match |
Exp " Exp.

SimpleDecl ==
"val" ValBind |
"type" TypeBind |
"abstype" TypeBind "with" Decl "end" |
"export" Exportlist "from" Decl "end" |
"import" {ModuleName}1 |
"infix" {Ide}1 | "nonfix {Ide}1.

Decl =
SimpleDecl |
Decl ";" Decl |
"t" Decl "Y',

ExportList ==
{"type" {Ide / ","}1 | "val" {lde / ","}1}.

- 65 -

Appendix I. Escepe sequences for strings
The escape character for strings is \; it introduces characters according to the following code:

VL \8
\O
\R
\L
\T
\B
\E
\N
\D
\e
\c
\#s

One to nine spaces

Ten spaces

Carriage return

Line feed

Horizonial tabulation

Backspace

Escape

Null (Ascii 0)

Del (Ascii 127)

Ascii control char “c (¢ any appropriate char)
¢ (for any other char ¢ different from #)
128 + s (for any of the previous sequences &)

Strings are printed at the top level in the same form in which they are read; that is surrounded by
quotes, with all the \ and with no non-printable characters. Cutput operations instead print strings

in their crude form.

-67 -

Appendix K. Intreducing new primitive operators

This appendix describes how to add to the ML system a new function "foo: t" that cannot be other-
wise defined in ML. It has to be defined as a new primitive operation in the Functional Abstract
Machine [Cardelli 83] and implemented in C, Pascal, Assembler, or any other language which
respects VAX proceclure call standards.

This procedure is complex, dangerous and not advisable. Before attempting it, one should consider
implementing "foo" as an exiernal program activated through the channel primitive as a subpro-
cess.

® File mlglob.h
- Add "OpFoo" to enumeration type "SMOperationT" IN ASCII ALPHABETIC ORDER!.
- Add "OpFoo: ();" to the case list of type "SMCodeT".
- Add "AtomFoo: AtomRefT" in section "{Parser Vars}".
- If foo is prefix (infix, etc.) add "SynOpFoo" to the enumeration type "SynPrefixOpClassT"
("SyninfixOpClassT", etc.).
® File miscan.p
- Add "AtomFoo := TableInsertAtom(3,’fo0’);" in procedure "SetupTable" (where "3" is the
length of "foo").
- Add "PushSynRolelde(AtomFoo0);" in the same procedure (assuming that foo is nonfix, else
use PushSynRoleInfix, etc. as appropriate, with second argument "SynOpFoo").
® File mlanal.p

- Add "Predefined(AtomFoo,OpFoo,n,t);" to the procedure "SetupEnvironment”, where foo: t
(you can understand how to express t from the code of SetupEnvironment), and n is the arity
of foo (i.e. the number of arguments it expects on the stack).

@ File mldebg.p

- Add "SetupMon(EmitSimpleOp(OpFoo));" to the procedure "SetupEnvValues" (if foo is not
monadic, use SetupBin etc. Monadic, diadic, etc means that foo takes 1,2, etc. arguments on
the top of the stack and returns a result there, after popping the arguments). It is essential
that the order of setups in this procedure matches the order of definitions in SetupEnviron-
ment (in mlanal.p).

@ File miconv.p
- Add "OpFoo: Operand:=0{nil};" to the case list in function "ConvertOperand".
® File amglob.h

- Add "#define OpFoo n" IN ASCII ALPHABETIC ORDER in section "Fam OpCodes";
make sure that all the opcodes are SEQUENTIALLY NUMBERED.

- Add "extern Address DoFoo();" in section "Externals”.

- If foo may escape with string "foo", declare "extern Address *StrFoo;” in section "Fail-
Strings"”.

@ File amevalop.c

- Add "OpFoo: CallOp((Address)DoFoo,n); break;" to the case list in procedure "Assem"”,
where n is the arity of Foo (i.e. how many arguments it expects on the stack).

@ File ammall.c

- If foo may escape with string "foo", declare "Address *StrFoo;" and add "SttFoo =
PushGCBox(StringFromC("foo™));" to the procedure "AllocFailStrings".

® File amdet; .c

- Add "case OpFoo: printf("Foo"); break;" to the case list of procedure "AMStatPrint".

® File amfooop.c

o

-£9 -

Appendix L. System limitations

There is a limit on the size of any single ML object, due to storage allocation problems. This limit
is determined by the constant "PageSize" in the file "amglob.h". All the limitations mentioned on
this section are further constrained by this restriction.

The semantic limit on the length of strings is 64K chars.
The syntactic limit on the length of string quotations in a source program is also 64K chars.

Several memory areas inside the system have fixed size. When one of these is exceeded, compila-
tion fails and a message is printed. The only way to fix this is to search for the point in the source
program where the error message is generated, increase the corresponding area (usually by redefin-
ing a constant) and recompile the system.

« M -

E e EaEcerrEEE R EE EE T OB e TOEE DT RETED D0 Ce S TP RE DD U eSO YD EE NN e B P e e e e e o

Medium Record

I T I T I T I T T I I I I T

Record

(unboxed)

(nullrecord)

o p——
-+ =
e
+ e
@
-+ [y
4 —
4+ e
ko]
4 —
Q
+ i
+ & -
+ —

(n>0)

B I T R L T T T R I

Variant

e AE RS RSSO En BT EE R ED ER TS NS PO TN RS Ne ST EEEERE D B DE EPE PO NP ES S PN R EE e B e @

Reference

B I I T I I R I I T I L L E R LR

String

<73

Appendix N. Ascii codes

| Onul | 1s0h | 2stx | 3 etx |4ect | Senq | Back | 7bel
| Bbs | 8ht |10 ni [11 vt |12 np |13 er |14 so |15 si
|[16dle [17dc1 [|18dc2 |18dc3 [20dc4 |21 nak [22syn |23 etb
|24can |25em |2Bsub |27 esc |2Bfs |29 gs |30 rs |31 us

|a2ep 33! [34" |35 # |3BS [37% [3B& [39°
40 ¢ |41) |42+ |43 + |44, |45 - |4B . |47 1
480 481 [s02 |513 |524 |535 |548 |55 7
|se 8 |57 8 |58 : |59 ; |60 < |61 = |62 > |B3 ?
le4 @ |B5A |68B |[B7C [8BBD |83 E |70F |71 G
|72 H |73 1 |74 0 |75K |78L |77M |78BN |73 O
lsoP |B1QG [B2R [B3S [BAT |85U |BBEV |[B7 W
|88 X |83 Y |eoz |81 |82\ |e31 |4+ @5 _
|g6 97 a |88b |98 c hood 101 e o2 f }103 g
hoa h POSi (OB P07k MOB1 o9 m P10n [111 0
fn12 p 113 q 114 r 115 s 118 t 117 u 118 v 119 w
heo x J21y 22z P23 { hea| phes) hes - 127 del

-75.

Deep recursions producing stack overflow will badly corrupt the system; (this is the most likely
cause of crash). The ml exception "corruption”, or the message System Crash! may be gen-
erated. If you come across this problem, try to rewrite your programs in a linear recursive style,
so that the compiler can optimize them to iterations, or directly in iterative style using while-do.
This problem cannot be solved easily, given the current Unix memory management primitives.

ML Syntax

Phrase ::=
[Exp | SimpleDecl | Module |
"use" String | "monitor”] ;"

Module .=
"module” ModuleName
["Includes” {ModuleName}1]
"body" Decl "end".

SimpleExp ::=
["op"] (Ide | Con) |
T {Exp /)T
" {Exp /TIH

Exp i:=
SimpleExp |
Exp SimpleExp |
Exp ":" Type |
Exp Ide Exp |
{Exp/""}2 |
"escape” Exp |
"if" Exp "then" Exp "else” Exp |
"while" Exp "do" Exp |
"let" Decl "Iin" Exp "end" |
Exp "where" Decl "end" |
"case" Exp "of" Match |
Exp "7" Exp |
Exp "?7" Exp Exp |
Exp "?\" Ide "." Exp.
"fun” Match.

SimpleDecl i:=
"val" ValBind |
"type" TypeBind |
"abstype” TypeBind "with" Decl "end" |
"export" ExportlList "from" Decl "end" |
"Import” {ModuleName}1 |
"Infix" {Ide}1 | "nonfix” {Ide}1.

Decl =
SimpleDecl |
Decl ";" Decl |
"(" Decl ")".

ExportList ;1=

{("abstype" | "type" | "val") {Ide / ","}}.

ValBind 1=
Pat "=="Exp |

["op"] Ide {SimplePat}t ["" Type] "=="Exp |
{{"op"] Ide SimplePat [":" Type] "=="Exp / "["}2 |

ValBind "and" VaiBind |
"rec” ValBind.

TypeBind ::=

[Params] Typelde "= =" {Ide ["of" Type] / "'H |

TypeBind "and" TypeBind |
"rec” TypeBind.

Params =
TypeVar | "("{TypeVar / ","} ")".

Syntactic alternatives and infix operators are listed in

order of decreasing precedence.

SimplePat ::=
"$" |
["op"] Ide |
Con |
[{Pat /""" |
"(" Pat)",

Pat =
SimplePat |
Cen Pat | Pat Con Pat |
{Pat/","}2|
Pat ":" Type |

Match = {Pat "." Exp / "'H

Type i:=
TypeVar |
[TypeArgs] Typelde |
{Type / "#"}2 |
Type "—>" Type |
(" Type ")".

TypeArgs ::= Type | "(" {Type / ","H *)"

Letter = "a" |.. |"2" |"A" | .. |"2Z" | "_".
Digit := "0" |.. | "9".

Symbol = [#%&* + -/i<=>?@\""'|".
Character = ht|.. |cf|""|.|""™"
Ide = Letter {Letter | Digit | """} | {Symbol}H.
Integer ::= {Digit}1.

String = """" {Character} """,

Con = "(" ")" | integer | String | Ide.

Typelde ::= Ide.

TypeVar ;= """ Ide.

ModuleName ::= ide | String.

Keywords

abstype and body case do else end export escape from
fun In includes Infix let local mcdule nonfix of op rec
then type use val where while with : ? 7? A ==

Operations

{application}L. {sub}L {*divmed}L {+ - "L {: @R
{=<>><>=<=}R {&R {oro}R {user-infix}L
{update :=}R true false not ~ size extract explcde
implede explodeascll Implodeascil intofstring stringofint
nil hd t null length map rev fold revfold ref | array
arrayoflist lowerbound arraysize sub update arraytolist
file save stream channel input output lookahead canin-
put terminal user-nonfix

Constructors
integers strings tuples () true false nil :: ref user-defined

Metasyntax

Strings between quotes are terminals.

Identifiers are non-terminals.

Juxtaposition is syntactic concatenation.

“ | is syntactic alternative.

.. 7 is zero or one times (i.e. optionally) * .. ".

4 .. }n’ is n (default 0) or more times ‘ .. " .

4 ../ == In"is n or more times ¢ .. ’ separated by ¢ -- .
Parentheses (..)’ are used for precedence.

[

Contents
1. Intreduction
1.1. Expressions
1.2. Declarations
1.3. Local scopes
1.4. Lists
1.5. Functions
1.6. Polymorphism
1.7. Higher-order functions
1.8. Exceptions
1.9. Types
1.10. Concrete types
1.11. Abstract types
1.12. Interacting with the ML system
1.13. Errors
2. Lexical matters
3. Expressions
3.1. Unit
3.2. Booleans
3.3. Integers
3.4. Tuples
3.5. Lists
3.6. Strings
3.7. Updatable references
3.8. Arrays
3.9. Patterns and matches
3.10. Functions
3.11. Application
3.12. Conditional
3.13. Sequencing
3.14. While
3.15. Case
3.16. Scope blocks
3.17. Exceptions and traps
3.18. Type semantics and type specifications
3.19. Equality
4. Type expressions
4.1. Type variables
4.2. Type operators
5. Declarations
5.1. Value bindings
5.1.1. Simple bindings

1. Introduction

ML is a functional programming language. Functions are first class objects which can be passed as
parameters, returned as values and embedded in data structures. Higher-order functions (i.e. func-
tions receiving or producing other functions) are used extensively. Function application is the most
important control constr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>