A Semantics of Multiple Inheritance

Luca Cardelli

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

There are two major ways of structuring data in programming languages. The first and com-
mon one, used for example in Pascal, can be said to derive from standard branches of mathemat-
ics. Data is organized as cartesian products (i.e. record types), disjoint sums (i.e. unions or variant
types) and function spaces (i.e. functions and procedures).

The second method can be said to derive from biology and taxonomy. Data is organized in a
hierarchy of classes and subclasses, and data at any level of the hierarchy inherits all the attributes
of data higher up in the hierarchy. The top level of this hierarchy is usually called the class of all
"objects"; every datum is an object and every datum inherits the basic properties of objects, like
the ability to tell whether two objects are the same or not. Functions and procedures are also con-
sidered as local actions of objects, as opposed to global operations.

These different ways of structuring data have generated distinct classes of programming
languages, and induced different programming styles. Programming with taxonomically organized
data is often called object-oriented programming, and has been advocated as an effective way of
structuring programming environments, data bases, and large systems in general.

The notions of inheritance and object-oriented programming first appeared in Simula 67
[Dahl 66]. In Simula, objects are grouped into classes and classes can be organized into a subclass
hierarchy. Objects are similar to records with functions as components, and elements of a class can
appear wherever elements of the respective superclasses are expected. Subclasses inherit all the
attributes of their superclasses. In Simula, the issues are somewhat complicated by the use of
objects as coroutines, so that communication between objects can be implemented as "message-
passing” between processes.

Smalltalk [Goldberg 83] adopts and exploits the idea of inheritance, with some changes.
While stressing the message-passing paradigm, a Smalltalk object is not usually a separate process.
Message passing is just function call, although the association of message names to functions
(called metiiods) is not straightforward. With respect to Simula, Smalltalk also abandons static
scoping, to gain flexibility in interactive use, and strong typing, allowing it to implement system
introspection and to introduce the notion of meta-classes.

Inheritance can be single or multiple. In the case of single inheritance, as in Simula or
Smalltalk, the subclass hierarchy has the form of a tree, i.e. every class has a unique superclass. A
class can be sometime considered a subclass of two incompatible superclasses; then an arbitrary
decision has to be made to determine which superclass to use. This problem leads naturaily to the
idea of multiple inheritance.

Multiple inheritance occurs when an object can belong to several incomparable superclasses:
the subclass relation is no longer constrained to form a tree, but can form a dag. Multiple inheri-
tance is more elegant than simple inheritance, but more difficult to implement. So far, it has
mostly been considered in the context of type-free dynamically-scoped languages and implemented
as Lisp or Smalltalk extensions [Weinreb 81, Borning 82, Steels 83], or as part of knowledge
representation languages [Attardi 81)]. Exceptions are Galileo [Albano 83] and OBJ [Goguen 84]



52

where multiple inheritance is typechecked.

The differences between Simula, Smalltalk and other languages suggest that inheritance is the
only notion critically associated with object-oriented programming. Coroutines, message-passing,
static/dynamic scoping, typechecking and single/multiple superclasses are all fairly independent
issues. Hence, a theory of object-oriented programming should first of all focus on the meaning of
inheritance.

The aim of this paper is to present a clean semantics of multiple inheritance and to show
that, in the context of strongly-typed, statically-scoped languages, a sound typechecking algorithm
exists. Multiple inheritance is also interpreted in a broad sense: instead of being limited to objects,
it is extended in a natural way to union types and to higher-order functional types.

A clean semantics has the advantage of making clear which issues are fundamental and which
are implementation optimizations. The implementation of multiple inheritance suggested by the
semantics is very naive, but does not preclude more sophisticated implementation techniques. It
should however be emphasized that advanced implementation techniques are absolutely essential to
obtain usable systems based on inheritance [Deutsch 84].

The first part of this paper is informal, and presents the basic notations and intuitions by
means of examples. The second part is formal: it introduces a language, a semantics, a type infer-
ence system and a typechecking algorithm. The algorithm is proved sound with respect to the
inference system, and the inference system is proved sound with respect to the semantics [Milner
78].

2. Objects as Records

There are several ways of thinking of what objects are. In the pure Smalltalk-like view,
objects recall physical entities, like boxes or cars. Physical entities are unfortunately not very useful
as semantic models of objects, because they are far too complicated to describe formally.

Two simpler interpretations of objects seem to emerge from the implementations of object-
oriented languages. The first interpretation derives from Simula, where objects are essentially
records with possibly functional components. Message passing is field selection and inheritance has
to do with the number and type of fields possessed by a record.

The second interpretation derives from Lisp. An object is a function which receives a mes-
sage (a string or an atom) and dispatches on the message to select the appropriate "method". Here
message-passing is function application and inheritance has to do with the way messages are
dispatched.

In some sense these two interpretations are equivalent because records can be represented as
functions from labels (messages) to values. However, to say that objects are functions is mislead-
ing, because we must qualify that objects are functions over messages. Instead we can safely assert
that objects are records, because labels are an essential part of records.

We also want to regard objects as records for typechecking purposes. While a (character
string) message can be the result of an arbitrary computation, a record selection usually requires
the selection label to be known at compile-time. In the latter case it is possible to statically deter-
mine the set of messages supported by an object, and a compile-time typs error can be reported on
any attempt to send unsupported messages. This property is true for Simula, but has been lost in
all the succeeding languages.

We shall show how records can account for all the basic features of objects, provided that the
surrounding language is rich enough. The features we consider are multiple inheritance, message-
passing, private instance variables and the concept of "self”. The duality between records and func-
tions however remains: in our language objects are records, but in the semantics records are func-
tions.



53

3. Records
A record is a finite association of values to labels, for example:
(a = 3,b = true, c = "abc")
is a record with three fields a, b and ¢ having as values an integer 3, a boolean true and a string
"abc" respectively. The labels a, b and ¢ belong to a separate domain of labels; they are not iden-

tifiers or strings, and cannot be computed as the result of expressions. Records are unordered and
cannot contain the same label twice.

The basic operation on records is field selection, denoted by the usual dot notation:
(a=3,b=1true,c = "abc").a = 3
An expression can have one or more types; we write
eeT
to indicate that expression e has type 7.

Records have record types which are labeled sets of types with distinct labels, for example
we have:

(@a=3,b = true) : (a :int, b : bool)
In general, we can write the following informal typing rule for records:
[Rulel] if ej;:7; and .. and e,:7, then (a;= ey, .. ,a,=1¢,):(ay: Ty, .., T,)

This is the first of a series of informal rules which are only meant to capture our initial intuitions
about typing. They are not supposed to form a complete set or to be independent of each other.

There is a subtype relation on record types which corresponds to the subclass relation of
Simula and Smalltalk. For example we may define the following types:

type any =00

type object = (age: int)

type vehicle = (age: int, speed: int)

type machine = (age: int, fuel: string)

type car = (age: int, speed: int, fuel: string)

Intuitively a vehicle is an object, a machine is an object and a car is a vehicle and a machine
(and therefore an object). We say that car is a subtype of machine and vehicle; machine is a sub-
type of object; etc. In general a record type 7 is a subtype (written <) of a record type 7' if 7 has
all the fields of ', and possibly more, and the common fields of v and 7' are in the =< relation.
Moreover, all the basic types (like inz and bool) are subtypes of themselves:

[Rule2] o v=. (v a basic type)
O 1= i e TS T =2 (A1 e Gt Thnm). = (a8 1y oy @)
Let us consider a particular car (value definitions are prefixed by the keyword val):
val mycar = (age = 4, speed = 140, fuel = "gasoline")

Of course mycar: car (mycar has type car), but we might also want to assert mycar: object. To
obtain this, we say that when a value has a type 7, then it has also all the types 7’ such that 7 is a
subtype of 7'. This leads to our third informal type rule:

[Rule3] if a:7 and 1 <71’ then a:1'

If we define the function:



54

val age(x: object): int = x.age

we can meaningfully compute age(mycar) as, by [Rule3] mycar has the type required by age.
Indeed mycar has the types car, vehicle, machine, object, the empty record type and many other
ones.
When is it meaningful to apply a function to an argument? This is determined by the follow-
ing rules:
[Ruled] if f:o -7 and a:o then f(a)is meaningful, and f(a): 7
[RuleS] if f:o -7 and a:o', whereo' = o then f(a) is meaningful, and f(a): 7

[Rule5] is just a consequence of [Rule3] and [Rule4]. From [Rule3] we can deduce that a : o} than
it is certainly meaningful to compute f(a) as f: o - 7.

The conventional subclass relation is usually only defined on objects or classes. Our subtype
relation also extends naturally to functional types. Consider the function

serial_number: int - car

We can argue that serial_number returns vehicles, as all cars are vehicles. In general, all car-
valued function are also vehicle-valued functions, so that for any domain type ¢ we can say that
t = car (an appropriate domain of functions from ¢ to car) is a subtype of + - vehicle:

t = car < t->vehicle because car = vehicle

Now consider the function:

speed: vehicle = int

As all cars’ are vehicles, we can use this function to compute the speed of a car. Hence speed is
also a function from car to integer. In general every function on vehicles is also a function on
cars, and we can say that vehicle - int is a subtype of car — int:

vehicle +t < car »t because car < vehicle

Something interesting is happening here: note how the subtype relation is inverted on the left
hand side of the arrow. This happens because of the particular meaning we are giving to the -
operator, as explained formally in the following sections. We are assuming a universal value
domain V of all computable values. Every function f is a function from V to V, written
f:V —>V, where "—>" is the conventional continuous function space. By f: ¢ -t we indicate a
function f: V —> V which whenever given an element of o C V returns an element of 1 C V
(nothing is asserted about the behavior of f outside o).

Given any function f: ¢ - 7 from some domain ¢ to some codomain T, we can always con-
sider it as a function from some smaller domain ¢’ C o to some bigger codomain ' D 1. For
example a function f: vehicle > vehicle can be used in the context age(f(mycar)), where it is used
as a function f: car — object (the application f(mycar) makes sense because every car is a vehicle;
v=f(mycar) is a vehicle; hence it makes sense to compute age(v) as every vehicle is an object).

The general rule of subtyping among functional types can be expressed as follows:
[Rule6] if o'=oc and 1<+’ then o7 s o =7
As we said, the subtype relation extends to higher types. For example, the following is a

definition of a function mycar_anribute which takes any integer-valued function on cars and applies
it to my car.

val mycar_antribute(f: car — int): int = f(mycar)

We can then apply it to functions of any type which is a subtype of car —int, e.g.,
age: object = int. (Why? Because car is a subtype of object, hence object - int is a subtype of



55

car - int, [Rule6] hence (mycar_atnribute: (car = int) = int)(age: object = int) makes sense
[Rules]).

mycar_attribute (age) = 4

mycar_anribute (speed) = 140

Up to now we proceeded by assigning certain types to certain values. However the subtype
relation has a very strong intuitive flavor of inclusion of types considered as sets of objects, and we
want to justify our type assignments on semantic grounds.

Semantically we could regard the type vehicle as the set of all the records with a field age
and a field speed having the appropriate types, but then cars would not belong to the set of vehi-
cles as they have three fields while vehicles have two. To obtain the inclusion that we intuitively
expect, we must say that the type vehicle is the set of all records which have ar least two fields as
above, but may have other fields. In this sense a car is a vehicle, and the set of all cars is included
in the set of all vehicles, as we might expect. Some care is however needed to define these "sets",
and this will be done formally in the following sections.

Record types can have a large number of fields, hence we need some notation for quickly
defining a subtype of some record type, without having to list again all the fields of the record
type. The following three sets of definitions are equivalent:

type object = (age: int)
type vehicle (age: int, speed: int)
type machine (age: int, fuel: string)

type car = (age: int, speed: int, fuel: string)
type object = (age: int)

type vehicle = object and (speed: int)

type machine = object and (fuel: string)

type car = vehicle and machine

type object = (age: int)

type car = object and (speed: int, fuel: string)

type vehicle car ignoring fuel
type machine = car ignoring speed

The and operator forms the union of the fields of two record types; if two record types have
some labels in common (like in vehicle and machine), then the corresponding types must match. At
this point we do not specify exactly what "match" means, except that in the example above "match-
ing" is equivalent to "being the same". In its full generality, and corresponds to a MM operation on
type expressions, as explained in a later section.

The ignoring operator simply eliminates a component from a record type; it is undefined on
other types.

4. Variants

The two basic non-functional data type constructions in denotational semantics are cartesian
products and disjoint sums. We have seen that inheritance can be expressed as a subtype relation
on record types, which then extends to higher types. Record types are just labeled cartesian pro-
ducts, and by analogy we can ask whether there is some similar notion deriving from labeled dis-
joint sums.

A labeled disjoint sum is called here a variant. A variant type looks very much like a record
type: it is an unordered set of label-type pairs, enclosed in brackets instead of parentheses:

type int_or_bool = [a: int, b: bool]



56

An element of a variant type is a labeled value, where the label is one of the labels in the
variant type, and the value has a type matching the type associated with that label. A element of
int_or_bool is either an integer labeled a or a boolean labeled b.

[a = 3] : int_or_bool
[b = true] : int_or_bool

The basic operations on variants are is, which tests whether a variant object has a particular
label, and as, which extracts the contents of a variant object having a particular label:
[a=3]isa = rrue
[a=3]isb false
[a=3]asa = 3

[a=3]asb  fails

A variant type o is a subtype of a variant type 7 (written o < 7) if v has all the labels of o
and correspondingly matching types. Hence int_or_bool is a subtype of [a: int, b: bool, c: string].

When the type associated to a label is unit (the trivial type, whose only defined element is
nil), we can omit the type altogether; a variant type where all fields have unit type is also called an
enumeration type. The following examples deal with enumeration types.

type precious_metal [gold, silver] (i.e. [gold: unit, silver: unit])

type metal [gold, silver, steel]

A value of an enumeration type, €.g. [gold = nil], can similarly be abbreviated by omitting
the "=nil" part, e.g. [gold].
A function returning a precious metal is also a function returning a metal, hence:

t = precious_metal = t - metal because  precious_metal < metal

A function working on metals will also work on precious metals, hence:

metal -t < precious_metal -t because precious_metal < metal
It is evident that [Rule6] holds unchanged for variant types. This justifies the use of the sym-
bol = for both record and variant subtyping. Semantically the subtype relation on variants is

mapped to set inclusion, just as in the case of records: mezal is a set with three defined elements
[gold], [silver] and [steel], and precious_meral is a set with two defined elements [gold] and [silver].

There are two ways of deriving variant types from previously defined variant types. We
could have defined meral and precious_meral as:

type precious_metal = [gold, silver]

type metal = precious_metal or [steel]

or as:
type metal = [gold, silver, steel]
type precious_metal = metal dropping steel
The or operator makes a union of the cases of two variant types, and the dropping operator

removes a case from a variant type. The precise definition of these operators is contained in a later
section.



57

5. Multiple Inheritance

In the framework described so far, we can recognize some of the features of what is called
multiple inheritance between objects, e.g. a car has (inherits) all the attributes of vehicle and of
machine. Some aspects are however unusual; for example the inheritance relation only depends on
the structure of objects and need not be declared explicitly. In general, we are not trying to explain
existing inheritance schemes (e.g. Smalltalk) in detail, but rather trying to present a new perspec-
tive on the problem.

We are not aware of other languages where typechecking coexists with multiple inheritance
and higher order functions, with the exception of Galileo [Albano 84] which was developed in con-
junction with this work. The OBJ language [Goguen 84] comes close with its strongly typed multi-
ple inheritance and first order functions.

Typechecking provides compile-time protection against obvious bugs (like applying the speed
function to a machine which is not a vehicle), and other less obvious mistakes. Complex type
hierarchies can be built where "everything is also something else", and it can be difficult to
remember which objects support which messages.

The subtype relation only holds on types, and there is no similar relation on objects. Thus we
cannot model directly the subobject relation used by, for example, Omega [Attardi 81], where we
could define the class of gasoline cars as the cars with fuel equal to "gasoline".

However, in simple cases we can achieve the same effect by turning certain sets of values
into variant types. For example, instead of having the fuel field of a machine be a string, we could
redefine:

type fueltype = [coal, gasoline, electricity]
(age: int, fuel: fueltype)
(age: int, speed: int, fuel: fueltype)

I

type machine

type car

Now we can have:
type gasoline_car = (age: int, speed: int, fuel: [gasoline])

type combustion_car = (age: int, speed: int, fuel: [gasoline, coal])

and we have gasoline_car = combustion_car = car. Hence a function over combustion cars, for
example, will accept a gasoline car as a parameter, but will give a compile-time type error when
applied to electrical cars.

It is often the case that a function which is a field of a record has to refer to other com-
ponents of the same record. In Smalltalk this is done by referring to the whole record (i.e. object)
as self, and then sclecting the desired components out of that. In Simula there is a similar concept
called rhis.

This self-referential capability can be obtained as a special case of the rec operator which we
are about to introduce. rec is used to define recursive functions and data. For example, the recur-
sive factorial function can be written as:

rec fact: int = int. An: int. if n=0 then 1 else n*fact(n—1)

(This is an expression, not a declaration.)

In order to prevent looping in case of call-by-value evaluations, the body of rec is restricted
to be a constant, a record, a variant or a function (or, in general, any data constructor present in
the language) [Morris 80].

Examples of circular data definitions are extremely common in object-oriented programming.
In the following example, a functional component of a record refers to "its" other components. The
functional component d, below, is supposed to compute the distance of "this" active_point from any
other point (or any other active_point, etc.).



58

type point = (x: real, y: real)
type active_point = point and (d: point - real)
val make_active_point(px: real, py: real): active_point =
rec self: active_point.
(= px,y = py,
d = \p: point. sqri((p.x—self.x)**2 + (p.y—self.y)**2))
Objects often have private variables, which are useful to maintain and update the local state
of an object while preventing arbitrary external interference. Here is a counter object which starts

from some fixed number and can only be incremented one step at a time. cell n is an updatable
cell whose initial contents is n; a cell can be updated by := and its contents can be extracted by

get.
type counter = (increment: int > unit, fetch: unit - int)
val make_counter(n: int) =
let count = cell n
in  (increment = \n: int. count := (get count)+1,
fetch = \nil: unit. get count)
Private variables are obtained in full generality by the above well known static scoping technique.

6. Expressions

We now begin the formal treatment of multiple inheritance. First, we define a simple applica-
tive language supporting inheritance (side effects could be treated without introducing any new
concept, but they make the formal treatment more complicated). Then a denotational semantics is
presented, in a domain of values V. Certain subsets of V are regarded as types, and inheritance
corresponds directly to set inclusion among types. A type inference system and a typechecking
algorithm are then presented. The soundness of the algorithm is proved by showing that the algo-
rithm is consistent with the inference system, and that the inference system is in turn consistent
with the semantics.

Our language is typed lambda calculus with records and variants. The following notation is
often used for records (and similarly for record and variant types):

(a1=ey, ... ,a,=e,) = (a=¢;) i€ 1l.n
(a1=¢e1y ... » =€y, a'1=€'y, ... , @' n=€'y) = (a;=¢,a;=e€';) i€1l.n, j€l.m

Here is the syntax of expressions and type expressions:

e u= expressions
x| identifiers
b | constants
if e then e else e | conditionals
(a=¢) | ea | records (i €l.n,n=0)
[a=e¢] | eisa | easa | variants
MeiToe | ee | functions
recx:t.e | recursive data
et | type specs
(e)
T U= type expressions
0| type constants
(a: ) | record types (i €l.n,n=0)
[ai: 7] | variant types (i€l.n,n=0)
T | function types

()



59

where i#j = ag#a
take W = unit, 1 = bool, \, = int, etc.
Syntactic restriction: the body e of rec x: 7. e can only be a constant, a record, a variant, a lambda

expression, or another rec obeying this restriction.

Labels @, and identifiers x have the same syntax, but are distinguishable by the syntactic con-
text. Among the type constants we have unit (the domain with one defined element) bool and ins.
Among the constants we have nil (of type unit), booleans (true, false) and numbers (0, 1, ...).

Global definitions of values and types are introduced by the syntax:
d =
valx = e |
ype x = 7T
where the type definitions are meant as simple abbreviations.
Standard abbreviations are:

letx:t=eine for (Ax:T.¢e')e
flxea)e' = e for f = Axiq.(e:n’)
rec f(xit)in' = e for f = recifin>z'. hxiq.e

(the last two abbreviations can only appear after a let or a val).

Record and variant type expressions are unordered, so for any permutation m, of 1..n, we
identify:

(a;: )
[di: ‘T,'] = [d.n.(,'): T‘n.(i)] i€l..n

il

(@n gy Tn)  i€len

7. The Semantic Domain

The semantics of expressions is given in the recursively defined domain V of values. The
domain operators used below are coalesced sum (+), cartesian product (X ), continuous function
space (—>) and finite functions (—>,, explained later).

V = By+B + -+ +R+U+F+ W
R L =>4 V

U = L XV

F = V.—> V

W = {i,w}

where L is a countable flat domain of character strings, called labels, and B; are flat domains of
basic values. We take:

By = 0 = {.J., nil}
By T {1, true, false}
BZEN {-1-1071:".}

i
i

W is a domain which contains a single defined element w, the wrong value. The value w is used
to model run-time type errors (e.g. trying to apply an integer as if it were a function) which we
want a compiler to trap before execution. It is not used to model run-time exceptions (like trying
to extract the head of an empty list); in our context these can only be generated by the as operator.
Run-time exceptions should be modeled by an extra summand of V, but for simplicity we shall
instead use the undefined element .. The name 1wrong is used to denote w as a member of V
(instead of simply a member of W).



60

R =1L >3V is the domain of records, which are associations of values to labels. We are only
interested in finite associations, so we define L =>4, V = {r € L =>V | {a | r(a) # wrong}
is finite}.

U= L XV isthe domain of variants which are pairs </, v> with a label / and a value v.

F =V ->V are the continuous functions from V to V, used to give semantics to lambda expres-
sions.

8. Semantics of Expressions

The semantic function is % € Exp —> Env —> V, where Exp are syntactic expressions
according to our grammar, and Env = Id —> V are environments for identifiers. The semantics of
basic values is given by & € Exp —> V, whose obvious definition is omitted; by is the j-th element
of the basic domain B;.

Exlv = v[x]
Blif e then e else e"Jv =
if €le]v € T then (if (¥lelv | T) then €[e’ v else B[e"]v) else wrong

El(a; = e1y ... ,a, = ex)lv =
if ledlve Wor - -+ or $le,v e W then wrong
else (\I. if l=ay then €[eilv else - - - if I=a, then €[e,]v else wrong) in V

Ele.alv = if €lelv € R then (¥[elv | R)(a) else wrong

Ella=ellv = if Elelv € W then wrong else <a,%[e]v> in V
€le is alv = if€lelv € U then fst(€elv | U) = a else wrong
%le as alv =

if €lellv € U then (let <b,v> be (¥[elv | U) in if b=a then v else 1) else wrong
Ehx: 1. elv = (w. Elelv{v/Ix]}) in V
Elee'lv =

if €lelv € F then (if 6le'lv € W then wrong else (€[e]v | F)(¥[e'v)) else wrong
Elrec x: 7. elv = Y((\v. Elelv{v/[x]}) in V)
le: tlv = Blelv

Comments on the equations:

®d in V (where d € D and D is a summand of V) is the injection of d in the appropriate summand
of V. Hence d in V € V and L in V = L. This is not to be confused with the ler...be...in... nota-
tion for local variables.

® veD (where v € V and D is a summand of V) is a function yielding: L if v = 1; true if
v = d in V for some d € D; false otherwise.

® v | D (where D is a summand of V) is a function yielding: d if v = d in V for some d € D; L
otherwise.

@ fir extracts the first element of a pair, snd extracts the second one.

@ % defines a call by value semantics.

Intuitively, a well-typed program will never return the wrong value at run-time. For example,
consider the second occurrence of wrong in the semantics of records. The typechecker will make
sure that any record selection will operate on records having the appropriate field, hence that
instance of wrong will never be returned. A similar reasoning applies to all the instances of wrong
in the semantics: wrong is a run-time type error which can be detected at compile-time. Run-time
exceptions which cannot be detected are represented as L; the only instance of this in the above



61

semantics is in the equation for ¢ as a.

Formally, we proceed by defining % (so that it satisfies the above intuitions about run-time
errors), then we define "e is semantically well-typed” to mean "€le]v # wrong", and later we give
an algorithm which statically checks well-typing.

9. Semantics of Type Expressions

The semantics of types is given in the weak ideal model [MacQueen 84] $(V) (the set of
non-empty weak ideals which are subset of V and do not contain wrong). $(V) is a lattice of
domains, where the ordering is set inclusion. $(V) is closed under union and intersection, as well
as the usual domain operations.

gbﬂl.,']] = B,‘ inV
e )] = Ni{r € R|r(a;) € D]} in V (where we take D[()] = R in V)
Nlai: 7]l = Ui{<a;,v> €U |v e inV (where we take D[[]] = {L})

Do =] = {f€F|v€Bo]=>f) € rl}inV
where D in V= {din V|d € D}
THEOREM (@D properties)

V. L € Q1]

Vr,v. v € Qt] => v # wrong

The wrong value is deliberately left out of the type domains so that if a value has a type,
then that value is not a run-time type error. Another way of saying this is that wrong has no type.

10. Type Inclusion

A subtyping relation can be defined syntactically on the structure of type expressions. This
definition formalizes our initial discussion of subtyping for records, variants and functions.

y =y

(@i 0y, @t 0y) =< (@;.0';) <=> o; < o'; (i€l..n, n=0; j€l.m, m=0)
la;:0y] = [o: 0"y, 052 0"]  <=> o< o'; (i€l..n, n=0; j€l..m, m=0)
g1 =< ¢ =1 <=> o'<=c and T=1'

no other type expressions are in the = relation

PROPOSITION:

=< is a partial order

It is possible to extend type expressions by two constants anything and nothing, such that
nothing < 1 < anything for any 7. Then, =< defines a lattice structure on type expressions, which is
a sublattice of $(V). Although this is mathematically appealing, we have chosen not to do it in
view of our intended application. For example, the expression if x then 3 else true, should produce
a type error because of a conflict between int and bool in the two branches of the conditional. If
we have the full lattice of type expression, it is conceivable to return anything as the type of the
expression above, and carry on typechecking. This is bad for two reasons. First, no use can be
made of objects of type anything (at least in the present framework). Second, type errors are diffi-
cult to localize as their presence is only made manifest by the eventual occurrence of anything or
nothing in the resulting type.

As we said, the ordering of domains in the $(V) model is set inclusion. This allows us to
give a very direct semantics to subtyping, as simple set inclusion of domains.



62

THEOREM (Semantic Subtyping)
r=sq = ] c ']

The proof is by induction on the structure of 7 and 7'.

11. Type Inference Rules

In this section we formally define the notion of a syntactically well—typed expression. An
expression is well-typed when a type can be deduced for it, according to a set of type rules forming
an inference system. If no type can be deduced, then the expression is said to contain type errors.

In general, many types can be deduced for the same expression. Provided that the inference
system is consistent, all those types are in some sense compatible. A typechecking algorithm can
then choose any of the admissible types as the type of an expression, with respect to that algorithm
(in some type systems there may be a best, or most general, or principal type). Inference systems
can be shown to be consistent with respect to the semantics of the language, as we shall see at the
end of this section.

Hence, here is the inference system for our language. It is designed so that (1) it contains
exactly one type rule for each syntactic construct; (2) it satisfies the intuitive subtyping property
expressed by the syntactic subtyping theorem below; and (3) it satisfies a semantic soundness
theorem, relating it to the semantics of the language.

The use of the subtyping predicate =< is critical in many type rules. However it should be
noted that subtyping does not affect the fundamental A-calculus typing rules [ABS] and [COMB].
This indicates that this style of subtyping merges naturally with functional types.

[VAR] Axtiz bxia! where 1 < '
[BAS] Ak bij: L
[COND] Ale:bool Ale':tx Ale": 1

A | (if e then e’ else e"): v

[RECORD] AIT- l(-ail:___ﬂeb , ;In = /:n;-: e(':::i) where i €I C 1l.n
[DOT] At e,j;(p.;,:;:: )

[YaRIaN] At[a =Ae]I_[ET at'm o]

s vy

) =

b e

[COME] AF e:::(-; e:)?: e':o

[REC] A¥.0 L ep where p<o and p=r1

Alb(recx:o.e) T



63

Ale o

[EEd] Atb(e:o)T

where o = 1

Some comments on the rules:

® A is a list of assumptions for variables, of the form x: . We use the notation A = A’.x: 7 to sin-
gle out the assumption at the head of A. The handling of nested scopes for variables requires some
care: a list of assumptions can be permuted as long as assumptions involving the same variable are
not swapped.

® If there are some nontrivial inclusions in the basic types (e.g. int =< real) then [BAS] must be
changed to A | by: v where y = 7.

® In [RECORD)], the derived record type can have fewer fields than the corresponding record
object.

® In [VARIANT], the derived variant type can have any number of fields, as long as it includes a
field corresponding to the variant object.

® In [IS], the antecedent could safely be changed to have an arbitrary variant type. It would how-
ever seem strange to be able to test the existence of a label but fail to typecheck when trying to
extract out of that same label (see [AS]).

® The [IS] rule assumes that the set of basic types does not contain a supertype of bool, otherwise a
more refined rule is needed. Similarly, [COND] assumes that there are no subtypes of bool.

The basic syntactic property of this inference system is expressed in the syntactic subtyping
theorem below: if an expression has a type 7, and 7 is a subtype of 7', then the expression has also
type 1'. The lemma is required to prove the [ABS] case of the theorem. Both the lemma and the
theorem are proved by induction on the structure of the derivations.

Lemma (Syntactic Subtyping):

Ax:otle:r and o'=0 => Ax:co'le:7r

THeOREM (Syntactic Subtyping):

Ate:rand 11 = Atle: 7

The next theorem states the soundness of the type system with respect to the semantics: if it
is possible to deduce that e has type 7, then the value denoted by e belongs to the domain denoted
by 7. A list of assumptions A agrees with an environment v if for any x, v[x] € @[] <= A =
Atxsw.

THEOREM (Semantic Soundness):

If vagreeswithd and Atle:r then ¥efv € I[r]

The proof is by induction on the structure of the derivation of A  e: 7, using the semantic subtyp-
ing and @-properties theorems .

Another way of looking at this theorem is that if e is syntactically well-typed (i.e. for some
1, A ket 1), then it is also semantically well-typed (i.e. for some 7, €[e]v € D[r], which implies
that Be]v # wrong).

12. Join and Meet Types

In the examples at the beginning of the paper we used the and and or type operators, and we
are now going to need them in the definition of the typechecking algorithm. However those opera-
tors are not part of the syntax of type expressions, nor are ignoring and dropping.

This is because the above operators only work on restricted kinds of type expressions.
Applied to arbitrary type expressions they either are undefined, or can be eliminated by a normali-
zation process. Hence, if we have a type expression containing the above operators we can process
the expression checking that the operators can be indeed used in that context, and in such case we



64

can normalize them away obtaining a normal type expression.

The and operator is interpreted as a meet operation on types (written V), and or is inter-
preted as join (written 1). Joins and meets are taken in the partial order determined by =, when
they exist.

The definition of the operators also immediately defines the normalization process which
eliminates them:

uty = y

(ait i, b oy) Y(az 1’y e o) = (@i mitt’y) (Vj.k. b # cx)

lai: 7, bt o] ta 'y, e pe] = [a mitt'y, by oy, okt gl (Vjk. by # ¢)
(@=1)t(c'»71) = (cia')=>(rt7)

Ttq undefined otherwise

iy = y

(i 7, byt o) ¥ (aie v’y et pp) = (a2 mida'y, byt oy, okt pr) (Vj.k. b; # )

lai: 7, byt oj) Y a1’y et pi] = [ 7idn'] (Vj,k. by # cx)
(=74 1) = (o to’) (47

g undefined otherwise

(a;: ;) ignoring a = (a;: 7j) (i€l.n, je€lin—{k|a =a})
T ignoring a undefined otherwise

la;: 7;) dropping a = [a;: 7] (i€l.n, j€l.n—{k|a = a})
1 dropping a undefined otherwise

Prorosimion (1 and ¢ properties):

t and { are join and meet for =, when defined

Do and 7] = D[] N D[r] (when defined)
D[t ignoring a] = {r € R | ((/a) in V) € D[]} in V (when defined)
o or 1] = Do) U D[] (when defined)
D[r dropping a] = ] — {<a,v> € U}inV (when defined)

where r/a = (\b. if b=a then L else r(b)).

13. Typechecking

The typechecking function is I € Exp —> TypeEnv —> TypeExp, where Exp and TypeExp
are respectively expressions and type expressions according to our grammar, and TypeEnv =
Id —> TypeExp are type environments for identifiers.

The following description is to be intended as a scheme for a program that returns a type
expression denoting the type of a term, or fails in case of type errors. The fail word is a global
jump-out: when a type error is detected the program stops. Similarly, typechecking fails when the t
and ¥ operations are undefined. When we assert that JeJu = 7, we imply that the typechecking
of e does not fail.



65

Ihlp = pl]
ETIIbij]]Pv =il
Tlif e then e' else e"]n = if T[e]lu=bool then Te'ln t T[e"]w else fail
Tlay = ey, ..., an = ex)lp = (ar: T[edlp, ... , a5} T[eln)
Tle.alp = if Tleln=C(... a: 7 ...) then 7 else fail
90l = ellp = [a: Tlelp]
Tle is alp = if Tlelp=[ ... a: 7 ... ] then bool else fail
Tle as alp. = if T[e]n=[ ... a: 7 ... ] then 7 else fail
Thx: 1. elp = v = T[elpn{r/[xI}
Tle e'lp = if Tlelp=(r = 1') and Te'ln < 7 then 7' else fail
Tlrec x: o. e]ln = if Tle]pf{o/x}=1 and v < o then 7 else fail
Tle: olp = if Tlelp=1 and v < o then 7 else fail
This typechecking algorithm is correct with respect to the type inference system: if the algo-

rithm succeeds and returns a type 7 for an expression e, then it is possible to prove that e has type
7. A type environment p agrees with a list of assumptions A if px] =+ <<= A = A'x: 7.

THEOREM (Syntactic Soundness):
if A agrees with p and Jfe]p = 7 then AFe:n
The proof is by induction on the structure of e, using the properties of 1, ¢ and =.

Combining the syntactic soundness, semantic soundness and %-properties theorems we
immediately obtain:

CoroLLArY (Typechecking prevents type errors):
if JleJpn = then $[e]v # wrong (where p agrees with some A which agrees with v)

i.e. if e can be successfully typechecked, then e cannot produce run-time type errors.

14. Conclusions

This work originated as an attempt to justify the multiple inheritance constructs present in
the Galileo data base language [Albano 83] and to provide a sound typechecking algorithm for that
language. I believe this paper adequately solves the basic problems, although some practical issues
may require more work.

Parametric polymorphism has not been treated in this paper. The intention was to study mul-
tiple inheritance problems in the cleanest possible framework, without interaction of other features.
This restriction also has the advantage of considerably simplifying proofs.

Some confusion may arise from the fact that languages like Smalltalk are often referred to as
polymorphic languages. This is correct, if by polymorphism we mean that an object or a function
can have many types. However it now appears that there are two subtly different kinds of
polymorphism, which I'll call horizontal polymorphism (having to do with inheritance) and vertical
polymorphism (the ordinary parametric kind).

These adjectives come from the following considerations (where o and B are type variables).
The function f x = x.a where f: (a: o) = a is polymorphic in two senses. It can be considered as
a function of type (a: o, b: B) = a by extending its domain horizontally, and also as a function of
type (a: B~B) = (B—B) by instantiating its domain vertically.

These two kinds of polymorphism are not incompatible. We have seen here that horizontal
polymorphism can be explained in the semantic domains normally used for vertical polymorphism.
Moreover the technical explanation of polymorphism is the same in both cases: domain



66

intersection. Merging these two kinds of polymorphism does not seem to introduce new semantic
problems. The interactions of horizontal and vertical polymorphism in typechecking may however
be complex, and this is left here as an open problem.

There are now several competing (although not totally independent) styles of parametric
polymorphism, noticeably [Milner 78], [Reynolds 74, McCracken 84] and [MacQueen 84]. Inheri-
tance is orthogonal to all of these, so it scems better to study it independently, at least initially.
However the interactions will have to be investigated in order to obtain the best of all possible
worlds.

15. Related work and acknowledgements

Inheritance is not a totally new idea. Not surprisingly there are several independent and/or
related works: my apologies for not referencing some of them in this or earlier versions of this
paper. I would like to mention here [Reynolds 80, Oles 84] which expose the same basic semantic
ideas in a different formal framework, [Ait-Kaci 83] again very similar ideas in a Prolog-related
framework, [Mitchell 84] this time different, but related, ideas in the same formal framework,
[Goguen 84] whose OBJ system implements a multiple inheritance typechecker, and [Fairbairn 82]
whose algorithms for typechecking quantified types may be relevant to unifying inheritance with
polymorphism.

Finally, I would like to thank Dave MacQueen for many discussions, and Antonio Albano
and Renzo Orsini for motivating me to carry out this work.

16. References

[Ait-Kaci 83] H.Ait-Kaci: "Outline of a calculus of type subsumptions”, Technical report MS-CIS-
83-34, Dept of Computer and Information Science, The Moore School of Electrical Engineering,
University of Pennsylvania, August 1983.

[Albano 83] A.Albano, L.Cardelli, R.Orsini: "Galileo: a strongly typed, interactive conceptual
language", Bell Labs Technical Memorandum TM 83-11271-2.

[Attardi 81] G.Attardi, M.Simi: "Semantics of inheritance and attributions in the description sys-
tem Omega", M.I.T. A.I. Memo 642, August 81.

[Dahl 66] O.Dahl, K.Nygaard: "Simula, an Algol-based simulation language", Comm. ACM, Vol
9, pp. 671-678, 1966.

[Deutsch 84] P.Deutsch: "An efficient implementation of Smalltalk-80", Proc. Popl 84.

[Goguen 84] J.A.Goguen, J.Meseguer: "Equality, types, modules and generics for logic program-
ming", Second International Logic Programming Conference, Uppsala University, Sweden, July
1984.

[Goldberg 83] A.Goldberg, D.Robson: "Smalltalk-80. The language and its implementation”,
Addison-Wesley, 1983.

[McCracken 84] N.McCracken: "The typechecking of programs with implicit type structure”, this
conference.

[MacQueen 84] D.B.MacQueen, R.Seti, G.D.Plotkin: "An ideal model for recursive polymorphic
types”, Proc. Popl 84.

[Milner 78] R.Milner: "A theory of type polymorphism in programming", Journal of Computer and
System Science 17, pp. 348-375, 1978.

[Mitchell 84] J.C.Mitchell: "Coercion and type inference", Proc. Popl 84.

[Oles 84] F.J.Oles: "Type algebras, functor categories, and block structure”, to appear in "Alge-
braic semantics”, M.Nivat and J.C.Reynolds ed., Cambridge University Press 1984.

[Fairbairn 82] J.Fairbairn: "Ponder and its type system", Technical report No 31, Nov 82, Univer-
sity of Cambridge, Computer Laboratory.

[Reynolds 74] J.C.Reynolds: "Towards a theory of type structure”, in "Colloquium sur la



67

programmation” pp. 408-423, Springer-Verlag Lecture Notes in Computer Science, n.19, 1974,

[Reynolds 80] J.C.Reynolds: "Using category theory to design implicit type conversions and generic
operators”, in "Semantics-directed compiler generation”, Lecture Notes in Computer Science 94,
pp. 211-258, Springer-Verlag 1980.

[Morris 80] L.Morris, J.Schwarz: "Computing cyclic list structures”, Conference Record of the
1980 Lisp Conference, pp.144-153.

[Steels 83] L.Steels: "Orbit: an applicative view of object-oriented programming”, in: Integrated
Interactive Computing Systems, pp. 193-205, P.Degano and E.Sandewall editors, North-Holland
1983.

[Weinreb 81] D.Weinreb, D.Moon: "Lisp machine manual”, Fourth Edition, Chapter 20: "Objects,
Message Passing, and Flavors", Symbolics Inc., 1981.



