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Abstract

 

Module mechanisms have received considerable theoretical at-
tention, but the associated concepts of separate compilation and
linking have not been emphasized. Anomalous module systems
have emerged in functional and object-oriented programming
where software components are not separately typecheckable
and compilable. In this paper we provide a context where linking
can be studied, and separate compilability can be formally stated
and checked. We propose a framework where each module is
separately compiled to a self-contained entity called a 

 

linkset

 

; we
show that separately compiled, compatible modules can be safe-
ly linked together.

 

1  Introduction

 

Program modularization arose from the necessity of splitting
large programs into fragments in order to compile them. As sys-
tem libraries grew in size, it became essential to compile the li-
braries separately from the user programs; libraries acquired in-
terfaces that minimized compilation dependencies. A linker was
used to patch compiled fragments together.

It was soon realized that modularization had great advantag-
es in terms of large-grain program structuring [19]. Much funda-
mental and practical research focused on modularization princi-
ples and properties; milestones in this process are embodied in
such constructs as object-oriented classes, Modula-2 modules,
and Standard ML functors.

Since program structuring is of great importance in software
engineering, there is motivation for continuously increasing the
flexibility and convenience of modularization constructs. Unfor-
tunately, in the shadow of many exciting developments there has
been a tendency to overlook the original purpose of modulariza-
tion. Some language definitions specify what are to be the com-
pilation units (e.g.: Ada [12]), but others do not (e.g.: Standard
ML [17]). A paradoxical question then arises: when does a mod-
ule system 

 

really

 

 support modularization (meant as separate
compilation)?

In designing and formalizing module systems, many pro-
posals have focused on the analogy between modules and data
structures, and between interfaces and data types, e.g. as in
Burstall’s influential paper [4]. In such proposals, modules and
interfaces become language constructs to program with. This ap-
proach has the advantage of adding clean programmability to the
area of system configuration, where it has traditionally been
lacking. When pushing this approach to extremes, though, there
is the danger of losing sight of the requirements of separate com-
pilation.

In this paper we take a different approach in order to main-
tain a natural and accurate view of the separate compilation and
linking process. We consider linking as the fundamental process
from which module mechanisms arise: not merely as a technique
for managing large programs and libraries. Further, we consider
modularization as inseparable from separate compilation: not
merely as a program structuring mechanism. Instead of consid-
ering interfaces as just another program construct, we look at in-
terfaces as typing environments that are intrinsically external to
the programming language. By adopting this view we can devel-
op modularization mechanisms with precise notions of separate
compilation, inter-module typechecking, and linking.

Today, the purpose of separate compilation is to be able to
write, check, deliver, maintain, and upgrade libraries of code,
possibly hiding the source code from the clients of the libraries.
Many things can go wrong in languages and environments de-
signed (or coerced) to support separate compilation. To under-
stand the range of problems that may arise, let us consider an ex-
ample of a software development cycle and the obstacles that
may impede it. In this example, a library module and a user mod-
ule interact over time; it is instructive to assume that library de-
velopment and client development happen in separate locations.

 

Day 1: Library description

 

. A library interface 

 

I

 

Lib

 

 is publicized
before any corresponding implementation module 

 

M

 

Lib

 

 is made
available. The purpose is to allow early development of client
software that will later be integrated with the library. Therefore,
in this scenario we assume that there exists a notion of largely
code-free interfaces. 

 

Obstacles

 

 •

 

 

 

Early programming languages, both procedural and
object-oriented, did not separate interfaces from implementa-
tions. •

 

 

 

Languages that are designed to be “small” or untyped of-
ten lack interfaces. •

 

 

 

Certain language features may require glo-
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bal analysis and may thus conflict with modularity; examples are
multimethods [7] and overloading.

 

Day 2: User program description

 

. A user interface 

 

I

 

Usr

 

 is written
without yet producing the corresponding user module 

 

M

 

Usr

 

. The
purpose is to begin designing the structure of 

 

M

 

Usr

 

 and its inter-
action with 

 

I

 

Lib

 

 before making any actual implementation com-
mitments. The interface 

 

I

 

Usr

 

 is based on 

 

I

 

Lib

 

. 

 

Obstacles

 

 • It is important to be able to write 

 

I

 

Usr

 

 on the basis of
definitions contained in 

 

I

 

Lib

 

; the purpose of 

 

I

 

Lib

 

 is often to define
shared types. Modula-2, for example, allows type definitions in
interfaces. However, this feature has surprisingly complex inter-
actions with the type theory of modules, and even advanced
module systems like Standard ML’s did not consider it until re-
cently [11, 13].

 

Day 3: User program compilation

 

. A user module 

 

M

 

Usr

 

 is writ-
ten and compiled. It is checked to be compatible with 

 

I

 

Usr

 

 and

 

I

 

Lib

 

. The compilation of 

 

M

 

Usr

 

 produces a linkable image 

 

L

 

Usr

 

. No
running program is generated yet because no implementation of

 

I

 

Lib

 

 has been delivered.

 

Obstacles

 

 •

 

 

 

The code of generic library modules may have to be
instantiated before the user code can be typechecked; then an im-
plementation 

 

M

 

Lib

 

 of 

 

I

 

Lib

 

 must be available to typecheck 

 

M

 

Usr

 

.
•

 

 

 

The instantiation of generic interfaces and modules performed
by the client may produce unexpected type errors in the library
code that were not detected by simple testing of the library [18,
page 47]. •

 

 

 

Some object-oriented languages need to retypecheck
superclass code (potentially library code) to verify the correct
use of Self-types in subclasses [20]. •

 

 

 

Standard ML’s transparent
signatures [15] allow situations where 

 

M

 

Usr

 

 depends on the types
defined in a particular implementation of 

 

I

 

Lib

 

; therefore 

 

M

 

Usr

 

cannot be isolated by 

 

I

 

Lib

 

 from that implementation [13]. •

 

 

 

Even
when it is possible to typecheck 

 

M

 

Usr

 

 purely against 

 

I

 

Lib

 

, it may
be that 

 

I

 

Lib

 

 does not convey all the information necessary to pro-
duce a linkable image 

 

L

 

Usr

 

. For example: the compiler may insist
on performing global flow analysis, or some routines of 

 

I

 

Lib

 

 may
require inlining, or the layout of opaque types in 

 

I

 

Lib

 

 may have to
be determined.

 

Day 4: Library compilation

 

. A library module 

 

M

 

Lib

 

 is produced
that matches the interface 

 

I

 

Lib

 

. It is compiled to a linkable image

 

L

 

Lib

 

. The pair (

 

I

 

Lib

 

, 

 

L

 

Lib

 

) is stored in a public repository. 

 

Obstacles

 

 •

 

 

 

It may be the case that a library cannot be compiled
even though its full code is available. This happens for generic
module mechanism in the style on templates (as in C++, ADA,
and Modula-3) where generic library modules must be instanti-
ated by client (or test) modules before typechecking can take
place.

 

Day 5: User program linking

 

. The user fetches the archived li-
brary 

 

L

 

Lib

 

 associated with 

 

I

 

Lib

 

 from the repository. A user pro-
gram 

 

P

 

Usr

 

 is produced by linking 

 

L

 

Lib

 

 with 

 

L

 

Usr

 

.

 

Obstacles

 

 •

 

 

 

Even though 

 

M

 

Lib

 

 matches 

 

I

 

Lib

 

, 

 

M

 

Usr

 

 matches 

 

I

 

Usr

 

,
and 

 

I

 

Usr

 

 matches 

 

I

 

Lib

 

, it may be the case that 

 

P

 

Usr

 

 produces run-
time type errors. In Eiffel, for example, separate typechecking of
classes does not imply that the whole program is type-safe [8,
16]. •

 

 

 

Some mechanisms (Modula-3’s revelations [18], Standard

ML’s smartest recompilation [21], Eiffel’s proposed link-time
safety analysis) delay some type checks until link time: the user
may discover at that point internal inconsistencies in the librar-
ies. •

 

 

 

The linked program should have the same effect as a pro-
gram obtained by merging all the sources together and compiling
the result in a single step. Such a merging of sources is not often
characterized; then the semantics of linking is undetermined.

 

Day 6: Library implementation evolution

 

. A new library mod-
ule 

 

M’

 

Lib

 

 that matches 

 

I

 

Lib

 

 is produced. A new pair (

 

I

 

Lib

 

, 

 

L’

 

Lib

 

) is
stored in the public repository. 

 

Obstacles

 

 •

 

 

 

Changes to the implementation of a library super-
class may alter object layout; this may require recompilation of
user subclasses, even when the public interface of the superclass
does not change. •

 

 

 

When many interdependent libraries are ar-
chived, there may be transients when the library implementa-
tions in the repository are mutually inconsistent, and when the
linking of user programs should fail.

 

Day 7: User program relinking

 

. The user program 

 

P

 

Usr

 

 is now
out of date, but 

 

I

 

Lib

 

 has not changed. Therefore, a new user pro-
gram 

 

P’

 

Usr

 

 can be regenerated without recompilation by linking

 

L’

 

Lib

 

 with 

 

L

 

Usr

 

. 

 

Obstacles

 

 •

 

 

 

Will the result of running the relinked program be
the same as if it had been recompiled first? It is natural to expect
so. However, David Griswold [10] has pointed out that this prop-
erty fails for Java (without compromising type safety), because
overloading is treated differently during compilation and link-
ing.

 

Day 8: Library interface evolution

 

. A revised interface 

 

I˜

 

Lib

 

 and
a corresponding library module 

 

M˜

 

Lib

 

 are generated. A new pair
(

 

I˜

 

Lib

 

, L˜Lib) is stored in the public repository, replacing (ILib,
L’Lib). 
Obstacles • When many such interdependent libraries are ar-
chived, there may be transients when the library interfaces in the
repository are mutually inconsistent and when the compilation of
user code should fail.
Day 9: User program adaptation. Because of the new M˜Lib, the
user program is now out of date. Moreover, MUsr and IUsr do not
match I˜Lib. Thus, IUsr is changed to a compatible I˜Usr, and a new
M˜Usr is compiled to L˜Usr. Finally, a new P˜Usr is produced by
linking L˜Lib with L˜Usr. 
Obstacles • Unless code dependencies are tracked properly [1],
the new version of the user code, L˜Usr, may be accidentally
linked with the old library, LLib, (or vice versa) causing arbitrary
execution errors even in safe languages.

As discussed in this scenario, the potential and actual prob-
lems in separate compilation and linking are many and varied.
Moreover, the example sketched above concerns mostly tradi-
tional environments. Linkers are now getting smarter, taking ad-
vantage of type information at link time and performing dynamic
linking at run time. As an emerging issue, security in Java de-
pends not only on safe typing, but also on safe linking [9]. Thus
the potential for problems is increasing.

We do not propose to attack all the obstacles at once: some
have to do with language design, some with implementation
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technology, and some with environment engineering. However,
it should be clear that separate compilation and linking have be-
come complex enough that they require very careful thinking,
and possibly formal thinking. At every point in the software de-
velopment process we would like to be confident that our pro-
grams are correctly linked. This work is meant as a formal step
in this direction, mostly concerning the interactions of linking
with type safety.

In this paper we make a number of simplifying assumptions
in the attempt to render the technical development as rigorous
and simple as possible. Our main intent is to provide a road map
for more ambitious efforts concerning realistic module systems.
For concreteness and simplicity, we apply our ideas to a simple
module system for a first-order language (F1) and we hint at pos-
sible extensions.

Section 2 introduces basic terminology about separate com-
pilation and proposes a formal interpretation of linking. Sections
3 and 4 review the simply typed λ-calculus and introduce a sim-
ple module system for it. Sections 5 and 6 study linksets and
linking algorithms. Section 7 maps modules to linksets and sec-
tion 8 establishes a reasoning system for the soundness of sepa-
rate compilation and linking. Finally, section 9 draws some con-
clusions and discusses future work and extensions.

2  Linking 

In programming environments, linking is the process that turns a
collection of program fragments into a runnable program. In this
section we discuss the formalization of linking in terms of the
manipulation of judgments.

2.1  Program Fragments

A program fragment is, in first approximation, any syntactically
well-formed program term, possibly containing free variables.
Separate compilation is intended as the separate typechecking
and separate code generation of program fragments. We avoid
issues of code generation by always working at the source-lan-
guage level, even when discussing linking. Therefore, compila-
tion is simplified to typechecking. (We believe this is not an im-
portant restriction for our purposes: the hardest part of separate
compilation is separate typechecking, at least from the point of
view of language design.)

A program fragment cannot be compiled (or typechecked)
in isolation, but it can be compiled in the context of adequate in-
formation about missing fragments. This information is usually
given in terms of an environment for the free variables of a frag-
ment. The notion of a typing environment E for a program frag-
ment a is routinely employed in the formalization of typability;
a judgment E ∫ a:A establishes a type A for the program fragment
a with respect to the environment E. 

The separate compilation of a fragment a can be seen as the
compilation of a judgment E ∫ a:A, because the judgment con-
tains sufficient (although incomplete) information about related

fragments. During the compilation of this judgment, the types of
the free variables of a are found in E (without any associated val-
ues). Since the values of free variables are missing, the compila-
tion is incomplete, but can still be carried out separately, i.e.,
modulo the missing values.

A complete program is a closed term; that is, a term with no
free variables. A complete program is self-contained: it can be
typed in an empty environment, and its compilation can be car-
ried out completely. 

In programming environments, the linking process is used
to produce a complete program from a collection of program
fragments. In addition, linking is used to combine a number of
program fragments without necessarily forming a complete pro-
gram. The result of such an incomplete linking is called a li-
brary: in its original meaning, it is a library of routines to be used
by other programs. Libraries can be linked again to form larger
libraries or complete programs. A consistent (in ways to be de-
termined) collection of linkable program fragments is called a
software system, or simply a system.

Separate compilation, in our framework, maps judgments E
∫ a:A into entities we call linksets, over which we can define
linking operations. We can see the judgments E ∫ a:A as the
source module language, and the linksets as the target language
of the compilation. The module language is in this case very ru-
dimentary, but our approach extends to other module languages.
In Section 4 we consider a more complex module language, and
in Section 7 we compile it to linksets.

2.2  A Simple Configuration Language

The linking process starts from a collection of program frag-
ments, and from a description of how the fragments should be
combined. This description is traditionally expressed in a config-
uration language, whose complexity can range from simple file-
naming conventions to sophisticated scripts. These scripts have
been named project files, makefiles, system models, etc.

We are going to investigate the simple configuration lan-
guage of linksets, where a collection of fragments to be linked is
expressed as a collection of named judgments:

The main intuitions are that (1) E0 is the external interface of the
entire linkset (E0 being non-empty for a library, and being empty
for a complete program), (2) the environment of each judgment
is implicitly prefixed by E0, so that E0, Ei ∫ ℑ i is a valid judg-
ment, and (3) each judgment is labeled by a unique name xi; these
names match the free variables of other fragments, and thus de-
termine how the fragments hook up1. Well-formedness condi-
tions for linksets are discussed in detail later. 

E0 | x1 ÷◊ E1 ∫ ℑ 1 ... xn ÷◊ En ∫ ℑ n

This is a linkset, consisting of an environment E0 and a 

collection of judgments Ei ∫ ℑ i, each named by a label 

xi. The components xi ÷◊ Ei ∫ ℑ i are called linkset frag-

ments.
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A conventional name, such as main, can be reserved for a
judgment that denotes a complete program. The following is a
linkset consisting of a single fragment called main. (In our initial
examples we take E0=.)

More interestingly, here is a linkset consisting of two fragments:

In verbose programming notation, this linkset might be rear-
ranged and written:

In this notation, the fragment f has an empty import list, and pro-
duces a value f of type NatîïñNat. The fragment main imports a
fragment named f producing a value of type NatîïñNat, and pro-
duces a value of type Nat.

As we said, the linking strategy for linksets is specified by
choosing names for fragments that correspond to the free vari-
ables of other fragments. Above, it is intended that the fragment
named f provides a value for the free variable f of the fragment
main. We can say that “main needs f ” (the environment for main
contains the assumption f:NatîïñNat) while “f needs nothing”
(the environment for f is empty). This implicit needs relation par-
tially specifies a dependency, or linking order, for the judgments
in the linkset. 

There are two main activities we can perform on linksets:
checking the name and type information in a linkset, and per-
forming the actual linking process. We consider these in turn.

The checking activity guarantees that the names and the
types are used consistently within and across judgments, so that
typing can be ignored in the subsequent linking phase; this cor-
responds to intra-module typechecking and to inter-module
typechecking. In the f,main example above, the intra-fragment
typechecking consists in checking, for example, that the term
λ(x:Nat)x has the type exported by the fragment f. The inter-
fragment typechecking consists in checking that the type of the f
fragment matches the type of the f import of the main fragment.

The linking activity corresponds, technically, to the repeat-
ed application of substitutions. It assumes that all the typing re-
quirements have been satisfied in the previous checking phase.
In the example, we can eliminate the f assumption in the main
judgment by substituting f with λ(x:Nat)x, and obtaining:

1. Alternatively, one could distinguish between program
variables that can be freely α-converted and associated
labels that connect the fragments, as in [11].

Since the typing environments of all the fragments are now emp-
ty, no other substitutions are possible. We have completed the
linking process for this example; the relevant outcome is the ful-
ly linked main program.

The linking process may fail in some situations, in the sense
of not being able to empty all environments. For example, the
following linkset does not provide a fragment for y, so the x frag-
ment cannot be fully linked:

We will rule out such incomplete linksets.
A more subtle case of linking failure is due to cyclic depen-

dencies among fragments. The following linkset is not obviously
incomplete, but it still cannot generate a runnable program be-
cause of a cyclic dependency of its single fragment with itself:

Problems with cycles become worse with fragments that are mu-
tually dependent, as in the following linkset:

Conceivably, we could eliminate the cycles by converting them
into fixpoints. The earlier linkset could be reduced to:

However, we prefer not to go down this road in this paper. The
circumstances under which cyclic dependencies are acceptable
depend strongly on specific languages, and are hard to general-
ize. Moreover, in this paper we will be handling in depth only a
simply typed λ-calculus that is strongly normalizing; hence fix-
points would be out of character. We simply let the linking pro-
cess fail (but not diverge) when presented with cycles. In other
terms, we rule out recursive and mutually recursive modules.

3  The Simply Typed λ-calculus, F1

We now begin formalizing the intuitions of the previous section.
We start with a description of system F1, a standard simply typed
λ-calculus. In the following sections we define linksets for F1.

The types and terms of F1 have the following syntax. The
types are either a base type K or function types. The terms are ei-
ther variables, abstractions, or applications.

Syntax of F1

 | main ÷◊ ( ∫ 3+1 : Nat)

 | 

f ÷◊ ( ∫ λ(x:Nat)x : NatîïñNat),

main ÷◊ (, f:NatîïñNat ∫ f(3) : Nat)

fragment f : NatîïñNat

import nothing
begin

λ(x:Nat)x

end.

fragment main : Nat
import  f : NatîïñNat
begin

f(3)
end.

 | 

f ÷◊  ∫ λ(x:Nat)x : NatîïñNat,

main ÷◊  ∫ (λ(x:Nat)x)(3) : Nat

 | x ÷◊ , y:Nat ∫ y+1 : Nat

 | x ÷◊ , x:Nat ∫ x+1 : Nat

 | 

x ÷◊ , y:Nat ∫ y–1 : Nat, 

y ÷◊ , x:Nat ∫ x+1 : Nat

 | x ÷◊  ∫ µ(x:Nat)x+1 : Nat

A,B ::= K | A→B types

a,b ::= x | λ(x:A)b | b(a) terms
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We use a single uninterpreted base type K, but we could easily
enrich F1 with base types such as Bool and Nat. 

The environments E of F1 are lists of typing assumptions of
the form , x1:A1, ..., xn:An for n≥0; the empty environment is .
We use the notations dom(E), (E, x:A), (E, E’), env(E), and E(x):

Definition  3-1  (Environment operations) 
  • dom(, x1:A1, ..., xn:An) @ {xi iÏ1..n}.
  • If E 7 , x1:A1, ..., xn:An and E’ 7 , y1:B1, ..., ym:Bm, 

then E, xn+1:An+1 @ , x1:A1, ..., xn:An, xn+1:An+1

and E, E’ @ , x1:A1, ..., xn:An, y1:B1, ..., ym:Bm.
  • env(, x1:A1, ..., xn:An) ⇔ for all i,jÏ1..n, i≠j ⇒ xi≠xj.
  • If E has the shape E’, x:A, E”  and env(E), then E(x) @ A.
M

The type rules of F1 are given below. They are based on
three judgments: E ∫ Q (E is well-formed), E ∫ A (type A is well-
formed in E), and E ∫ a : A (term a has type A in E).

Typing rules for F1

We list some standard technical lemmas. Here ℑ  is any
judgment right-hand-side (including Q), and ℑ { x←a} is the sub-
stitution of a for the free occurrences of x in ℑ . The notions of
free and λ-bound occurrences are the standard ones. A technical
note: we identify terms up to consistent renaming of bound vari-
ables, but we do not identify judgments up to renaming of envi-
ronment variables. A judgment-renaming lemma can be proved,
but will not be necessary here.

Lemma  3-2  (F1 properties) 
  • Implied Judgments. If E, E’ ∫ ℑ  then E ∫ Q. If E, x:A, E’ ∫

ℑ  then E ∫ A. If E ∫ a : A then E ∫ A.
  • Weakening. If E, E’ ∫ ℑ  and E, F ∫ Q and dom(F) ∩

dom(E’) =  then E, F, E’ ∫ ℑ .
  • Exchange. If E, F, F’, E’ ∫ ℑ  then E, F’ , F, E’ ∫ ℑ .
  • Substitution. If E, x:A, E’ ∫ ℑ  and E ∫ a : A then E, E’ ∫

ℑ { x←a}.
M

From these lemmas we easily obtain the following linking
lemma, which states the essential conditions under which a link-
ing step can be performed. Here, the program fragment a with

environment E1, E2 is linked into the “hole” x of ℑ , adapting the
environment E1, x:A, E3 of ℑ  to E1, E2, E3.

Lemma  3-3  (Linking)
If E1, x:A, E3 ∫ ℑ  and E1, E2 ∫ a : A 
and dom(, x:A, E3) ∩ dom(E2) = , 
then E1, E2, E3 ∫ ℑ { x←a}.

Proof

Assume E1, x:A, E3 ∫ ℑ  and E1, E2 ∫ a : A with dom(, x:A,
E3) ∩ dom(E2) = . By Implied Judgments we have E1, E2

∫ Q, and by Weakening we obtain E1, E2, x:A, E3 ∫ ℑ . Final-
ly, by Substitution we obtain E1, E2, E3 ∫ ℑ { x←a}.

M

4  Simple Modules for F1

As described in the introduction, a judgment E ∫ a : A can be
seen as a simple module. In this section we explore a slightly
more structured module system for F1, which corresponds to the
following programming notation:

This is one of the simplest conceivable module systems for a pro-
gramming language. A module has a list of imports and a list of
exports. The body of a module contains definitions for its ex-
ports. Note that there is no mechanism for naming collections of
imports or exports: lists of variables and their types are used ex-
plicitly. This module mechanism is only a small step forward
from the program fragments of section 2.2, but at least it supports
the grouping of related definitions. A similar mechanism was
used in early versions of Modula.

We extend F1 with two new judgments for modularization;
the way this extension is carried out is quite uniform, and can be
applied to many type systems [4, 5, 14]. From our basic judg-
ments we produce a signature judgment that represents export
lists, and a binding judgment that represents modules. A signa-
ture is essentially a tuple of declarations, and is similar to an en-
vironment. A binding is essentially a tuple of definitions.

The signature judgment is written E ∫ S (i.e., signature S is
well-formed in E); the binding judgment is written E ∫ d a S (i.e.,
binding d has signature S in E).

Signatures and Bindings for F1

(Env ) (Env x)

E ∫ A      xÌdom(E)

 ∫ Q E, x:A ∫ Q

(Type Const) (Type Arrow)

E ∫ Q E ∫ A      E ∫ B

E ∫ K E ∫ A→B

(Val x) (Val Fun) (Val Appl)

E ∫ Q E, x:A ∫ b : B E ∫ b : A→B    E ∫ a : A

E ∫ x : E(x) E ∫ λ(x:A)b : A→B E ∫ b(a) : B

module
import nothing
export x:Nat

begin
x : Nat = 3,

end.

module
import x:Nat
export f:Nat→Nat, m:Nat
begin

f : Nat→Nat = λ(y:Nat)y+x
m : Nat = f(x)

end.

(Signature ) (Signature x)

E ∫ Q E, x:A ∫ S

E ∫  E ∫ x:A, S
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According to these rules, in E ∫ d a S every component of d is
matched by a component of S in the same position. One could al-
low signatures and bindings to match more flexibly, up to rea-
sonable permutations and elisions of components, by instru-
menting the rules above. Note that signatures and environments
associate differently; nonetheless, we sometimes identify a sig-
nature (x1:A1, ..., (xn:An, )..) with an environment (..(, x1:A1),
..., xn:An).

The two program modules shown at the beginning of this
section can be represented by the two binding judgments below.
The import lists become environments, the export lists become
signatures, and the module bodies become bindings.

5  Linksets

As we discussed in the introduction, a linkset is a collection of
named judgments plus an interface. We now define linksets for-
mally, and we describe a number of conditions that identify well
behaved linksets. We begin with some terminology. 

Definition  5-1  (Linkset structure)
Consider the structure L 7 E0 | xi ÷◊ Ei ∫ ℑ i iÏ1..n, where each
ℑ i has the shape ai : Ai.
Let imp(L) @ dom(E0) be the imported names of L.
Let exp(L) @ {x1, ..., xn} be the exported names of L.
Let names(L) @ imp(L) ∪  exp(L) be the names of L.
Let imports(L) @ E0 be the import environment of L.
Let exports(L) @ , x1:A1, ..., xn:An be the export environ-
ment of L.

M

We first need to identify linksets that use names coherently,
without worrying yet about any of the type information. The
predicate linkset(L), defined below, captures this kind of coher-
ence, which is the minimum required to perform linking. Recall
that the predicate env(E), from Definition 3-1, asserts that the
variables of E are distinct.

Definition  5-2  (Linksets)
Consider the structure L 7 E0 | xi ÷◊ Ei ∫ ℑ i iÏ1..n.
linkset(L) ⇔
• env(imports(L)), and env(exports(L))
• for all iÏ1..n, we have env(E0, Ei) and dom(Ei) ⊆ exp(L)
• imp(L) ∩ exp(L) = .

M

Note that by the condition dom(Ei) ⊆ exp(L), L is complete,
in the sense that every assumption x:A in one of the environments
Ei is matched by a fragment named x. (Any missing fragment
must be declared in E0.) This completeness condition, however,
does not guarantee the absence of cyclic dependencies.

We say that a linkset L is linked if all the Ei are empty, and
is fully linked if, in addition, E0 is empty.

We now define a predicate that refines linkset by perform-
ing additional checking. This corresponds to the amount of
checking performed by separate compilation, before inter-mod-
ule checking. The following definition of the predicate intra-
checked guarantees that each judgment in a linkset is valid in F1,
and that all the judgments have the common prefix E0. The intra-
checked predicate does not guarantee that the fragments hook up
properly with each other with respect to typing.

Definition  5-3  (Intra-checked linksets)
Let L 7 E0 | xi ÷◊ Ei ∫ ℑ i iÏ1..n.
intra-checked(L) ⇔
• linkset(L)
• E0 ∫ Q and, for all iÏ1..n, we have E0, Ei ∫ℑ i.

M

We now turn to checking the consistency of linkset frag-
ments with respect to each other. These checks, corresponding to
inter-module typechecking, guarantee that the fragments form-
ing the linkset can be linked in a type-safe way.

Definition  5-4  (Inter-checked linksets)
Let L 7 E0 | xi ÷◊ Ei ∫ ℑ i iÏ1..n.
inter-checked(L) ⇔
• intra-checked(L)
• for all j,kÏ1..n, x, A, E’, E” , 

if Ek has the form E’, x:A, E”  and x7xj then A7Aj.
M

Here we require exact agreement between the fragments (A7Aj).
This definition may need to be refined in systems more complex
than F1, for example for subtyping.

Each linkset includes an environment E0 that is meant to de-
scribe the fragments that are missing from the linkset. Therefore,
a useful operation on linksets is to combine two of them to mu-
tually reduce the number of missing fragments. This operation
produces a new linkset that is the merge of the two. We first need
some operations on environments:

Definition  5-5  (Environment compatibility and merge)
  • E\X is the environment obtained from E by removing the as-

sumptions x:A such that xÏX. 
  • EÁX is environment obtained from E by retaining only the

assumptions x:A such that xÏX. 
  • Compatible environments: E1 ÷ E2 ⇔ for all xÏdom(E1)

∩ dom(E2) we have E1(x) = E2(x). 

(Binding ) (Binding x)

E ∫ Q E, x:A ∫ d a S      E ∫ a:A

E ∫  a  E ∫ (x:A=a, d) a (x:A, S)

 ∫ (x:Nat=3, ) a (x:Nat, )

, x:Nat ∫ ( f:Nat→Nat=λ(y:Nat)y+x, m:Nat=f(x), ) 

a ( f:Nat→Nat, m:Nat, ) 
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  • We define the merge of two environments E1 and E2 as
E1+E2 @ E1, (E2\dom(E1)).

M

Lemma  5-6  (Commutation of environment merge)
If E1 ÷ E2 and E, (E1+E2), E’ ∫ ℑ  then E, (E2+E1), E’ ∫ ℑ .

Proof

From Lemma 3-2 (exchange), since E1+E2 is just a permu-
tation of E2+E1 under the assumption E1 ÷ E2.

M

The merge of two linksets is then defined as follows. The
imports of the two linksets are merged, except that the fragments
mutually exported are removed from the combined imports.
Then, the exported fragments are merged; the environment of
each fragment of a linkset is enriched with the imports of that
linkset that are exported by the other linkset.

Definition  5-7  (Linkset merge)
Let L 7 E0 | xi ÷◊ Ei ∫ ℑ i iÏ1..n, L’  7 E0’  | xi’  ÷◊ Ei’  ∫ ℑ i’  iÏ1..n’.
If linkset(L), linkset(L’ ), and exp(L) ∩ exp(L’ ) = , then:
L+L’  @ 
   E0\exp(L’ ) + E0’ \exp(L) |
   xi ÷◊ E0Áexp(L’ ), Ei ∫ ℑ i iÏ1..n, 
   xi’  ÷◊ E0’Áexp(L), Ei’  ∫ ℑ i’  iÏ1..n’

M

The following lemmas show that the merge of two linksets
preserves the properties linkset, intra-checked, and inter-
checked, under appropriate assumptions. The proofs are given in
Appendix.

Lemma  5-8  (Linkset merge)
If linkset(L), linkset(L’ ), and exp(L) ∩ exp(L’ ) = , 
then linkset(L+L’ ).

M

Lemma  5-9  (Intra-checked merge)
If intra-checked(L), intra-checked(L’ ), 
imports(L) ÷ imports(L’ ), and exp(L) ∩ exp(L’ ) = , 
then intra-checked(L+L’ ).

M

Definition  5-10  (Linkset compatibility)
L ÷ L’    ⇔   
   imports(L) ÷ imports(L’ ), imports(L) ÷ exports(L’ ), 
   imports(L’ ) ÷ exports(L), and exp(L) ∩ exp(L’ ) = .

M

Lemma  5-11  (Inter-checked merge)
If inter-checked(L), inter-checked(L’ ), and L ÷ L’ , 
then inter-checked(L+L’ ).

M

6  Linking

A linkset L contains a set of interdependent fragments of the
form xi ÷◊ Ei ∫ ℑ i iÏ1..n. The purpose of linking is to resolve the
dependencies by making all the Ei empty via substitutions.

To perform a single linking step, we find two distinct la-
beled judgments in L of the form:

and we replace the second labeled judgment as follows (without
requiring A7A’):

Formally, a linking step L Òñ L’ transforms a linkset L into
a linkset L’  by performing a single substitution:

Definition  6-1  (Linking steps)
Let L 7 (E0 | ..., (x ÷◊  ∫ a:A), ..., (y ÷◊ x:A’, E ∫ ℑ ), ...) and
assume linkset(L).
• L Òñ (E0 | ..., (x ÷◊  ∫ a:A), ..., (y ÷◊ E ∫ ℑ { x←a}), ...) is

a linking step.
• We write L Òòñ if there is no L’  such that L Òñ L’ .
• We write Òññ for the reflexive and transitive closure of

Òñ.
M

This definition of linking step imposes a rather strict order of re-
ductions by requiring one of the environments involved to be
empty. One could relax this restriction, and allow more flexible
linking orders (such generalizations are supported by Lemma 3-
3). However, we adopt the simpler definition.

Linking steps preserve the linkset and inter-checked proper-
ties:

Lemma  6-2  (Properties preserved by linking steps)
(1) If linkset(L) and L Òñ L’  then linkset(L’ ).
(2) If inter-checked(L) and L Òñ L’  then inter-checked(L’ ).

Proof

(1) Easy, from the definition of linkset, since the env property
is preserved by shortening environments, and names(L) =
names(L’ ).

(2) Consider L 7 E0 | xi ÷◊ Ei ∫ ai:Ai iÏ1..n. Suppose the reduction
is carried out on the pair (x ÷◊  ∫ a:A), (y ÷◊ x:A’, E ∫ ℑ ).
Since inter-checked(L) by assumption, we have A7A’, and
since intra-checked(L), we have E0 ∫ a:A and E0, x:A, E ∫
ℑ . By Lemma 3-3 (linking), we have E0, E ∫ ℑ { x←a}.
Therefore, we have intra-checked(L’ ), since E0, E ∫
ℑ { x←a} is the only new fragment in L’ . Moreover, we have
inter-checked(L’) , since the environments in L’  are the same
as the ones in L except for one that becomes shorter, and the

x ÷◊  ∫ a:A

y ÷◊ x:A’, E ∫ ℑ

y ÷◊ E ∫ ℑ { x←a}
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Ai are the same (the substitution ℑ { x←a} does not affect
types).

M

However, intra-checked(L) and L Òñ L’  do not imply intra-
checked(L’ ). As should be expected, intra-checking of fragments
is not sufficient for performing linking soundly.

We state two important properties of linking reductions (se-
quences of linking steps). (1) The inter-checked property is pre-
served by reductions, meaning that linking does not violate typ-
ing. (2) Reductions are confluent, meaning that linking steps can
be performed in any order.

Proposition  6-3  (Subject reduction for linking)
If inter-checked(L) and L Òññ L’ , then inter-checked(L’ ).

Proof

By Lemma 6-2, the inter-checked property is preserved at
every step.

M

Proposition  6-4  (Linking is confluent)
Assume linkset(L). If L Òññ L1 and L Òññ L2 then there exists
an L3 such that L1 Òññ L3 and L2 Òññ L3.

Proof

(1) We first show that if L Òñ L1 and L Òñ L2, then either L1 =
L2 or there exists an L3 such that L1 Òñ L3 and L2 Òñ L3.
Moreover, linkset(L1), linkset(L2), and linkset(L3).

By the assumption linkset(L) we know that fragment names
in L are distinct.

Consider two linking steps L Òñ L1 and L Òñ L2 of the form:

(E0 | ..., (x1 ÷◊  ∫ a1:A1), ..., (y1 ÷◊ x1:A1’ , E1 ∫ ℑ 1), ...) 

   Òñ  (E0 | ..., (x1 ÷◊  ∫ a1:A1), ..., (y1 ÷◊ E1 ∫ ℑ 1{ x1←a1}), ...)

(E0 | ..., (x2 ÷◊  ∫ a2:A2), ..., (y2 ÷◊ x2:A2’ , E2 ∫ ℑ 2), ...)

   Òñ  (E0 | ..., (x2 ÷◊  ∫ a2:A2), ..., (y2 ÷◊ E2 ∫ ℑ 2{ x2←a2}), ...)

By Lemma 6-2 we have linkset(L1) and linkset(L2). Let us
consider all possible identifications of x1, y1, x2, and y2.

We have x1≠y1, x2≠y2, x1≠y2, and x2≠y1, because of the shape
of the associated environments.

If y1=y2 we also have x1=x2, by the shape of the associated
environments. Then we trivially have L1 = L2.

If y1≠y2 (and either x1=x2 or x1≠x2), the two linking steps do
not interfere since they affect distinct fragments, and we can
trivially find an L3 (containing the y1 fragment from L1 and
the y2 fragment from L2) such that L1 Òñ L3 and L2 Òñ L3. By
Lemma 6-2 we have linkset(L3).

(2) From (1) we can easily show that the reflexive closure ÒñR

of Òñ is confluent: if L ÒñR L1 and L ÒñR L2 then there exists
an L3 such that L1 ÒñR L3 and L2 ÒñR L3. (Moreover, link-
set(Li) for iÏ{1,2,3}). The transitive closure of a confluent

relation is also confluent, by a standard “tiling” argument.
Therefore, Òññ is confluent.

M

We can now define a simple linking algorithm that applies
linking steps until no longer possible. The algorithm attempts to
bring the linkset into the linked state, where the environments of
all the fragments are empty.

Algorithm  6-5  (Link)
Assuming linkset(L), the algorithm Link with input L pro-
duces an output ÜL’ , rá (if it terminates) where rÏ{ success,
failure}. The algorithm iterates from the initial L:

If L Òòñ, then
if linked(L) then exit with ÜL, successá, 
else exit with ÜL, failureá.

Else, choose any linking step L Òñ L’ , 
set L := L’ , and repeat.

M

We can show that the linking algorithm terminates, and that
it is sound and complete with respect to linking reductions. We
also obtain that linking can be performed soundly on inter-
checked linksets.

Proposition  6-6  (Link properties)
  • Termination. If linkset(L), then the algorithm Link termi-

nates over the input L.
  • Compatibility. If linkset(L), linkset(L’) , L ÷ L’ , and Link(L)

terminates with ÜL” , rá, then L”  ÷ L’ .
  • Reduction Soundness. If linkset(L) and Link(L) terminates

with ÜL’ , rá, then L Òññ L’ .
  • Reduction Completeness. If linkset(L), L Òññ L’ , and L’

Òòñ, then Link(L) = ÜL’ , rá with rÏ{ success, failure}.
  • Linking Soundness. If inter-checked(L) then Link(L) =

ÜL’ , rá for some L’ and r, and inter-checked(L’) .

Proof

Termination. The algorithm performs a finite number of itera-
tions, because at every iteration either the length of an envi-
ronment is reduced or the algorithm exits.

Compatibility. Linking steps preserve the sets imports(L) and
exports(L). Therefore compatibility is preserved by Link.

Reduction Soundness.  This follows by definition of Link. At
each step of the iteration the linkset property is preserved by
Lemma 6-2.

Reduction Completeness. Link(L) terminates; assume it produc-
es ÜL” , rá. By soundness, L Òññ L” . By confluence, there ex-
ists an L0 such that L’ Òññ L0 and L” Òññ L0. However, L’
Òòñ, by assumption, hence we must have L’ 7 L0. Moreover,
L” Òòñ, by the exit condition of the algorithm, hence we
must have L” 7 L0. Therefore, L” 7 L’.
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Linking Soundness. By Termination and Reduction Soundness
we obtain L Òññ L’ . Then, by Proposition 6-3 we obtain in-
ter-checked(L’) .

M

7  Modules as Linksets

In this section we consider the module system for F1 of section
4, and we prove safe-linking properties for it. A binding, like a
linkset, is a collection of fragments. Therefore, it is natural to
compile bindings to linksets. For example, the binding judg-
ment:

can be translated to the following linkset, where the environment
of the binding judgment (, x:Nat) becomes the interface of the
linkset:

The general form of the translation of bindings to linksets, ä–ã,
is given by the following definition.

Definition  7-1  (Compilation of a binding)
äE ∫ d a Sã   @   E | ä ∫ d a Sã°
äE ∫  a ã°   @   empty fragment list
äE ∫ (x:A=a, d) a (x:A, S)ã°   @   
      x ÷◊ E ∫ a:A, äE, x:A ∫ d a Sã°

M

The following lemma details the correspondence between a
binding judgment and its corresponding linkset. (Note: we con-
fuse signatures with environments.)

Lemma  7-2  (Properties of compilation)
If L 7 äE ∫ d a Sã then imports(L) = E and exports(L) = S.

Proof

Clearly, imports(äE ∫ d a Sã) = imports(E | ä ∫ d a Sã°) = E. 

If L 7 E | U, let exports(U) @ exports(L). We prove that if U
7 äE’ ∫ d’ a S’ã° then exports(U) = S’, by induction on the
translation äE’ ∫ d’ a S’ã°.

Case äE’  ∫  a ã°. We have U 7 äE’ ∫  a ã° 7 empty frag-
ment list. Hence, exports(U) = exports(E | U) =  = S’.

Case äE’  ∫ (x:A=a, d” ) a (x:A, S”)ã°. We have U 7 x ÷◊ E’ ∫
a:A, U’  and U’ 7 äE’, x:A ∫ d”  a S”ã°. By induction hypoth-
esis we have exports(U’ ) = S”. Hence, exports(U) = x:A, S”.

M

We can now state the first important property of separate
compilation: well-typed modules are compiled to well-typed
linksets.

Theorem  7-3  (Separate compilation)
If E ∫ d a S then inter-checked(äE ∫ d a Sã). 

Proof

The translation äE ∫ d a Sã produces a structure of the shape
L 7 E | xi ÷◊ Ei ∫ ℑ i iÏ1..n. We have dom(S) = dom(exports(L))
= exp(L), and dom(E) = dom(imports(L)) = imp(L).

(1) We first show linkset(L) and intra-checked(L) by checking
the necessary conditions. We have that imports(L) = E, and
since E ∫ d a S, we have E ∫ Q and env(E). Since exports(L)
= S and E ∫ d a S, we have env(S). By induction on the der-
ivation of E ∫ d a S, for all iÏ1..n, we have E, Ei ∫ℑ i, and
env(E, Ei). By construction, each Ei is a prefix of S, hence
dom(Ei) ⊆  dom(S) = exp(L). By construction, dom(E) ∩
dom(S) = ; that is, imp(L) ∩ exp(L) = .

(2) To show that inter-checked(L), we note that, by the defini-
tion of ä–ã°, every time an assertion x:A is added to an envi-
ronment, a fragment of the form x ÷◊ E’ ∫ a:A is added to the
linkset.

M

The second important property of separate compilation is
that two well-typed modules with compatible interfaces can be
safely compiled and merged. For this, we first need to define the
notion of compatibility of signature and binding judgments:

Definition  7-4  (Signature and binding compatibility)
(E ∫ S) ÷ (E’ ∫ S’)   @   
      E ÷ E’, E ÷ S’, E’ ÷ S, and dom(S) ∩ dom(S’) = .
(E ∫ S) ÷ (E’ ∫ d’ a S’)   @   (E ∫ S) ÷ (E’ ∫ S’)
(E ∫ d a S) ÷ (E’ ∫ S’)   @   (E ∫ S) ÷ (E’ ∫ S’)
(E ∫ d a S) ÷ (E’ ∫ d’ a S’)   @   (E ∫ S) ÷ (E’ ∫ S’)

M

Lemma  7-5  (Compatibility under compilation)
Assume (E ∫ d a S) ÷ (E’ ∫ d’ a S’).
Then, äE ∫ d a Sã ÷ äE’ ∫ d’ a S’ã.

Proof

By definition 7-4, (E ∫ d a S) ÷ (E’ ∫ d’ a S’) implies (E ∫
S) ÷ (E’ ∫ S’), and hence E ÷ E’, E ÷ S’, E’ ÷ S, and dom(S)
∩ dom(S’) = . Take L 7 äE ∫ d a Sã and L’  7 äE’ ∫ d’ a
S’ã. By Lemma 7-2, imports(L) ÷ imports(L’ ), imports(L) ÷
exports(L’ ), exports(L) ÷ imports(L’ ), and exp(L) ∩ exp(L’ )
= . Therefore, by Definition 5-10, L ÷ L’ .

M

We now show that compatibility of signatures is a sufficient con-
dition for the safe merge of separately compiled modules:

Theorem  7-6  (Separate compilation and merge)
Assume E ∫ d a S, E’ ∫ d’ a S’, and (E ∫ S) ÷ (E’ ∫ S’).
Then, inter-checked(äE ∫ d a Sã+äE’ ∫ d’ a S’ã).

, x:Nat ∫ ( f:Nat→Nat=λ(y:Nat)y+x, m:Nat=f(x), ) 

a ( f:Nat→Nat, m:Nat, ) 

, x:Nat | 

f ÷◊  ∫ λ(y:Nat)y+x : Nat→Nat, 

m ÷◊ , f:Nat→Nat ∫ f(x) : Nat
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Proof

Let L 7 äE ∫ d a Sã and L’ 7 äE’ ∫ d’ a S’ã. By Theorem 7-
3 we have inter-checked(L) and inter-checked(L’ ). Since (E
∫ S) ÷ (E’ ∫ S’), we also have (E ∫ d a S) ÷ (E’ ∫ d’ a S’) by
Definition 7-4. By Lemma 7-5 we obtain L ÷ L’ . Therefore,
by Lemma 5-11 we have inter-checked(L+L’ ).

M

Note that the linking of äE ∫ d a Sã+äE’ ∫ d’ a S’ã may still pro-
duce failure, because cyclic dependencies may be present be-
tween E ∫ d a S and E’ ∫ d’ a S’.

8  Summary

We can summarize our main definitions and results by recasting
them as an inference system for establishing the soundness of se-
quences of compilation and linking steps. 

In the following inference rules, M is a module represented
by a binding judgment E ∫ d a S, and L is a linkset; äMã is the
compilation of a module to a linkset. By valid(M) we mean that
M is derivable (type-consistent). M ÷ M’  is type-compatibility
between modules (or their interfaces). By inter-checked(L) we
mean that L is type-consistent. L ÷ L’  is type-compatibility and
L + L’  is merging of linksets. By link(L) = L’  we mean that the
linking algorithm Link(L) yields ÜL’ , rá where r is success or fail-
ure. The relations indicated by ÷ are symmetric.

Separate compilation inference system

From these rules, we can show that a separately compiled
valid module M can be safely partially linked. That is, that inter-
checked(link(äMã)) holds:

Furthermore, the following derivation shows that two separately
compiled compatible valid modules M and M’ , one of which has
been partially linked, can be safely linked together. That is, that
inter-checked(link(link(äMã)+äM’ã)) holds:

Thus, inference systems such as the one outlined here can be
used to check the validity of complex sequences of compilation
and linking steps, at a reasonable level of abstraction.

9  Conclusions

The linking process, once obscure and undocumented, is becom-
ing increasingly visible and sophisticated. In some instances, it
is becoming part of language semantics. 

We suggest that linking and separate compilation should be
seriously taken into account when designing a language and
module system. This sentence may seem a truism, but these is-
sues have been surprisingly under-emphasized in the technical
literature. We have shown that linking can be given a technical
content. We have formalized linking via linksets, and we have
formalized separate compilation as the ability to translate mod-
ules separately to linksets that can be safely linked. The general
intuition is to regard linking as the repeated application of type-
preserving substitutions. 

We have studied a simplistic module system. It should be
possible to use the same basic ideas to explore other module
mechanisms, hopefully more realistic ones. Many directions of
further work are possible, including the following: • Alternative
linking reductions and algorithms. • Linking algorithms that
handle mutual dependencies. • A more realistic linking process
that does not cause code expansion or loss of module identity (by
using explicit substitutions [2]). • Convenient naming of module
interfaces, and support for the dot notation [6]. • Flexible signa-
ture matching and subtyping. • Linking and separate compilation
for the polymorphic λ-calculus, F2, with the aim of covering the
modularization features of Modula-2. • Design of advanced
module systems that are nonetheless able to support separate
compilation [3, 13]. • Study of dynamic linking.

(Compilation) (Theorem 7-3)

valid(M)

inter-checked(äMã) 

(Compilation compatibility) (Lemma 7-5)

valid(M)      valid(M’ )      M ÷ M’

äMã ÷ äM’ã

(Linking) (Proposition 6-6)

inter-checked(L)

inter-checked(link(L))

(Linking compatibility) (Proposition 6-6)

inter-checked(L)      inter-checked(L’ )      L ÷ L’

link(L) ÷ L’

(Merge) (Lemma 5-11)

inter-checked(L)      inter-checked(L’ )      L ÷ L’

inter-checked(L+L’ )

valid(M) assumption
⇒  inter-checked(äMã) by (Compilation)
⇒  inter-checked(link(äMã)) by (Linking)       (1)

valid(M’ ) assumption
⇒  inter-checked(äM’ã) by (Compilation)       (2)

valid(M), valid(M’ ), M ÷ M’ assumptions
⇒  äMã ÷ äM’ã by (Compil. compat.)       (3)

link(äMã) ÷ äM’ã by (1), (2), (3), (Linking compat.)     (4)

inter-checked(link(äMã)+äM’ã) by (1), (2), (4), (Merge)
⇒  inter-checked(link(link(äMã)+äM’ã)) by (Linking)
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Appendix

Lemma 5-8

If linkset(L), linkset(L’ ), and exp(L) ∩ exp(L’ ) = , then
linkset(L+L’ ).

Proof

Let L 7 E0 | xi ÷◊ Ei ∫ ℑ i iÏ1..n and L’  7 E0’  | xi’  ÷◊ Ei’  ∫ ℑ i’
iÏ1..n’. We verify the conditions require by linkset(L+L’ ),
from Definition 5-2.

(1) From env(E0) and env(E0’ ) we have env(E0\exp(L’ ) +
E0’ \exp(L)), by definition of +. That is, env(imports(L+L’ )).

(2) Since the xi are distinct, and the xi’  are distinct, and because
of the assumption exp(L) ∩ exp(L’ ) = , we have that all the
xi, xi’  are distinct. That is, env(exports(L+L’ )).

(3) Since dom(Ei’ ) ⊆ exp(L’ ) and dom(Ei) ⊆ exp(L), we have
that dom(E0Áexp(L’ ), Ei) = dom(E0Áexp(L’ )) ∪  dom(Ei) ⊆
exp(L’ ) ∪  exp(L) = exp(L+L’ ). Similarly, dom(E0’Áexp(L),
Ei’ ) ⊆ exp(L+L’ ).

(4) We have imp(L+L’ ) = dom(E0\exp(L’ ) + E0’ \exp(L)) =
(imp(L)–exp(L’ )) ∪  (imp(L’ )–exp(L)), and exp(L+L’ ) =
exp(L) ∪  exp(L’ ). By assumption, we have imp(L) ∩ exp(L)
=  and imp(L’ ) ∩ exp(L’ ) = . Now, (imp(L)–exp(L’ )) ∩
exp(L) =  and (imp(L)–exp(L’ )) ∩ exp(L’ ) = , therefore
(imp(L)–exp(L’ )) ∩ (exp(L) ∪  exp(L’ )) = . Similarly, (imp
(L’ )–exp(L)) ∩ (exp(L) ∪  exp(L’ )) = . Hence ((imp(L)–exp
(L’ )) ∪  (imp(L’ )–exp(L))) ∩ (exp(L) ∪  exp(L’ )) = . That
is, imp(L+L’ ) ∩ exp(L+L’ ) = .

(5) We need to show that:

env(E0\exp(L’ ) + E0’ \exp(L), E0Áexp(L’ ), Ei)

env(E0\exp(L’ ) + E0’ \exp(L), E0’Áexp(L), Ei’ )

From the assumptions env(E0, Ei) and env(E0’ , Ei’ ) we triv-
ially have env(E0Áexp(L’ ), Ei) and env(E0’Áexp(L), Ei’ ).
Moreover, case (1) shows env(E0\exp(L’ ) + E0’ \exp(L)). So,
we are left to show that dom(E0\exp(L’ ) + E0’ \exp(L)) =
imp(L+L’ ) is disjoint from both dom(E0Áexp(L’ ), Ei) and
dom(E0’Áexp(L), Ei’ ). Now, case (3) shows that the latter
two are included in exp(L+L’ ), and case (4) shows that
imp(L+L’ ) ∩ exp(L+L’ ) = . Therefore, we are done.
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Lemma 5-9

If intra-checked(L), intra-checked(L’ ), 
imports(L) ÷ imports(L’ ), and exp(L) ∩ exp(L’ ) = , 
then intra-checked(L+L’ ).

Proof

Let L 7 E0 | xi ÷◊ Ei ∫ ℑ i iÏ1..n and L’  7 E0’  | xi’  ÷◊ Ei’  ∫ ℑ i’
iÏ1..n’. 

(1) By Lemma 5-8, we have linkset(L+L’ ).

(2) We need to show that:

E0\exp(L’ ) + E0’ \exp(L), E0Áexp(L’ ), Ei ∫ ℑ i

By Lemma 3-2 (implied judgments) we have E0 ∫ Q and
E0’  ∫ Q, from which:

E0\exp(L’ ), (E0’ \exp(L))\dom(E0\exp(L’ )) ∫ Q

As in Lemma 5-8(5), since dom((E0’ \exp(L))\dom(E0\exp(
L’ )) ⊆ dom(E0\exp(L’ ) + E0’ \exp(L)):

dom((E0’ \exp(L))\dom(E0\exp(L’ )) ∩ 

dom(E0Áexp(L’ ), Ei) =  

By Lemma 3-2 (exchange), from E0, Ei ∫ℑ i:

E0\exp(L’ ), E0Áexp(L’ ), Ei ∫ ℑ i

By Lemma 3-2 (weakening), from the previous three re-
sults:

E0\exp(L’ ), (E0’ \exp(L))\dom(E0\exp(L’ )), E0Áexp(L’ ), 

Ei ∫ ℑ i

This is the same as:

E0\exp(L’ ) + E0’ \exp(L), E0Áexp(L’ ), Ei ∫ ℑ i

(3) We need to show also that:

E0\exp(L’ ) + E0’ \exp(L), E0’Áexp(L), Ei’  ∫ ℑ i’

Or equivalently, by Lemma 5-6, since imports(L) ÷ im-
ports(L’ ), that:

E0’ \exp(L) + E0\exp(L’ ), E0’Áexp(L), Ei’  ∫ ℑ i’

By Lemma 3-2 (implied judgments) we have E0 ∫ Q and E0’
∫ Q, from which:

E0’ \exp(L), (E0\exp(L’ ))\dom(E0’ \exp(L)) ∫ Q

As in Lemma 5-8(5), since dom((E0\exp(L’ ))\dom(E0’ \exp(
L)) ⊆ dom(E0\exp(L’ ) + E0’ \exp(L)):

dom((E0\exp(L’ ))\dom(E0’ \exp(L)) ∩ 

dom(E0’Áexp(L), Ei’ ) =  

By Lemma 3-2 (exchange), from E0’ , Ei’  ∫ℑ i’ :

E0’ \exp(L), E0’Áexp(L), Ei’  ∫ℑ i’

By Lemma 3-2 (weakening), from the previous three re-
sults:

E0’ \exp(L), (E0\exp(L’ ))\dom(E0’ \exp(L)), E0’Áexp(L), 

Ei’  ∫ ℑ i’

i.e. E0’ \exp(L) + E0\exp(L’ ), E0’Áexp(L), Ei’  ∫ ℑ i’

By Lemma 5-6, since imports(L) ÷ imports(L’ ) we con-
clude:

E0\exp(L’ ) + E0’ \exp(L), E0’Áexp(L), Ei’  ∫ ℑ i’

M
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Lemma 5-11

Assume inter-checked(L), inter-checked(L’ ), 
imports(L) ÷ imports(L’ ), imports(L) ÷ exports(L’ ), 
imports(L’ ) ÷ exports(L), and exp(L) ∩ exp(L’ ) = .
Then inter-checked(L+L’ ).

Proof

Let L 7 E0 | xi ÷◊ Ei ∫ ℑ i iÏ1..n and L’  7 E0’  | xi’  ÷◊ Ei’  ∫ ℑ i’
iÏ1..n’. 

(1) By Lemma 5-9, we have intra-checked(L+L’ ).

(2) We have the following fragments for L+L’ :

xi ÷◊ E0Áexp(L’ ), Ei ∫ ℑ i iÏ1..n, 

xi’  ÷◊ E0’Áexp(L), Ei’  ∫ ℑ i’  iÏ1..n’

By assumption, we know that:

1) If Ei has the form F, x:A, G then there exists a j (since
dom(Ei) ⊆ exp(L)) with x7xj and A7Aj.

2) If Ei’  has the form F’ , x’:A’, G’ then there exists a j (since
dom(Ei’ ) ⊆ exp(L’ )) with x’7xj’  and A’7Aj’ .

We need to show that for any assumption z:C appearing in
E0Áexp(L’ ), Ei or E0’Áexp(L), Ei’ , if there is a fragment
named z in L+L’ , it has type C.

For any assumption in Ei, and Ei’  the hypotheses apply.

For an assumption x:A in E0Áexp(L’ ), we have that E0=im-
ports(L) ÷ exports(L’ ). Hence x:A is in exports(L’ ), which
means that there is an xj’7x with Aj’7A.

For an assumption x’:A’ in E0’Áexp(L), we have that E0’ =
imports(L’ ) ÷ exports(L). Hence x’:A’ is in exports(L),
which means that there is an xj7x’ with Aj7A’.
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