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ABSTRACT

Summary: Gener is a development module for programming

chemical controllers based on DNA strand displacement. Gener is

developed with the aim of providing a simple interface that minimizes

the opportunities for programming errors: Gener allows the user

to test the computations of the DNA programs based on a simple

two domain strand displacement algebra, the minimal available so

far. The tool allows the user to perform stepwise computations

with respect to the rules of the algebra as well as exhaustive

search of the computation space with different options for exploration

and visualization. Gener can be used in combination with existing

tools, and in particular, its programs can be exported to Microsoft

Research’s DSD tool as well as to LaTeX.

Availability: Gener is available for download at the Cosbi website

at http://www.cosbi.eu/research/prototypes/gener as a windows

executable that can be run on Mac OS X and Linux by using Mono.

Contact: ozan@cosbi.eu

1 INTRODUCTION

One of the goals of synthetic biology is constructing information

processing systems for controlling biochemical systems at the

molecular level. Such an achievement would pave the way for

applications, e.g., to smart therapeutic devices that are capable of

sensing their environments Douglas et al. (2012); Amir et al. (2014).

Within a broad spectrum, various technologies are being developed

to address different aspects of this vision. Applications in DNA

nano-technology aim at harnessing the complexity of biochemical

dynamics to control active molecular devices in vivo Zhang and

Seelig (2011). Technologies based on DNA strand displacement

algebras, in particular, the double stranded architecture with nicks

on one strand Phillips and Cardelli (2009) is proving to be effective

also in wet lab implementations of formally designed experiments

Chen et al. (2013).

The double stranded DNA strand displacement algebras perform

computations as a result of the interactions between single and

double stranded DNA structures: the single stranded structures act

as signals that are processed by double stranded structures that act

as gates. The mechanism with which the signals are processed

by the gates is toehold mediated branch migration and strand

displacement Yurke and Jr. (2003); Zhang and Winfree (2009). By

using this machinery, one can program, e.g., systems of chemical

reaction networks that operate at the molecular level Soloveichika

et al. (2010); Dalchau et al. (2014). In this setting, a single

chemical reaction step is emulated by a sequence of DNA-strand

displacement operations. Because an increase in additional steps

introduces more opportunities for errors in design, simpler schemes

for designing these molecular programs become more favorable. In

this respect, two domain DNA strand displacement scheme provides

a good platform for developing molecular programs as it is minimal

in design while being sufficiently expressive for describing chemical

reaction networks that are of interest from the point of view of

molecular programming Cardelli (2013); Lakin et al. (2013).

Gener is a programing module that implements the two domain

DNA strand displacement algebra described in Cardelli (2013).

With Gener, the user can write a two domain strand displacement

program, and test its stepwise computations. The programs can

be analyzed by exhaustive search of the computation space, and

Fig. 1. A screen shot of a reduction performed on the built-in Example 1 that

implements a transducer as in Cardelli (2013). The single strands consist of

two domains, composed by ‘.’. One of the two composed domains can be a

short domain, denoted with ‘t’. Any other string consisting of letters denotes

a long domain. Complemented double strands are written in angle brackets

‘<’ and ‘>’, and they denote double strands consisting of strands and their

Watson-Crick complements. We denote nicks on double strands with ‘ˆ’,

which are the interruptions on one side of the double strands that make the

interactions between the signals and gates possible.
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Fig. 2. A screen shot of a search performed on an example. For the search,

‘all paths’ option is chosen together with the display options ‘search tree’

and ‘equal nodes’. The gray lines between the nodes denote the equal nodes.

the computations can be visualized in a tree representation with

different options. Gener can be used in conjunction with Microsoft

Research’s DSD tool for simulation and analysis purposes as Gener

programs can be exported to DSD Lakin et al. (2012, 2011), and

computation traces can be exported to LaTeX for visualization.

Gener contains introductory examples in its menu, which should

be useful for a quick start. A manual is also available on the web.

2 METHODS

Gener programs consist of single and double stranded DNA

structures, which are entered in the DNA Soup field at the top of

the GUI. Gener aims at designing DNA displacement systems on

the high abstract level, and uses the previously established notations

(Figure 1). Gener can be used to observe the computations of the

input DNA program. In the default setting, the user can choose from

all the possible instances of the reduction rules by reducing the

input, and proceed by applying the rules incrementally to observe

a possible computation trace of the DNA soup. At each step the

resulting strands and the computed derivation are displayed. An

example derivation is shown in Figure 1. At each step during

reduction, the user can perform a ‘backtrack’ action by clicking the

corresponding button of the GUI to return to the previous step.

Alternatively, the user can perform an exhaustive search of

the computation space and choose from the available traces for

displaying it. This is done by choosing the search option from the

settings menu of the GUI. A search can be performed with further

options: a simple search (without any further options being chosen)

displays an enumeration of the available terminal computations of

the strand structures by pruning the redundancies in the search

space, and prompts a dialog window for the choice of the trace to

be displayed. Choosing the all paths option for the search enables

the enumeration of the computations with alternative paths, and the

variations option includes to the enumeration also those paths with

the same terminal as another path, but with an alternative trajectory.

Along with the search, the user can display the search tree, and

with this, all the intermediate computations are listed in a reserved

field. In the displayed search tree graph, different rules are denoted

with different colors, which are listed in a legend. Choosing the

equal nodes option includes a visualization of the nodes that result

in the same DNA strand structures, which are connected with dashed

gray lines in the search tree. The screen shot of a search tree

visualization with an example is depicted in Figure 2.

By using the file menu, Gener DNA strand displacement

programs can be exported to Microsoft Research’s DSD language

for simulation and analysis, and computation trajectories can be

exported to LaTeX for typesetting.

3 DISCUSSION

Gener is developed for performing in silico experiments in design

and debugging of DNA strand displacement systems. Potential

applications include designing DNA sequences from desired DNA

domain structures Zadeh et al. (2011). The search feature is useful

for verification and analysis of reachable states of the designed

systems. The sequences can then be ordered from IDT and executed

in a basic wet lab with a fluorometer for reading the output

Chen et al. (2013). The features of Gener are only limited by its

minimalistic design, avoiding duplication of effort, and imagination.

We thus foresee extensions as they will be required.
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