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Abstract

Background

Precise description of the dynamics of biological processes woallleethe mathematical

analysis and computational simulation of complex biological phenomanguhges such

Chemical Reaction Networks and Process Algebras cater for thdededescription of
interactions among individuals and for the simulation and analysiasofirey behaviors of

populations. However, often knowledge of such interactions is lacking avadable. Ye

complete oblivion to the environment would make the description of any hialqgiocess

vacuous. Here we present a language for describing population dgniduaii abstracts aw
detailed interaction among individuals, yet captures in broad thensffect of the changirn
environment, based on environment-dependent Stochastic Tree GrammE®. (Sis
comprised of a set of stochastic tree grammar transition, nulesh are context-free and
such abstract away specific interactions among individuals. ificansule probabilities an
rates, however, can depend on global parameters such as populatioersezatign coun
and elapsed time.

Results

We show that eSTGs conveniently describe population dynamicsl@plmlevels including

cellular dynamics, tissue development and niches of organisms. Notablyshow the

utilization of eSTG for cases in which the dynamics is &gdl by environmental facto
which affect the fate and rate of decisions of the differentiepeeSTGs are linea
grammars, in the sense that execution of an eSTG program gengrateorrespondin
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lineage trees, which can be used to analyze the evolutionary and devdkigmstory of the
biological system under investigation. These lineage trees coategpresentation of the
entire events history of the system, including the dynamaislél to the existing as well ps
to the extinct individuals.

Conclusions

We conclude that our suggested formalism can be used to easiifysgéenulate and
analyze complex biological systems, and supports modular descripti@mtabfbiological
dynamics that can be later used as “black boxes” in a lapgre, thus enabling a gradpal
and hierarchical definition and simulation of complex biologicalesyst The simple, yét
robust formalism enables to target a broad class of stocligsi@nic behaviors, especially
those that can be modeled using global environmental feedback reguéher than diregt
interaction between individuals.

Background

In recent years there has been a great interest in modelirgjnamiéting various aspects of
population dynamics in biological and ecological systems [1-4]. Thereasing
computational resources along with a deeper understanding of biolagidaécological
phenomena have led to the development of many languages for descrililygjng and
simulating concurrent stochastic processes. Many such langusepesfy Markovian
dynamics and differ by level of abstraction, ease and complexithe description and
execution efficiency [5]. Two widely used formalisms areedda®n Chemical Reaction
Networks (CRN) [6] and stochastic Process Algebras (PA) [7].

CRNs were originally used to describe chemical systémSRN description consists of a
finite set of reactions acting on a finite number of speciashEeaction specifies the identity
and stoichiometry of the reactants and products along with acastaot. Many processes
can be described using CRNs, for example, Predator-Prey model€€dl8}lar cascade
pathways [9], Cancer progression [10], Epidemics dynamics [11], any otlhers [1]. Each
of these processes consists of a continuous interaction betwesgrduatispecies (the
reactants) that occurs at a certain rate and produces a graheroihdividuals (the products,
which may be empty) that can be of the same (autocatalytiof different type. The
description of dynamical systems using CRN is relativelyplnand can be used both for
analytical solving and simulations. However, this approach negteatogical aspects of the
described systems by treating each object (reactant or praiie)simple entity, which
ignores its environmental context and structure. For example, mreoigcular objects
maintain their overall identity while changing in specific iatites, such as chemical
modification or location. When using a CRN abstraction such molecalesot retain
identity while changing state.

PAs, on the other hand, are a family of mathematical formaligrats were originally
developed to model concurrent computer systems. They enable thectabstrand
specification of communication and synchronization between a colteofi processes by
passing messages between them. One of the most well studiesdtifed -calculus, which
has been shown to be very useful in describing a range of bidlegst@ms [7,12]. The
language consists of processes that are mapped to real-wadtspbnd channels, which are
mapped to communications and interactions between the different oBjaatgque feature



of ther -calculus allows to dynamically communicate new channels peatwe processes
(this is termednobility), which enables the objects to keep their identity while chanpaig t
internal states or interactions with other objects. This feasureore compatible with real
biological and ecological scenarios and fits well to the waythugk and observe these
processes. It also allows one to abstract and specify the thgisma more accurate fashion.
It has also been shown that this abstraction can be treated eseeutable computer
program, allowing to stochastically simulate any specified model [13].

Many tools have been developed in order to allow and simplify the ussatbfematical
modeling for the life-science community, and each one hasetsgsirs and weaknesses [14-
16]. There is no single formalism that has all the required fstand choosing the
appropriate one depends on the specific goals and resources of thermodelgoal in this
work is to develop and formulate a simpler and practical tool tmtatmg and simulating the
behavior and interaction of populations. We do so by extending the notiooocbiaStic Tree
Grammar (STG) [17] by incorporating both rates and probabilibethe transition rules.
These can be dynamically updated by defining them as funaifdhe system’s state, which
includes global values such as current population size, generation calapsed time. In
addition, we extend the system by allowing each individual to holdwts internal states
which can change through inheritance. We later discuss implamentaf stochastic
simulation and the relation to Ordinary Differential Equations (ODE).

A prominent feature of the language is that it enables tchastically produce possible
lineage trees corresponding to single executions. These lineagectitain a representation
of the entire events history of the process, including the dynahatded to the existing as
well as to the extinct individuals. As opposed to standard approachesutpat only the
population size dynamics, our implementation also outputs the correspoimeéiagel trees,
which can be used to analyze the evolutionary and developmental history of the process.

Recently, Vaughan et al. [16] presented the usage of CRNeeagyd grammars and used
them to simulate phylogenetic trees. Although they enable to sgpgsisible genealogies
based on the defined reaction rules, they do not allow the specifieatibanalysis of more
complex behaviors such as feedback onto the dynamic rates and generatliphepieeties.

Throughout the paper, we demonstrate the usability of the languapeedgnting a wide
range of examples that can be modeled and simulated using thiscdmpprba examples
show that the language can provide simple descriptions of sy$temsvarious domains.

Example parameter values were taken from the literature at@lable or chosen arbitrarily
in order to simplify the presentation.

Results and discussion

eSTG programs

Following is an example of an eSTG program for stem-cell differentiat@jn [



0 18vents
day

sc - {sC sg . |{ Diff Diff .

event
day

Diff — {Diff ,Diff } . {4}

0.51

In this exampleSC (stem cells) divide symmetrically 0.1 times per day, whdH-renewing
or differentiating with the same probability (50%), dbidf (differentiated cells) can once a
day either proliferate (with probability 49%) or die (with probability 51%).

Alternatively, one can define an average time to evdanstead of a rate, which can be

. . .1 .
translated interchangeably into a rate usmgf. The above rules are then written:

10 days

SC - {SC S¢0_5|{ Diff Dif}o.s
Diff - {Diff Diff }._[{g. .

An execution of an eSTG program proceeds through the stochasticatppl of its
transition rules on its state. An example execution of the progmaran initial 10SCand 5
Diff, can be summarized by a cell lineage tree and population spgesgihown in Figure 1B
and Figure 1C. In addition to single executions, eSTG can also béousdtaining overall
population statistics, for example, to calculate the average p@pukatie over time (Figure
1D) and the distribution of clone sizes (Figure 1E).

Figure 1 An example of the stem cell differentiation program executionThe program

was executed up to simulation time 100 dé4$.Schematic representation of the eSTG rules
(without rates and probabilitiegB) Population size over time of a specific execut{@).

Cell lineage tree of a specific execution (only one cell lineage tree tut ofiginatingSCs
andDiffs is shown)(D) Average population size over time (calculated from 1000 stochastic
executions)(E) Clone size distribution, which is the final population size derived from each
initiating individual (calculated from 1000 stochastic executions).

Following is another example of an eSTG program for the Luria—Delbriick Model [19]:

0 levents
day

sc - {sG sk |{ Diff Diff,.

levent
day

Diff — {Diff ,Diff } ,, I{ ¢}

0.51

In this model, wild-type bacteria\(T) are randomly mutated (in the absence of selection) to
form a resistant bacteriaM{UT), thus the population size of mutated bacteria varies
dramatically and is dependent on the timing in which the mutatiohd@sened. Figure 2B
and Figure 2C show specific executions of typical and rare knéags. Averaging over
many executions can yield average population size (Figure 2D) and size distribution
(Figure 2E).



Figure 2 An example of the Luria—Delbriick program execution.The program was
executed from WT to 100 cells(A) Schematic representation of the eSTG ry8}.

Typical lineage tree execution where mutations do not occur é@jlRare lineage tree
execution where a mutation occurs eaf3) Average population size over time (calculated
from 1000 stochastic execution@}) Clone size distribution (calculated from 1000
stochastic executions). In the rare events where the mutation happens dalirieage, the
clone size of the mutated population is large.

Internal states

We define internal states for each species as a vector ebkeithat can change, either
deterministically or stochastically for each individual, wetrery execution of a rule. Internal
states can be used to model inherited attributes, such as mutatsafsiance accumulation,

or record historical events such as the number of generations, number of
symmetrical/asymmetrical divisions, or time since historgsants. We thus extend the basic
rules defined above to include internal states which are functidhe pfedecessor’s internal
states. For example, extending the previous stem-cell differentiatiorriscena

10 days

SC(m = Xys) —— {SC (m = fms(fms)) ,SC (m = fMS(J_éMS))}O.S |

{Dif f (MS = fus(Rus)), Dif f((MS = fus(@us)]},
— 1lda — N
Dif f(MS = st) —B’/{Diff(MS = st(st)):Diff(MS = st(st))}0.49|{¢}o.51

In this example, we define a vectorrofariablesMs = (MS,, ...MS,,), which correspond to
the number of repeats mMicrosatellite (MS) loci in the DNA [20]. In every cell divis,
the number of MS repeats for each locus changes according ttothastic functiorfys,
which can cause either a decrease or an increase of one repeat with ipyqbii]:

X +1with probabilityg

st(X) - X —1with probabilityg

x otherwise

This simulated data can be used for example to evaluate Hie®mship betweem, the
number of MS, and the accuracy of phylogenetic reconstruction badd® dengths of the
tree (see [22,23] for details).

Another example for the use of internal states is the followingrpm, which counts the
number of generations since each differentiation event:

SC - {SC S§|{ Dift Gen1), Diff Gen1},.
lday
X -

Diff (Gen= X)  { Diff(Gere %1), Diff Ger *1)} K¢}

0.51

Figure 3 shows various distribution statistics of the interraéé &en over the population at
different time points.



Figure 3 An example of generation counter internal stateEach species of the type holds
an internal state callé@enwhich holds the number of cell divisions since the differentiation
event. The histogram of the values over the entire population can be calculatedettdiffe
time points (e.g. after 10, 50 and 100 days, showWA)n(B) and(C) respectively).

Other examples of internal states can be the counting of batesients (such as how many
symmetric vs. asymmetric divisions a cell went through) or oreas the time since a
certain event.

Probabilities and rates as functions

Population dynamics can change based on various conditions such as population siZe, interna
or external changes, and elapsed time. A common phenomenon in population dysdh@c
reaching of a homeostasis, meaning that at a certain point, the tpopdae reaches a
steady state.

A simple example is the growth of a species until reachingrget size. Consider the
following parametric rule:

A~{AA 4,

Without feedback regulation on the population size, a settipgzoi- results in an extinction
with probability 1 [24]. A simple regulation scheme is the logistadel [25]:

d_N =rN (1—EJ
dt K

whereN is the population size, is the growth rate and is the target size (also termed
carrying capacity). We can use the above parametriGe8IE to model a logistic population
growth by solving:

i—f = i—': (we useéA as the population size of the spedegs

dA N
- = Arp —Ar(1—-p)=rN(1 _E)

For simplicity,r in the eSTG rule is the same astthe the logistic model.

We then get:

N
2p-1=1-—
g K

=1-—
P 2K

Figure 4B and Figure 4C show the resulting dynamics (ptpo size and lineage tree)
starting from a singl@ of the following program (settini§ = 100):



Figure 4 An example of dynamic population growth.An example of a simple proliferation
with fate probabilities and rates that are functions of the pbpulsize.(A) Schematic
representation of the eSTG ruléB) Population size over time of a logistic growth starting
from a single instanc€C) The corresponding lineage representation of the specific
execution(D) Population size over time of a production-removal growttistafrom a
single instancgE) The corresponding lineage representation of the specdmuérn.

A-{AR {4,
A

=1-—
P 200

In a different scenario, the growth is also regdaby the rate but is leading to the same
steady state. Using the following production-remi@guation [26]:

dN:

—=pB-aN
dt

we can model the dynamics using the parametric e§T€blving:

?j—'?: Arp- Ar(1- p)=B-aN
_ B-aA

“(2p-)A

The steady state of this systen%iand for simplicity we limitp to be either 0 or 1, and set
=1, = 100. We thus define the following eSTG program:

A-{AA 4.,
.- 100-A
(2p-DA
_[1if A<100
"{o if A>100

Here, the rate is inversely dependent on the ptpulaize and the population is growing
until reaching the steady state that is maintaing@ feedback op, which causes either a
proliferation = 1) or death = 0). Figure 4D and Figure 4E show the resultiggasnics
starting from a singlé.

Another interesting scenario is described in [2¥here an optimal development of the

intestinal crypts is analysed. In the first staggem-cells are quickly amplified using self-

replicating symmetric divisions, and after reachitige target size they differentiate

asymmetrically into stem-cells and differentiatedisc We can describe this scenario using
the following rules:



scri{ sC sE I sc Dif,

Diff . {Diff ,Diff } [{c}

P2 ow
pl :1|]Jnt|”:|| SCIFir’r‘eztzl SClTarget
0= OLUNHI ] Diff |y gere =1 DIff |y 1

where Xlrime=1 iS the population size of speciést timet and Klrargetis the target population
size of X. Although not described in [27], we continue tleergario with homeostasis by
solving:

SC"‘%:: SGr Ip Sc'_l Sgarget

dDiff

Diff + = Diff +r,(1-p,)SC+ r,p,Diff - r,(1- p,) Diff

:| Diff lrarget

We thus extend the program with the following:

_ |SC lrarget - | SCl i i
= after | Diff F|Diff },4,
B g
Diff }age — IDiff |-, BC [ E p)+7, Piff
b, :| lrarget | 2|r a’ﬁff |( pl) 2 D llfter | Diff |:|D|ff Jrarget
2

Figure 5 shows simulation results of a specificcexien.

Figure 5 Rules for optimal development of the crypt.Simulation results of the rules for
optimal development of the crypt (see main textie Tules are executed with=1.07,r, =

1, BCime=0= 1, Piff frime=0= 0, BCrarget = 10, Piff |rarget = 50 (values are taken from
[27]). Shown are execution results for two time daws starting with on8C (A) Schematic
representation of the eSTG rul@) Population size for simulation time of 10 dayseTh
beginning of the process is shown where the svidettveen ang, = 0 occurs at around time
. (C) The corresponding lineage representation of teeip execution(D) Population size
for simulation time of 50 days. Shown is the honaiis phase that occurs after reaches
IDiff [rarger @t around time = 6. (E) The corresponding lineage representation of teeip
execution. It is interesting to observe the 10 efothat are maintained by the 3Gs

An example from a different regime is the pred@i@y model of Lotka-Volterra [8]. It
describes the interaction dynamics between twoispesing two ODESs:

dF;rtey: Prey( ¢ - ¢ Predatoy

9Predalor_ _pregator g - g Prey




wherec; are parameters. These equations are usuallydtadshto the following mass action
kinetic reactions:

G
Prey - 2 Prey
G
Predator+ Prey- 2 Predato

[
Predator- ¢

Since eSTG has only context-free transitions, weved the second reaction into two
unimolecular reactions while preserving tH& @der rate (see Methods for a general method
to convert CRNs to unimolecular reactions whilesprging the same underlined ODES). The
new reactions and their rates are described ineTablWe note that although these new
reactions are not identical to the original onégytare still in agreement with the ODEs
described above. The model can be described ubiegidlowing parameterized eSTG
program:

Table 1Lotka-Volterra unimolecular representation

Reaction Global Rate

Prey - 2 Prey c [Prey

Prey - ¢ ¢, (PreyCPredatol
Predator — 2 Predatol ¢, (PreyllPredato!
Predator - ¢ c, [(Predator

T
Prey > {Prey, Pre}’}p1 [{d3}ow
T
Predator — {Predator, Predator},, |[{¢}ow
r, = ¢4 + c, * |Predator]|
T, =Cy" |Prey| + C3

b1 = T
¢ - [Prey|
Po=—"T """

L)

Figure 6 shows an example execution of the program.

Figure 6 An example execution of the Lotka-Volterra schemeAn output example of the
executed program usirg = 2, ¢, = 0.01,c3 =5, Preyrime=0= |Predatolrime=0= 900.(A)
Population size as a function of tinB) A lineage tree of one of the 900 originating preys
(C) A lineage tree of one of the 900 originating pteda Both (B) and (C) exhibit the
characteristic bottleneck phenomenon, where mosages get extinct.

The role of different feedback strategies on thetrod of organ and tissue growth can be
investigated through the rates and probabilitiescelfular decisions. Lander et al. [28]
suggest two types of feedback strategies for tHac@iry Epithelium, one on the rate of
division and the other on the probability of selirewal (while keeping a constant division



rate). They show that a feedback control onto thebability is a much more effective
strategy for steady-state robustness and rapicheegton.

The two strategies can be described using thewollpeSTG programSC — stem cellsINP
- Immediate Neuronal Precurs@RN - olfactory receptor neuron):

SC-{SC SE,[{ INPIyR,
INP > {INP INB | { ORN ORY,

ORNi{O}l

and the two feedback strategies are implementagbgting the parameters.

Strategy 1: Feedback onto the probability

p, = —E1— where is a constant.
1+g-|ORN|

Strategy 2: Feedback onto the rate:

VU1

v; = ——— whereh is a constant
1+h-|ORN|

Figure 7 shows possible executions generated tisentyvo suggested strategies.

Figure 7 Scenarios for feedback regulation(A) Schematic representation of the eSTG
rules. Left plots - Feedback regulation onto thebpbility, where population size of an
example execution, average population size oved #8@cutions and an example of a
lineage tree starting from a single are shoB)C( andD respectively). Execution started
with 10SGs, 7 = 0.506,p, = 0.5,y = 1,p;,_, = 0.942,d = 0.0138,g = 0.0449,
simulation time: 10. Right plots - Feedback regalabnto the rate, where population size of
an example execution, average population size 130 executions and an example of a
lineage tree starting from XCs are shown (E,F, and G respectively). Executiorieddavith
10SCsand 200NP, 1, = 0.128,p, = 0.5,y = 1,p;,_, = 0.495,d = 0.0372,h = 0.0734,
simulation time: 20 (values are taken from [28]).

Possible extensions

Compartments

In many cases the population moves stochasticaityden different compartments, where

each compartment corresponds to a different enviemt and different resources. Extending
the language to include compartments allows ondefine the same transition rules for

species from the same type but different ratespanbabilities, depending on the physical

location of the individual. The system’s statehisrt extended to include the population size
in each compartment. In addition to the regulanditéon rules, one also needs to define rules
for the migration of each species between eaclctwgpartments.



Individual's probabilities and rates as functions

Defining probabilities and rates for each individsaparately is not recommended due to
heavy computational requirements when implementiugh a scenario, however, an
extension of the language can support such a definiln this case we can allow the
probabilities and rates of each individual to bsoatlependent on its internal states. This
allows each individual to have a distinct stocttastilue of its probabilities and transition
rates. For example, we can define a more sophisticaredator/prey model where the
probability of reproduction is dependent on theivittial's age (or weight) which is
represented as an internal state, or define thi&guadion dynamics of a cell based on its
mutations (represented as internal states).

Conclusions

Stochastic simulation is a powerful tool to exeaomplicated modeling system for which
a closed form analytical solution is not possibiie.addition, a simulation can generate a
sample of representative scenarios that can befosdédrther analysis or as inputs to other
programs. The complexity of natural phenomena requa formal description framework
which on one hand should be rich enough to capgh&ecomplexity and dynamics of the
system and on the other hand will be compact anglsiso it can be widely used by a broad
community and could be implemented efficiently. fghare many systems that are purely
generative and derive their core results by igmpiimeractions (e.g. L-Systems [29] and
branching processes [24]). Although the assumptibnindependence enables certain
analytical techniques, it precludes the abilitymiodel processes and lineages that evolve
through complex interactions between individuald #meir environment. In order to allow
both generativity and interaction, systems suchPAsand CRN are more suitable. As
described in [3], the trend towards individual-lthsstochastic models carries many
advantages; they are easier to construct, morgivaetand can predict richer phenomena than
population level models. In addition, it is possiltb deduce population level conclusions
(such as the underlined ODEs, see Methods) fromstbehastic model. The presented
formalism does not offer a new modeling approacthersense that eSTG programs can be
translated interchangeably into other languages &ethods). Instead, the suggested eSTG
language formalism allows a simpler description apecification of complex stochastic
dynamics of individual entities. As demonstratedtbg host of examples provided, these
may include population level feedback from the entisystem’s state (either population size,
internal or external factors) onto the rates anobabilities of the different species. In
addition, eSTG, as a lineage grammar also enablesrdpresentation and analysis of
historical events including those of extinct suielges and transitional time points.
Derivation trees produced by simulations can beméxed for consistency with specific
biological hypotheses [22,30], so that eSTG modaisbe validated or falsified on the basis
of the trees that they generate.

The language can also be used as a basis fornogesnd learning of the system’s governing
rules, described in the eSTG formalism as the itiansrules and the underlying rates and
probabilities as functions of the system’s statke fjuestion of parameter inference from
biological data is an active area of study [31-34].our context, biological knowledge

inferred from experimentally-obtained trees [2238043] could be used in order to infer the
corresponding lineage grammars [17,44,45]. Thid walilow the use of computers and
computing resources in order to gain new biologioaights. This is a great challenge,



especially given noise and hidden variables, ardsigbject of our future work. We hope that
the development of theoretical models and toolghsas the one presented here, will
facilitate research in this important direction.

Methods

Stochastic simulation

eSTG programs can be naturally simulated by thékmewn Gillespie stochastic simulation
algorithm [6]. Gillespie's implementation uses thtes of all possible reactions and chooses
stochastically the next reaction by assuming thatime to the next reaction is exponentially
distributed with rate parameters correspondindp¢oréaction rates.

A rule of the form:

T
A- {51}p1|{52}pz| |{Sn—1} Pn-1 |{Sn}pn
can be converted intoseparated reaction rules:
T'D;
A—S,Vi=1..n
and thus existing implementations of the Gillesaligorithm can be used to determine the
next reaction and the time interval. Applying thegles to build the lineage tree is described

in the Operational semantics section.

The code that was used to generate the examptéssipaper will be made available as an
open source tool and is currently under prepardaopublication.

Equivalence and conversion to other languages
In this section we compare the expressivenessb&d8 4 other families:

maODE: Ordinary Differential Equations arising fronass-action kinetics.
maCRN: Chemical Reaction Networks with mass-adtiastics.

gCRN: Chemical Reaction Networks with general katetics.

U-gCRN: Unimolecular Chemical Reaction Networkshageneral rate kinetics.

PwnPE

An maCRN is a chemical reaction network where eggdction has an associated rate
constant, and where the instantaneous rate ofctioras determined by the product of the
rate constant with the instantaneous concentrat@nthe reagents. It is known that an
maCRN under that mass-action law produces a syst&DESs with a special structure, here
called an maODE system. In an maODE system eatit-hiand-side of each differential
equation for species has the form of a polynomiarahe set of species, where each
monomial with a negative sign hass a factor (raised to some non-zero power). Gselxe
each maODE determines a canonical maCRN that hasn@iODE as its kinetics. Therefore
there are canonical translations back and fortvéet maODEs and maCRNs [46].



A gCRN is instead a Chemical Reaction Network whegreh reaction has an associated rate
function from current or past system states to gharof concentrations. The instantaneous
rate of a reaction is then given immediately by rete function without further
considerations; the class of ODEs that a gCRN nemeigate depends on the class of rate
functions that are available.

A U-gCRN is a special case of a gCRN where all thactions are unimolecular. For
sufficiently powerful rate functions it is possilile have a (hominally) unimolecular reaction
depend on the concentrations of other specieshatoU-gCRN is in fact as expressive as

gCRN. For example, an maCRN reactid®B can be translated to the gCRN reaction
A
AilB where P is the instantaneous concentratior®pfind an maCRN reactich+ BSC

. [A][B] . [A]-[B]
can be translated to a gCRN reactiba B="5¢ or to two U-gCRN reactiond———C
|A]-[B
andBmo.

The family of population dynamics specificationattikan be described using basic eSTG is
equivalent to U-gCRN. A U-gCRN reacticmlB1 + .-+ B,, can be translated into an eSTG

reactiond—{B,, ..., B,}1 0, and conversely an eSTG reactivm {B11, ...}p | .. l{Br1s ...}p
1 n

can be translated into a set of U-gCRN reactifﬁ):ﬁ%BL1 + ,ArﬂBn,1 + -

The U-gCRN form of eSTGs implies that one must meleices in modelling: the main
species that are the focus of a model, and occtiveineft-hand side of productions, will be
reflected in the generated lineage trees, butianxispecies that appear only in the rate laws
will not, even when those would be considered aslem a model based on bimolecular
interactions.

Operational semantics

We will start with basic definitions for the semiastof Lineage Trees. Paths in a tree are
represented as finite sequences of natural numbers,, ..., N, € N* (star means finite
sequence, withil as the empty sequence, and as sequence conaaignatich numban in

a path represents the child of a node, starting fiwe root. Nodes in a tree are labeled by an
alphabets, = SU {0} consisting of species i6 and a distinguished symbol (the "dead" leaf).

Definition: atreeis a partial function ilN* — &, from paths irN* to label nodes in , whose
domain is non-empty and prefix-closed (that isg; | £,) defined= L(z;) defined).

Definition: A leafin a tree is a maximal path - one such th{a) is defined and there is a0
# nil where is defined. We also say thaB is a ( -labeled) leaf in it is a leaf in and.(z) =
B.

Definition: A lineage treds a tree where each pattsuch that (z) = 0 is a leaf. is the set of
such trees.

By these definitions, a tree is a non-empty sgpaihs and each node has a "unique label"
which is the pathr that leads to it. A root-only tree is a functioarh nil to some species .



Next, we use the -calculus notation for the dabni of lineage tree operators (if then we
write f = AX. b). We use the element for partially defined funmasio

1. The lineage tree with just one dead leaf:
0 = Ax.if x = nil then 0 else undef

2. The lineage tree with rodte S and childrer;, for A # 0 andn >= 0:

AL,...L )=
Ax.if x=nil then A else if x 177 then,(7) ... else if
=n,rthen |, (77) else undef

Where fom = 0,A=A() is a "live" leaf.
3. Theleaf-extensiomperatol, 7, A < (By, ... By), which is defined ifr is an -labeled live
leaf in L(L(x) =A+#0)), and , an®; ... B, € &

L,77,A< (BL,..Bn)=A x.if x=7,1then B, ...,else if
=mnthen B, else I X

For example, by the above definitions a tree waibt and with childre,, ..., B, which are

all leaves can be written as the expression , septéng a function that given the sequence
nil returns the labeC, given the sequence returns the laBeland is otherwise undefined.
Similarly, the expressiog(), nil, C < (B, ..., By) represents the trg&() where the leaf is
extended into a node with children ; this is them$ame as the tr€%Bs(), ..., Bn()).

A collection of eSTG reactions describes a wayasfegating and transforming lineage trees.
We now describe how each eSTG reaction transforiireeage tree into new lineage trees.
More precisely, since eSTG reactions are stochpstizabilistic, how each reaction produces
a measureof new lineage trees, where each new lineageisressociated with its rate of
occurrence.

Definition: A measures a function from finite tuples of lineage trdesnon-negative reals,
with operators:

d(r,(L,....L,)) = Ax.if x= (L ... ,L, thenrelse
the singleton measure, which measuresax everything else as 0;
M, +...+M_ =AXM (X +...+ M_(X)
the sum measure, with ;

L,m,B<M = Axif x= L,77,B<(L,..,L,) thenM L,.. , 1) els&



the leaf-extension measure, whey® is a leaf inL; this is a function in . This is the measure
such that any extended tree of the form for same.., L, receives the measuh(Ly, ...,
Ln).

For example C(), nil,C < (d(r,(D(,EQ))*+d(s, F() )= d(r,C(D(, EQ) d(s C B))
becauseC(D(), E()) has the shap€(), nil,C < (D(),E()) and so it receives measure , and
C(F()) has shap€&(), nil,C < (F()) and so it receives measwe

We are now ready to define the effect of a setS¥@ reactionsS on lineage trees. This is
given as aeductionrelationR between lineage trees and measures. We writeduces to
M) for (L, M) € R, whereR is defined as the smallest relation satisfyingfthiewing rule:

if Lisalineagetreeandr, BisaleafinL
and BL{ M}p ... § I\/Im}p isareactionirs (theonlyone for]

then L Lz, B< (d rOp, M)+...+ d dp, M,))
This rule prescribes, for example, how to carry adimulation of a set of eSTG reactions
given an initial lineage tree: at each step appé/rule above to all applicable reactions and

tree leaves, sum all the measures so obtainedsaandle a new lineage tree according to the
resulting measure.
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