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Abstract. We propose a compositional approach to the dynamics of gene regulatory networks 

based on the stochastic π-calculus, and develop a representation of gene network elements which 

can be used to build complex circuits in a transparent and efficient way. To demonstrate the power 

of the approach we apply it to several artificial networks, such as the repressilator and 

combinatorial gene circuits first studied in Combinatorial Synthesis of Genetic Networks [1]. For 

two examples of the latter systems, we point out how the topology of the circuits and the interplay 

of the stochastic gate interactions influence the circuit behavior. Our approach may be useful for 

the testing of biological mechanisms proposed to explain the experimentally observed circuit 

dynamics.   

 

1  Introduction 

Within the last years a general consensus has emerged that noise and stochasticity are 

essential building elements of gene regulatory networks. A quantitative understanding of their 

role is thus needed to understand gene regulation. Regulatory functions can indeed work to 

eliminate stochastic effects [2], or to even exploit them [3].  

In line with new experimental techniques to measure and quantify such behavior, 

efficient ways to model and simulate gene networks need to be developed, which are currently 

lacking. Simulations based on differential equations for the concentrations of the various 

biomolecules, the long-time standard of modeling in biochemical systems, are not well suited 

for this purpose, except in particular cases. Stochastic effects, which are typically important 

when molecule numbers are small, are difficult to build into such approaches, and the 

resulting stochastic equations are time-consuming to simulate. In addition, differential 

equation models are inherently difficult to change, extend and upgrade, as changes of network 

topology may require substantial changes in most of the basic equations.   

In this paper, we follow a different route. It has recently emerged within computer 

science in the context of process calculi, and their applications to biological systems. Process 

calculi [4] are essentially programming languages designed to describe concurrent, interactive 

systems such as mobile communication networks. Among the various process calculi, π-
calculus is one of the best studied because of its compactness, generality, and flexibility. 

Stochastic variants have appeared recently that address biochemical modeling [5]; they have 

been used to model molecular interactions [6][7], compartments [8][9], and metabolism [10]. 

A remaining challenge is to model gene networks, to fully demonstrate the flexibility of 

process calculi, and to eventually support the integration of molecular, gene, and membrane 

networks in a single framework. 
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Here, we introduce process calculi by example, in the context of gene networks; technical 

details of the approach can be found in the Appendix. Modeling with process calculi is very 

much like programming. It is carried out in concurrent, stochastic programming languages 

that can easily support very complex and detailed models in a modular (“compositional”) 

way, where separate program units correspond to separate biochemical components.      

Our purpose here is in part tutorial: we aim to show that we can do things simply to start 

with, and already get interesting insights. Models in which molecular details are explicitly 

treated can be built when needed; e.g. see [11] for a discussion of transcription-translation in 

phage lambda. In addition to our approach being on the level of gene gates rather than 

molecular components, we have chosen a style of presentation which we believe will be 

helpful to researchers from neighbouring disciplines (physics, mathematics and theoretical 

biology), for whom the existing literature on the application of the stochastic π-calculus may 

be too demanding. 

The paper is structured as follows. We first explain how to represent gene network 

elements as processes in the stochastic π-calculus and how to execute them. We then apply 

this representation to model gene networks of increasing complexity, and study some of their 

behavior. In particular, we address the repressilator circuit [12] and two of the (still 

controversial) examples of combinatorial circuits first discussed in [1]. 

2  Modeling Gene Network Elements  

2.1  Nullary Gates 

We begin by modeling genes that have constitutive transcription but no regulatory control. 

We focus on the actions that are involved in the functioning of genes and molecular 

components. The generic term process is used for any mechanism performing actions and 

thus progressing through distinct states.  

 

 

 

 

 

 

 
Figure 1 A gene, null(b) with constitutive transcription, but no regulation (nullary). The product is 

a translated protein, tr(b) that attaches to a binding site b on some other gene; the definition of tr(b)

is given later. The definition of null(b) says that this gate waits for a stochastic delay (‘τ’) of rate ε, 
and then (‘.’) evolves into two processes in parallel (‘|’); one is tr(b), and the other again null(b), 

the initial state. 

 

A nullary-input gate (Figure 1), given by a process written null(b), has a single parameter 

b that represents its transcription product; it takes no input from the environment. The initial 

action performed by such a gate is a stochastic delay, τε, where τ is a symbol indicating delay 
and ε is the stochastic reaction constant, which gives the probability per unit time that the 
delay action will occur [14]. In general, each action in the π-calculus is associated with a 
corresponding stochastic reaction rate, such that when an action with rate r is enabled, the 

probability that it will happen within a period of time t is F(t) = 1-e
-rt
 [15]. This distribution 
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exhibits the memoryless property, as is required for the Markov property of the stochastic 

dynamics. 

After such a delay action, the original process null(b) becomes (i.e., changes state to) two 

separate processes in parallel (separated by the operator “|”): tr(b) and null(b). The second 

process is a copy of the original process null(b), which was consumed when performing its 

initial action. The first process, tr(b), described shortly, represents a molecule of a 

transcription factor for a binding site b on some gene. All together, the null(b) process is 

defined as  τε. (tr(b) | null(b)). A stochastic simulation of a null(b) process on its own 

produces multiple copies of tr(b) at stochastic time intervals characterized by ε, with exactly 
one copy of null(b) being preserved. 

2.2  Gene Products 

We now describe the transcription factor tr(b) (Figure 2), introducing the process calculus 

notions of interaction and stochastic choice. Except for delays τ, which happen autonomously, 
any action that a process performs must happen in conjunction with a complementary action 

performed by another process. The simultaneous occurrence of complementary actions is an 

interaction, e.g. between two molecules, or between a transcription factor and a promoter site. 

An action can be offered at any time, but only complementarily offered actions can result in 

actual interactions. For an interaction site, or channel, b, such complementary actions are 

conventionally called input on b (written ‘?b’),  and output on b (written ‘!b’). (In our 

examples we need only consider such simple signaling interactions; in general an interaction 

can also exchange data in the form of a message from output to input.) Hence, ?b and !b are 

complementary actions that can exchange a signal between them and allow two corresponding 

processes to change state. 

 

 

 

 

 

 
Figure 2 A transcription factor tr(b) makes a stochastic choice (‘+’) between either binding to an 

available promoter site b by an output action (‘!b’), or delaying (‘τ’) with rate δ. In the first case, 
the output action interacts with a corresponding input action at a promoter site b, and then (‘.’) the 

transcription factor returns to its initial state tr(b), ready to interact again. In the second case, the 

transcription factor degrades to the inert process (‘0’). 

 

The transcription factor tr(b) offers a choice of two actions; one is an output action !b, 

representing interaction with a binding site, and the other is a delay τ, followed by 
degradation. These two actions are in a stochastic race, indicated by ‘+’: b has (implicitly 

defined with it) a fixed associated rate r, and τ has a specific rate δ. If !b wins the race, it 
means that an interaction has occurred with an input action ?b offered elsewhere, and the 

process returns to the initial state, tr(b). If τ wins the race, however, the following state is 0: 
the inert process that never performs any actions. 

All together, tr(b) is defined as (!b. tr(b)) + (τδ.0), which means that tr(b) has the 

potential to interact multiple times with promoter sites, but each time (and particularly if no 

promoter site is available) it has a chance to degrade. Without interactions with binding sites, 
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a fixed population of transcription factors will simply exponentially degrade. If the population 

is being replenished, then a stable level may be found between production and degradation.  

2.3  Unary Gates.  

We now consider gates with simple regulation. A neg(a,b) gate has a promoter site a with 

negative regulation (inhibition), and a product b.  

The neg(a,b) gate (Figure 3) has a subprocess that is essentially identical to the null(b) 

gate, i.e., it provides constitutive transcription. However this subprocess is now in a stochastic 

race with a subprocess ?a. τη. neg(a,b). That is, it is in a race with a promoter binding, ?a. If 

the promoter component wins the race (by interacting with a transcription factor tr(a)), the + 

choice is taken on the promoter side, and the whole process becomes τη. neg(a,b). In this 

state, the gate is stuck performing a stochastic delay τη, i.e., it is inhibited, after which it goes 

back to be neg(a,b).  

 

 

 

 

 

 
Figure 3 A gene gate with inhibitory control, neg(a,b) makes a stochastic choice (‘+’) between 

constitutive transcription and inhibitory stimulation. The constitutive transcription case (bottom 

line) is exactly as in Figure 1, but this time it is in a race with a stimulus. If an interaction happens 

with the input action ‘?a’, then the gate enters a stochastic delay (‘τη’), during which the gate is 

inhibited, and then returns to the initial state. 

 

The pos(a,b) gate (Figure 4) has a promoter site a with positive regulation (stimulation), 

and a product b. It is similar to the neg gate, but instead of an inhibition delay, we have a 

transcription delay followed by stimulated production of tr(b). 

 

 

 

 

 

 

 
Figure 4 A gene gate with excitatory control, pos(a,b). This is almost identical to neg(a,b), but the 

input stimulus ‘?a’ is followed by the production of tr(b) instead of an inhibitory delay. 

 

3  The Stochastic π-Calculus Execution Model 

3.1  Simulation Language 

We have seen how a biological system can be modeled in the stochastic π-calculus, by 
representing each component of the system as a process P that precisely describes what the 

component can do. To summarize, the most basic process form is a choice Σ = P1 + … + Pn 
between zero or more outputs !x(n), inputs ?x(m), and delays τ that the component can 
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perform (in the general form of input/output, n is the output message and m is the input 

variable). Two components P and Q can be combined together using parallel composition 

P|Q. Channels can be established to allow the components to interact by complementary 

inputs and outputs. Once a biological system has been modeled using these basic components, 

the model can be stochastically simulated in order to predict the evolution of the system over 

time. In this paper, the simulations were obtained using the Stochastic Pi Machine (SPiM), 

which is described in [13]. 

Another basic operator of stochastic π-calculus, which we do not need to discuss in detail 
in this paper, allows the creation of fresh channels. The operator new xε. P creates a fresh 

channel x of rate ε to be used in the process P. The rules of stochastic π-calculus ensure that a 
“fresh” channel so obtained does not conflict with any other channel. We mention the channel 

creation operator here just because it allows us to obtain the stochastic delay τε as a derived 

operator. In fact, we can define: 
 

τε.P + Q   @   new xε. (!x.0 | (?x.P + Q))         for x not occurring in P or Q 
 

That is, a delay is equivalent to a single communication on a fresh channel of the same rate. 

Hence, stochastic delays can be reduced to ordinary channel communication, and can be 

handled uniformly like any other communication, e.g., for simulation purposes. 

3.2  Simulator 

The Stochastic Pi Machine simulates a given process P by first converting the process to a 

corresponding simulator data structure, consisting of a list of components A= Σ1, ..., ΣM. The 

resulting list is then processed by the simulator, by first using a function Gillespie(A) to 

stochastically determine the next interaction channel x and the corresponding reaction time τ. 
Once an interaction channel x has been chosen, the simulator uses a selection operator to 

randomly select from the list A a component of the form Σ+?x(m).P containing an input on 
channel x, and different component of the form Σ' +!x(n).Q containing an output on x. The 
selected components can then interact by synchronizing on channel x, and the processes P 

(with the input variable m replaced by n) and Q are added to the remainder of the list. The 

simulator continues processing the list in this way until no more interactions are possible.  

The function Gillespie(A) is based on [14], which uses a notion of channel activity to 

stochastically choose a reaction channel from a set of possible channels. The activity of a 

reaction channel corresponds to the number of possible combinations of reactants on the 

channel; channels with a high activity and a fast reaction rate have a higher probability of 

being selected. A similar notion of activity is defined for the Stochastic Pi Machine, where 

Actx(A) denotes the number of possible combinations of inputs and outputs on interaction 

channel x in a list of components A: 
 

Actx(A)=(Inx(A)*Outx(A))-Mixx(A) 
 

Inx(A) and Outx(A) are defined as the number of available inputs and outputs on interaction 

channel x in A, respectively, and Mixx(A) is the sum of Inx(Σi)×Outx(Σi) for each component Σi 

in A. The formula takes into account the fact that an input and an output in the same 

component cannot interact, by subtracting Mixx(A) from the product of the number of inputs 

and outputs on x.  

The Stochastic Pi Machine has been formally specified in [13], and the specification has 

been proved to correctly simulate π-calculus processes. The simulator has also been used to 
simulate a wide variety of chemical and biological systems. In particular, many of the 
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benchmark examples that were used to validate the Gillespie algorithm [14] have been 

modeled as π-calculus processes and correctly simulated in SPiM. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 5 Compositions of gates represent circuits (left) that exhibit behaviors (right). The 

channels a,b,c are declared separately (not shown) along with their associated stochastic interaction 

rates. In all simulations, the common rate r for a,b,c is set to a baseline value of 1.0. The other

chosen rates are as indicated in the individual simulations; the fact that they are chosen at simple 

order-of-magnitude intervals suggests that they are not critical for the intended behavior. The 

vertical axis is the number of outstanding offers of communication: for a channel a we may plot 

output offers !a or input offers ?a. In all cases above, the networks get started by constitutive 

transcription only. All the plots are of individual simulator runs. 

3.3  Interaction-Oriented Simulation vs. Reaction-Oriented Simulation 

The Gillespie algorithm was originally used to simulate a set of chemical reaction equations 

expressed in terms of reactants and products, and the results of a simulation were plotted as 

the quantity of each chemical species versus time. In contrast, the π-calculus does not 
describe an equation for each type of chemical reaction, but instead describes the behavior of 

each component in terms of the inputs and outputs it can perform on a set of interaction 

channels. This gives rise to an interaction-oriented model, as opposed to a chemical-reaction-

oriented model, in which a reactant is defined as an input or output on a given interaction 

channel. Once the notion of a reactant has been defined in this way, the Gillespie algorithm 

can be directly applied to a given π-calculus model of the biological system. The 
corresponding simulation results can be plotted as the quantity of each reactant versus time. 
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4  Gene Networks 

4.1  Simple Circuits 

In Section 2 we have described gene gates with one input; gates with n inputs can be defined 

similarly, to form a larger library of components. Once the components are defined, gene 

circuits can be assembled by providing interaction channels, with associated interaction rates, 

connecting the various gates. If we write, e.g., pos(a,b) | neg(b,c), the pos process will offer 

output actions !b, through tr(b), and the neg process will offer input actions ?b. Hence the 

shared channel b, given to both pos and neg as a parameter, can result in repeated interactions 

between the two processes over b, and hence in network connectivity. 

The simplest circuits we can build are single gates interacting with themselves in a 

feedback loop, like pos(a,a) (Figure 5). In absence of any stimulus on a, pos(a,a), must 

choose the constitutive transcription route and evolve into tr(a) | pos(a,a), where now tr(a) 

can stimulate pos(a,a) at a faster rate than the constitutive rate, and possibly multiple times. 

Depending on the production and degradation rates, a stable high level of tr(a) may be 

reached. Similarly neg(a,a) can stabilize at a low quantity of tr(a) where degradation of tr(a) 

balances inhibition. A convenient high-signal level of about 100 is maintained in our 

examples by appropriate rates (see parameters in Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6 Feedback loops that are monostable (resulting in a single stable state with a high after a 

transient) and bistable (resulting in two distinct stable states with a high or b high). 

 

The combination pos(b,a) | neg(a,b) (Figure 6) is a self-inhibition circuit, like neg(a,a), 

and it similarly has a stable output. But now there are two separate products, tr(a) and tr(b), 

so the system (again in absence of any stimulus) can stochastically start with a prevalence of 

tr(a) or a prevalence of tr(b): this can be seen at the beginning of the two plots, before 

stabilization. 

The combination neg(b,a) | neg(a,b) (Figure 6) is a bistable circuit, which can start up in 

one state or another, and (usually) stay there. 

0

50

100

150

0 5000 10000 15000

0

50

100

150

0 5000 10000 15000

0

50

100

150

0 5000 10000 15000

0

50

100

150

0 5000 10000 15000

negpos

b

a

pos(b,a) | neg(a,b) 

neg(b,a) | neg(a,b) 

negneg

b

a

r = 1.0, δ = 0.001;    pos: ε = 0.01, η = 0.1;   neg: ε = 0.1, η = 0.01

Bistable

a b

Monostable

aa

0

50

100

150

0 5000 10000 15000

0

50

100

150

0 5000 10000 15000

0

50

100

150

0 5000 10000 15000

0

50

100

150

0 5000 10000 15000

negpos

b

a
negpos

b

a

pos(b,a) | neg(a,b) 

neg(b,a) | neg(a,b) 

negneg

b

a
negneg

b

a

r = 1.0, δ = 0.001;    pos: ε = 0.01, η = 0.1;   neg: ε = 0.1, η = 0.01

Bistable

a b

Monostable

aa



2005-11-28 12:48:47 8 

4.2  Repressilator 

The well-known repressilator circuit [12], consisting of three neg gates in a loop, is an 

oscillator. We compare here three different degradation models, aiming to justify somewhat 

our initial definition for tr(-). In the first model (Figure 7(A)), each transcription factor 

interacts exactly once, and only then it disappears. The repressilator circuit oscillates nicely 

but, without stochastic degradation, the plots appear very “mechanical”; moreover, the 

quantities of products grow at each cycle because products do not disappear unless they 

interact. In the second model (Figure 7(B)), each transcription factor interacts exactly once, or 

can degrade. Again the plots look mechanical, but the stochastic degradation defines a stable 

level of product. The third model (Figure 7(C)), with multiple interactions and stochastic 

degradation, is more realistic and gives more convincing plots. See the Appendix for the 

simulator script. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 The Repressilator circuit and its dynamics for different degradation models (A – C). The 

detailed explanation is found in the text. 

 

The progressive refinement of the definition of tr(-), provides an illustration of how one 

can play with process descriptions to find models that show a balance between simplicity and 

realism. A further step could be to model both attachment and detachment of transcription 

factors, and then to model both transcription and translation.  

4.3  Network properties: Oscillation 

It is instructive to take a “systems” approach and see what the rate parameters described 
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tr(p) = !p.0

r = 1.0, ε = 0.1, η = 0.04

neg neg

negc b

a

neg(a,b) |

neg(b,c) |

neg(c,a) 

tr(p) = (!p.0) + (τδ.0)

r = 1.0, ε = 0.1, η = 0.04, δ = 0.0001

tr(p) = (!p.tr(p)) + (τδ.0)
r = 1.0, ε = 0.1, η = 0.001, δ = 0.001

C)

A) B)

0

1000

2000

0 20000 40000 60000 80000

0

100

200

300

0 20000 40000 60000 80000

a b c a b c

0

50

100

150

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

a b c

tr(p) = !p.0

r = 1.0, ε = 0.1, η = 0.04

neg neg

negc b

a

neg neg

negc b

a

neg(a,b) |

neg(b,c) |

neg(c,a) 

tr(p) = (!p.0) + (τδ.0)

r = 1.0, ε = 0.1, η = 0.04, δ = 0.0001

tr(p) = (!p.tr(p)) + (τδ.0)
r = 1.0, ε = 0.1, η = 0.001, δ = 0.001

C)

A) B)

0

1000

2000

0 20000 40000 60000 80000

0

1000

2000

0 20000 40000 60000 80000

0

100

200

300

0 20000 40000 60000 80000

0

100

200

300

0 20000 40000 60000 80000

a b ca b c a b ca b c

0

50

100

150

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

0

50

100

150

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

a b ca b c



2005-11-28 12:48:47 9 

that the constitutive rate (together with the degradation rate) determines oscillation amplitude, 

while the inhibition rate determines oscillation frequency. Figure 8 shows the variation of ε 
and η from their values in Figure 7(C)); note the differences in scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8 Repressilator frequency and amplitude, regulated by η and ε. Cf. Figure 7(C). 

 

Moreover, we can view the interaction rate r as a measure of the volume (or temperature) 

of the solution; that is, of how often transcription factors bump into gates. Figure 9 shows that 

the oscillation frequency and amplitude remain unaffected in a large range of variation of r 

from its value in  Figure 7(C)). Note that r is in a stochastic race against δ in tr, and δ is 
always much slower. 

 

  

 

 

 

 
Figure 9 Repressilator stability to changes in r (volume/temperature). Cf. Figure 7(C). 

 

4.4  Network properties: Fixpoint  

We now discuss a network property that becomes important in later analysis. Figure 10  plots 

signals flowing through a sequence of neg gates with parameters as in Figure 7(C), except for 

η, the inhibition delay. On the left, the signals are alternating between high (b,d) and low 
(a,c,e). As η is increased, shown from left to right, the gates behave less and less like boolean 
operators, but the signals remain separate.  

Figure 11 shows the same circuit, except for a self feedback on the head gate. With low 
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all the gates will be at the same fixpoint. Different values of η and different gate response 
profiles may change the fixpoint level, but not its fundamental stability. 

 

 

 

 

 

 

 

 

 

 

 
Figure 10  A sequence of neg gates with three settings of their η parameter. 

 

 

 

 

 

 

 

 

 

 

 
Figure 11  The effect of head feedback on a sequence of neg gates. 
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Figure 12  A neg gate with parametric product p. 
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In order to build up the different combinatorial networks easily, we begin with a version 

of the neg gate that is more flexibly parameterizable. We call it negp, and it has the property 

that, if s represents the rates used in the neg gate, then negp(a,s,tr(b)) = neg(a,b), hence neg is 

a special case of negp. The rates for inhibition and constitutive translation are passed as a pair 

s=(ε,η), in the second parameter. The third parameter fully encapsulates the gate product, so 
the gate logic is independent of it

1
.   

 

  

 

 

 

 

 

 

 

 
Figure 13  Repressible transcription factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14  D038. 
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binding to a site b, being neutralized via a site r, and degrading. The repression is performed 

by a process rep(r) that, if present, “inexhaustibly” offers ?r.  

In the artificial gene circuits by Guet et al, the circuits are probed by varying two inputs: 

two so-called “inducer” proteins in the environment, aTc and IPTG, which bind specifically to 

the gene in question. The output of the gene circuit is detected by a reporter gene which 

produces a green-fluorescent protein (GFP) which can be optically detected. 

We can now describe the circuits from [1] by simple combinations of negp, tr, rtr, and 

rep components. All the other names appearing here, such as TetR, aTc, etc., which glue the 

network together, are just channel names used in complementary input and output actions.  

Intuitive Boolean analysis of one of the still controversial circuits, D038, in Figure 14 

would suggest either oscillation (GFP=0.5 on average), or GFP=1, contrary to experiment
2
. 

Thus, for the given construction, a different explanation is needed. The fixpoint effect, 

however, which we have described in Section 4.4, does suggest an explanation for the output 

in the absence of repressors, whereby all signals including the output signal GFP are driven to 

a fixpoint with a low value. The addition of GFP renders that state unstable and drives TetR to 

0, and hence GFP to 1. In all cases, the addition of IPTG drives LacI to 0 and hence GFP to 0. 

Figure 15 shows the simulation results of this system for the different values of aTc and 

IPTG. In circuit D038 we have thus found an example in which the modelling of the 

stochastic gate behaviour can indeed help to find an explanation of the observed dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15  D038 simulations. 
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only reduce the level of TetR. Instead, aTc somehow pushes GFP to 1. 
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Figure 16  D016 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17  D016 simulations 
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present, which might decrease the degradation rate of the other proteins. But even in absence 

of aTc and IPTG, it is surprising that GFP is high (about 50% of max [16]): this seems to 

contradict both simple boolean analysis and our fixpoint explanation which worked well for 

D038. 

One way to rationalize the behaviour displayed by this circuit is to assume that the P
L
1-

lac gate is operating in a region in parameter space in which the circuit dynamics is unstable. 

A closer examination of the instability region of our basic fixpoint circuit (Figure 10 bottom 

left) shows that, while the first signals in the sequence (a,b) are kept low, the subsequent 

signals (c, corresponding to GFP in D016, and d,e) all spike frequently. This may give the 

appearance, on the average, of high levels of GFP, matching the first column of the D016 

experiment. Moreover, in the instability region the system responds very sensitively to 

changes in degradation levels: GFP levels can be brought down both by increasing 

degradation by a factor of 5 (because this brings the circuit back into the fixpoint regime) or 

by decreasing degradation by a factor of 1000 (so that there are enough transcription factors to 

inhibit all gates). In Figure 17 we begin by placing D016 in the instability regime, with GFP 

spiking (A). Then, adding aTc while reducing degradation suppresses all signals (B). Adding 

IPTG results in no GFP (C,D); moreover, reduced degradation causes overproduction (D). 

Even increased degradation (E) can result in no GFP. 

While a proper biological explanation of the behavior of D016 has not been obtained yet, 

the type of analysis we have performed here already shows the potential of the information 

gain from a proper study of the stochastic dynamics of the gene circuits, in particular in the 

case where head feedbacks are present; other authors have noted the possibility of surprises in 

such cases [19]. 

5  Conclusions 

In this paper we have demonstrated how stochastic simulations of gene circuits can be built in 

a compositional way by employing the stochastic π-calculus. For this, we chose as a 

descriptive level not the molecular constituents, but rather considered each gene as a gate with 

corresponding inputs and outputs. On this level, compositionality is illustrated, for example, 

by our treatment of the repressilator circuit: the definition of the neg gate could be left 

unchanged when the definition of the transcription factor tr was refined. Our approach is 

mechanistic in the sense that we (re-)construct a biological system from discrete elements and 

then deduce the system behaviour as arising from the interactions of the components.  This 

differs from modelling attempts of the same systems in the bioinformatics literature which 

only looked at gene expression levels without considering their origin [18]. Our approach, 

while being abstract, is advantageous as it allows a considerable flexibility in the level of 

detail with which components and their interactions are described (see the Appendix for 

further illustration). While the adopted level of the description may be considered coarse and 

qualitative, the π-calculus approach easily allows for refinements (i.e., inclusion of additional 

detail down to molecular levels of description) to match available knowledge. 

Apart from these analytical and conceptual advantages in building up the different 

circuits, we stress that the ease of use of the compositional approach in combination with 

stochastic simulations is particularly useful for hypothesis testing. It can build on available 

knowledge, but the outcome of the stochastic simulations of the interacting components yields 

a highly non-trivial check of expectations. By comparison, Boolean analysis or intuitive ideas 

are obviously too naïve and thus can easily be misleading.  
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The sensitivity of the gene network dynamics to parameter choice has to be contrasted 

with the lack of quantitative knowledge of promoter strengths, or even qualitative 

relationships between the different promoters [19]. In the absence of “true” (i.e., 

experimentally validated) parameter values, a detailed analysis of the stochastic behaviour of 

the gene networks resulting from a systematic parameter variation can be a very useful - but 

clearly not sufficient - step to avoid misinterpretations of experiments.  

To conclude, we believe that the compositional approach we propose for the formulation 

of stochastic models of gene networks will allow a useful path for more detailed, quantitative 

studies of regulatory mechanisms, and in particular for the testing of hypotheses of complex 

system behavior. It may be considered as one step towards the development of flexible 

languages and simulation tools for computational biology, for which a need has recently been 

expressed by several biologists ([20]-[22]).   

6  Appendix 

6.1 A Simulator for the Stochastic ππππ-calculus 

The following is a detailed description of the Stochastic π-calculus and the Stochastic Pi 
Machine, as presented in [13]. 

 

P,Q::= new x  P Restriction  Σ::= 0 Null 

| P | Q Parallel  | π.P + Σ Action 

| Σ Choice  π::= !x(n) Output 

| *π.P Replication  | ?x(m) Input 

 

Def. 1.   Syntax of the Stochastic π-calculus

 

 

!x(n).P + Σ  |  ?x(m).Q + Σ'  

rate(x) 

→ 

    

P | Q{n/m}      [1] 

P   

r 

→ 

   

P'  ⇒   P | Q 

 

 

r 

→ 

    

P' | Q      [2] 

P 

r 

→ 

   

P'  ⇒  new x  P 

 

 

r 

→ 

    

new x  P'      [3] 

Q ≡ P 

r 

→ 

   

P' ≡ Q'  ⇒   Q 

 

 

r 

→ 

    

Q'      [4] 

 
 

Def. 2.   Reduction in the Stochastic π-calculus

 

Stochastic ππππ-calculus. A biological system can be modeled in the stochastic π-calculus by 
representing each component of the system as a calculus process P that precisely describes 



2005-11-28 12:48:47 16 

what the component can do. According to Def. 1, the most basic component is a choice Σ 
between zero or more output !x(n) or input ?x(m) actions that the component can perform. 

Two components P and Q can be combined together using parallel composition P|Q, and a 

component P can be given a private interaction channel x using restriction new x P. In 

addition, multiple copies of a given component π.P can be cloned using replication *π.P. 
Standard syntax abbreviations are used, such as writing π for π.0 and π.P for π.P + 0.  

Two components in a biological system can interact by performing complementary input 

and output actions on a common channel. During such an interaction, the two components can 

also exchange information by communicating values over the channel. Each channel x is 

associated with a corresponding interaction rate given by rate(x) and the interaction between 

components is defined using reduction rules of the form P→rP’. Each rule of this form 

describes how a process P can evolve to P’ by performing an interaction with rate r. 

According to Def. 2, a choice containing an output !x(n).P can interact with a parallel choice 

containing an input ?x(m).Q. The interaction occurs with rate(x), after which the value n is 

assigned to m in process Q (written Q{n/m}) and processes P and Q{n/m} are executed in parallel 

(Eq. 1). Components can also interact in parallel with other components (Eq. 2) or inside the 

scope of a private channel (Eq. 3), and interactions can occur up to re-ordering of components 

(Eq. 4), where P ≡ Q  means that the component P can be re-ordered to match the component 
Q. In particular, the re-ordering *π.P ≡ π.(P | *π.P) allows a replicated input *?x(m).Q to 
clone a new copy of Q by reacting with an output !x(n).P.  

 

V,U::= new x  V Restriction  A,B::= [] Empty 

  A List    Σ:: A Choice 

 

Def. 3.   Syntax of the Stochastic Pi Machine 

 

 

 

x,τ = Gillespie(A) 

∧ A>(?x(m).P + Σ):: A' 

∧ A'>(!x(n).Q + Σ'):: A''  

   ⇒ A 

 

 

 rate(x) 

→ 

    

P{n/m}: Q: A''      [5] 

V 

r 

→ 

  

V'  ⇒  new x  V 

 

 

r 

→ 

   

new x  V'      [6] 

 
Def. 4. Reduction in the Stochastic Pi Machine 

 

Stochastic Pi Machine. The Stochastic Pi Machine is a formal description of how a process of 

the stochastic π-calculus can be simulated. A given process P is simulated by first encoding 

the process to a corresponding simulator term V, consisting of a list of choices with a number 

of private channels: 
 

new x1 ... new xN  (Σ1::Σ2::...::ΣM::[]) 
 

This term is then simulated in steps, according to the reduction rules in Def. 4. A list of 

choices A is simulated by first using a function Gillespie(A) to stochastically determine the 

next interaction channel x and the corresponding interaction time τ. Once an interaction 
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channel x has been chosen, the simulator uses a selection operator (>) to randomly select a 

choice ?x(m).P + Σ  containing an input on channel x and a second choice !x(n).Q + Σ'   
containing an output on x. The selected components can then interact by synchronizing on 

channel x, where the value n is sent over channel x and assigned to m in process P (written 

P{n/m}). After the interaction, the unused choices Σ and Σ' are discarded and the processes P{n/m} 
and Q are added to the remainder of the list to be simulated, using a construction operator (:) 

(Eq. 5). An interaction can also occur inside the scope of a private channel (Eq. 6). The 

simulator continues performing interactions in this way until no more interactions are 

possible.  

The function Gillespie(A) is based on the Gillespie Algorithm [14], which uses a notion 

of channel activity to stochastically choose a reaction channel from a set of available 

channels. The activity of a channel corresponds to the number of possible combinations of 

reactants on the channel. Channels with a high activity and a fast reaction rate have a higher 

probability of being selected. A similar notion of activity is defined for the Stochastic Pi 

Machine, where Actx(A) denotes the number of possible combinations of inputs and outputs on 

channel x in A: 
 

Actx(A) = Inx(A) × Outx(A)  -  Mixx(A) 
 

Inx(A) and Outx(A) are defined as the number of available inputs and outputs on channel x in 

A, respectively, and Mixx(A) is the sum of Inx(Σi)×Outx(Σi) for each choice Σi in A. The formula 

takes into account the fact that an input and an output in the same choice cannot interact, by 

subtracting Mixx(A) from the product of the number of inputs and outputs on x. Once the 

values x and τ have been calculated, the simulator increments the simulation time by delay τ 
and uses the selection operator to randomly choose one of the available interactions on x 

according to (Eq. 5). This is achieved by randomly choosing a number n∈[1..Inx(A)] and 
selecting the nth input in A, followed by randomly selecting an output from the remaining list 

in a similar fashion. The application of the Gillespie algorithm to the Stochastic Pi Machine is 

summarized in Def. 3, where fn(A) denotes the set of all channels in A. 

 

1. For all x∈fn(A) calculate ax = Actx(A) × rate(x)  

2. Store non-zero values of ax in a list (xµ,aµ), where µ∈1...M.  

3. Calculate a0=∑ν=0
M 
aν  

4. Generate two random numbers n1,n2∈[0,1] and calculate τ,µ such that:  

τ = (1/a0)ln(1/n1) 

 

 

µ-1 

∑ 

ν=1  

 aν<n2a0≤ 

µ 

∑ 

ν=1  

 aν 

5. Gillespie(A) = (xµ,τ).  

Def. 5. Calculating Gillespie(A) according to (13)  
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For improved efficiency, the simulator can be modified to store a list of values for each 

channel x in A, of the form: 
 

x,Inx(A),Outx(A),Mixx(A),ax 
 

After each reduction has been performed, it is only necessary to update the values for those 

channels that were affected by the reduction, and then use Def. 5 on the updated values to 

choose the next reaction channel and calculate the delay. 

To gain confidence in our simulation technique, we have conducted detailed simulations 

of the model chemical systems which were simulated in [14] using the Gillespie algorithm. 

Comparable results were obtained by modeling each system as a π-calculus process and 
simulating the resulting processes in the Stochastic Pi Machine. 

6.2  Repressilator Code 

From the simple examples discussed previously, the structure of the SPiM programs should 

now be clear. The following is the complete code for the repressilator simulation in Figure 

7(C) of the paper, for the SPiM simulator (v0.04). In order to clarify parts of the code, 

comments are added in (* … *) brackets.    

 
(* Simulation time, samples, and plotting  *) 

directive sample 90000.0 500    

directive plot !a as "a"; !b as "b"; !c as "c"  

 

(* Parameters *) 

val dk = 0.001  (* Decay rate *) 

val inh = 0.001  (* Inhibition rate *) 

val cst = 0.1  (* Constitutive rate *) 

val bnd = 1.0  (* Protein binding rate *) 

 

(* Transcription factor  *) 

let tr(p:chan()) =     

  do !p; tr(p) 

  or delay@dk 

 

(* Neg gate *) 

let neg(a:chan(), b:chan()) = 

  do ?a; delay@inh; neg(a,b) 

  or delay@cst; (tr(b) | neg(a,b)) 

 

(* The circuit *) 

new a @ bnd: chan() 

new b @ bnd: chan()  

new c @ bnd: chan()  

 

run (neg(c,a) | neg(a,b) | neg(b,c)) 

 

6.3  D038,D016 Code 

The following is the complete code for the of the D038 and D016 simulations in Figure 15 

and Figure 17, for the SPiM simulator (v0.04). 

 
(* Simulation time, samples, and plotting  *) 

directive sample 20000.0 500 

directive plot !GFP as "GFP"; !LacI as "LacI";  

          !LambcI as "LambcI"; !TetR as "TetR" 

 

(* Degradation rate *) 

val dk = 0.001             

(* val dk = 0.00001    for D016 when aTc is present *) 
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(* Transcription factor *) 

let tr(b:chan()) =        

  do !b; tr(b) 

  or delay@dk 

 

(* Repressible transcription factor *) 

let rtr(b:chan(), r:chan()) =      

  do !b; rtr(b,r)  

  or !r  

  or delay@dk 

 

(* Repressor *) 

let rep(r:chan()) =          

  ?r; rep(r) 

 

(* Negp gate *) 

let negp(a:chan(), (cst:float, inh:float), p:proc()) =      

  do ?a; delay@inh; negp(a,(cst,inh),p) 

  or delay@cst; (p() | negp(a,(cst,inh),p)) 

 

(* Wiring *) 

new TetR @1.0: chan()  (* TetR protein *)  

new LacI @1.0: chan()  (* LacI protein *)  

new LambcI @1.0: chan() (* LambcI protein *)  

new GFP @1.0: chan()  (* GFP protein *) 

new aTc @100.0: chan()  (* aTc inducer *) 

new IPTG @100.0: chan() (* IPTG inducer *) 

 

(* Auxiliary definitions: negp products *) 

let rtr_TetR_aTc() = rtr(TetR,aTc)         

let rtr_LacI_IPTG() = rtr(LacI,IPTG) 

let tr_LambcI() = tr(LambcI) 

let tr_GFP() = tr(GFP) 

 

(* D038 Circuit *) 

val PT = (0.1, 0.25)   (* PT constitutive and inhibition rates *) 

val PL2 = (0.1, 1.0)   (* PL2 constitutive and inhibition rates *) 

val Plm = (0.1, 1.0)   (* Plm constitutive and inhibition rates *) 

 

let tet() = negp(TetR, PT, rtr_TetR_aTc) 

let lac() = negp(TetR, PT, rtr_LacI_IPTG) 

let cI()  = negp(LacI, PL2, tr_LambcI)  

let gfp() = negp(LambcI, Plm, tr_GFP) 

 

run  

( tet() | lac() | cI() | gfp() 

(* | rep(aTc) uncomment to test with aTc *) 

(* | rep(IPTG) uncomment to test with IPTG *) 

) 

(* D016 Circuit *) 

val PT = (0.1, 0.01)   (* PT constitutive and inhibition rates *) 

val PL1 = (0.1, 0.01)   (* PL1 constitutive and inhibition rates *) 

val PL2 = (0.1, 0.01)   (* PL2 constitutive and inhibition rates *) 

val Plm = (0.1, 0.01)   (* Plm constitutive and inhibition rates *) 

 

let tet() = negp(TetR, PT, rtr_TetR_aTc) 

let lac() = negp(LacI, PL1, rtr_LacI_IPTG) 

let cI()  = negp(LacI, PL2, tr_LambcI)  

let gfp() = negp(LambcI, Plm, tr_GFP) 

 

run  

( tet() | lac() | cI() | gfp() 

(* | rep(aTc) uncomment to test with aTc *) 

(* | rep(IPTG) uncomment to test with IPTG *)) 

6.4  Complexation 

Complexation can be modeled in stochastic process calculi by using a technique originally 

developed by Aviv Regev and Ehud Shapiro [6][7]. This technique provides a simple 

illustration of a major feature of process calculi that we have not emphasized in the main text: 

the dynamic creation of fresh communication channels. A fresh (unique) channel can be 
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dynamically created, operationally, by incrementing a global counter, or by picking a random 

number. Process calculi abstract from these operational details by a formalized notion of what 

it means for a channel to be fresh. The operator new cr; P creates a fresh channel named c 

with rate r for use in P (distinct from any other channel that might also be named c). 

We want to model two proteins P and Q that combine into a complex P:Q at some rate r, 

and break apart again at some rate s. Let cx denote the complexation interaction of the two 

proteins: this is modeled as a single “public” channel cx of rate r, where multiple copies of P 

and Q can interact to come together and form complexes. Let dx denote the decomplexation 

interaction of two bound proteins: this is modeled as a separate channel dx of rate s for each 

complex. Such a fresh channel is established separately for each complex at the time of 

complexation, for the purpose of subsequently breaking up.  
 

P = new dxs !cx(dx); !dx; P 

Q = ?cx(x); ?x; Q               where x is an input variable 
 

If we consider just one copy of P and one of Q, for simplicity, the initial system P|Q 

consisting of two separate proteins can evolve by P creating a fresh channel dx and outputting 

this dx over the public channel cx, where it can be input by Q and bound to its input variable 

x. At this point the system has evolved into the configuration new dxs (!dx; P) | (?dx; Q), 

where dx is unknown to any other actual or potential process in the system. This state 

represents the complex of the original P and Q. Next, an interaction can happen over this 

particular dx channel among the only two processes that share it: this is the decomplexation 

event resulting in the initial state P|Q. 
 

P|Q   �r   new dxs (!dx; P) | (?dx; Q)   �s   P|Q      where dx is fresh 
 

Many variations on this theme are possible, including modeling the binding, unbinding, 

and cooperative binding of transcription factors. 

6.5  Neg Gate Dynamic Response Profile 

We test the dynamic response profile of the neg gate of Figure 3. To observe some of its 

behavior under operating conditions, we provide an input consisting of a signal raising 

linearly from 0 to 100, and then falling linearly from 100 to 0. That means 100 copies of input 

molecules, where each molecule is injected at a certain time and can interact or decay a 

certain number of times (thus shaping the input curve).  

Initially, in absence of any input, the output of the neg gate quickly raises to about 100. 

As the input signal ramps up, the output signal decays, and as the signal ramps down the 

output rises again, but with an asymmetric profile. (Figure 18(A1,B1): the ramping down of 

the input signal in B1 appears abbreviated because the signal is consumed at a higher rate by 

the gate.) Plotting input vs output for the same data (Figure 18(A2,B2)) we can see a roughly 

hyperbolic response with two distinct curves corresponding to raising and falling inputs. We 

show the plots for a highly sensitive (“Boolean”) gate with η=0.001 (Figure 18(A1,A2)) and a 
less sensitive gate with η=1.0 (Figure 18(B1,B2)); these parameters cover the range used in 
simulations in the main text. As in the main text, what is actually plotted is the number of 

(output) communication offers on the channels.  

These response profiles illustrate the fact that, e.g., in the repressilator, each signal 

dynamically shapes the next signal and is shaped by the intake of the next gate. 
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Figure 18  Neg Gate Response Profile 

 

The following is the complete code used to obtain the graphs, for the SPiM simulator 

(v0.04). 

 
(* Simulation time, samples, and plotting  *) 

directive sample 30000.0 1000 

directive plot !a as "a"; !b as "b" 

 

(* Parameters *) 

val dk  = 0.001 (* Output protein decay rate *) 

val inh = 0.001 (* Inhibition rate, or 1.0 *) 

val cst = 0.1 (* Constitutive rate *) 

val bnd = 1.0 (* Protein binding rate *) 

 

(* Transcription factor *) 

let tr(p: chan()) = do !p;tr(p) or delay@dk 

 

(* Neg gate *) 

let neg(a:chan(), b:chan()) = 

  do ?a; delay@inh; neg(a,b) 

  or delay@cst; (tr(b) | neg(a,b)) 

 

(* Probe signal: linearly raising and falling *) 

val pbdk = 0.1    (* Probe signal decay rate *) 

let probe1(p:chan(),n:int) =  

  if n=0 then ()  

  else (do !p;probe1(p,n-1) or delay@pbdk; probe1(p,n-1)) 

let dprobe1(p:chan(),d:int,n:int) =  

  if d=0 then probe1(p,2*10*n)  

  else delay@pbdk;dprobe1(p,d-1,n) 

let probe(p:chan(),m:int) =  

  if m=0 then ()  

  else (dprobe1(p,500+(10*m),100-m) | probe(p,m-1)) 

 

(* Probing *) 

new a@bnd:chan()  new b@bnd:chan() 

run (neg(a,b) | probe(a,100)) 
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