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Within the last years a general consensus has emerged that noise 
and stochasticity are essential building elements of gene 
regulatory networks. A quantitative understanding of their role is 
thus needed to understand gene regulation. Regulatory functions 
can indeed work to eliminate stochastic effects (2), or to even 
exploit them (3).  

In line with new experimental techniques to measure and 
quantify such behavior, efficient ways to model and simulate gene 
networks need to be developed, which are currently lacking. 
Simulations based on differential equations for the concentrations 
of the various biomolecules, the long-time standard of modeling in 
biochemical systems are not well suited for this purpose, except in 
particular cases. Stochastic effects, which are typically important 
when molecule numbers are small, are difficult to build into such 
approaches, and the resulting stochastic equations are time-
consuming to simulate. In addition, differential equation models 
are inherently difficult to change, extend and upgrade, as changes 
of network topology may require substantial changes in most of 
the basic equations.   

In this paper, we follow a different route. It has recently 
emerged within computer science in the context of process calculi, 
and their applications to biological systems. Process calculi (4) are 
essentially programming languages designed to describe 
concurrent, interactive systems such as mobile communication 
networks. Among the various process calculi, π-calculus is one of 
the best studied because of its compactness, generality, and 
flexibility. Stochastic variants have appeared recently that address 
biochemical modeling (5); they have been used to model 
molecular interactions (7) and compartments (8,9). A remaining 
challenge is to model gene networks, to fully demonstrate the 
flexibility of process calculi, and to eventually support the 
integration of molecular, gene, and membrane networks in a single 
framework. 

Here, we introduce process calculi by example, in the context of 
gene networks; technical details of the approach can be found in 
the Supplementary Online Material (10) and the references given 
there. Modeling with process calculi is very much like 
programming, and yet it is mathematically precise. It is carried out 
in concurrent, stochastic programming languages that can easily 
support very complex and detailed models in a modular 
(“compositional”) way, where separate program units correspond 
to separate biochemical components.      

Our purpose here is in part tutorial: we aim to show that we can 
do things simply to start with, and already get interesting insights. 
More sophisticated models can be built when needed; e.g. see (11) 
for a detailed molecular model of transcription-translation in 
phage lambda done in this style. The paper is structured as 
follows: in the Methods sections we explain how to represent gene 
network elements as processes in the stochastic �-calculus and 
how to execute them. We then apply this representation to model 
gene networks of increasing complexity, and study some of their 
behavior. In particular, we address the repressilator circuit (12) 
and two of the (still controversial) examples of combinatorial 
circuits first discussed in (1). 
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) � �����( �	��% We begin by modeling genes that have constitutive 
transcription but no regulatory control. We focus on the actions 
that are involved in the functioning of genes and molecular 
components. The generic term process is used for any mechanism 
performing actions and thus progressing through distinct states.  

A nullary-input gate (Fig. 1), given by a process written null(b), 
has a single parameter b that represents its transcription product; it 
takes no input from the environment. The initial action performed 
by such a gate is a stochastic delay, τε, where τ is a symbol 
indicating delay and ε  is a given rate constant (we always use 
exponential distributions characterized by rate constants). After 
such a delay action, the original process null(b) becomes (i.e., 
changes state to) two separate processes in parallel (“|”): tr(b) and 
null(b). The second process is a copy of the original process 
null(b), which was consumed when performing its initial action. 
The first process, tr(b), described shortly, represents a molecule of 
a transcription factor for a binding site b on some gene. All 
together, the null(b) process is defined as  τε. (tr(b) | null(b)). A 
stochastic simulation of a null(b) process on its own produces 
multiple copies of tr(b) at stochastic time intervals ε, with exactly 
one copy of null(b) being preserved. 

( �
�� � ��� �	�%� We now describe the transcription factor tr(b) 
(Fig. 2), introducing the process calculus notions of interaction 
and nondeterministic choice. Except for delays τ, which happen 
autonomously, any action that a process performs must happen in 
conjunction with a complementary action performed by another 
process. The simultaneous occurrence of complementary actions 
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is an interaction, e.g. between two molecules, or between a 
transcription factor and a promoter site. An action can be offered 
at any time, but only complementarily offered actions can result in 
actual interactions. For an interaction site, or channel, b, such 
complementary actions are conventionally called input on b 
(written ‘?b’),  and output on b (written ‘!b’). An interaction is in 
general a communication where messages are exchanged from 
output actions to input actions. But in this paper we need only 
consider synchronization interactions that only exchange a signal 
(which can be considered as a trivial message). Hence, ?b and !b 
are complementary actions that can exchange a signal between 
them and allow two corresponding processes to change state. 

The transcription factor tr(b) offers a choice of two actions; one 
is an output action !b, representing interaction with a binding site, 
and the other is a delay τ, followed by degradation. These two 
actions are in a stochastic race, indicated by ‘+’: b has (implicitly 
defined with it) a fixed associated rate r, and τ has a specific rate 
δ. If !b wins the race, it means that an interaction has occurred 
with an input action ?b offered elsewhere, and the process returns 
to the initial state, tr(b). If τ wins the race, however, the following 
state is 0: the inert process that never performs any actions. 

All together, tr(b) is defined as (!b. tr(b)) + (τδ.0), which means 
that tr(b) has the potential to interact multiple times with promoter 
sites, but each time (and particularly if no promoter site is 
available) it has a chance to degrade. Without interactions with 
binding sites, a fixed population of transcription factors will 
simply exponentially degrade. If the population is being 
replenished, then a stable level may be found between production 
and degradation.  

3 
��� ( �	��% We now consider gates with simple regulation. A 
neg(a,b) gate has a promoter site a with negative regulation 
(inhibition), and a product b.  

The neg(a,b) gate (Fig. 3) has a subprocess that is essentially 
identical to the null(b) gate, i.e., it provides constitutive 
transcription. However this subprocess is now in a stochastic race 
with a subprocess ?a. τη. neg(a,b). That is, it is in a race with a 
promoter binding, ?a. If the promoter component wins the race 
(by interacting with a transcription factor tr(a)), the + choice is 
taken on the promoter side, and the whole process becomes τη. 
neg(a,b). In this state, the gate is stuck performing a stochastic 
delay τη, i.e., it is inhibited, after which it goes back to be 
neg(a,b).  

The pos(a,b) gate (Fig. 4) has a promoter site a with positive 
regulation (stimulation), and a product b. It is similar to the neg 
gate, but instead of an inhibition delay, we have a transcription 
delay followed by stimulated production of tr(b). 
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' ��� ��	��
� � �
� � �� �% We have seen how a biological system can 
be modeled in the stochastic π-calculus, by representing each 
component of the system as a process P that precisely describes 
what the component can do. To summarize, the most basic process 
form is a choice Σ = P1 + … + Pn between zero or more outputs 
!x(n), inputs ?x(m), and delays τ that the component can perform 
(n is the output message and m is the input variable). Two 
components P and Q can be combined together using parallel 
composition P|Q. Channels can be established to allow the 
components to interact by complementary inputs and outputs. 
Once a biological system has been modeled using these basic 
components, the model can be stochastically simulated in order to 
predict the evolution of the system over time. In this paper, the 
simulations were obtained using the Stochastic Pi Machine 
(SPiM), which is described in (13). 

' ��� ��	�% The Stochastic Pi Machine simulates a given process P 
by first converting the process to a corresponding simulator data 
structure, consisting of a list of components A= Σ1, ..., ΣM. The 
resulting list is then processed by the simulator, by first using a 
function Gillespie(A) to stochastically determine the next 
interaction channel x and the corresponding reaction time τ. Once 
an interaction channel x has been chosen, the simulator uses a 
selection operator to randomly select from the list A a component 
of the form Σ+?x(m).P containing an input on channel x, and 
different component of the form Σ' +!x(n).Q containing an output 
on x. The selected components can then interact by synchronizing 
on channel x, and the processes P (with the input variable m 
replaced by n) and Q are added to the remainder of the list. The 
simulator continues processing the list in this way until no more 
interactions are possible.  

The function Gillespie(A) is based on (14), which uses a notion 
of channel activity to stochastically choose a reaction channel 
from a set of possible channels. The activity of a reaction channel 
corresponds to the number of possible combinations of reactants 
on the channel, and channels with a high activity and a fast 
reaction rate have a higher probability of being selected. A similar 
notion of activity is defined for the Stochastic Pi Machine, where 
Actx(A) denotes the number of possible combinations of inputs and 
outputs on interaction channel x in a list of components A: 
 

Actx(A)=(Inx(A)*Outx(A))-Mixx(A) 
 

Inx(A) and Outx(A) are defined as the number of available inputs 
and outputs on interaction channel x in A, respectively, and 
Mixx(A) is the sum of Inx(Σi)×Outx(Σi) for each component Σi in A. 
The formula takes into account the fact that an input and an output 
in the same component cannot interact, by subtracting Mixx(A) 
from the product of the number of inputs and outputs on x.  

The Stochastic Pi Machine has been formally specified in (13), 
and the specification has been proved to correctly simulate all 

 

- �� %�5 % ���� � 	 
 ��� ��" � � # 
 �" �� ��.b)� (  7 � 	 �  � � � � � �� ��� � � �  �� �� .28 3/� ) � �- � � � � � ��� � ��
) �� � �� * � �" �  � �  �  �� ) �� � � �" ( " �� �� 	 ��� �b� ) � �  � � � �
� ���� �� 	� .29b3/�� " ��������	� � .2τ3/�
- ��� �� �� �δ0��� ��� � �#��	 ��
  	 � ���� � �" � �� � �� 
 ��" � ��� �� � 
 �	 �- ��� � �
 " ��� 	 � " � � �� * ��� � � ��
 
 ��" � � �� �� �" ( " �� ��	 ��� ���� � � ��� �	�.203/��� � ��� � 	 
 ��� ��" � �# 
 �" ���� �� �� 	 ��" ���	 ��� ��� ��
	 � �� � ��.b)�� ��  � � � �" � �� �� � 
 ��  *  �� 0� �� � �� � � 	 � 
 " � � � 
  	 � �� �� � � �� � 	 
 ��� ��" � � # 
 �" ��
� � * � � � 	 ��" ��� � ��� � ���� �" 
 � 	 	 �.2'3/0�

 

- �� %�6 % �� * � � � � *  �� � - ��� � �� � �) ��" �� � 
 " � ��" ���neg(a,b)� (  7 � 	 �  � 	 �" 
 �  	 ��
 � 
 � " �
 � �
.2+3/� ) � �- � � � � 
 " � 	 ���� ��� � � �� � 	 
 ��� ��" � �  � � � �� � �) ��" �� � 	 ��( � � ��" � 0� 1 � � � 
 " � 	 ���� ��� � �
�� � 	 
 ��� ��" � � 
  	 � �.) " ��" ( � ��� � /� �	 � � 5  
 ��� �  	 � �� �� �* 0� : �� ) � �� �� �	 � ��( � � ��� �	 � �� �  � � 
 � �
- ��� �  � 	 ��( � �� 	 0��#�  � � �� �� � 
 ��" � ��  � � � � 	 �- ��� � �� � � �� � � ��  
 ��" � � 26a3�� �� � � � �� � � *  �� �
� � �� �	 � �	 �" 
 �  	 ��
 �� � � � �.2τη3/��� � ��� * �- � �
 � ��� � �*  �� ��	 ��� � �) ��� � �� � � ��� � � ��� �� �� 	 �
�" ��� � ��� ��� ��	 � �� 0�

output

tr(b) = 
!b. tr(b) + 
τδ. 0 degradation

transcription 
factor back to initial state

choice

delay

output

tr(b) = 
!b. tr(b) + 
τδ. 0 degradation

transcription 
factor back to initial state

choice

delay

a b

neg

) �� ( �	� neg(a,b) =
?a. τη. neg(a,b) + 
τε. (tr(b) | neg(a,b)) 

inhibition delayinhibitory 
input

constitutive
transcription

back to 
initial state

a b

neg

) �� ( �	�

a b

neg

) �� ( �	� neg(a,b) =
?a. τη. neg(a,b) + 
τε. (tr(b) | neg(a,b)) 

inhibition delayinhibitory 
input

constitutive
transcription

back to 
initial state

neg(a,b) =
?a. τη. neg(a,b) + 
τε. (tr(b) | neg(a,b)) 

inhibition delayinhibitory 
input

constitutive
transcription

back to 
initial state

pos

a b

� ���( �	�

pos(a,b) =
?a. τη. (tr(b) | pos(a,b)) + 
τε. (tr(b) | pos(a,b)) 

stimulated transcriptionexcitatory 
input

constitutive
transcription

back to 
initial state

transcription delay

pos

a b

� ���( �	�

pos

a b

� ���( �	�

pos(a,b) =
?a. τη. (tr(b) | pos(a,b)) + 
τε. (tr(b) | pos(a,b)) 

stimulated transcriptionexcitatory 
input

constitutive
transcription

back to 
initial state

transcription delay

pos(a,b) =
?a. τη. (tr(b) | pos(a,b)) + 
τε. (tr(b) | pos(a,b)) 

stimulated transcriptionexcitatory 
input

constitutive
transcription

back to 
initial state

transcription delay



2005-04-19 11:42:25 3 

possible π-calculus processes. The simulator has also been used to 
simulate a wide variety of chemical and biological systems. In 
particular, many of the benchmark examples that were used to 
validate the Gillespie algorithm (14) have been modeled as π-
calculus processes and correctly simulated in SPiM. Details of the 
simulation results are available from (10). 
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The Gillespie algorithm was originally used to simulate a set of 
reaction equations expressed in terms of chemical reactants and 
products, and the results of a simulation were plotted as the 
quantity of each chemical species versus time. In contrast, the π-
calculus does not describe an equation for each type of reaction, 
but instead describes the behavior of each component in terms of 
the inputs and outputs it can perform on a set of interaction 
channels. This gives rise to an interaction-oriented model, as 
opposed to a reaction-oriented model, in which a reactant is 
defined as an input or output on a given interaction channel. Once 
the notion of a reactant has been defined in this way, the Gillespie 
algorithm can be directly applied to a given π-calculus model of 
the biological system. The corresponding simulation results can be 
plotted as the quantity of each reactant versus time. 

� ��� �	��

' ������ � ��� �	�% We now have all the network components we 
need, at least for gates with one input. Gates with n inputs can be 
defined similarly, to form a larger library of components. Building 
gene circuits now consists of providing interaction channels, with 
associated interaction rates, connecting the various gates. If we 
write, e.g., pos(a,b) | neg(b,c), the pos process will offer an output 
action !b, through tr(b), and the neg process will offer an input 
action ?b. Hence the shared channel b, given to both pos and neg 
as a parameter, can result in repeated interactions between the two 
processes, and hence in network connectivity. 

The simplest circuits we can build are single gates interacting 
with themselves in a feedback loop, like pos(a,a). In absence of 
any stimulus on a, pos(a,a), must choose the constitutive 
transcription route and evolve into tr(a) | pos(a,a), where now 
tr(a) can stimulate pos(a,a) at a faster rate, and possibly multiple 
times. Depending on the production and degradation rates, a stable 

high level of tr(a) may be reached. Similarly neg(a,a) can stabilize 
at a low quantity of tr(a) where degradation of tr(a) balances 
inhibition. A convenient high-signal level of about 100 is 
maintained in our examples by appropriate parameters (Fig. 5). 
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The combination pos(b,a) | neg(a,b) (Fig. 6) is a self-inhibition 
circuit, like neg(a,a), and it similarly has a stable output. But now 
there are two separate products, tr(a) and tr(b), so the system 
(again in absence of any stimulus) can stochastically start with a 
prevalence of tr(a) or a prevalence of tr(b): this can be seen at the 
beginning of the two plots, before stabilization. 

The combination neg(b,a) | neg(a,b) (Fig. 6) is a bistable circuit, 
which can start up in one state or another, and (usually) stay there. 

� ��������	�%�The well-known repressilator circuit (12), consisting 
of three neg gates in a loop, is an oscillator. We compare here 
three different degradation models, aiming to justify somewhat 
our initial definition for tr(-). In the first model (Fig. 7 A), each 
transcription factor interacts exactly once, and only then it 
disappears. The repressilator circuit oscillates nicely, but without 
stochastic degradation, the plots appear very “mechanical”; the 
quantities of products grow at each cycle, because products do not 
disappear unless they interact. In the second model (Fig. 7 B), 
each transcription factor interacts exactly once, or can degrade. 
Again the plots look mechanical, but the stochastic degradation 
defines a stable level of product. The third model (Fig. 7 C), with 
multiple interactions and stochastic degradation, is more realistic 
and gives more convincing plots. See (10) for the simulator script. 
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The progressive refinement of the definition of tr(-), provides 

an illustration of how one can easily play with process 
descriptions to find models that show a balance between 
simplicity and realism. A further step could be to model both 
attachment and detachment of transcription factors, and then to 
model both transcription and translation.  

) �	� �� �����	���1�. ������	��
%�It is instructive to take a “systems” 
approach and see what the gate parameters described earlier mean 
in the context of networks of gates. In the case of the repressilator 
we can see that the constitutive rate (together with the degradation 
rate) determines oscillation amplitude, while the inhibition rate 
determines oscillation frequency. Fig. 8 shows the variation of ε 
and η from their values in Fig. 7 C); note the differences in scale. 
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Moreover, we can view the interaction rate r as a measure of the 
volume (or temperature) of the solution; that is, of how often 
transcription factors bump into gates. Fig. 9 shows that the 
oscillation frequency and amplitude remain unaffected in a large 
range of variation of r from its value in  Fig. 7 C). Note that r is in 
stochastic race against δ in tr, and δ is always much slower. 
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) �	� �� �����	���1� - �$ ���
	%�We now discuss a network property 
that becomes important in later analysis. Fig. 10  plots signals 
flowing through a sequence of neg gates with parameters as in 
Fig. 7 C, except for η, the inhibition delay. On the left, the signals 
are alternating between high (b,d) and low (a,c,e). As η is 
increased, shown from left to right, the gates behave less and less 
like boolean operators, but the signals remain separate.  
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Fig. 11 shows the same circuit, except for a self feedback on the 
head gate. With low inhibition delay η (i.e. ineffective feedback) 
the system is unstable (left). But soon after, as we increase η, the 
self feedback flattens all signals downstream to a common low 
level (middle). The signals remain at a common level over a wide 
range of η, although this level is raised by increasing η (right).  
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This behavior is self-regulating, and can be explained as 
follows. The head feedback naturally finds a fixpoint where gate 
input equals gate output (unless it oscillates). If the next gate has 
the same parameters, its output will then also equal its input, and 
so on down the line: all the gates will be at the same fixpoint. 
Different values of η and different gate response profiles may 
change the fixpoint level, but not its fundamental stability. 

� �� �
�	����� � ��� �	�% As examples of non-trivial combinatorial 
networks and their stochastic simulation, we finally examine the 
artificial gene circuits described by Guet et al. (1). Most of those 
circuits are simple combinations of inhibitory gates, however, it 
was found that in some of the circuits subtle (and partially still not 
understood) behavior arises from their connectivity; we focus 
particularly on two of these cases. The circuits are exercised by 
varying two inputs (two chemicals in the environment: aTc and 
IPTG) that act as repressors for some of the internal signals. A 
single output is observed in the experiments: the concentration of 
a fluorescent protein product (GFP).  
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In order to build up the different combinatorial networks easily, 
we begin with a version of the neg gate that is more flexibly 
parameterizable. We call it negp, and it has the property that, if s 
represents the rates used in the neg gate, then negp(a,s,tr(b)) = 
neg(a,b), hence neg is a special case of negp. The rates for 
inhibition and constitutive translation are passed as a pair s=(ε,η), 
in the second parameter. The third parameter fully encapsulates 
the gate product, so the gate logic is independent of it1.   
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In addition to the old transcription factors tr(b), binding to a site 
b, we now need also transcription factors that can be repressed: 
rtr(b,r). These have three possible behaviors: binding to a site b, 
being neutralized via a site r, and degrading. The repression is 

                                                                 
1 More technically, if we set pb() = tr(b) (pb is the process that when 
invoked with no arguments, invokes tr with argument b), then we have 
negp(a,s,pb) = neg(a,b); we write negp(a,s,tr(b)) as an abbreviation, 
skipping the intermediate definition of pb. 
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performed by a process rep(r) that, if present, “inexhaustibly” 
offers ?r. 
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We can now describe the circuits from (1) by simple 
combinations of negp, tr, rtr, and rep components. All the other 
names appearing here, such as TetR, aTc, etc., which glue the 
network together, are just pure interaction names: they have no 
structure or behavior of their own, except for being used in 
complementary input and output actions.  

Intuitive Boolean analysis of one of the still controversial 
circuits, D038, in Fig. 14 would suggest either oscillation 
(GFP=0.5 on average), or GFP=1, contrary to experiment2. The 
fixpoint effect, however, suggests an explanation for the output in 
absence of repressors, whereby all signals, including GFP are 
driven to a low fixpoint. Adding aTc breaks that equilibrium, 
driving TetR fully to 0, and hence GFP to 1. In all cases, adding 
IPTG drives LacI to 0 and hence GFP to 0. Fig. 15 shows the 
simulation results for the program in Fig. 14. 
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In a very similar fashion we can code another peculiar circuit, 
D016, shown in Fig. 16. This circuit is perplexing because 
addition of aTc, affecting an apparently disconnected part of the 

                                                                 
2 In absence of repressors, the experimentally observed GFP is 0 (meaning 
no detectable signal), hence, by tracing boolean gates backwards, lcI=1, 
and LacI=0, and TetR=1. But by self-loop TetR=1 implies TerR=0, so the 
whole circuit, including GFP should be oscillating and averaging 
GFP=0.5. As an alternative analysis, consider the level of TetR (which is 
difficult to predict because it is the result of a negative self-feedback loop). 
Whatever that level is, and whether or not aTc is present, it must equally 
influence the tet and lac genes, since the promoters are the same (PT). The 
option, TetR=LacI=1 gives GFP=1. Suppose instead TetR=LacI=0, then 
lcI=1, and GFP=0 as observed. But in that situation, with TetR=0, aTc 
should have no influence, since it can only reduce the level of TetR. 
Instead, aTc somehow pushes GFP to 1. 

circuit, changes the GFP output. In (17) it is suggested that this 
may be caused by an overloading of the degradation machinery, 
due to an overproduction of TetR when aTc is present, which 
might decrease the degradation rate of the other proteins. But even 
in absence of aTc and IPTG, it is surprising that GFP is high 
(about 50% of max (15)): this seems to contradict both simple 
boolean analysis and our fixpoint explanation. 
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A possibility to rationalize this behavior is to assume that PL
1-

lac is operating in an instability region. A closer examination of 
the instability region of our fixpoint circuit (Fig. 10 bottom left) 
shows that, while the first signals in the sequence (a,b) are kept 
low, the subsequent signals (c, corresponding to GFP in D016, 
and d,e) all spike frequently. This may give the appearance, on the 
average, of high levels of GFP, matching the first column of the 
D016 experiment. Moreover, the region of instability is very 
sensitive to degradation levels: GFP levels can be brought down 
both by increasing degradation by a factor of 5 (because this 
brings the circuit back into the fixpoint regime) or by decreasing 
degradation by a factor of 1000 (so that there are enough 
transcription factors to inhibit all gates). In Fig. 17 we begin by 
placing D016 in the instability region, with GFP spiking (A). 
Then, adding aTc while reducing degradation suppresses all 
signals (B). Adding IPTG results in no GFP (C,D); moreover, 
reduced degradation causes overproduction (D). Even increased 
degradation (E) can result in no GFP. A proper biological 
explanation of the behavior of D016 has not been obtained yet, but 
analysis such as the above indicates that circuits with head 
feedbacks are extremely sensitive to a number of conditions, and 
that many surprising behaviors are possible (18). 
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In this paper we have demonstrated how stochastic simulations of 
gene circuits can be built in a compositional way by employing 
the stochastic �-calculus. Compositionality is illustrated, for 
example, by our treatment of the repressilator circuit: the 
definition of the neg gate could be left unchanged when the 
definition of the transcription factor tr was refined. Our approach 
is mechanistic in the sense that we model discrete components and 
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derive the effects of their interactions. This differs from modeling 
changes in concentration levels whose mechanistic causes are 
undetermined (as was done in (17)). On the other hand, the 
mechanistic aspect is balanced by the fact that our approach is 
abstract, as it allows a considerable flexibility in the level of detail 
with which components and their interactions are described (see 
Supplementary Online Material for further illustration). While the 
level of detail adopted here may be considered coarse and 
qualitative, it can be easily and compositionally refined to match 
available knowledge. 

Apart from these analytical and conceptual advantages in 
building up the different circuits, we stress that the ease of use of 
the compositional approach in combination with stochastic 
simulations is particularly useful for hypothesis testing. It can 
build on available knowledge, but the outcome of the stochastic 
simulations of the interacting components yields a highly non-
trivial check of expectations. By comparison, Boolean analysis or 

intuitive ideas are obviously too naïve and thus can easily be 
misleading.  

This latter point is illustrated by our findings for the 
controversial combinatorial circuits we discussed last in the paper. 
In particular, we observe a significant dependence of the system 
behavior on promoter strengths and degradation processes. 
Promoter strengths are generally poorly known, and even 
qualitative relationships between the different promoters are 
missing (18).  

To conclude, we believe that the compositional approach we 
propose for the formulation of stochastic models of gene networks 
will allow a useful path for more detailed, quantitative studies of 
regulatory mechanisms, and in particular for the testing of 
hypotheses of complex system behavior. It may be considered as 
one step towards the development of flexible languages and 
simulation tools for computational biology, for which a need has 
recently been expressed by several biologists (19-21).   
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