
2005-04-19 11:42:25 1

���������	��
�����������	��	����	�����	�����
�������
���� �
��
�	� �� ��

� ����� ���������� � ���� ����������
���
��� �� ������������

��� �� �� �	
 �� ��� �� �� � 	 � �
 � ��� 	 ���� �� ��� �� � � � � �� ���� � � � � � �� ��	
 � ��� � �
 � �� ! �
 �" 	 " #��� � 	 � �
 � ��$ % & �'� % �$ () ��� * � ��+ � ��� � �, �� * � " (��
�
�
�
� �� ������� �� �������	��
��� �������� 	�� 	��� ��
������ ��� � �
��
�� � ��	���
�	� �� �� ����� �
� 	��� �	�����	��� !"����� �� ��� �
��
��# ����� �� �����
	�	��
� ��� � �
��
�	� �� � �����
	�� � ����� ��
� ��
� ����	�� � ����������$ ����� �	���
���	�
����
	��
���������
	�� ��%�& ��
����
�	�	�� 	��� ��� �� ��� 	��� �������� � �� ������ �	� 	�� ��# ����
�	��������
�	� �� ����� ������	�����������	���
����� �
�	������ �
��
���� �	�� ���	� �	� ����� �
� � �� �
�	����� ' �
	������ ��� (�
�	���
) �	� �� �� *+,%� - �� 	� ���$ ���������� 	��� ��		�����	����� � �����
	��� 	�
��� �	���	������ �����	������� �	���
��	����
	���������	����	�����	���
� �	�� �
	���	��
�� �
��� �
��� 	������� �	� ���# ��%� . � � ������������
 �� � ���� �� ��� 	��� 	��	�
� � ��� ����� ����� �����
����� �������� 	��
�$ ����
�	����$ �����
	������ ��# ������� �	���
�����%���

Within the last years a general consensus has emerged that noise
and stochasticity are essential building elements of gene
regulatory networks. A quantitative understanding of their role is
thus needed to understand gene regulation. Regulatory functions
can indeed work to eliminate stochastic effects (2), or to even
exploit them (3).

In line with new experimental techniques to measure and
quantify such behavior, efficient ways to model and simulate gene
networks need to be developed, which are currently lacking.
Simulations based on differential equations for the concentrations
of the various biomolecules, the long-time standard of modeling in
biochemical systems are not well suited for this purpose, except in
particular cases. Stochastic effects, which are typically important
when molecule numbers are small, are difficult to build into such
approaches, and the resulting stochastic equations are time-
consuming to simulate. In addition, differential equation models
are inherently difficult to change, extend and upgrade, as changes
of network topology may require substantial changes in most of
the basic equations.

In this paper, we follow a different route. It has recently
emerged within computer science in the context of process calculi,
and their applications to biological systems. Process calculi (4) are
essentially programming languages designed to describe
concurrent, interactive systems such as mobile communication
networks. Among the various process calculi, π-calculus is one of
the best studied because of its compactness, generality, and
flexibility. Stochastic variants have appeared recently that address
biochemical modeling (5); they have been used to model
molecular interactions (7) and compartments (8,9). A remaining
challenge is to model gene networks, to fully demonstrate the
flexibility of process calculi, and to eventually support the
integration of molecular, gene, and membrane networks in a single
framework.

Here, we introduce process calculi by example, in the context of
gene networks; technical details of the approach can be found in
the Supplementary Online Material (10) and the references given
there. Modeling with process calculi is very much like
programming, and yet it is mathematically precise. It is carried out
in concurrent, stochastic programming languages that can easily
support very complex and detailed models in a modular
(“compositional”) way, where separate program units correspond
to separate biochemical components.

Our purpose here is in part tutorial: we aim to show that we can
do things simply to start with, and already get interesting insights.
More sophisticated models can be built when needed; e.g. see (11)
for a detailed molecular model of transcription-translation in
phage lambda done in this style. The paper is structured as
follows: in the Methods sections we explain how to represent gene
network elements as processes in the stochastic �-calculus and
how to execute them. We then apply this representation to model
gene networks of increasing complexity, and study some of their
behavior. In particular, we address the repressilator circuit (12)
and two of the (still controversial) examples of combinatorial
circuits first discussed in (1).

/ �	�����01�/ �����
� �(�
��) �	� �� �2 ����
	���

) � �����(�	��% We begin by modeling genes that have constitutive
transcription but no regulatory control. We focus on the actions
that are involved in the functioning of genes and molecular
components. The generic term process is used for any mechanism
performing actions and thus progressing through distinct states.

A nullary-input gate (Fig. 1), given by a process written null(b),
has a single parameter b that represents its transcription product; it
takes no input from the environment. The initial action performed
by such a gate is a stochastic delay, τε, where τ is a symbol
indicating delay and ε is a given rate constant (we always use
exponential distributions characterized by rate constants). After
such a delay action, the original process null(b) becomes (i.e.,
changes state to) two separate processes in parallel (“|”): tr(b) and
null(b). The second process is a copy of the original process
null(b), which was consumed when performing its initial action.
The first process, tr(b), described shortly, represents a molecule of
a transcription factor for a binding site b on some gene. All
together, the null(b) process is defined as τε. (tr(b) | null(b)). A
stochastic simulation of a null(b) process on its own produces
multiple copies of tr(b) at stochastic time intervals ε, with exactly
one copy of null(b) being preserved.

(�
�� � ��� �	�%� We now describe the transcription factor tr(b)
(Fig. 2), introducing the process calculus notions of interaction
and nondeterministic choice. Except for delays τ, which happen
autonomously, any action that a process performs must happen in
conjunction with a complementary action performed by another
process. The simultaneous occurrence of complementary actions

- �� %�+% ��* � � � ��null(b)� - ��� �
 " � 	 ���� ��� � � �� � 	
 ��� ��" � ��) � �� � " � �� * � � ��" � � .� � �� �� /0�
1 � � �� �" � �
 ���	 � ��� � 	 � �� � �� �" �� �� ��tr(b)��� �� ��
 � � 	 ��" � �) �� � �� * �	 ��� �b�" � �	 " (� �
" �� � ��* � � � ���� � �� � #�� ���" � �" #�tr(b)��	 �* �� � � �� �� �0�1 � � �� � #�� ���" � �" #�null(b)�	 � 	 ��� ��
�� �	 �* �� �- ��	 � #" �� �	 �"
 � 	 ��
 �������.2τ3/� " #� � �� �ε�� � � � �� �	�.203/� � � " �� � 	 � �� �" � �- " �
� �"
 � 	 	 � 	 ��� �
��������.243/��" � � ��	 �tr(b)�� � � ��� � �" �� � �� * �� �null(b)���� � ��� ��� ��	 � �� 0�

b

null

) � �����(�	�

ε stochastic
delay

gene product

initial state

gene with
product b null(b) =

τε. (tr(b) |
null(b))

in parallel withb

null

) � �����(�	�

ε
b

null

) � �����(�	�

ε stochastic
delay

gene product

initial state

gene with
product b null(b) =

τε. (tr(b) |
null(b))

in parallel with
stochastic

delay

gene product

initial state

gene with
product b null(b) =

τε. (tr(b) |
null(b))

in parallel with

2 2005-04-19 11:42:25 2

is an interaction, e.g. between two molecules, or between a
transcription factor and a promoter site. An action can be offered
at any time, but only complementarily offered actions can result in
actual interactions. For an interaction site, or channel, b, such
complementary actions are conventionally called input on b
(written ‘?b’), and output on b (written ‘!b’). An interaction is in
general a communication where messages are exchanged from
output actions to input actions. But in this paper we need only
consider synchronization interactions that only exchange a signal
(which can be considered as a trivial message). Hence, ?b and !b
are complementary actions that can exchange a signal between
them and allow two corresponding processes to change state.

The transcription factor tr(b) offers a choice of two actions; one
is an output action !b, representing interaction with a binding site,
and the other is a delay τ, followed by degradation. These two
actions are in a stochastic race, indicated by ‘+’: b has (implicitly
defined with it) a fixed associated rate r, and τ has a specific rate
δ. If !b wins the race, it means that an interaction has occurred
with an input action ?b offered elsewhere, and the process returns
to the initial state, tr(b). If τ wins the race, however, the following
state is 0: the inert process that never performs any actions.

All together, tr(b) is defined as (!b. tr(b)) + (τδ.0), which means
that tr(b) has the potential to interact multiple times with promoter
sites, but each time (and particularly if no promoter site is
available) it has a chance to degrade. Without interactions with
binding sites, a fixed population of transcription factors will
simply exponentially degrade. If the population is being
replenished, then a stable level may be found between production
and degradation.

3
��� (�	��% We now consider gates with simple regulation. A
neg(a,b) gate has a promoter site a with negative regulation
(inhibition), and a product b.

The neg(a,b) gate (Fig. 3) has a subprocess that is essentially
identical to the null(b) gate, i.e., it provides constitutive
transcription. However this subprocess is now in a stochastic race
with a subprocess ?a. τη. neg(a,b). That is, it is in a race with a
promoter binding, ?a. If the promoter component wins the race
(by interacting with a transcription factor tr(a)), the + choice is
taken on the promoter side, and the whole process becomes τη.
neg(a,b). In this state, the gate is stuck performing a stochastic
delay τη, i.e., it is inhibited, after which it goes back to be
neg(a,b).

The pos(a,b) gate (Fig. 4) has a promoter site a with positive
regulation (stimulation), and a product b. It is similar to the neg
gate, but instead of an inhibition delay, we have a transcription
delay followed by stimulated production of tr(b).

- �� %�4 % �� * � � � � * �� � - ��� � � 5
 �� �" �� �
 " � ��" ���pos(a,b)0� 1 � �	 � �	 � �(" 	 �� �� � � ��
 �� �" �
neg(a,b)��) � ���� � ��� � � ��	 ��(� �� 	 �26a3��	 �#" ��" - � � �) � ��� � �� �" � �
 ��" � �" #���.b)��� 	 �� � �
" #� � ��� � �) ��" �� �� � � � 0�

/ �	�����001�& ���' 	�����	���!"� ���� �� ��2 $ ��� 	��
�/ �����

' ��� ��	��
� � �
� � �� �% We have seen how a biological system can
be modeled in the stochastic π-calculus, by representing each
component of the system as a process P that precisely describes
what the component can do. To summarize, the most basic process
form is a choice Σ = P1 + … + Pn between zero or more outputs
!x(n), inputs ?x(m), and delays τ that the component can perform
(n is the output message and m is the input variable). Two
components P and Q can be combined together using parallel
composition P|Q. Channels can be established to allow the
components to interact by complementary inputs and outputs.
Once a biological system has been modeled using these basic
components, the model can be stochastically simulated in order to
predict the evolution of the system over time. In this paper, the
simulations were obtained using the Stochastic Pi Machine
(SPiM), which is described in (13).

' ��� ��	�% The Stochastic Pi Machine simulates a given process P
by first converting the process to a corresponding simulator data
structure, consisting of a list of components A= Σ1, ..., ΣM. The
resulting list is then processed by the simulator, by first using a
function Gillespie(A) to stochastically determine the next
interaction channel x and the corresponding reaction time τ. Once
an interaction channel x has been chosen, the simulator uses a
selection operator to randomly select from the list A a component
of the form Σ+?x(m).P containing an input on channel x, and
different component of the form Σ' +!x(n).Q containing an output
on x. The selected components can then interact by synchronizing
on channel x, and the processes P (with the input variable m
replaced by n) and Q are added to the remainder of the list. The
simulator continues processing the list in this way until no more
interactions are possible.

The function Gillespie(A) is based on (14), which uses a notion
of channel activity to stochastically choose a reaction channel
from a set of possible channels. The activity of a reaction channel
corresponds to the number of possible combinations of reactants
on the channel, and channels with a high activity and a fast
reaction rate have a higher probability of being selected. A similar
notion of activity is defined for the Stochastic Pi Machine, where
Actx(A) denotes the number of possible combinations of inputs and
outputs on interaction channel x in a list of components A:

Actx(A)=(Inx(A)*Outx(A))-Mixx(A)

Inx(A) and Outx(A) are defined as the number of available inputs
and outputs on interaction channel x in A, respectively, and
Mixx(A) is the sum of Inx(Σi)×Outx(Σi) for each component Σi in A.
The formula takes into account the fact that an input and an output
in the same component cannot interact, by subtracting Mixx(A)
from the product of the number of inputs and outputs on x.

The Stochastic Pi Machine has been formally specified in (13),
and the specification has been proved to correctly simulate all

- �� %�5 % ���� � 	
 ��� ��" � � #
 �" �� ��.b)� (7 � 	 � � � � � � �� ��� � � � �� �� .28 3/�) � �- � � � � � ��� � ��
) �� � �� * � �" � � � � ��) �� � � �" (" �� �� 	 ��� �b�) � � � � � �
� ���� �� 	� .29b3/�� " ��������	� � .2τ3/�
- ��� �� �� �δ0��� ��� � �#��	 ��
 	 � ���� � �" � �� � ��
 ��" � ��� �� �
 �	 �- ��� � �
 " ��� 	 � " � � �� * ��� � � ��

 ��" � � �� �� �" (" �� ��	 ��� ���� � � ��� �	�.203/��� � ��� � 	
 ��� ��" � �#
 �" ���� �� �� 	 ��" ���	 ��� ��� ��
	 � �� � ��.b)�� �� � � � �" � �� �� �
 �� * �� 0� �� � �� � � 	 �
 " � � �
 	 � �� �� � � �� � 	
 ��� ��" � � #
 �" ��
� � * � � � 	 ��" ��� � ��� � ���� �"
 � 	 	 �.2'3/0�

- �� %�6 % �� * � � � � * �� � - ��� � �� � �) ��" �� �
 " � ��" ���neg(a,b)� (7 � 	 � � 	 �"
 � 	 ��
 �
 � " �
 � �
.2+3/�) � �- � � � �
 " � 	 ���� ��� � � �� � 	
 ��� ��" � � � � � �� � �) ��" �� � 	 ��(� � ��" � 0� 1 � � �
 " � 	 ���� ��� � �
�� � 	
 ��� ��" � �
 	 � �.) " ��" (� ��� � /� �	 � � 5
 ��� � 	 � �� �� �* 0� : ��) � �� �� �	 � ��(� � ��� �	 � �� � � �
 � �
- ��� � � 	 ��(� �� 	 0��#� � � �� �� �
 ��" � �� � � � � 	 �- ��� � �� � � �� � � ��
 ��" � � 26a3�� �� � � � �� � � * �� �
� � �� �	 � �	 �"
 � 	 ��
 �� � � � �.2τη3/��� � ��� * �- � �
 � ��� � �* �� ��	 ��� � �) ��� � �� � � ��� � � ��� �� �� 	 �
�" ��� � ��� ��� ��	 � �� 0�

output

tr(b) =
!b. tr(b) +
τδ. 0 degradation

transcription
factor back to initial state

choice

delay

output

tr(b) =
!b. tr(b) +
τδ. 0 degradation

transcription
factor back to initial state

choice

delay

a b

neg

) �� (�	� neg(a,b) =
?a. τη. neg(a,b) +
τε. (tr(b) | neg(a,b))

inhibition delayinhibitory
input

constitutive
transcription

back to
initial state

a b

neg

) �� (�	�

a b

neg

) �� (�	� neg(a,b) =
?a. τη. neg(a,b) +
τε. (tr(b) | neg(a,b))

inhibition delayinhibitory
input

constitutive
transcription

back to
initial state

neg(a,b) =
?a. τη. neg(a,b) +
τε. (tr(b) | neg(a,b))

inhibition delayinhibitory
input

constitutive
transcription

back to
initial state

pos

a b

� ���(�	�

pos(a,b) =
?a. τη. (tr(b) | pos(a,b)) +
τε. (tr(b) | pos(a,b))

stimulated transcriptionexcitatory
input

constitutive
transcription

back to
initial state

transcription delay

pos

a b

� ���(�	�

pos

a b

� ���(�	�

pos(a,b) =
?a. τη. (tr(b) | pos(a,b)) +
τε. (tr(b) | pos(a,b))

stimulated transcriptionexcitatory
input

constitutive
transcription

back to
initial state

transcription delay

pos(a,b) =
?a. τη. (tr(b) | pos(a,b)) +
τε. (tr(b) | pos(a,b))

stimulated transcriptionexcitatory
input

constitutive
transcription

back to
initial state

transcription delay

2005-04-19 11:42:25 3

possible π-calculus processes. The simulator has also been used to
simulate a wide variety of chemical and biological systems. In
particular, many of the benchmark examples that were used to
validate the Gillespie algorithm (14) have been modeled as π-
calculus processes and correctly simulated in SPiM. Details of the
simulation results are available from (10).

- �� %�7 % $ " (� " 	 ���" � 	 �" #�* �� 	 ��� � �� 	 � � ��
 ��
 � ��	 �.�� #�/��� ��� 5 � �) ���) � � � �" �	 �.��* � �/0�
1 � � �
 � � � � �	 � a,b,c� �� � � �
 � �� � � 	 � � � �� �� � .� " �� 	 � " - � /� �" � * � - ��� � �� � ���
 	 	 "
 � �� � � 	 �"
 � 	 ��
 � �� �� �
 ��" � � � �� 	 0� �� � ��� 	 �(� � ��" � 	 �� �� � �
 " ((" � � � �� �r� #" ���
a,b,c� �	 � 	 � �� �" � : 0'0� 1 � � � " �� � ��
 � " 	 � � � � �� 	 � �� � 	 � �� � �
 �� � � �� � �� � � �� � �� �� � ��
	 �(� � ��" � 	 0� 1 � � � � � ���
 �� 5 �	 � �	 � �� � � � � () � �� " #� " � �	 � � � �� * � ����� � " #�

 " ((� � �
 ��" � ;�#" �� �
 � � � � ��a�- � �(� �� �" ��" � �� � ��" ##� �	 �9a�" ���� � � ��" ##� �	 �6a0��� �
 ���
 	 � 	 �) " � � ���� � �� � �- " �7 	 �* � ��	 � ��� � �) � �
 " � 	 ���� ��� � ��� � 	
 ��� ��" � �" � �� 0������� � �
� �" �	 � �� �" #��� � �� �� � ��	 �(� � �" ���� � 	 0

0
	���	��
". ��
	��� ' ��� ��	��
� # �%� � ���	��
". ��
	��� ' ��� ��	��
%
The Gillespie algorithm was originally used to simulate a set of
reaction equations expressed in terms of chemical reactants and
products, and the results of a simulation were plotted as the
quantity of each chemical species versus time. In contrast, the π-
calculus does not describe an equation for each type of reaction,
but instead describes the behavior of each component in terms of
the inputs and outputs it can perform on a set of interaction
channels. This gives rise to an interaction-oriented model, as
opposed to a reaction-oriented model, in which a reactant is
defined as an input or output on a given interaction channel. Once
the notion of a reactant has been defined in this way, the Gillespie
algorithm can be directly applied to a given π-calculus model of
the biological system. The corresponding simulation results can be
plotted as the quantity of each reactant versus time.

� ��� �	��

' ������ � ��� �	�% We now have all the network components we
need, at least for gates with one input. Gates with n inputs can be
defined similarly, to form a larger library of components. Building
gene circuits now consists of providing interaction channels, with
associated interaction rates, connecting the various gates. If we
write, e.g., pos(a,b) | neg(b,c), the pos process will offer an output
action !b, through tr(b), and the neg process will offer an input
action ?b. Hence the shared channel b, given to both pos and neg
as a parameter, can result in repeated interactions between the two
processes, and hence in network connectivity.

The simplest circuits we can build are single gates interacting
with themselves in a feedback loop, like pos(a,a). In absence of
any stimulus on a, pos(a,a), must choose the constitutive
transcription route and evolve into tr(a) | pos(a,a), where now
tr(a) can stimulate pos(a,a) at a faster rate, and possibly multiple
times. Depending on the production and degradation rates, a stable

high level of tr(a) may be reached. Similarly neg(a,a) can stabilize
at a low quantity of tr(a) where degradation of tr(a) balances
inhibition. A convenient high-signal level of about 100 is
maintained in our examples by appropriate parameters (Fig. 5).

- �� %�8 % ! " � " 	 �) �� � � � �) �	 �) �� �#� � �)
 7 ��" " � 	 0�

The combination pos(b,a) | neg(a,b) (Fig. 6) is a self-inhibition
circuit, like neg(a,a), and it similarly has a stable output. But now
there are two separate products, tr(a) and tr(b), so the system
(again in absence of any stimulus) can stochastically start with a
prevalence of tr(a) or a prevalence of tr(b): this can be seen at the
beginning of the two plots, before stabilization.

The combination neg(b,a) | neg(a,b) (Fig. 6) is a bistable circuit,
which can start up in one state or another, and (usually) stay there.

� ��������	�%�The well-known repressilator circuit (12), consisting
of three neg gates in a loop, is an oscillator. We compare here
three different degradation models, aiming to justify somewhat
our initial definition for tr(-). In the first model (Fig. 7 A), each
transcription factor interacts exactly once, and only then it
disappears. The repressilator circuit oscillates nicely, but without
stochastic degradation, the plots appear very “mechanical”; the
quantities of products grow at each cycle, because products do not
disappear unless they interact. In the second model (Fig. 7 B),
each transcription factor interacts exactly once, or can degrade.
Again the plots look mechanical, but the stochastic degradation
defines a stable level of product. The third model (Fig. 7 C), with
multiple interactions and stochastic degradation, is more realistic
and gives more convincing plots. See (10) for the simulator script.

- �� %�9 % 1 � � �� � � �� 	 	 �� �" ��
 ��
 � ��0�< � ��	 �" ##�) � �
 " � 	 ���� ��� � �� �" � �
 ��" � 0�

'

� '

: ''

: � '

' � ''' : '''' : � '''

'

� '

: ''

: � '

' � ''' : '''' : � '''

'

� '

: ''

: � '

' � ''' : '''' : � '''

'

� '

: ''

: � '

' � ''' : '''' : � '''

negpos

b

a

pos(b,a) | neg(a,b)

neg(b,a) | neg(a,b)

negneg

b

a

� = �: 0'��δ = �'0'': �����pos: ε = �'0': ��η = �'0: ����neg: ε = �'0: ��η = �'0':

� ��	� ��

a b

/ �
��	� ��

aa

'

� '

: ''

: � '

' � ''' : '''' : � '''

'

� '

: ''

: � '

' � ''' : '''' : � '''

'

� '

: ''

: � '

' � ''' : '''' : � '''

'

� '

: ''

: � '

' � ''' : '''' : � '''

negpos

b

a
negpos

b

a

pos(b,a) | neg(a,b)

neg(b,a) | neg(a,b)

negneg

b

a
negneg

b

a

� = �: 0'��δ = �'0'': �����pos: ε = �'0': ��η = �'0: ����neg: ε = �'0: ��η = �'0':

� ��	� ��

a b

/ �
��	� ��

aa

tr(p) = !p.0
r = 1.0, ε = 0.1, η = 0.04

neg neg

negc b

a

neg(a,b) |
neg(b,c) |
neg(c,a)

tr(p) = (!p.0) + (τδ.0)
r = 1.0, ε = 0.1, η = 0.04, δ = 0.0001

tr(p) = (!p.tr(p)) + (τδ.0)
r = 1.0, ε = 0.1, η = 0.001, δ = 0.001

C)

A) B)

'

: '''

� '''

' � '''' > '''' � '''' ? ''''

'

: ''

� ''

& ''

' � '''' > '''' � '''' ? ''''

a b c a b c

'

� '

: ''

: � '

' : '''' � '''' & '''' > '''' � '''' � '''' @ '''' ? '''' � ''''

a b c

tr(p) = !p.0
r = 1.0, ε = 0.1, η = 0.04

neg neg

negc b

a
neg neg

negc b

a

neg(a,b) |
neg(b,c) |
neg(c,a)

tr(p) = (!p.0) + (τδ.0)
r = 1.0, ε = 0.1, η = 0.04, δ = 0.0001

tr(p) = (!p.tr(p)) + (τδ.0)
r = 1.0, ε = 0.1, η = 0.001, δ = 0.001

C)

A) B)

'

: '''

� '''

' � '''' > '''' � '''' ? ''''

'

: '''

� '''

' � '''' > '''' � '''' ? ''''

'

: ''

� ''

& ''

' � '''' > '''' � '''' ? ''''

'

: ''

� ''

& ''

' � '''' > '''' � '''' ? ''''

a b ca b c a b ca b c

'

� '

: ''

: � '

' : '''' � '''' & '''' > '''' � '''' � '''' @ '''' ? '''' � ''''

'

� '

: ''

: � '

' : '''' � '''' & '''' > '''' � '''' � '''' @ '''' ? '''' � ''''

a b ca b c

'

� '

: ''

' � ''' : ''''

'

� '

: ''

' � ''' : ''''

'

� '

: ''

' � ''' : '''' : � '''

neg(a,b)
a

neg

r = 1.0
ε = 0.01
η = 0.1
δ = 0.001

pos

a

pos

cb pos(a,b) |
pos(b,c)

r = 1.0
ε = 0.01
η = 0.1
δ = 0.001

negneg

a cb
neg(a,b) |
neg(b,c)

time→

neg

ba
neg(a,a)

of
fe

rs
→

pos(a,a)

pos

ba

r = 1.0
ε = 0.1
η = 0.01
δ = 0.001

a

pos'

� '

: ''

' � ''' : '''' : � '''

a b
pos(a,b)

a

'

� '

: ''

' � ''' : ''''

a
b
c

'

� '

: ''

' � ''''

a
b
c

a b a

r = 1.0
ε = 0.1
η = 0.01
δ = 0.001

'

� '

: ''

' � ''' : ''''

'

� '

: ''

' � ''' : ''''

'

� '

: ''

' � ''' : '''' : � '''

neg(a,b)
a

neg

a

neg

r = 1.0
ε = 0.01
η = 0.1
δ = 0.001

pos

a

pos

cb

pos

a

pos

cb pos(a,b) |
pos(b,c)

r = 1.0
ε = 0.01
η = 0.1
δ = 0.001

negneg

a cb

negneg

a cb
neg(a,b) |
neg(b,c)

time→

neg

ba

neg

ba
neg(a,a)

of
fe

rs
→

pos(a,a)

pos

ba

pos

ba

r = 1.0
ε = 0.1
η = 0.01
δ = 0.001

a

pos

a

pos'

� '

: ''

' � ''' : '''' : � '''

a b a b
pos(a,b)

a

'

� '

: ''

' � ''' : ''''

a
b
c

'

� '

: ''

' � ''' : ''''

a
b
c

'

� '

: ''

' � ''''

a
b
c

a b a b a

r = 1.0
ε = 0.1
η = 0.01
δ = 0.001

4 2005-04-19 11:42:25 4

The progressive refinement of the definition of tr(-), provides

an illustration of how one can easily play with process
descriptions to find models that show a balance between
simplicity and realism. A further step could be to model both
attachment and detachment of transcription factors, and then to
model both transcription and translation.

) �	� �� �����	���1�. ������	��
%�It is instructive to take a “systems”
approach and see what the gate parameters described earlier mean
in the context of networks of gates. In the case of the repressilator
we can see that the constitutive rate (together with the degradation
rate) determines oscillation amplitude, while the inhibition rate
determines oscillation frequency. Fig. 8 shows the variation of ε
and η from their values in Fig. 7 C); note the differences in scale.

- �� %�: % � � � �� 	 	 �� �" ��#�� � � � �
 � � � � � (� ���� � � ���� * � � �� � �) � �η� � � �ε0�� ���� �* 0�@ .$ /0�

Moreover, we can view the interaction rate r as a measure of the
volume (or temperature) of the solution; that is, of how often
transcription factors bump into gates. Fig. 9 shows that the
oscillation frequency and amplitude remain unaffected in a large
range of variation of r from its value in Fig. 7 C). Note that r is in
stochastic race against δ in tr, and δ is always much slower.

- �� %�; % � � � �� 	 	 �� �" ��	 �) ����� ��" �
 � � * � 	 ��� �r�.� " �� (� A�� (� � � �� �� /0�� ���� �* 0�@ .$ /0�

) �	� �� �����	���1� - �$ ���
	%�We now discuss a network property
that becomes important in later analysis. Fig. 10 plots signals
flowing through a sequence of neg gates with parameters as in
Fig. 7 C, except for η, the inhibition delay. On the left, the signals
are alternating between high (b,d) and low (a,c,e). As η is
increased, shown from left to right, the gates behave less and less
like boolean operators, but the signals remain separate.

- �� %�+< % ���	 � � � � �
 � �" #�neg�* �� 	 �- ��� ��� �� � �	 � ���� * 	 �" #��� � ���η�� � (� �� �0�

Fig. 11 shows the same circuit, except for a self feedback on the
head gate. With low inhibition delay η (i.e. ineffective feedback)
the system is unstable (left). But soon after, as we increase η, the
self feedback flattens all signals downstream to a common low
level (middle). The signals remain at a common level over a wide
range of η, although this level is raised by increasing η (right).

- �� %�++% �1 � � �� ##�
 ��" #�� � � �#� � �)
 7 �" � � �	 � � � � �
 � �" #�neg�* �� 	 0�

This behavior is self-regulating, and can be explained as
follows. The head feedback naturally finds a fixpoint where gate
input equals gate output (unless it oscillates). If the next gate has
the same parameters, its output will then also equal its input, and
so on down the line: all the gates will be at the same fixpoint.
Different values of η and different gate response profiles may
change the fixpoint level, but not its fundamental stability.

� �� �
�	����� � ��� �	�% As examples of non-trivial combinatorial
networks and their stochastic simulation, we finally examine the
artificial gene circuits described by Guet et al. (1). Most of those
circuits are simple combinations of inhibitory gates, however, it
was found that in some of the circuits subtle (and partially still not
understood) behavior arises from their connectivity; we focus
particularly on two of these cases. The circuits are exercised by
varying two inputs (two chemicals in the environment: aTc and
IPTG) that act as repressors for some of the internal signals. A
single output is observed in the experiments: the concentration of
a fluorescent protein product (GFP).

- �� %�+5 % ���	�� �* �� �- ��� �� � (� ���
 �� �" � �
 ��
0�

In order to build up the different combinatorial networks easily,
we begin with a version of the neg gate that is more flexibly
parameterizable. We call it negp, and it has the property that, if s
represents the rates used in the neg gate, then negp(a,s,tr(b)) =
neg(a,b), hence neg is a special case of negp. The rates for
inhibition and constitutive translation are passed as a pair s=(ε,η),
in the second parameter. The third parameter fully encapsulates
the gate product, so the gate logic is independent of it1.

- �� %�+6 % �� � � �� 	 	 �) �� ��� � 	
 ��� ��" � �#
 �" �	 0�

In addition to the old transcription factors tr(b), binding to a site
b, we now need also transcription factors that can be repressed:
rtr(b,r). These have three possible behaviors: binding to a site b,
being neutralized via a site r, and degrading. The repression is

1 More technically, if we set pb() = tr(b) (pb is the process that when
invoked with no arguments, invokes tr with argument b), then we have
negp(a,s,pb) = neg(a,b); we write negp(a,s,tr(b)) as an abbreviation,
skipping the intermediate definition of pb.

� = �'0: � = �: '0'

'

� '

: ''

: � '

' : '''' � '''' & '''' > '''' � '''' � ''''

'

� '

: ''

: � '

' : '''' � '''' & '''' > '''' � '''' � ''''

� = �'0: � = �: '0'

'

� '

: ''

: � '

' : '''' � '''' & '''' > '''' � '''' � ''''

'

� '

: ''

: � '

' : '''' � '''' & '''' > '''' � '''' � ''''

'

� '

: ''

: � '

' � ''' : ''''

b c d ea

neg(a,b) | neg(b,c) | neg(c,d) | neg(d,e)

'

� '

: ''

: � '

' � ''' : ''''

'

� '

: ''

: � '

' � ''' : ''''

η = 100.0η = 1.0η = 0.01

a
b
c
d
e

'

� '

: ''

: � '

' � ''' : ''''

'

� '

: ''

: � '

' � ''' : ''''

b c d ea b c d ea

neg(a,b) | neg(b,c) | neg(c,d) | neg(d,e)

'

� '

: ''

: � '

' � ''' : ''''

'

� '

: ''

: � '

' � ''' : ''''

'

� '

: ''

: � '

' � ''' : ''''

'

� '

: ''

: � '

' � ''' : ''''

η = 100.0η = 1.0η = 0.01

a
b
c
d
e

a
b
c
d
e

'

� '

: ''

: � '

' � ''' : ''''

b c d ea

neg(a,a) | neg(a,b) | neg(b,c) | neg(c,d) | neg(d,e)

'

� '

: ''

: � '

' � ''' : ''''

'

� '

: ''

: � '

' � ''' : ''''

η = 100.0η = 1.0η = 0.01

a
b
c
d
e

'

� '

: ''

: � '

' � ''' : ''''

'

� '

: ''

: � '

' � ''' : ''''

b c d ea b c d ea

neg(a,a) | neg(a,b) | neg(b,c) | neg(c,d) | neg(d,e)

'

� '

: ''

: � '

' � ''' : ''''

'

� '

: ''

: � '

' � ''' : ''''

'

� '

: ''

: � '

' � ''' : ''''

'

� '

: ''

: � '

' � ''' : ''''

η = 100.0η = 1.0η = 0.01

a
b
c
d
e

a
b
c
d
e

a p()

negp

) �� � (�	�

(ε,η)
negp(a,(ε,η),p) =

?a. τη. negp(a,(ε,η),p) +
τε. (p() | negp(a,(ε,η),p))

regulatory
input product

rates

product generation

a p()

negp

) �� � (�	�

(ε,η)
a p()

negp

) �� � (�	�

(ε,η)
negp(a,(ε,η),p) =

?a. τη. negp(a,(ε,η),p) +
τε. (p() | negp(a,(ε,η),p))

regulatory
input product

rates

product generation

negp(a,(ε,η),p) =
?a. τη. negp(a,(ε,η),p) +
τε. (p() | negp(a,(ε,η),p))

regulatory
input product

rates

product generation

interaction

rtr(b,r) =
!b. rtr(b,r) +
!r. 0 +
τδ. 0 degradation

repressible factor

binding

repressioninteraction

delay

rep(r) = ?r. rep(r) repressor

arbitray amounts of..

b
r

rtr(b,r)

interaction

rtr(b,r) =
!b. rtr(b,r) +
!r. 0 +
τδ. 0 degradation

repressible factor

binding

repressioninteraction

delay

interaction

rtr(b,r) =
!b. rtr(b,r) +
!r. 0 +
τδ. 0 degradation

repressible factor

binding

repressioninteraction

delay

rep(r) = ?r. rep(r) repressor

arbitray amounts of..

rep(r) = ?r. rep(r) repressor

arbitray amounts of..

b
r

rtr(b,r)

b
r

rtr(b,r)

ε = �'0� ��η = �'0''':

ε = �'0'� ��η = �'0''': ε = �'0'� ��η = �'0':

ε = �'0� ��η = �'0':

η
ε

'

� ''

> ''

� ''

' : '''' � '''' & '''' > '''' � '''' � ''''

'

� ''

> ''

� ''

' : '''' � '''' & '''' > '''' � '''' � ''''

'

� '

> '

� '

? '

' : '''' � '''' & '''' > '''' � '''' � ''''

'
� '
> '

� '
? '

' : '''' � '''' & '''' > '''' � '''' � ''''

ε = �'0� ��η = �'0''':

ε = �'0'� ��η = �'0''': ε = �'0'� ��η = �'0':

ε = �'0� ��η = �'0':

η
ε

'

� ''

> ''

� ''

' : '''' � '''' & '''' > '''' � '''' � ''''

'

� ''

> ''

� ''

' : '''' � '''' & '''' > '''' � '''' � ''''

'

� '

> '

� '

? '

' : '''' � '''' & '''' > '''' � '''' � ''''

'
� '
> '

� '
? '

' : '''' � '''' & '''' > '''' � '''' � ''''

2005-04-19 11:42:25 5

performed by a process rep(r) that, if present, “inexhaustibly”
offers ?r.

- �� %�+4 % �B '& ? 0�

We can now describe the circuits from (1) by simple
combinations of negp, tr, rtr, and rep components. All the other
names appearing here, such as TetR, aTc, etc., which glue the
network together, are just pure interaction names: they have no
structure or behavior of their own, except for being used in
complementary input and output actions.

Intuitive Boolean analysis of one of the still controversial
circuits, D038, in Fig. 14 would suggest either oscillation
(GFP=0.5 on average), or GFP=1, contrary to experiment2. The
fixpoint effect, however, suggests an explanation for the output in
absence of repressors, whereby all signals, including GFP are
driven to a low fixpoint. Adding aTc breaks that equilibrium,
driving TetR fully to 0, and hence GFP to 1. In all cases, adding
IPTG drives LacI to 0 and hence GFP to 0. Fig. 15 shows the
simulation results for the program in Fig. 14.

- �� %�+7 % �B '& ? �	 �(� � ��" � 	 0�

In a very similar fashion we can code another peculiar circuit,
D016, shown in Fig. 16. This circuit is perplexing because
addition of aTc, affecting an apparently disconnected part of the

2 In absence of repressors, the experimentally observed GFP is 0 (meaning
no detectable signal), hence, by tracing boolean gates backwards, lcI=1,
and LacI=0, and TetR=1. But by self-loop TetR=1 implies TerR=0, so the
whole circuit, including GFP should be oscillating and averaging
GFP=0.5. As an alternative analysis, consider the level of TetR (which is
difficult to predict because it is the result of a negative self-feedback loop).
Whatever that level is, and whether or not aTc is present, it must equally
influence the tet and lac genes, since the promoters are the same (PT). The
option, TetR=LacI=1 gives GFP=1. Suppose instead TetR=LacI=0, then
lcI=1, and GFP=0 as observed. But in that situation, with TetR=0, aTc
should have no influence, since it can only reduce the level of TetR.
Instead, aTc somehow pushes GFP to 1.

circuit, changes the GFP output. In (17) it is suggested that this
may be caused by an overloading of the degradation machinery,
due to an overproduction of TetR when aTc is present, which
might decrease the degradation rate of the other proteins. But even
in absence of aTc and IPTG, it is surprising that GFP is high
(about 50% of max (15)): this seems to contradict both simple
boolean analysis and our fixpoint explanation.

- �� %�+8 % �B ': � �

�

�

�

�

�

�

�

�

�

�

�

�

- �� %�+9 % �B ': � �	 �(� � ��" � 	 �

A possibility to rationalize this behavior is to assume that PL
1-

lac is operating in an instability region. A closer examination of
the instability region of our fixpoint circuit (Fig. 10 bottom left)
shows that, while the first signals in the sequence (a,b) are kept
low, the subsequent signals (c, corresponding to GFP in D016,
and d,e) all spike frequently. This may give the appearance, on the
average, of high levels of GFP, matching the first column of the
D016 experiment. Moreover, the region of instability is very
sensitive to degradation levels: GFP levels can be brought down
both by increasing degradation by a factor of 5 (because this
brings the circuit back into the fixpoint regime) or by decreasing
degradation by a factor of 1000 (so that there are enough
transcription factors to inhibit all gates). In Fig. 17 we begin by
placing D016 in the instability region, with GFP spiking (A).
Then, adding aTc while reducing degradation suppresses all
signals (B). Adding IPTG results in no GFP (C,D); moreover,
reduced degradation causes overproduction (D). Even increased
degradation (E) can result in no GFP. A proper biological
explanation of the behavior of D016 has not been obtained yet, but
analysis such as the above indicates that circuits with head
feedbacks are extremely sensitive to a number of conditions, and
that many surprising behaviors are possible (18).

� �
��� ���
��

In this paper we have demonstrated how stochastic simulations of
gene circuits can be built in a compositional way by employing
the stochastic �-calculus. Compositionality is illustrated, for
example, by our treatment of the repressilator circuit: the
definition of the neg gate could be left unchanged when the
definition of the transcription factor tr was refined. Our approach
is mechanistic in the sense that we model discrete components and

TetR

tet lac

LacI

cI

lcI

gfp

GFP
IPTGaTc

PT PL2PT Pλ-

= < 6 : >���"
2 $ �����
	1

aTc 0101
IPTG 0011
GFP 0100

channels TetR:r1, LacI:r2, lcI:r3, GFP:r4, aTc:r5, IPTG:r6

PT = (εεεε1, ηηηη1) PL2 = (εεεε2, ηηηη2) Pλ- = (εεεε3, ηηηη3)

tet = negp(TetR, PT, rtr(TetR,aTc))
lac = negp(TetR, PT, rtr(LacI,IPTG))
cI = negp(LacI, PL2, tr(lcI))
gfp = negp(lcI, Pλ-, tr(GFP))

D038lac- = tet | lac | cI | gfp | rep(aTc) | rep(IPTG)

repressors
(when present)

promoters

genes

molecules

TetR

tet lac

LacI

cI

lcI

gfp

GFP
IPTGaTc

PT PL2PT Pλ-

= < 6 : >���"

TetR

tet lac

LacI

cI

lcI

gfp

GFP
IPTGaTc

PT PL2PT Pλ-

= < 6 : >���"
2 $ �����
	1

aTc 0101
IPTG 0011
GFP 0100

2 $ �����
	1

aTc 0101
IPTG 0011
GFP 0100

channels TetR:r1, LacI:r2, lcI:r3, GFP:r4, aTc:r5, IPTG:r6

PT = (εεεε1, ηηηη1) PL2 = (εεεε2, ηηηη2) Pλ- = (εεεε3, ηηηη3)

tet = negp(TetR, PT, rtr(TetR,aTc))
lac = negp(TetR, PT, rtr(LacI,IPTG))
cI = negp(LacI, PL2, tr(lcI))
gfp = negp(lcI, Pλ-, tr(GFP))

D038lac- = tet | lac | cI | gfp | rep(aTc) | rep(IPTG)

repressors
(when present)

promoters

genes

molecules

channels TetR:r1, LacI:r2, lcI:r3, GFP:r4, aTc:r5, IPTG:r6

PT = (εεεε1, ηηηη1) PL2 = (εεεε2, ηηηη2) Pλ- = (εεεε3, ηηηη3)

tet = negp(TetR, PT, rtr(TetR,aTc))
lac = negp(TetR, PT, rtr(LacI,IPTG))
cI = negp(LacI, PL2, tr(lcI))
gfp = negp(lcI, Pλ-, tr(GFP))

D038lac- = tet | lac | cI | gfp | rep(aTc) | rep(IPTG)

repressors
(when present)

promoters

genes

molecules

= < +8 >���"

TetR

tet lac

LacI

cI

lcI

gfp

GFP
IPTGaTc

PT PL2 Pλ-PL1

2 $ �����
	1

aTc 0101
IPTG 0011
GFP 1000

= < +8 >���"

TetR

tet lac

LacI

cI

lcI

gfp

GFP
IPTGaTc

PT PL2 Pλ-PL1

2 $ �����
	1

aTc 0101
IPTG 0011
GFP 1000

2 $ �����
	1

aTc 0101
IPTG 0011
GFP 1000

'

� '

> '

� '

? '

: ''

: � '

: > '

' � ''' : '''' : � ''' � ''''

'

� '

> '

� '

? '

: ''

: � '

: > '

' � ''' : '''' : � ''' � ''''

'

� '

> '

� '

? '

: ''

: � '

: > '

' � ''' : '''' : � ''' � ''''

'

� '

> '

� '

? '

: ''

: � '

: > '

' � ''' : '''' : � ''' � ''''

r = 1.0, ε = 0.1 , η = 0.25 (PT), η = 1.0 (PL2, Pλ-), δ = 0.001

GFP
LacI
lcI
TetR

aTc = 0, IPTG = 0

aTc = 1, IPTG = 0

aTc = 0, IPTG = 1

aTc = 1, IPTG = 1

GFP

'

� '

> '

� '

? '

: ''

: � '

: > '

' � ''' : '''' : � ''' � ''''

'

� '

> '

� '

? '

: ''

: � '

: > '

' � ''' : '''' : � ''' � ''''

'

� '

> '

� '

? '

: ''

: � '

: > '

' � ''' : '''' : � ''' � ''''

'

� '

> '

� '

? '

: ''

: � '

: > '

' � ''' : '''' : � ''' � ''''

'

� '

> '

� '

? '

: ''

: � '

: > '

' � ''' : '''' : � ''' � ''''

'

� '

> '

� '

? '

: ''

: � '

: > '

' � ''' : '''' : � ''' � ''''

'

� '

> '

� '

? '

: ''

: � '

: > '

' � ''' : '''' : � ''' � ''''

'

� '

> '

� '

? '

: ''

: � '

: > '

' � ''' : '''' : � ''' � ''''

r = 1.0, ε = 0.1 , η = 0.25 (PT), η = 1.0 (PL2, Pλ-), δ = 0.001

GFP
LacI
lcI
TetR

GFP
LacI
lcI
TetR

aTc = 0, IPTG = 0

aTc = 1, IPTG = 0

aTc = 0, IPTG = 1

aTc = 1, IPTG = 1

GFP

'

� '

: ''

: � '

' � '''' : '''''

'

� '

: ''

: � '

' � '''' : '''''

aTc = 0 (δ = 0.001), IPTG = 0

'

� '

: ''

: � '

' � '''' : '''''

'

: '''

� '''

& '''

> '''

� '''

� '''

' � '''' : '''''

'

� '

: ''

: � '

' � '''' : '''''

aTc = 0 (δ = 0.001), IPTG = 1 aTc = 1 (δ = 0.00001), IPTG =1

r = 1.0
ε = 0.1
η = 0.01

A B

C D

E GFP
LacI
lcI
TetR

aTc = 1 (δ = 0.00001), IPTG = 0

δ = 0.005 aTc = 0, IPTG = 0

GFP

'

� '

: ''

: � '

' � '''' : '''''

'

� '

: ''

: � '

' � '''' : '''''

'

� '

: ''

: � '

' � '''' : '''''

aTc = 0 (δ = 0.001), IPTG = 0

'

� '

: ''

: � '

' � '''' : '''''

aTc = 0 (δ = 0.001), IPTG = 0

'

� '

: ''

: � '

' � '''' : '''''

'

� '

: ''

: � '

' � '''' : '''''

'

: '''

� '''

& '''

> '''

� '''

� '''

' � '''' : '''''

'

: '''

� '''

& '''

> '''

� '''

� '''

' � '''' : '''''

'

� '

: ''

: � '

' � '''' : '''''

'

� '

: ''

: � '

' � '''' : '''''

aTc = 0 (δ = 0.001), IPTG = 1 aTc = 1 (δ = 0.00001), IPTG =1

r = 1.0
ε = 0.1
η = 0.01

A B

C D

E GFP
LacI
lcI
TetR

GFP
LacI
lcI
TetR

aTc = 1 (δ = 0.00001), IPTG = 0

δ = 0.005 aTc = 0, IPTG = 0

GFP

6 2005-04-19 11:42:25 6

derive the effects of their interactions. This differs from modeling
changes in concentration levels whose mechanistic causes are
undetermined (as was done in (17)). On the other hand, the
mechanistic aspect is balanced by the fact that our approach is
abstract, as it allows a considerable flexibility in the level of detail
with which components and their interactions are described (see
Supplementary Online Material for further illustration). While the
level of detail adopted here may be considered coarse and
qualitative, it can be easily and compositionally refined to match
available knowledge.

Apart from these analytical and conceptual advantages in
building up the different circuits, we stress that the ease of use of
the compositional approach in combination with stochastic
simulations is particularly useful for hypothesis testing. It can
build on available knowledge, but the outcome of the stochastic
simulations of the interacting components yields a highly non-
trivial check of expectations. By comparison, Boolean analysis or

intuitive ideas are obviously too naïve and thus can easily be
misleading.

This latter point is illustrated by our findings for the
controversial combinatorial circuits we discussed last in the paper.
In particular, we observe a significant dependence of the system
behavior on promoter strengths and degradation processes.
Promoter strengths are generally poorly known, and even
qualitative relationships between the different promoters are
missing (18).

To conclude, we believe that the compositional approach we
propose for the formulation of stochastic models of gene networks
will allow a useful path for more detailed, quantitative studies of
regulatory mechanisms, and in particular for the testing of
hypotheses of complex system behavior. It may be considered as
one step towards the development of flexible languages and
simulation tools for computational biology, for which a need has
recently been expressed by several biologists (19-21).

1. Guet, C.C., Elowitz, M.B., Hsing, W. & Leibler, S. (2002) Science

296 1466-1470.
2. Thattai, M. & van Oudenaarden, A. (2001) Proc. Nat. Acad. Sci. 98,

8614- 8619.
3. Paulsson, J., Berg, O.G. & Ehrenberg M. (2000) Proc. Nat. Acad. Sci.

97, 7148-7153.
4. Milner, R. (1999) Communicating and Mobile Systems: The Pi-

Calculus. Cambridge University Press.
5. Priami, C., Regev, A., Shapiro, E. & Silverman, W. (2001)

Information Processing Letters 80 25-31.
6. Regev, A. (2002) Ph.D. Thesis, Tel Aviv University.
7. Regev, A. & Shapiro, E. (2002) Nature 419 343.
8. Regev, A., Panina, E.M., Silverman, W., Cardelli, L. & Shapiro, E.

(2004) Theoretical Computer Science, 325(1) 141-167.

9. Cardelli, L. (2004) Computational Methods in Systems Biology.
Springer. 257-278.

10. Supplementary Online Material to this paper.
11. Kuttler, C.& Niehren, J. (2005), submitted.
12. Elowitz, M.B., Leibler. S. (2000) Nature 403 335-338.
13. Philips, A. & Cardelli, L., (2005), submitted.
14. Gillespie, D. (1977) J. Chem. Phys. 81 2340-2361.
15. Guet, C.C., personal communication.
16. Wigler, M. & Mishra, B. (2002) Science 296 1407-1408.
17. Mao, L. & Resat, H. (2004) Bioinformatics 20 2258-2269.
18. Ronen, M., Rosenberg, R., Shraiman, B.I. & Alon, U. (2002) Proc.

Nat. Acad. Sci. 99 10555-10560.
19. Brenner, S. (1995) Curr. Biology 5 332.
20. Bray, D. (2001) Nature 412 863.
21. Lazebnik, Y. (2002) Cancer Cell 2 179-182.

