
 

ACM Sigplan Notices, 32(1):66-68, 1997. 
ACM Computing Surveys, 28A(4), 1996.
Copyright 

 

©

 

 1997 by the Association for Computing Machinery. All rights reserved. Republished by permission.

 

1

 

Global Computation

 

Luca Cardelli

 

Digital Equipment Corporation, Systems Research Center

 

<http://www.research.digital.com/SRC/personal/Luca_Cardelli/home.html>

 

Abstract

 

Computation over planet-wide structures is hindered by administrative, ar-
chitectural, and physical constraints. These problems are surmountable, but
must be addressed by developing new models of programming and of com-
putation.

 

Global Information Structures

 

The Internet communication protocols synthesize global information structures out of
large collections of processors and networks. There are many kinds of such global
structures. For example, the FTP protocol realizes a global Þle system, the Telnet proto-
col realizes a global multiprocessor, and the HTTP protocol realizes a global hypertext
domain (the World-Wide Web) [3]. We would naturally like to have global information
structures that are programmable. That is, we would like to use some global structures
as 

 

global computers

 

. A number of novel research issues arise if we want to program glo-
bal computers.

 

Global Computers

 

The main characteristic of a global computer is its geographical distribution. Because
of the slowness of light, a planet-wide computer cannot be usefully regarded as a local-
ized computer. For example, a procedure call to the antipodes takes at least a noticeable
0.13 seconds; therefore, a widely-dispersed program is easily distinguishable from a lo-
calized one. This physical limit has drastic consequences for programming. It implies
that we need control over the locality, mobility, and distribution of computation. Laten-
cy and bandwidth, not CPU speed and memory size, become the limiting factors and
must be directly addressed. 

The Web is evolving rapidly towards programmability. A single global structure,
however, will not satisfy all needs for global computation. Every large company will
soon have its own internal global computer connecting its geographically distributed
resources reliably and securely. The Web itself may be split into high-quality and low-
quality services. Different global computers may be based on different instruction sets
(virtual machines), and may be separated by administrative boundaries (firewalls).
Therefore, we will have to think of how multiple global computers, each characterized
by uniform guarantees of service, can interact effectively.



 

2

 

Models of Computation

 

What models of computation are appropriate for global structures? Traditionally, we
have used sequential, functional, object-oriented, relational, concurrent, and distribut-
ed models. Although these models have been formally characterized, comparatively
little formal work has been carried out on locality and other global computation issues.
These issues are going to become central.

In order to program a global computer we first need to understand its model of
computation. For example, does computation on the Web correspond naturally to a tra-
ditional model? There are indications that it does not; a common experience exempli-
fies this point. When browsing, we actively observe the reliability and bandwidth of
certain connections (including zero or time-varying bandwidth), and we take action on
these dynamic quality-of-service observables. These observables are not part of tradi-
tional models of computation, and are not handled by traditional languages. What
models of computation and programming constructs can we develop to automate be-
havior based on such observables?

 

Programming Languages

 

Different global computers may provide different guarantees. Therefore, different pro-
gramming languages may be appropriate in each case. As an example, consider the fol-
lowing programming languages that support mobile computation.

Telescript [4] is an agent-based language that explicitly deals with locality, mobil-
ity, and finiteness of resources. Telescript agents may migrate to new locations while
active, but cannot engage in distributed communication. Telescript agents run only on
a dedicated global computer that guarantees the integrity and security of agents. 

Obliq [2] is an object-based language that encourages distribution and mobility.
Mobile computations maintain distributed connections as they move. Obliq can run ef-
fectively on any single reliable global computer, but does not deal with administrative
domains or widespread unreliability.

Java [1] deals with security and multiple global computers. (Its programs are al-
lowed to cross administrative domains.) Mobility, however, is restricted to transmit-
ting program sources, in preprocessed form, and not computations. As a consequence,
Java works satisfactorily in unreliably-connected environments, since passive sources
do not maintain connections. (Java is evolving to support active distributed computa-
tion, and will confront the same problems as Telescript and Obliq.)

Each of these three languages is better suited than the others to a particular kind
of global computer. However, none of them is particularly well suited for carrying out
general computation over the World-Wide Web. No language yet has the Web as its
Òrun-time systemÓ: no language covers the full spectrum of Web behavior. Therefore,
there is a need to develop more general semantic frameworks for global computation,
in order to understand the assumptions and requirement of various languages and to
answer important questions such as ÒWho runs what, when, and where?Ó. How do we
reason about global programs?



 

3

 

Programming Issues

 

Programming issues acquire new facets in a global context. Among these are:

 

Typing. 

 

Global computation, being highly decentralized, needs to rely on some com-
mon notion of typing for the data that is exchanged. The Internet already has a rather
sophisticated system of data types, called MIME; unfortunately, Web servers provide
mostly HTML data that is poorly structured. CORBA deÞnes a rich type system for dis-
tributed computation, but it is disjoint from that of the Web. To enable global program-
ming, data will have to be transmitted over well-deÞned typed links. Moreover, link
types will have to be mapped to (or identiÞed with) program types.

 

Security. 

 

A model of security is critical for mobile computation. The cryptographic un-
derpinnings of security are well understood. Unfortunately, it is not clear how to effec-
tively and ßexibly integrate security into programming languages and mobile
computations. Currently, paranoia rules. What should be the syntax, static checking,
semantics, and logic of security?

 

Reliability. 

 

Some global structures will always be unreliable, it seems. Unfortunately,
like the World-Wide Web itself, these may also be the most interesting global structures.
Therefore, we need to Þnd programming constructs and methodologies (Òquality-of-
service abstractionsÓ) that can increase the reliability of the substrate to tolerable levels.

 

Modularity. 

 

An appealing possibility, pursued by Java, is that software components
will be fetched dynamically over the network, whenever the need arises. This approach
requires modularity guarantees stronger than ever before, as well as novel approaches
to software production, distribution, and maintenance. It also suggests a notion of in-
terfaces and modules as dynamic entities that is rarely found in current languages.

 

Resource Management. 

 

Time, space, bandwidth, and services need to be managed.
Moreover, substantial new challenges are offered by the handling and transfer of mon-
ey in locally minute and globally huge quantities, within an open environment.

 

Directions

 

Today the standard computing infrastructure consists of locally networked personal
computers with poor global connections. Gradually, this infrastructure will be comple-
mented and replaced by network terminals that rely heavily and transparently on glo-
bal resources. This transformation will be associated with the development of new
computation and programming paradigms.



 

4

 

References

 

[1] Campione, M. and K. Walrath, 

 

The Java tutorial: object-oriented programming
for the Internet

 

. Addison-Wesley, 1996.
[2] Cardelli, L., 

 

A language with distributed scope

 

. 

 

Computing Systems, 

 

8

 

(1), 27-59.
MIT Press. 1995.

[3] Internet Engineering Task Force, 

 

Internet standards

 

. The Internet Society, <http:/
/www.isoc.org>. 1996.

[4] White, J.E., 

 

Telescript technology: the foundation for the electronic market-
place

 

. White Paper. General Magic, Inc. 1994.


