Program Fragments, Linking, and Modularization

Luca Cardelli
luca@pa.dec.com

Digital Equipment Corporation, Systems Research Center

Abstract In designing and formalizing module systems, many pro-

. . . . Eﬂosals have focused on the analogy between modules and data

Module mechanisms have received considerable theoretical at- . .
. . S structures, and between interfaces and data types, e.g. as in
tention, but the associated concepts of separate compilation agd Vs .
urstall’s influential paper [4]. In such proposals, modules and

inki hasized. Anomal modul m . .
linking have not been emphasized. Anomalous module syste Iterfaces become language constructs to program with. This ap-

have emerged in functional and object-oriented programmin . .
tﬂroach has the advantage of adding clean programmability to the
where software components are not separately typecheckable

and comoilable. In this paper we provide a context where linkin& €2 of system configuration, where it has traditionally been
b ' pap P g%cking. When pushing this approach to extremes, though, there

can be studied, and separate compilability can be formally stat is the danger of losing sight of the requirements of separate com-
and checked. We propose a framework where each module | 9 gsig q P

. . . . ilation.
separately compiled to a self-contained entity callatkaet we P

: : In this paper we take a different approach in order to main-
show that separately compiled, compatible modules can be safe- . .
; tain a natural and accurate view of the separate compilation and
ly linked together.

linking process. We consider linking as the fundamental process
' from which module mechanisms arise: not merely as a technique
1 Introduction for managing large programs and libraries. Further, we consider

Program modularization arose from the necessity of splitiingnodularization as inseparable from separate compilation: not
large programs into fragments in order to compile them. As sygnerely as a program structuring mechanism. Instead of consid-
tem libraries grew in size, it became essential to compile the IEring interfaces as just another program construct, we look at in-
braries separately from the user programs; libraries acquired iferfaces as typing environments that are intrinsically external to
terfaces that minimized compilation dependencies. A linker wate programming language. By adopting this view we can devel-
used to patch compiled fragments together. op modularization mechanisms with precise notions of separate
It was soon realized that modularization had great advantagompilation, inter-module typechecking, and linking.
es in terms of large-grain program structuring [19]. Much funda- ~ Today, the purpose of separate compilation is to be able to
mental and practical research focused on modularization princivrite, check, deliver, maintain, and upgrade libraries of code,
ples and properties; milestones in this process are embodied#@ssibly hiding the source code from the clients of the libraries.
such constructs as object-oriented classes, Modula-2 modulddany things can go wrong in languages and environments de-
and Standard ML functors. signed (or coerced) to support separate compilation. To under-
Since program structuring is of great importance in softwarétand the range of problems that may arise, let us consider an ex-
engineering, there is motivation for continuously increasing th@mple of a software development cycle and the obstacles that
flexibility and convenience of modularization constructs. Unfor-may impede it. In this example, a library module and a user mod-
tunately, in the shadow of many exciting developments there hae interact over time; it is instructive to assume that library de-
been a tendency to overlook the original purpose of modulariza€lopment and client development happen in separate locations.
tion. Some language definitions specify what are to be the conf?@y 1: Library descriptionA library interfacel i, is publicized
pilation units (e.g.: Ada [12]), but others do not (e.g.: Standar@efore any corresponding implementation modwig is made
ML [17]). A paradoxical question then arises: when does a mocvailable. The purpose is to allow early development of client

ule systemreally support modularization (meant as separatesoftware that will later be integrated with the library. Therefore,
compilation)? in this scenario we assume that there exists a notion of largely

code-free interfaces.
Appears in the Proceedings of the 24th Annual ACM Symposium o2bstacles Early programming languages, both procedural and

Principles of Programming Languages, Paris, France, January 1997. object-oriented, did not separate interfaces from implementa-
© ACM. tions. eLanguages that are designed to be “small” or untyped of-

ten lack interfaces.€ertain language features may require glo-

Thursday, October 24, 1996, 11:36 am 1

bal analysis and may thus conflict with modularity; examples aréIL’s smartest recompilation [21], Eiffel's proposed link-time
multimethods [7] and overloading. safety analysis) delay some type checks until link time: the user
Day 2: User program descriptiorA user interfacéyg is written ~ may discover at that point internal inconsistencies in the librar-
without yet producing the corresponding user motiyg. The ies. *The linked program should have the same effect as a pro-
purpose is to begin designing the structur®igf; and its inter- gram obtained by merging all the sources together and compiling
action withlj, before making any actual implementation com-the result in a single step. Such a merging of sources is not often
mitments. The interfacks is based o jp,. characterized; then the semantics of linking is undetermined.
Obstacleg It is important to be able to writgs, on the basis of Day 6: Library implementation evolutionA new library mod-
definitions contained ih j,; the purpose df_j, is often to define ule M’y that matches j, is produced. A new pait{,, L' 1ip) is
shared types. Modula-2, for example, allows type definitions irstored in the public repository.

interfaces. However, this feature has surprisingly complex intei©bstacless Changes to the implementation of a library super-
actions with the type theory of modules, and even advancedass may alter object layout; this may require recompilation of
module systems like Standard ML'’s did not consider it until re-user subclasses, even when the public interface of the superclass
cently [11, 13]. does not change.When many interdependent libraries are ar-
Day 3: User program compilationrA user moduléMyg, is writ- chived, there may be transients when the library implementa-
ten and compiled. It is checked to be compatible Wjthand tions in the repository are mutually inconsistent, and when the

ILip. The compilation oMyg, produces a linkable imadgs. No linking of user programs should fail.
running program is generated yet because no implementation bRy 7: User program relinking The user prograrBysg, is now
ILir has been delivered. out of date, bulj, has not changed. Therefore, a new user pro-

Obstacles The code of generic library modules may have to begramP’yg can be regenerated without recompilation by linking
instantiated before the user code can be typechecked; then an o, with Lys;.

plementatiorMj, of I i, must be available to typechels,. Obstacles Will the result of running the relinked program be

« The instantiation of generic interfaces and modules performetthe same as if it had been recompiled first? It is natural to expect
by the client may produce unexpected type errors in the librargo. However, David Griswold [10] has pointed out that this prop-
code that were not detected by simple testing of the library [1&rty fails for Java (without compromising type safety), because
page 47]. Some object-oriented languages need to retypecheakverloading is treated differently during compilation and link-
superclass code (potentially library code) to verify the correcing.

use of Self-types in subclasses [20tandard ML's transparent Day 8: Library interface evolutionA revised interfacé€ |, and
signatures [15] allow situations whevls; depends on the types a corresponding library moduld™ j, are generated. A new pair
defined in a particular implementation kf,; thereforeMys, (I"Lib, L"Lip) is stored in the public repository, replacirgi,(
cannot be isolated Hyj, from that implementation [13].Even L'Lib)-

when it is possible to typechebkys purely against j,, it may Obstaclese When many such interdependent libraries are ar-
be thatl j, does not convey all the information necessary to proehived, there may be transients when the library interfaces in the
duce a linkable imadeys;. For example: the compiler may insist repository are mutually inconsistent and when the compilation of
on performing global flow analysis, or some routinek gfmay user code should fail.

require inlining, or the layout of opaque types$ipmay have to Day 9: User program adaptatiorBecause of the neM™ j,, the

be determined. user program is now out of date. MoreoWy, andlysr do not

Day 4: Library compilation A library moduleM,j, is produced matchl™j,. Thus |y is changed to a compatiliigs,, and a new

that matches the interfatgy,. It is compiled to a linkable image My is compiled toL"yg. Finally, a newP yg is produced by
Liip- The pair [Lip, LLip) is stored in a public repository. linking L"Lip with L™ysr.

Obstacleg It may be the case that a library cannot be compile@®bstacles Unless code dependencies are tracked properly [1],
even though its full code is available. This happens for generithe new version of the user cod€,s;, may be accidentally
module mechanism in the style on templates (as in C++, ADAjnked with the old libraryl L, (or vice versa) causing arbitrary
and Modula-3) where generic library modules must be instantiexecution errors even in safe languages.

ated by client (or test) modules before typechecking can take As discussed in this scenario, the potential and actual prob-
place. lems in separate compilation and linking are many and varied.
Day 5: User program linking The user fetches the archived li- Moreover, the example sketched above concerns mostly tradi-
brary L.j, associated withyj, from the repository. A user pro- tional environments. Linkers are now getting smarter, taking ad-
gramPyg is produced by linkindy i, with Lyg. vantage of type information at link time and performing dynamic
Obstacles* Even thoughM j, matched i, Mysr matched yg, linking at run time. As an emerging issue, security in Java de-
andlys matchedjp, it may be the case thBys, produces run- pends not only on safe typing, but also on safe linking [9]. Thus
time type errors. In Eiffel, for example, separate typechecking ahe potential for problems is increasing.

classes does not imply that the whole program is type-safe [8, We do not propose to attack all the obstacles at once: some
16]. Some mechanisms (Modula-3’s revelations [18], Standarttave to do with language design, some with implementation

2 Thursday, October 24, 1996, 11:36 am

technology, and some with environment engineering. Howevefragments. During the compilation of this judgment, the types of
it should be clear that separate compilation and linking have béhe free variables afare found irE (without any associated val-
come complex enough that they require very careful thinkingues). Since the values of free variables are missing, the compila-
and possibly formal thinking. At every point in the software de-tion is incomplete, but can still be carried ceparatelyi.e.,
velopment process we would like to be confident that our promodulo the missing values.
grams are correctly linked. This work is meant as a formal step A complete prograns a closed term; that is, a term with no
in this direction, mostly concerning the interactions of linkingfree variables. A complete program is self-contained: it can be
with type safety. typed in an empty environment, and its compilation can be car-
In this paper we make a number of simplifying assumptionsied out completely.
in the attempt to render the technical development as rigorous In programming environments, the linking process is used
and simple as possible. Our main intent is to provide a road map produce a complete program from a collection of program
for more ambitious efforts concerning realistic module systemdragments. In addition, linking is used to combine a number of
For concreteness and simplicity, we apply our ideas to a simplgrogram fragments without necessarily forming a complete pro-
module system for a first-order language) @nd we hint at pos- gram. The result of such an incomplete linking is calldd a
sible extensions. brary: in its original meaning, it is a library of routines to be used
Section 2 introduces basic terminology about separate conty other programs. Libraries can be linked again to form larger
pilation and proposes a formal interpretation of linking. Sectiondibraries or complete programs. A consistent (in ways to be de-
3 and 4 review the simply typ@dcalculus and introduce a sim- termined) collection of linkable program fragments is called a
ple module system for it. Sections 5 and 6 study linksets ansbftware systepor simply asystem
linking algorithms. Section 7 maps modules to linksets and sec- Separate compilation, in our framework, maps judgnments
tion 8 establishes a reasoning system for the soundness of sepaa:A into entities we callinksets over which we can define
rate compilation and linking. Finally, section 9 draws some conlinking operations. We can see the judgmehts a:A as the

clusions and discusses future work and extensions. source module language, and the linksets as the target language
of the compilation. The module language is in this case very ru-
2 Linking dimentary, but our approach extends to other module languages.

)] o In Section 4 we consider a more complex module language, and
In programming environments, linking is the process that turns @ gection 7 we compile it to linksets.

collection of program fragments into a runnable program. In this
section we discuss the formalization of linking in terms of the . . .

: . . 9 2.2 A Simple Configuration Language
manipulation of judgments.

The linking process starts from a collection of program frag-
2.1 Program Fragments ments, and from a description of how the fragments should be
o o) combined. This description is traditionally expresseddordig-

A program fragments, in first approximation, any syntactically ,ra¢ion languagewhose complexity can range from simple file-
well-formed pro.gra.\m- tgrm, possibly containing free Va”abl?snaming conventions to sophisticated scripts. These scripts have
Separate compilatioins intended as the separate typechecking,o, namegroject files makefilessystem modeletc.
and separate code generation of program fragments. We avoid We are going to investigate the simple configuration lan-
issues of code generatlon. by al\{vays. Wprk|ng at the source-!aauage ofinksets where a collection of fragments to be linked is
guage level, even when discussing linking. Therefore, Comp'lae'xpressed as a collection of named judgments:
tion is simplified to typechecking. (We believe this is not an im-
portant restriction for our purposes: the hardest part of separate Eo X1 = Eik Ui ...Xy = Enk Dy
compilation is separate typechecking, at least from the point of = This is dinkset consisting of an environmeg and a
view of language design.) collection of judgmentk; + [J;, each named by a label

A program fragment cannot be compiled (or typechecked) x. The components - E; - [J; are called linkset frag-
in isolation, but it can be compiled in the context of adequate in- ants.
formation about missing fragments. This information is usually o) _
given in terms of an environment for the free variables of a fragl "€ main intuitions are that (E) is the external interface of the
ment. The notion of &/ping environmere for a program frag- entire linkset Eq being non-empty for a library, and belng empty
menta is routinely employed in the formalization of typability; for & complete program), (2) the environment of each judgment

ajudgmenE - a:A establishes a typ&for the program fragment 1S implicitly prefixed byEy, so thatEo, E; - [; is a valid judg-
a with respect to the environmeft ment, and (3) each judgment is labeled by a unique rathese

Theseparate compilationf a fragmena can be seen as the Names maitch the free variables of other fragments, and thus de-
compilation of a judgmerfE F a:A, because the judgment con- termine how the fragments hook‘upell-formedness condi-
tains sufficient (although incomplete) information about relatedions for linksets are discussed in detail later.

Thursday, October 24, 1996, 11:36 am 3

A conventional name, such asin can be reserved for a g1
judgment that denotes a complete program. The following is a f g AN . Nat>N
linkset consisting of a single fragment caltadin (In our initial Hf” (x:Nafx : Nat-Nat,
examples we takEq=4.) main+ ¢ - (A(x:Nat)x)(3) : Nat
| main~ (¢ - 3+1 :Naj) Since the typing er.1vir.onments of al! the fragments are now emp-
)) o o ty, no other substitutions are possible. We have completed the
More interestingly, here is a linkset consisting of two fragmentsjinking process for this example; the relevant outcome is the ful-
| ly linked mainprogram.
fr (g - AOcNadx : Nat=>Nab, f Tths I?nkingz)lp)rcicess rT:ay T;ail in some sittuatli:()ns, in thelsertﬁe
o NAfo : of not being able to empty all environments. For example, the
main- (g, f:Nat>Natt- f(3) :Nay following linkset does not provide a fragmentyoso thex frag-
In verbose programming notation, this linkset might be rearment cannot be fully linked:

ranged and written:
g wi @ | x+ ¢, y:Natk y+1 : Nat

fragment f : Nat—=Nat fragment main: Nat . . .
. . . We will rule out such incomplete linksets.
|mp9rt nothing |mp9rt f-Nat=Nat A more subtle case of linking failure is due to cyclic depen-
begin begin dencies among fragments. The following linkset is not obviously
A(x:Nafx f(3) incomplete, but it still cannot generate a runnable program be-
end. end. cause of a cyclic dependency of its single fragment with itself:
In this notation, the fragmehhas an empty import list, and pro- @ | x+ g, x:Natk x+1 : Nat

duces a valuéof typeNat—=Nat The fragmentnainimports a
fragment nametiproducing a value of typdat—=Nat, and pro-
duces a value of typdat
As we said, the linking strategy for linksets is specified by g |

choosing names for fragments that correspond to the free vari- x+~ g, y:Nat+ y-1 : Nat,
ables of other fragments. Above, it is intended that the fragment .. 4 x:Natt x+1 : Nat
namedf provides a value for the free varialblef the fragment
main We can say thatfiainneedd ” (the environment fomain
contains the assumptidiNat—=Nat) while “f needsnothing”
(the environment fdris empty). This impliciheedgelation par- @ | x+ g F p(x:Natx+1 : Nat

tially specifies a dependency, or linking order, for the judgments . . .
in tr)lle IFi)nkset P y ¢ Judg However, we prefer not to go down this road in this paper. The

There are two main activities we can perform on IinI(Se,[s;:ircumstances under which cyclic dependencies are acceptable

checking the name and type information in a linkset, and perquend strongly on specific languages, and are hard to general-
' ize. Moreover, in this paper we will be handling in depth only a

Problems with cycles become worse with fragments that are mu-
tually dependent, as in the following linkset:

Conceivably, we could eliminate the cycles by converting them
into fixpoints. The earlier linkset could be reduced to:

forming the actual linking process. We consider these in turn. ™~ v tvpedhcalculus that is st | lizing: h fi
The checking activity guarantees that the names and ta Py typedi-calculus that IS strongly normalizing, hence fix-

types are used consistently within and across judgments, so trpacpnts would be out of character. We simply let the linking pro-

typing can be ignored in the subsequent linking phase; this cofSass fal (bUtI not fhverge_) Whe':j prefenl'ied with _cycles.dlnl other
responds tointra-module typechecking and tdanter-module €rms, we rule out recursive and mutually recursive modules.
typechecking. In thémain example above, thiatra-fragment

typechecking consists in checking, for example, that the terid The Simply TypedA-calculus, R

A(x:Nafx has the type exported by the fragméntheinter- \ve now begin formalizing the intuitions of the previous section.
fragmenttypechecking consists in checking that the type of the \ye start with a description of systdy a standard simply typed
fragment matches the type of thienport of themainfragment.) _cajculus. In the following sections we define linksetsFor

The linking activity corresponds, technically, to the repeat- e types and terms & have the following syntax. The

ed application of substitutions. It assumes that all the typing rfypes are either a base typer function types. The terms are ei-
quirements have been satisfied in the previous checking phasger variables, abstractions, or applications.

In the example, we can eliminate thassumption in thenain

judgment by substitutinfwith A(x:Naf)x, and obtaining: ISyntax of R

AB:=K|A-B types
1 Alternatively, one could distinguish between program
variables that can be freety-converted and associated abi=x|AxA)b | Xa) terms
labels that connect the fragments, as in [11]. L !

4 Thursday, October 24, 1996, 11:36 am

We use a single uninterpreted base tfpdut we could easily environmeng, E; is linked into the “hole’ of [J, adapting the
enrichF; with base types such Beol andNat environmen€y, XA, Ezof Ot0 Ey, E,, Es.

The environmentk of F; are lists of typing assumptions of
the formg, x¢:Ay, ..., Xn:An for n=0; the empty environment s
We use the notatiordom(E), (E, x:A), (E, E’), en|E), andE(x):

Lemma 3-3 (Linking)
If E1, XA Ez-0OandE;, EosFa: A
anddon{g, x:A, E3) n dom(Ey) =g,
Definition 3-1 (Environment operations) thenEy, Ep, Bk O{xa}.
o dom(g, Xp:Ag, ..., X An) A {x €T

e IfE=g, XA, ..., Xn:Aq andE’ = ¢, y1:By, ..., Ym:Bm, Proof
thenE, Xn:1:Ans1 2 @, XU AL, oy X Ans Xne1:Ans1 AssumeE;, XA, Egt O andE;, E; F a : A with dom(g, XA,
andE, E' 2 g, Xx¢:Aq, ..., Xo:An, Y1:B1, ..., YmiBm. Es) n dom(Ez) = ¢. By Implied Judgments we hag, E»
o eng, XpAy .. XAy < forallijel.n, izj O x#x. ¢, and by Weakening we obtdi, E,, x:A, Ez+ 0. Final-
« If E has the shapé’, x:A, E” andeny(E), thenE(x) 2 A. ly, by Substitution we obtaiB;, E;, Eg - O{x - a}.
O O

The type rules of; are given below. They are based on
three judgment£F o (Eis well-formed) EF- A (typeAis well- - 4 simple Modules for R

formed inE), andE | a: A (terma has typeA in E). . .) i .
As described in the introduction, a judgmé&nit a : A can be

seen as a simple module. In this section we explore a slightly

Typing rules for F
I

(Envg) (Envx) more structured module system Fat which corresponds to the
EFA x¢dom(E) following programming notation:
g o E, xAF o module module
import nothing import x:Nat
(Type Const) (Type Arrow) export x:Nat export f:Nat— Nat, mNat
EFo EFA ERB begin begin
EK " EFALB x :Nat=3, f : Nat- Nat = A(y:Naf)y+x
end. m : Nat =f(x)
(Val x) (Val Fun) (Val Appl) end.
Elo E,xAFb:B EFb:A-B EFa:A

This is one of the simplest conceivable module systems for a pro-
EFX:E(X) EFAXAb:A-B Elb(a):B gramming language. A module has a list of imports and a list of
L I exports. The body of a module contains definitions for its ex-
ports. Note that there is no mechanism for naming collections of
imports or exports: lists of variables and their types are used ex-

stitution ofa for the free occurrences »fin 0. The notions of plicitly. This module mechanism is only a small step forward

free and\-bound occurrences are the standard ones. A technic%Pm the program fragments of section 2.2, butat least it supports

note: we identify terms up to consistent renaming of bound varit- € grouping of related definitions. A similar mechanism was

ables, but we do not identify judgments up to renaming of enviL-JseOI in early versions of Modul_a. N
We extend~; with two new judgments for modularization;

ronment variables. A judgment-renaming lemma can be proved,)
ueg g P %e way this extension is carried out is quite uniform, and can be

but will not be necessary here.
i applied to many type systems [4, 5, 14]. From our basic judg-

We list some standard technical lemmas. Héres any
judgment right-hand-side (includirg, and{ x — a} is the sub-

Lemma 3-2 (F properties) ments we produce signature judgmenthat represents export
« Implied Judgmentslif E, E’'+ O thenEF o. If E, XA, E' lists, and &inding judgmenthat represents modules.sfgna-
OthenEF- A. If EF a: AthenEF A. ture is essentially a tuple of declarations, and is similar to an en-
« Weakening If E,E'+0 and E, Fo and dom(F) n vironment. Abindingis essentially a tuple of definitions.
don(E’) = ¢ thenE, F, E’ - [I. The signature judgment is writté&n- S (i.e., signaturéis
. Exchange If E,F, F', E'F O thenE, F', F, E' F [0. vv_ell-_formed inE_); the bin_ding judgment is writtela-d .. S(i.e.,
- Substitution If E, xA E' - 0 andE+ a: AthenE, E' indingdhas signatur&in £).
C{ X —a}. Signatures and Bindings for i
O f 1

(Signatureg) (Signaturex)
From these lemmas we easily obtain the followinging EF o E, xAlFS

lemma which states the essential conditions under which a link-
ing step can be performed. Here, the program fragaevrith

EF XA S

Thursday, October 24, 1996, 11:36 am 5

(Binding) (Binding x) Note that by the conditiodom(E;) O exfL), L is complete,
El o E,xAFd-S EFaA in the sense that every assump#iohin one of the environments
_— — - E; is matched by a fragment named(Any missing fragment
. EFg.g EF (xA=a,d) - (xA 9 | must be declared iBy.) This completeness condition, however,

]] does not guarantee the absence of cyclic dependencies.
According to these rules, B}~ d . Severy component af is We say that a linksét is linkedif all the E; are empty, and
matched by a component®in the same position. One could al- g fully linkedif, in addition,Ey is empty.
low signatures and bindings to match more flexibly, up to rea- \ye now define a predicate that refifietksetby perform-
sonable permutations and elisions of components, by instryng additional checking. This corresponds to the amount of
menting the rules above. Note that signatures and environmergﬁecking performed by separate compilation, before inter-mod-
associate differently; nonetheless, we sometimes identify a sigﬂe checking. The following definition of the predicatgra-
nature fi:Ay, ..., &:An, ¢)-) with an environment (#(x:A1), checkedyuarantees that each judgment in a linkset is vafd,in
s Xn'An). and that all the judgments have the common pE&fiTheintra-

The two program modules shown at the beginning of thigheckecpredicate does not guarantee that the fragments hook up
section can be represented by the two binding judgments beIOWroperly with each other with respect to typing.
The import lists become environments, the export lists become

signatures, and the module bodies become bindings. Definition 5-3 (Intra-checked linksets)
LetL=Eq|x+ E O iel.n

intra-checked.) -

* linkse(L)

s Eot o and, for alliel.n, we haveEy, E; 0.

¢ (x:Nat=3, g) .. (x:Nat, g)
@, X:NatF (f:Nat- Nat=A(y:Nafy+x, m:Nat=f(x), g)
- (f:Nat- Nat, m:Nat, g)

O

5 Linksets We now turn to checking the consistency of linkset frag-

As we discussed in the introduction, a linkset is a collection ofents with respect to each other. These checks, corresponding to
named judgments plus an interface. We now define linksets fointer-module typechecking, guarantee that the fragments form-
mally, and we describe a number of conditions that identify weling the linkset can be linked in a type-safe way.

behaved linksets. We begin with some terminology. Definition 5-4 (Inter-checked linksets)

Definition 5-1 (Linkset structure) LetL = Eq|% = E F O €1,
Consider the structute= Ey | x = E; - [, 1", where each inter-checke(l) -
Ui has the shapa : A. + intra-checkel)
Letimp(L) £ dom(Eo) be themported namesf L. « foralljkel.n x, A E, E",
LetexplL) £ {xy, ..., X} be theexported namesf L. if Ex has the fornE’, x:A, E” andx=x; thenA=A,.
Let name$L) £ imp(L) O exfL) be thenamesof L. O

LetimportgL) £ Eo be thémport environmenof L. Here we require exact agreement between the fragnesis)(
Let exportgl) £ @, x:Ay, ..., XA be theexport environ- Thjs definition may need to be refined in systems more complex
mentof L. thanF,, for example for subtyping.
O Each linkset includes an environmé>that is meant to de-
We first need to identify linksets that use names coherentlyscribe the fragments that are missing from the linkset. Therefore,
without worrying yet about any of the type information. The@ useful operation on linksets is to combine two of them to mu-
predicatdinkse(L), defined below, captures this kind of coher- tually reduce the number of missing fragments. This operation
ence, which is the minimum required to perform linking. RecallProduces a new linkset that is thergeof the two. We first need
that the predicatenyE), from Definition 3-1, asserts that the SOmMe operations on environments:

variables of are distinct. Definition 5-5 (Environment compatibility and merge)

Definition 5-2 (Linksets) + E\Xis the environment obtained frd&by removing the as-
Consider the structule= Eq | x = E; - [J; '€+, sumptions<A such thake X.
linkse(L) - + ElXis environment obtained frof by retaining only the
* enyimportgL)), andenyexportgL)) assumptiong:A such thake X.
 for alliel.n, we haveenyEy, E;) anddom(E;) O exp(L) » Compatible environment&; + E; < for all xedon(Ey)
e imp(L) n exgL) =g. n dom(Ey) we havek;(x) = Ex(X).

|

6 Thursday, October 24, 1996, 11:36 am

* We define the merge of two environmefisandE; as 6 Linking

Ei+E; 2 By, (E2\dom(Ey). A linkset L contains a set of interdependent fragments of the
O form x; = E; + [; '***". The purpose of linking is to resolve the
dependencies by making all tBeempty via substitutions.

To perform a single linking step, we find two distinct la-
beled judgments ih of the form:

Lemma 5-6 (Commutation of environment merge)
If E; + E; andE, (E1+Ey), E' - O thenE, (Ex+Ey), E'H 0.
Proof X g - aA
From Lemma 3-2 (exchange), sirégrE; is just a permu- yrxA, EFD

tation of Ex+E; under the assumptidsy + E,. . .
and we replace the second labeled judgment as follows (without

requiringA=A’):
The merge of two linksets is then defined as follows. The
imports of the two linksets are merged, except that the fragments yr EF {x-a}

mutually exported are removed from the combined imports. Formally, a linking stef. ~> L’ transforms a linksdt into
Then, the exported fragments are merged; the environment aflinksetL’ by performing a single substitution:

each fragment of a linkset is enriched with the imports of th
linkset that are exported by the other linkset.

|

abefinition 6-1 (Linking steps)
LetL=(E |(x» g FaA), .., (y=xA', EF-0), ...)and

Definition 5-7 (Linkset m_erge) _ assumdinkse{L).
LetL=Ep|xnEF O L =By X' =B F O et e Lvs (Eo|.(XxHghah), ... (y-EFD{xa)), ..)is
If linkse(L), linkse{L’), andexfL) n exgL’) =g, then: a linking step.
L+’ £ + We writeL v if there is nd_’ such that. ~ L’.
EolexpL’) + Eo'\exdlL) | + We write > for the reflexive and transitive closure of
% Eol exfL"), E - [0, €L, -
X'+ Eg lexpL), B’ F Oy < 0
O

This definition of linking step imposes a rather strict order of re-
The following lemmas show that the merge of two linksetsguctions by requiring one of the environments involved to be
preserves the propertiebnkset intra-checked and inter- empty. One could relax this restriction, and allow more flexible
checkedunder appropriate assumptions. The proofs are given ilnking orders (such generalizations are supported by Lemma 3-
Appendix. 3). However, we adopt the simpler definition.

Lemma 5-8 (Linkset merge) Linking steps preserve ttieksetandinter-checkegbroper-

If linkse(L), linkse{L’), andexp(L) n expL’) = g, ties:
thenlinkse{L+L"). Lemma 6-2 (Properties preserved by linking steps)
O (1) If linkse(L) andL ~= L’ thenlinkse{L").
(2) If inter-checke(L) andL v= L’ theninter-checke(l’).
Lemma 5-9 (Intra-checked merge)
If intra-checkedL), intra-checke(."), Proof
importgL) + importgL’), andexpL) n exfL’) =g, (1) Easy, from the definition dfnkset since theenvproperty
thenintra-checke{_+L"). is preserved by shortening environments, aathe$l) =
O namesL’).
Definition 5-10 (Linkset compatibility) (2) Considetl = Eg | = Ei F-a:A """ Suppose the reduction
L+l o is carried out on the paik ¢ g F a:A), (y = xA’, EF D).
importgL) + importgL’), imports(L) + exportgL’), Sinceinter-checke(l) by assumption, we hav&=A’, and
importgL’) + exportgL), andexpL) n exgL’) = g. sinceintra-checke.), we havesy - a:A andEg, XA, E+
0 0. By Lemma 3-3 (linking), we havky, E - [{xa}.
Therefore, we haventra-checke@.’), since Ey, E F
Lemma 5-11 (Inter-checked merge) 0{x — a} is the only new fragment i’ . Moreover, we have
If inter-checke(L), inter-checke(L’), andL + L', inter-checke(L"), since the environmentslin are the same
theninter-checke(+L"). as the ones ih except for one that becomes shorter, and the

|

Thursday, October 24, 1996, 11:36 am 7

A are the same (the substitutiofix — a} does not affect
types).
| O
However, intra-checkel) and L ~> L’ do not implyintra-

relation is also confluent, by a standard “tiling” argument.
Therefore = is confluent.

We can now define a simpli@king algorithmthat applies

checkel’). As should be expected, intra-checking of fragmentdinking steps until no longer possible. The algorithm attempts to

is not sufficient for performing linking soundly.

We state two important propertieslioking reductiongse-
quences of linking steps). (1) Theer-checkedroperty is pre-
served by reductions, meaning that linking does not violate ty
ing. (2) Reductions are confluent, meaning that linking steps can
be performed in any order.

Proposition 6-3 (Subject reduction for linking)
If inter-checke(L) andL v>> L’, theninter-checke(.").

Proof

By Lemma 6-2, thénter-checkedoroperty is preserved at
every step.
O Il
Proposition 6-4 (Linking is confluent)
Assumdinkse(L). If L v~ L; andL v L, then there exists
anlLzsuch that; v Lz andL, v La.
Proof

(1) We first show that it ~> L; andL v~ L, then eithet; =

L, or there exists ahs such that.; > Lz andL, > La.
Moreover linkse(L,), linkse(L,), andlinkse{L3).
By the assumptiotinkse{L) we know that fragment names
in L are distinct.
Consider two linking steds~> L; andL ~ L of the form: .
(Eo | ...,(X1 Hg aj_ZA]_), . (y]_ HXeA, Bl Dl),)

v (Eg|...,(xam gt aiAy), .., V1= Er b Oi{xg — &}), ...) .
(Eo | ...,(X2 Hg a2:A2), en (y2 HX A B Dz),)

v (BEg| ..o+ g @A), .oy (Y2r Exk O X0 a2}), ...)
By Lemma 6-2 we haviinkse(L;) andlinkse(L,). Let us
consider all possible identifications xaf y1, X2, andys.
We havexuzyi, Xo2Y», X12Y», andxzy;, because of the shape
of the associated environments.
If y1=y» we also have;=x,, by the shape of the associated
environments. Then we trivially hatg = L.
If ya#y, (and eithex;=x, or X;#x), the two linking steps do
not interfere since they affect distinct fragments, and we can
trivially find an L3 (containing they; fragment from; and
they, fragment from._,) such that; v Lz andL, v L3. By
Lemma 6-2 we havinkse(Ls).

From (1) we can easily show that the reflexive closufe
of v isconfluent if L ~R L; andL ~>R L, then there exists
anlLs such that.; ~>R Lz andL, ~R Lz. (Moreover link-
se(L;) forie{1,2,3}). The transitive closure of a confluent

)

bring the linkset into thinked state, where the environments of
all the fragments are empty.

pAIgorithm 6-5 (Link)

Assuminglinkse(L), the algorithmLink with inputL pro-
duces an outpyt’, r) (if it terminates) wheree{success
failure}. The algorithm iterates from the initiat
If L v, then
if linkedL) then exit withL, success
else exit withL, failure).
Else, choose any linking stép~ L’,
setL :=L’, and repeat.

We can show that the linking algorithm terminates, and that

it is sound and complete with respect to linking reductions. We
also obtain that linking can be performed soundlyirter-
checkedinksets.

Proposition 6-6 (Link properties)

Termination. If linkse{L), then the algorithnink termi-
nates over the inplt

Compatibility.If linkse{L), linkse{L’), L + L', andLink(L)
terminates witiL", r), thenL” = L’.

Reduction Soundnes#. linkse{(L) andLink(L) terminates
with (L', r), thenL v L.

Reduction Completenest. linkse(L), L v> L’, andL’
v, thenLink(L) = (L’, r) with re{successfailure}.
Linking Soundness.If inter-checke(L) then Link(L) =
(L', r) for somel’ andr, andinter-checke(l’).

Proof

Termination. The algorithm performs a finite number of itera-

tions, because at every iteration either the length of an envi-
ronment is reduced or the algorithm exits.

Compatibility.Linking steps preserve the setsport{L) and

exportgL). Therefore compatibility is preserved bink.

Reduction SoundnessThis follows by definition ofLink. At

each step of the iteration theksetproperty is preserved by
Lemma 6-2.

Reduction Completeneskink(L) terminates; assume it produc-

es(L”,r). By soundnesg, v>> L" . By confluence, there ex-
ists anLg such that’ v Lo andL” v Lo. However,L’
v+, by assumption, hence we must hhve L,. Moreover,

L" ~, by the exit condition of the algorithm, hence we
must havel” = Ly. Thereforel.” = L'.

8 Thursday, October 24, 1996, 11:36 am

Linking SoundnessBy Termination and Reduction Soundness Theorem 7-3 (Separate compilation)

we obtainL v~== L’. Then, by Proposition 6-3 we obtaim
ter-checke(l").

O

7 Modules as Linksets

In this section we consider the module systentfoof section

4, and we prove safe-linking properties for it. A binding, like a
linkset, is a collection of fragments. Therefore, it is natural to
compile bindings to linksets. For example, the binding judg-
ment:

@)

@, X:NatF (f:Nat- Nat=A(y:Nafy+x, m:Nat=f(x), g)
~ (f:Nat- Nat, m:Nat, g)

can be translated to the following linkset, where the environment
of the binding judgmenig(x:Naf) becomes the interface of the (2)
linkset:

@, X:Nat |
f= g A(y:Naty+x : Nat- Nat,
m+ g, f:Nat— NatF f(x) : Nat O

The general form of the translation of bindings to linksgts,
is given by the following definition.

Definition 7-1 (Compilation of a binding)
(E-d.S & E|(@-d.9°
(E-g.g)° & emptyfragment list
(EF (xA=a,d) .. (xA, 9)° 2

x- EF aA, (E, xAkd .. S)°

|
The following lemma details the correspondence between a

binding judgment and its corresponding linkset. (Note: we con-D

fuse signatures with environments.)

Lemma 7-2 (Properties of compilation)
If L=¢EFd.. S)thenimportgL) = E andexportglL) =S

Proof

If EF d .. Stheninter-checke((E d ..).

Proof

The translatiofE d .. S) produces a structure of the shape
L=E|x+~EF 0. We havelom(S) = don{exportgL))
= exfL), anddom(E) = dom(importgL)) =imp(L).

We first showlinkse{L) andintra-checkelL) by checking
the necessary conditions. We have thgtortgL) = E, and
sinceE+d .. S we haveE F ¢ andenyE). SinceexportgL)
=SandEF d.. S we haveen(S). By induction on the der-
ivation ofEF d . S for alliel.n, we haveE, E; -0, and
enyE, Ej). By construction, each; is a prefix ofS hence
dom(E;)) O dom(S = expL). By construction,domE) n
dom(S) =g; that is,imp(L) n exgL) = g.

To show thatnter-checke(l), we note that, by the defini-
tion of {(—)°, every time an assertiorA is added to an envi-
ronment, a fragment of the fom E’ - a:A is added to the
linkset.

The second important property of separate compilation is
that two well-typed modules with compatible interfaces can be
safely compiled and merged. For this, we first need to define the
notion of compatibility of signature and binding judgments:

Definition 7-4 (Signature and binding compatibility)

(EF9=(E'FS) 2

E+E',E+ S, E' + S anddon(S n domS’) = 4.
(EF9=+(EFD.-.S) &2 EF9=EFS)
(EFd.9+(EFS) 2 EF9=+(E'FS)
(EFd.9=+((EFd.S) &2 EF9+(EFS)

Lemma 7-5 (Compatibility under compilation)

AssumeErd.. 9+ (E'+d .. S).
Then(EFd.-.S+(E Fd .. SY).

Proof

Clearly,import§(EFd.. S)) =import{E | (g d .. §°) =E.

If L=E|U, letexportgU) £ exportgL). We prove that it)
= (E'Fd' .. S")° thenexportgU) = S’, by induction on the
translation{fE’' - d’ .. S")°.

Case(E' Fg .. g)°. We haveU = (E' - ¢ . g)° = empty frag-
ment list Hence gxportgU) = exportdE |U) =g =S’

Case(E’' F (x:A=a,d") .. (x:A, S"))°. We haveU = x+~ E' | |
aA, U andV’ =(E’',xAFd" . S")°. By induction hypoth-
esis we havexportgU’) =S”. HencegxportgU) =x:A, S”.

O

By definition 7-4, EFd .. § + (E' Fd .. S) implies E+
9+ (EFS),andhenc&+E,E+S' E + S anddom(S
n domS) =g¢g. TakeL=(E+d..SandL’' =¢E' +d .
S’). By Lemma 7-2importgL) + importgL’), importgL) +
exportgl’), exportglL) + importgL’), andexdL) n exfdL’)
= g. Therefore, by Definition 5-1Q, + L.

We now show that compatibility of signatures is a sufficient con-
dition for the safe merge of separately compiled modules:

Theorem 7-6 (Separate compilation and merge)

We can now state the first important property of separate
compilation: well-typed modules are compiled to well-typed
linksets.

AssumeEFd..SE'Fd .S,and EF S+ (E'FS).
Then,inter-checke({E+ d.. S+(E’' - d’ .. S)).

Thursday, October 24, 1996, 11:37 am 9

Proof

valid(M) assumption
LetL=(EFd.S)andL’ =(E'+d .. S’). By Theorem 7- [J inter-checke{M)) by (Compilation)
3 we haventer-checke(lL) andinter-checkel’). Since E 0 inter-checkedink(¢{M})) by (Linking) (1)

FS+(E'FS), wealsohaveH+-d.. S+ (E'Hd .. S) by

Definition 7-4. By Lemma 7-5 we obtain+ L’. Therefore, Furthermore, the following derivation shows that two separately

by Lemma 5-11 we havater-checke¢L+L’). compiled compatible valid modulésandM’, one of which has
been partially linked, can be safely linked together. That is, that

= inter-checkedink(link((Mp)+GM'3)) holds:

Note that the linking ofE*d . S)+(E' I d’ .. S’) may still pro-) ’)

ducefailure, because cyclic dependencies may be present b¥/id(M’) assumption

tweenE+d - SandE' +d’ - S O inter-checkeM'}) by (Compilation) 2
valid(M), valid(M’), M + M’ assumptions

8 Summary M) (M) P

0 (M) = M’) by (Compil. compat.) 3)
We can summarize our main definitions and results by recasting

them as an inference system for establishing the soundness of kek({M}) + {M’) by (1), (2), (3), (Linking compat.) (4)
guences of compilation and linking steps.

In the following inference rule$) is a module represented inter-checke@ink(¢Mp)+{M'D) by (1), (2), (4), (Merge)
by a binding judgmerE F d . S andL is a linkset{M} is the O inter-checke@ink(link({M})+{M’})) by (Linking)
compilation of a module to a linkset. Bglid(M) we mean that
M is derivable (type-consistentyl + M’ is type-compatibility
between modules (or their interfaces). iBier-checke(l) we
mean that is type-consistent. + L’ is type-compatibility and
L + L’ is merging of linksets. Bink(L) =L’ we mean that the

Thus, inference systems such as the one outlined here can be
used to check the validity of complex sequences of compilation
and linking steps, at a reasonable level of abstraction.

linking algorithmLink(L) yields(L’, r) wherer is successrfail- 9 Conclusions
ure. The relations indicated byare symmetric. The linking process, once obscure and undocumented, is becom-
Separate compilation inference system ing increasingly visible and sophisticated. In some instances, it
T 1 is becoming part of language semantics.
(Compilation) (Theorem 7-3) We suggest that linking and separate compilation should be
valid(M) seriously taken into account when designing a language and
inter-checkeM?)) module system. This sentence may seem a truism, but these is-
sues have been surprisingly under-emphasized in the technical
(Compilation compatibility) (Lemma 7-5) literature. We have shown that linking can be given a technical
validM) ~ validM') M =M’ content. We have formalized linking via linksets, and we have
formalized separate compilation as the ability to translate mod-
(MD +¢M) ules separately to linksets that can be safely linked. The general

intuition is to regard linking as the repeated application of type-
preserving substitutions.
We have studied a simplistic module system. It should be

(Linking) (Proposition 6-6)
inter-checke(L)

inter-checkedink(L)) possible to use the same basic ideas to explore other module
mechanisms, hopefully more realistic ones. Many directions of
(Linking compatibility) (Proposition 6-6) further work are possible, including the followingAkernative
inter-checke(L) inter-checke@L’) L+L’ linking reductions and algorithms.Linking algorithms that
link(L) = L handle mutual dependencies\ more realistic linking process
that does not cause code expansion or loss of module identity (by
(Merge) (Lemma 5-11) using explicit substitutions [2]).€onvenient naming of module

interfaces, and support for the dot notation [#lexible signa-
ture matching and subtypingLmnking and separate compilation
inter-checke(L+L") for the polymorphid\-calculus,F,, with the aim of covering the
' ' modularization features of Modula-2.Design of advanced
From these rules, we can show that a separately compiléfodule systems that are nonetheless able to support separate
valid moduleM can be safely partially linked. That is, tiater- ~ compilation [3, 13]. Study of dynamic linking.
checkedink({M})) holds:

inter-checke(l) inter-checke(l’) L~+L’

10 Thursday, October 24, 1996, 11:37 am

Acknowledgments

Proof

The anonymous referees provided valuable suggestions and crit- LetL = Ey |x = E F 0 '“*" andL’ = Ey' | X' = E' F O
icism.

Appendix

Lemma 5-8

If linkse(L), linkse{L’), andexpL) n exgL’) = g, then
linkse(L+L").

Proof

1)

)

®)

(4)

®)

|

LetL=Ey|%~EF 0 € "andL’ = Ey |x' = E' F)
iel.n We verify the conditions require Hinkse(L+L’),
from Definition 5-2.

From enyEg) and en|Ey') we haveenyEoj\exdLl’) +
Eq'\exfL)), by definition of +. That issn(importgL+L")).

Since thex are distinct, and the’ are distinct, and because
of the assumptioaxgL) n exgL’) =g, we have that all the
X, X' are distinct. That ignyexportgL+L")).

Sincedom(E’) O exgL’) and dom(E;) O expL), we have
that dom(Egl exdL’), E;) = dom(Eglexg(L’)) O dom(E;) O
expL’) O exglL) = exgL+L"). Similarly, dom(Eg exp(L),
E’) O exdL+L").

We haveimp(L+L") = dom(Eg\exgL’) + Eg'\expL))
(imp(L)—exdL’)) O (imp(L’)—ex[dL)), and exgL+L’) =
exdL) O exdL’). By assumption, we havwap(L) n exgL)
=g andimp(L’) n exgL’) = g. Now, (mp(L)-exfL’)) n
exdL) = ¢ and (mp(L)—exdL’)) n exdL’) = g, therefore
(imp(L)-exdL’)) n (explL) O expgL’)) = g. Similarly, (mp
(L")—expL)) n (expL) O exfdL")) =¢. Hence (imp(L)—exp
(L)) O (imp(L")—ex[dL))) n (exgL) O exgL’)) = g. That
is, imp(L+L") n exgL+L’) =g.
We need to show that:
enVEo\expL’) + Eg'\exf(L), Eol expL’), E)
enVEp\exp(L’) + Eg'\exf(L), Eo' lexqL), E)
From the assumptioren\Ey, E;) andenVEy', Ej’) we triv-
ially have en(EglexplL’), E) and en(Egy lexfL), E).
Moreover, case (1) showesEo\exdL’) + Eg'\exdL)). So,
we are left to show thadlomEg\exgL’) + Eo'\exfL)) =
imp(L+L’) is disjoint from bothdom(EqlexdL’), E) and
don(Ey lexglL), E;). Now, case (3) shows that the latter
two are included irexgL+L"), and case (4) shows that
imp(L+L") n exgL+L") = ¢g. Therefore, we are done.

Lemma 5-9

If intra-checke(L), intra-checke(l’),
importgL) + importgL"), andexgL) n exgL’) =g,
thenintra-checke@.+L").

Thursday, October 24, 1996, 11:37 am

@)
)

®)

iel.n’

By Lemma 5-8, we haviinkse(L+L").
We need to show that:
Eo\exp(L’) + Eo'\exf(L), EolexdL’), Ei - O
By Lemma 3-2 (implied judgments) we hakgt ¢ and
Eq' F ¢, from which:
Eo\exp(L’), (Eo'\expgL))\dom(Eg\exdL)) - o
As in Lemma 5-8(5), sincdom((Eq'\exg(L))\dom(Eo\ex(
L")) O dom(Eg\exfL’) + Eq'\exp(L)):
dom((Ey’ \expL))\dom(Eg\exgL")) n
donm(EqlexplL’), E) =g
By Lemma 3-2 (exchange), frol, E; F0J:
Eo\expL'), Eolexgl’), Ei -0
By Lemma 3-2 (weakening), from the previous three re-
sults:
Eo\exp(L"), (Eo'\exp(L))\dom(Eq\exf(L’)), Eol exp(L’),
EF 0
This is the same as:
Eo\exdL’) + Eg'\exfL), EolexpL’), Ei - 0
We need to show also that:
Eo\exp(L') + Eo'\expL), Eo texfL), E’ + O
Or equivalently, by Lemma 5-6, sinémportgL) + im-
portgL’), that:
Eo'\exp(L) + Eo\expL’), Eo' texfL), E’ + O
By Lemma 3-2 (implied judgments) we heaug- ¢ andEy’
F o, from which:
Eo'\exfdL), (Eo\exg L')\dom(Eg'\exfL)) - ¢
As in Lemma 5-8(5), sincgom((Eo\exp(L"))\dom(Ey'\ex(
L)) O dom(Eg\exp(L’) + Eg'\exfL)):
dom((Eo\expL’))\dom(Eq \exf(L)) n
dom(Eq lexplL), E’) =g
By Lemma 3-2 (exchange), froly', E/' F0":
Eo'\exfL), Eo' lexdL), B FO;
By Lemma 3-2 (weakening), from the previous three re-
sults:
Eo'\exf(L), (Eo\exp(L"))\dom(Eg' \exp(L)), Eo' lexpL),
E' FOy
i.e. By\expL) + Eg\exp(L’), Eo’ Fexp(L), E' 00
By Lemma 5-6, sincémportgL) + importgL’) we con-
clude:
Eo\exp(L') + Eo'\expL), Eo' lexfL), E’ + O

11

Lemma 5-11

Assumeinter-checke(l.), inter-checke(lL’),
importgL) + importgL"), importgL) + exportgL’),
importgL") + exportgL), andexgL) n exgL") = g.
Theninter-checke(L+L").

Proof

LetL =Ep|x = E F O " andL’ =

iel.n’

EO, |Xi, - Ei, [Di’

(1) By Lemma 5-9, we haviatra-checke@_+L").

(2) We have the following fragments fh#L’:

|

x = EolexgL’), E - ['€,

%' = Eglexpl), B F Oy et
By assumption, we know that:
1) If E; has the fornF, x:A, G then there exists ja(since
dom(Ej) O exfL)) with x=x; andA=A,.
2) If B has the fornk’, x":A’, G’ then there existsjgsince
dom(E") O expL’)) with x'=x" andA’=A;.
We need to show that for any assumptigh appearing in
EolexL'), E or EglexfL), E/, if there is a fragment
namedzin L+L’, it has typeC.
For any assumption i, andE;’ the hypotheses apply.
For an assumptiorA in Eql exg{L’), we have thaEy=im-
portgL) + exportgL’). Hencex:A is in exportglL’), which
means that there is aji=x with A=A,
For an assumptior’:A’ in Ey lexpL), we have thaEy =
importgL’) + exportgL). Hencex':A’ is in exportgl),
which means that there is gegex’ with A=A’

References

(1]

(2]

(3]

(4]

12

Abadi, M., J.-J. Levy, and B. Lampsoialysis and caching

of dependenciesProc. 1996 ACM International Conference
on Functional Programming33-91. 1996.

Abadi, M., L. Cardelli, P.-L. Curien, and J.-J. LéBxplicit
substitutions. Proc. 17th Annual ACM Symposium on Princi-
ples of Programming Language990.

Appel, AW. and D.B. MacQueefeparate compilation for
Standard ML. Proc. 1994 ACM Conf. on Programming Lan-

5]

[6]

[7]

(8]

9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

guage Design and Implementation, (ACM SIGPLAN Notices

vol. 29, number 6§)13-23, June 1994,

Burstall, R.M.,Programming with modules as typed func-
tional programming. Proc. International Conference on 5th
Generation Computing Systeni®kyo. 1984.

[21]

Cardelli, L., Typeful programming. In Formal Description
of Programming Concept£.J. Neuhold and M. Paul, ed.
Springer-Verlag. 431-507. 1991.

Cardelli, L. and X. LeroyAbstract types and the dot nota-
tion. Proc. Programming Concepts and Methpd39-504.
North Holland. 1990.

Chambers, C. and G.T. Leavefgpechecking and modules
for multi-methods. ACM Transactions on Programming
Languages and Systerh#6), 805-843. 1995.

Cook, W.R.,A proposal for making Eiffel type-safe Proc.
European Conference of Object-Oriented Programmbiy
72.1989.

Dean, D., Personal communication. July 1996.

Griswold, D.et al, Fundamental flaw in Java library dis-
tribution scheme. comp.lang.java thread, November 1995.
Harper, R. and M. LillibridgeA type-theoretic approach to
higher-order modules with sharing Proc. 21st Annual ACM
Symposium on Principles of Programming Languadé@s-
137, 1994.

Ichbiah, J., J.G.P. Barnes, J.C. Heliard, B. Krieg-Bruecker, O.
Roubine, and B.A. Wichman®ationale for the design of

the ADA programming language ACM SIGPLAN Notices
14(6), 1979.

Leroy, X.,Manifest types, modules, and separate compila-
tion. Proc. 21st ACM Symposium on Principles of Program-
ming Languagesl09-122. 1994.

Leroy, X.,A modular module systemResearch report 2866
INRIA. April 1996.

MacQueen, D.B.Using dependent types to express modu-
lar structure . Proc. 13th Annual ACM Symposium on Princi-
ples of Programming Languages. 277-28836.

Meyer, B.,Typing issues in object-oriented programming
Invited address, ACM Conference on Object Oriented Pro-
gramming Systems, Languages, and Applicati®$5. Inter-
active Software Engineering Inc. 1995.

Milner, R., M. Tofte, and R. Harpefhe definition of Stan-
dard ML . MIT Press. 1989.

Nelson, G., ed.Systems programming with Modula-3
Prentice Hall. 1991.

Parnas, D.L.On the criteria to be used in decomposing sys-
tems into modules Communications of the ACNI5(12),
1053-1058. 1972.

Schaffert, C., T. Cooper, B. Bullis, M. Kilian, and C. Wilpolt,
An introduction to Trellis/Owl . Proc. ACM Conference on
Object Oriented Programming Systems, Languages, and Ap-
plications 9-16. 1986.

Shao, Z. and A.W. AppelSmartest recompilation Proc.

20th Annual ACM Symposium on Principles of Programming
Languages439-450. 1993.

Thursday, October 24, 1996, 11:37 am

