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Abstract

F<: is a highly expressive typédcalculus with subtyping. This paper describes an
implementation ofF<: (extended with recursive types), and documents the algorithms
used. Using this implementation, one can Eest programs and examine typing deriva-
tions.

To facilitate the writing of complek<: encodings, we provide a flexible syntax-ex-
tension mechanism. New syntax can be defined from scratch, and the existing syntax can
be extended on the fly. It is possible to introduce new binding constructs, while avoiding
problems with variable capture.

To reduce the syntactic clutter, we provide a practical type inference mechanism that
is applicable to any explicitly typed polymorphic language. Syntax extension and type in-
ference interact in useful ways.
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1. Introduction

F<: is a typed\-calculus with subtyping. It is intended to capture the essence of subtyping and, to some extent,
of object-oriented programmin@ardelli, et al. 1991; Curien, Ghelli 1991]The F<: calculus was designed to be as
small as possible, so that it could be studied formally. Its small size also happens to facilitate implementation;
during its construction it was possible to explore some advanced techniques that should be useful for larger
languages.

This paper describes the F-sub program, which is an implementatiér:of (We assume a superficial
familiarity with the latter.) Using this program, one can typecheck and evatgatexpressions and definitions,
and examine typing and subtyping derivations. In order to keep the critical typing code clean and correct, the
implementation is very minimal and supports only the basic construtts: ofThis minimality, while having some
pragmatic disadvantages, allows us to describe the fundamental algorithms in full detail in terms of an operational
semantics that is faithful to the actual program code.

The operational semantics is described in the Appendix in layers of increasing complexity, the final layer
corresponding closely to actual program code. The first layer corresponds to the typechecking algorithm for pure
F<:. Then, other features are added: (a) de Bruijn indices, (b) partial type inference for second-order types, and (c) a
new technique for integrating recursive types with second-order polymorphic types.

Apart from the typing algorithms, another aspect of the implementations should be of general interest. The
extensible syntax mechanism we have implemented should be useful in other mechanized formal systems that need
to define mathematical notation on the fly, such as theorem provers, proof checkers, and symbolic algebra systems.
In these systems, one wishes to minimize the number of constructs in order to keep the difficult core algorithms
clean and manageable. In the case of F-sub, we wish to keep the typing code simple by not providing basic data
structures and control structures, requiring instead that they be encadéeras. The drawback of this approach
is that after a few levels of encoding even simple programs become quite unreadable. To improve readability of the
encodings, the F-sub system supports a very flexible syntax-extension mechanism based on an LL(1) parser. One
can define entirely new grammars, or enrich the existing F-sub grammar. In particular, one can define new binding
constructs and their associated meaning, while avoiding problems with variable capture.

The F-sub system consists of about 10,000 lines of Modula-3 code [Nelson 1991], equally partitioned between
a reusable parsing package and F-sub proper. The implementation is portable to any computer running Modula-3,
that is to almost any computer running a standard C compiler [Kalsow, Muller FTP]. Program sources and binaries
for standard architectures are freely available [Cardelli FTP].

2. Overview

The syntax of F-sub types and terms is given below, informally. As a general convention, term-related names
begin with a lower-case letter, while type-related names begin with an upper-case letter.

A B:= types
X type variables
Top the biggest type
A> B function spaces
All( X<: A B bounded quantification
{ A grouping
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a,b:= terms

X term variables

top the canonical member a@foop
fun( x: A b functions

b( a) applications

fun( X<: A) b polymorphic functions

b(: A type applications

{ a} grouping

When loaded, the F-sub system displays-its prompt, at which one can write a term likep ’, followed by

a semicolon. The system answers by inferring the type of the term and evaluating it. The answers given by the
system are indicated by» .

- top;
e top : Top

In general, at the-* ' prompt one can write phrase always terminated by a semicolon. There are several
kinds of phrases. The one above iseEnm phrase while the one shown below istgpe phrasgthis is always
preceded by a colon and causes the evaluation of a type:

- :Top;
- Top
Type definition phrasesntroduced by Let ' and term definition phrasesntroduced bylet °, allow one to
bind types and terms to variables:
- Let Id = AlI(X) X->X
m | et Id <: Top = <ld>
-:ld;
e - <[d>
-letid : Id = fun(X) fun(x:X) x;
- Jet id : <ld> = <id>
- id;
- <jg> : <|d>

The system produces some answers in angle brackets, as an abbreviation, to avoid printing excessive details. If a
term or a type has been given a name in a definition, then that term or type is printed as its given name in angle
brackets. This printing heuristic has no effect on typing or evaluation.

Once a function likeid ’ is defined, it can be applied to types and terms. A type application has the form
‘a(: A)’ (note the ! ’); a term application has the forra( b) ".

- id(:1d);
- Sfun(x:<ld>)x} : {<ld>-><Id>}

- id(:1d)(id);
> <jg> : <ld>

- id(:1d->1d);
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- Sfun(x:<ld>-><ld>)x} : {{<ld>-><ld>}->{<ld>-><[d>}}
The evaluator does not perform reductions inside functions:

- fun(x:1d) id(:1d)(x);
- Sfun(x:<ld>)<id>(:<ld>)(x)} : {<ld>-><Id>}

As you may notice from the printed output, curly brackets, instead of parentheses, are used to group syntax:

- {fun(x: Top)x}(top);
e top : Top

Programs can be stored in files. For example we can prepare a file Galédsub ' containing the Church
encoding of booleans:

Let Bool = All(X) X->X->X;

let true: Bool = fun(X) fun(x:X) fun(y:X) x
false: Bool = fun(X) fun(x:X) fun(y:X) y;

We can then load this file into the system Hyaad phrase

- load Test;

According to the encoding of booleans above, a conditional of the fbrnthien false else true
end’ is written as:

x(:Bool)(false)(true)

It is possible, however, to define a more familiar syntax for conditionalssgptax extensigras follows.
A syntax phraséntroduces a new grammar or, in this example, modifies the existing one:

- syntax
termBase ::= ...
[ "if* term_1 "then" term_2 "else" term_3
"giving" type_4 "end" ]
=> _1(_4(2C3);

To understand this example, one must first know ttextiBase ’, ‘term ’, and ‘type ' are some of the
syntactic categories of F-sub given in Appendix GdemBase ' is a ‘term ' except for the right-recursive syntax
of applications). Here we wish to modify the syntaxtefiBase ’ by taking its existing definition (indicated by
‘ ") and adding conditional expressions. By this mechanism we truly modify the recursive definition of terms;
meaning that conditional expressions can be nested.

The grammar of conditionals is given above asequencegin square brackets) of keywords and numbered
‘term ' and ‘type ' grammars. The numbers are used indbgon part of the grammar (following=>"), where the
relevant pieces of the input are reassembled into the encoding of conditionals shown earlier.

With the extended grammar we can write, for example:

- let not =
fun(x:Bool)
if x then false else true giving Bool end;
> Jet not : {<Bool>-><Bool>} = <not>
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As another example of syntax extensions, we can définterms(as opposed to the top-level-onlet' ’
definitions), translating them into functions and applications:

- syntax
termBase ::= ...
["let" termide_1 ":" type_2 "="term_3
"in" term_4 "end" ]
=> {fun(_1:_2) 4}(_3);
In this example we are creating a nbimding construct. This is reflected by the use fan{ 1: in the

action part. Here ‘1’ refers to a termlde ’, which is the F-sub grammar for a term identifier. Note thdt s
inside the scope of 1’, producing the expected variable capture. (Unwanted variable captures are carefully
avoided.) To try this out, we need to wrap the let-expressions in brackets to avoid confusion with let-phrases:

- {let x: Bool = true in not(x) end};
- <false> : <Bool>

In general, derm action(preceded by=>") can be any F-sub term, possibly containgajtern variables_n'.
Similarly, atype-action(preceded by:> *) can be any F-sub type, possibly containing pattern variables. An action
can be appended to any piece of grammar. The pattern varialsfesan similarly be appended to any piece of
grammar, using parenthesés,*) ' for grouping if necessary. After the definition of a syntax extension for terms or
types, the new syntax can be used in the action parts of later grammars.

As an exercise, one could now try to define the syntax of existential tBmse(X<:A)B ’, giving the
translation into universal typedll(Y){Al(X<:A)B->Y}->Y ". For more complex tasks one should first read
section 3.3 on Actions. (Exercise hints. One has to modyfyeBase ’, and capture atypelde ' and two
‘type 's. The symbol for type actions is>'’, not ‘=>. To see what the parser produces, writio *
ShowParsing On ;)

3. Syntax extension

In this section we describe a notation for grammars and its use in defining syntax extensions. This notation is
used also in Appendix C to describe the formal syntax of F-sub.

3.1 Grammars

Our meta-notation for grammars is slightly non-standard. Moreover, its meaning is tightly associated with a
particular parser (recursive descent). The reason for these peculiarities is that the same notation is used also for the
syntax-extension facility within the language.

Terminal symbols are calleddkens the most important kinds of tokens are identifiers1’, delimiters ) ’,
and quoted strings'abc" . The identifiers can be either alphanumerabl’ or symbolic ->’. Moreover,
identifiers are split into keyword and non-keyword classes; keywords are not legal variable names in binding
constructs. See Appendix B for the full lexical details.

A grammar descriptiory is one of the following constructions:

X An identifier x represents a non-terminal grammar symbol, which must be bound to a
grammar description. Parsings the same as parsing the associated description.
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ide The constanide denotes a non-keyword identifier token. Parsing this succeeds when the next
input token is a non-keyword identifier.

“fun " A non-empty quoted string denotes the keyword or delimiter token given in quotes. Parsing
this succeeds when the next input token is the given keyword or delimiter.
string The constanstring denotes a quoted-string token. Parsing this succeeds when the next input

token is a quoted string.

[091..9] Square brackets denotesaquencef grammars. Parsing this succeeds if parsing gaoh
sequence succeeds. Pardinglways succeeds.

{9;...g} Curly brackets denote éhoiceof grammars. Parsing this succeeds if parsing one af;the
succeeds when trying them left to right. Pargh@lways fails. (If one of thg;'s failsafter
successfully parsing an input token, then the entire parsing fails, but this can happen only if
the grammar is not LL(1).)

(91*9y) This iteration construct is equivalent to the gramnigy x] wherex ::= {[g , X] [[} . However,
the parsing of{g; * g,) can build left-associative parse-trees (in conjunction wa4ittiong,
which are not otherwise representable by a non-left-recursive grammar.

A completegrammarhas the form:
X1 =01 - %K U0,
wherenel, thex; are distinct, and arny occurring in one of thg; is one of the;. Moreover, the grammar must be
non-left-recursive and LL(1) (where 1 refers to one token, not one character). The grammar so defined is the one

defined byx;.
As an example, here is a non-ambiguous grammar for uniypeuns:

lambda ::={ide func appl }
func :=["["ide "." lambda "]"]
appl ::=["(" lambda lambda ")"]
Suppose now we wish to change the syntax of application from ‘(a b)’ to ‘a(b)’. The grammar becomes left-

recursive, but this problem can be eliminated by distinguishing between simple terms and complex terms as shown
below. The resulting grammar is LL(1), and the recursive-descent parser resolves any ambiguity:

lambda ::= [ simple arg ]

arg =={[pararg ][]}
simple ::= { ide func par}

func ;== [ "fun" ide "." lambda ]
par = [ “(" lambda ")"]

The grammar above parsederms, but because of the way left-recursion was eliminated, application associates to
the right (that is, a(b)(c) parse as <a<(b)(c)>> instead of <<a(b)>(c)>), which complicates further processing. This
problem can be solved by the iteration operator **’, which intentionally associates to the left. The grarhmar of
terms should then be expressed as follows:

lambda ::= (' simple * par)
simple ::= { ide func par}
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func = [ "fun" ide "." lambda ]
par ::= [ “(" lambda )" ]

Implementation-specific warning: when used in the syntax-extension facility, non-LL(1) grammars will
typically cause parsing failures, and left-recursive grammars will cause non-termination. This is a property only of
the current implementation; grammars could be analyzed to detect these situations.

3.2. Syntax

A syntax extension can be used to define a completely new grammar, or to modify an existing one. There are
two forms; asyntax termand a (top-levelyyntax phraseWe have seen examples of syntax phrases earlier. Here
we start with syntax terms, which have the form:

syntax Xqi= g1.. X,i= gyin...end

The allowed forms for thg;'s were explained in the previous section. The resulting granmvypais(then used to

parse thespanof the grammar, which is the input stream after’ If this parsing is successful, the keywoshd’

is expected, and then the current grammar reverts to the one that was active before entering the syntax term.
The result of parsing a syntax tersi Is a ‘term ’ according to the basic F-sub syntax of terms (that is, where

all the syntax extensions have been expanded). The expansion of a syntax tetand ‘term ’ is directed by the

actionsthat are defined ins’; if no action is specified,s” expands simply totbp '. For example, we define below

a grammar with two possible parses, the keywoote* and two’, and no actions. (We use outer brackets to

avoid confusing a syntax term with a syntax phrase.)

- {syntax x::={"one
e top : Top

two"} in one end};

A quoted identifier like "one" '’ is automatically made into a keyword in the relevant span. Keywords are inherited
from outer spans to inner spans. (Hence the built-in F-sub keywords may conflict with syntax extensions.)

A top-levelsyntax phrasés a syntax term where the pdrt ‘ ...end ’ is missing; its span is the remainder of
the top-level session (but see Section 4).

A syntax phrase does not normally affect the immediate top-level syntax. That is, the non-terinnass
given in Appendix C keeps being used for parsing at-theprompt.

But if the ‘toplevel ' keyword is used, then the first non-terminal of the given grammar is adopted as the
new top-level syntax, and the built-in F-sub syntax is completely bypassed:

- syntax toplevel x::={"one
- one

e top : Top

- two

e top : Top

two"};

Note that we are now stuck witk’‘as the top-level syntax; see Section 4 for recovering from this situation.

Instead of defining a completely new grammar we can extend an existing one. In particular, we can extend the
existing F-sub grammar described in Appendix C. Useful starting points for extensioterarBase ' and
‘typeBase ' (but use term ' and ‘type ' on the right-hand side of:= ’). See Appendix C for other non-
terminals that can be extended; these are mgriblic.
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To extend a non-terminak* bound to a grammaug,’ write:

X = g,
In this case x’ becomes equivalent to the choideg’ g,}’. In particular, x::=...{} " has no effect, while
‘Xz ] " makes X’ optional. For example:
- {syntax termBase::= ... {"one" "two"}
in {fun(x:Top)one}(two) end};
e top : Top

The final topic of this section is how to add infix operators. This is achieved by extending grammars that begin
with an iteration construct, as opposed to extending arbitrary grammars as shown above.

To extend the iteration part of a non-termindlbound to an iteration grammarg,* g,) * write:

Xi=L0F g3
Then x’ becomes equivalent to the iteratidng’,*{ g, g3}) .

In Appendix C we provide a non-terminaéfmOper ' as a suitable place for attaching infix operators. This
‘termOper ' is an iteration based omermAppl . The latter is another iteration that parses applications, and is in
turn based ontérmBase '. Finally, ‘termBase ’ terms are those simple terms that do not have pieces of syntax
“hanging off to the right”. Given this structure, one can attach infix operatotertnOper ’ that will have lower

precedence than application.
The following iteration extension introduces as a left-associative infix operator ovaermOper 's:

termOper ::= ... * [ "+" termAppl ]

achieving the equivalent oftermOper ::= (termAppl * [ "+" termAppl ] )
The following iteration extension introduces as a right-associative infix operator oveermOper 's:

termOper ::= ... * [ "-" termOper ]

achieving the equivalent otermOper ::= (termAppl * [ "-" termOper ] ) .
Similarly, ‘typeOper ' and ‘typeBase ' can be used for new infix type operators (there istppe’Appl ).
The syntax oftype ’ in Appendix C implies that these operators will have higher precedence#han

3.3. Actions

Actions can be attached to grammars. They describe the terms that are to be generated during parsing of syntax
extensions. By usingy’_n’ in a grammar, one specifies that the result of parginghould be stored in the pattern
variable ‘ n’. Pattern variables are then used in actiogs the grammars g=>a’ and ‘g:> a’ specify,
respectively, that the parsing @f ‘should generate the term or type describeday

We now describe the rules of expansion. Bxpansiongenerated by a (successfully parsed) grammar is
defined as follows:

Grammar Expansion

X the expansion generated by the grammar bourxl. to
ide top

"L top .

string top
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[91---9)] top

{91..9,} the expansion generated by the succesgful

(91* 97) the expansion generated by eitggyif g, alone is successful, or by the
lastg,if [ g; 9, ... 95] is successful.

g=>a the expansion generated by them patterna (see below).

g:> a the expansion generated by thipe patterra (see below).

gn top , but in addition the expansion generatedyby stored in_n.

(g1 *_n g,) the expansion generated g, * g,) , but at each iteration
the latest expansion is also stored in

A pattern variable ‘n’ (with n non-negative) islefinedwhen an occurrence off‘ n’ is parsed successfully.
Therange of definitiorof a pattern variable '’ is always confined within a clausg:'= ¢'. In addition, a pattern
variable defined in a branch of a choice is confined to that branch, and one definedgisi i€ ( g, * g,) ' is
confined to g,'. Errors are given on attempts to define a pattern variable twice, or to use one that is not currently
defined.

An action‘a’ may contain the pattern variables? that are defined wherea* appears. Note that an actios *
in ‘g=>a’ can access pattern variables defined outgidé‘the surrounding grammar; this ability greatly increases
the expressive power of actions. An action may also contain ordinary program variables bound in the surrounding
scope.

An action appearing afte=>’ can be anyterm pattern This is, recursively, either aerm ’ (including any
syntax extension otérm ) or one of the following patterns:

n
fun(_ n: type-patterfh term-pattern
fun(_ n<: type-patteri term-pattern
fun(_ n) term-pattern

The expansiongeneratedy a term pattern is the result of instantiating the term pattern with the expansions
stored in the pattern variables’ that occur in it.

Similarly to term patterns, an action appearing aftef tan be anytype patternwhich is, recursively, either a
‘type ' or one of the following patterns:

n
All(_  n<: type-patterp type-pattern
All(_  n) type-pattern

We are careful to avoid variable capture when patterns are instantiated. Consideiing..’ A) b’ binders
(the others are handled similarly), we have the typical situations:

Q) fun(x: Ax( 1) (2 fun(C1: Ax( 2)

In ‘fun(x: A)’ situations, including example (1), the variable is consistently renamed so that it does not
capture other variables named Wwhen the pattern is instantiated. fan(_1: A)’ situations, variable capture on
instantiation is normally desired, but only for certain subexpressions. In example (2) we never want the variable that
replaces ‘1’ to capture X’, but we always want the variable that replace®’ ‘to capture the similarly nhamed
variables in the term that replace®’. The general situation is handled by two separate renaming environments
during instantiation; one faresidentbound variables ¥’, in (1)) and one fointruding bound variables (the ones
replacing ‘1’ in (2)). Different subexpressions of the pattern are renamed according to the appropriate
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environment. Variables that are free in an action and bound in the top-level environment are allowed, but may
produce error messages later when in risk of being captured.

3.4. How it is done

The implementation of syntax extensions is really quite simple, when properly organized. Grammars are stored
in tables associating non-terminal names to grammar descriptions; this association can be changed dynamically to
extend existing non-terminals. Grammar descriptions include client “action procedures” to be invoked during
parsing to build the abstract syntax trees: no intermediate parse trees are built, resulting in very efficient parsing.
Intermediate parsing results are kept on a stack, accessed by (the equivalent of) pattern variables.

A simple recursive-descent parser interprets these grammar tables blindly, dispatching on the various cases of
grammar descriptions and calling the action routines when indicated. The action routines attached to the built-in
syntax of grammars build grammars. The action routines attached to the syntax of actions, invoke an external “Act”
interface to instantiate patterns. Nothing in this parser and syntax-extension machinery is specific to the
implementation of F-sub; in fact, it could be and has been reused for other languages.

The built-in F-sub syntax is just a grammar table, so that it can be modified like any other grammar. The only
parsing code specific to F-sub is provided in the implementation of the interface “Act”, used by the parser to
instantiate the pattern variables within term and type patterns. This module is responsible for preventing variable
captures, and hence must be aware of the scoping structures of the language at hand.

The sophisticated hiding and sharing of information needed to separate the parser from the rest of the system, is
realized via the Modula-3 partially-opague-types mechanism.

We now discuss in more detail haaetions are instantiated so that variable capture is avoided. The basic
techniqgue is described in the simplified context df-ealculus withA-patterns The technique is then instatiated
three times in F-sub, foAll( X<: A)’, ‘fun( X<: A) ", and fun( x: A) ' binders.

A patternp is described by the following data structure:

p=x|AX.p|pp |xXkx. p

where thepattern variablex (corresponding to ‘n’ in F-sub) are distinct from the ordinary variables x.
We userenamings mapping (non-pattern-) variables to (non-pattern-) variablespatahtiationst, mapping
pattern-variables to patterns. Here are the corresponding data structures and related operations:

p=¢g|xVy,p' x¢dom(")
n=¢|Xxpn x¢dom(t')
dom(@): domain rng(p): range

domg) =g rngk) = ¢

dom(x-y,p) = {X} wdom(p) rng(x-y.p) = {y}wrng()
dom): rng(r):

domg) =g rmye) = ¢

dom(x—p.m) = {x} wdom(r) rng(x«—p.m) = {p}urng(r)
p(x): lookup n(X):

&(x) = X &(x) = x

(zy.p)(X) =p(x)  (z%X) (zepm)(X) =n(X) (z%X)
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(x<y.p)(X) =y (x-pm)(x) = p

p\X: restriction T\X:
e\X =¢ e\x=¢
(zey.p)\X = 2y p\x  (z#X) (zepm)\X = Zp;i\X  (Z#X)
(x<y.p)\X =p (xpm)\X =7

With these operations, we can define the notionseaf variables(FV), pattern variablegPV), andbinding
pattern variablegBPV) of a pattern.

FV(p): PV(p): BPV(p):
FV(x) = {x} PV(X) = ¢ BPV(X) =¢
FV(Ax.p) = FV(p)- {x} PV(x.p) = PV(p) BPV{x.p) = BPV(p)
FV(p p’) = FV(p)w FV(p) PV(p p) = PV(p)o PV(p) BPV(p p) = BPV(p)lu BPV(p))
FV(X) =g PV(x) = {x} BPV(x) =g
FV(Ax. p) = FV(p) PVex. p) = {x} v PV(p) BPV(x. p) = {x} v BPV(p)
Free variables and pattern variables are then extended to renamings and instantiations.
FV(p): PV(p):
FV(p) = mgp) PV(p) =¢
FV(n): PV(n):
FV(m) = U{FV(p) | p e rg(m) } PV(n) = U{PV(p) | pe rng(r) }
Finally, we define the effect of applying renamings and instantiations to patterns.
plpl:
X[p] = p(x)
(AX.p)lp] = AX'.p[xex",p\X] X'¢FV(p), xX¢domp)urng(p)
(p P[] = ple] PIP]
X[p] = x
(Ax.p)lp] = Ax.p[p]
p[n]: assuming _%xBPV(p)= n(x) is a variable y

p[n] = ple; &; 7]
X[p; p's 7] = X[p]
(x.p)lp; p; ] = AX.pIxeX',p\x; p'; 7] X'¢FV(p), X¢[p; p'; 7]
(P P)lp; p5 ] = plp; ' 7] PLp; p'5 7
X[p; p; 7] = n(X)[P]
(Ax.p)lp; p's m] = Ay". plp; n(X)<-y',p\n(X); 7] Y'¢FV(p), Yélp; p'; ]
where x¢ [p; p'; 1] < X ¢ FV(r)udom()urng(')wdomp)urng(p).
In p[p; p'; ©], we usep to rename the bound variables found in p, and weuerename the variables found
in the range of: that are placed in binding positions.

We now discuss these definitions and the reasons for their side-conditions.

Although eventually we must obtainground pattern (free of pattern variables) for evaluation, we cannot
require that every pattern instantiation immediately produces a ground pattern. This is because, in order to define
new syntax extensions in terms of old ones, extended syntax may appear in actions. For example, consider the
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syntax extensions and actiofx‘"+" y] =>plus(  x)( y) and [x "avg" y]=>div(  y+x)(two)
When parsing the latter action we have a non-ground instantiation dof( y+x)(two) ' to
‘div(plus(  y)( x))(two) . Only later, when 6ne avg three ' is met, we obtain a ground pattern
‘div(plus(tree)(one))(two) '

However, we cannot allow arbitrary non-ground instantiations. Of course, we cannot replace a binding pattern
variable with, for example, &-abstraction. But in addition, it seems we cannot replace a binding pattern variable
with another pattern variable; otherwise we could writex.Xy.xy)[x<«z,y<z.e] = (Az.Az.z2), which causes a
pattern-variable capture. This justifies the restrictionBRV(p) = n(x) is a variable y) in the definition of .

Note that binding pattern variables cannotibeonverted because they are “visible from the outside”.

The informal idea that “there are no variable captures” should be formalized by showing that the renaming or
instantiation ofo-equivalent patterns producesequivalent patterns, and by deriving expected properties of
substitutions. We leave this for future work.

3.5. Related work on syntax extension

Griffin [Griffin 1988] has enumerated desirable properties of notational definitions and has studied their
formalization. Our distinction between nornids and patterrk’'s seems to remain implicit in his work. Unlike
Griffin, who translates to combinator forms that then reduce to the desired programs, we synthesize those programs
directly. (Griffin would handle ourlét x=a in b end " example by translating tdLET(Ax.b)(a) ’ for an
appropriate combinatorLET'.) Moreover, while Griffin discusses abstract translations, we provide a specific
grammar definition technique and an efficient parsing algorithm. Parsing is efficient because it is LL(1) and because
it avoids the creation of intermediate parse trees, producing directly abstract syntax trees that do not require
normalization.

Bove and Arbilla [Bove, Arbilla 1992] discuss how to use explicit substitutions to implement syntax extensions.
This is an elegant idea that we could perhaps have adopted, but we managed to work with ordinary substitutions
over de Bruijn indices. As in the previous case, their work does not describe a parsing algorithm, but is theoretically
well developed.

Some language implementations, like CAML and SML, integrate a YACC or similar parser generator that
allows them to introduce new syntax [Mauny, Rauglaudre 1992]. If the new syntax is to be mixed with the old one,
the new syntax must be quoted in some way. Instead, we can freely intermix new and old syntax without special
guotations.

Hygienic macros [Kohlbeckert al. 1986] share many of the same goals as our syntax extensions; however,
these macros account only for macro calls and not for liberally introducing new syntax. Hygienic macros employ a
multiple-pass time-stamping algorithm to prevent variable capture; this algorithm is, at least operationally, different
from our single-pass multiple-environment algorithm. We do not handle quotation and antiquotation in the style of
Lisp.

Finally, our syntax extension mechanism guarantees termination of parsing, even when our “macros” are
recursively defined. This property does not hold for many macro mechanisms that are computationally powerful.

4. Mock-modules and save-points

A crude modularization mechanism is provided as an aid to the interactive loading and reloading of definitions.
Separate compilation is not a goal.
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To facilitate loading and reloading the file, sane.fsub ’ containing F-sub definitions, one should start that
file with the following phrase (the module name must be the same as the file name):

module One;

If this file relies on definitions contained in fileSwo.fsub ' and Three.fsub ' (which should in turn start with
the lines module Two; ’and ‘module Three; ' respectively) thenOne.fsub ’ should start with the phrase :

module One import Two Three;

Then the variables defined insi@iero andThree become available withi@ne.
A reload phrasecan be issued at the top-level to load or to force reloading a modabd (; which was
briefly discussed in section 2, will not reload a module that is already loaded.):

- reload One;

The meaning ofreload One; ' is simply to read the Unix file./One.fsub  '. A quoted string can also be
placed afterreload ’, in which case the indicated file name is used without modification.

The intent ofreloading a (file containing a) module, is to backtrack to the point in time when that module was
first loaded. All the intervening top-level definitions (including syntax extensions) are retracted. When reloading a
module, only the imported modules that are not already present are reloaded; in particular, a module imported
through two different import paths is loaded once.

The precise behavior of this module mechanism is now described in terms of some lower-level primitives that
handlesave-pointsin contrast to module phrases, which are mostly useful when used within files, save-points may
be useful also when interacting at the top-level. For example, they are available even when the top-level syntax has
been clobbered by the syntax extension mechanism.

A save-poinis a record of the complete state of the system at a given point in time.

- save that;

This phrase creates a save-point called, in this cte#, °, recording the state of the system at the moment it is
issued. Named save-points are stacked.
Later, one can issue the phrase:

- restore that;

which resets the system back that ' save-point, possibly obliterating top-level definitions as well as intervening
save-points with different names. The save-pdhdt’ ’ is, however, maintained.
A special save-point exists in the beginning; the phrase:

- restore;
restores the system to its initial condition just after start-up.

- establish that;

This phrase is equivalent tedve that; ', if a save-point calledthat ' does not exist, and taréstore
that; ', if a save-point calledthat ’ does exist.

- load that;
This is equivalent toréload that; ' (that is, just reading the file) if a save-point calléldat ' does not exist,

but is a no-op if a save-point callatiat ' already exists.
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We can now describe the precise meaningmuidule ' phrases. A module of the form:
module One import Two Three; ...
is simply treated as the sequence:
load Two; load Three; establish One; ...

where the load ' phrases may end up establishing the corresponding modules because of module phrases in the
loaded files.

5. Top-level phrases

The top-level phrases fall into several classes. We have described mock-modules, save-points and loading in
Section 4. We now expand on the definition and evaluation phrases sketched in Section 2. Moreover, we discuss
judgment phrases and command phrases.

All the phrases that involve types or terms are elaborated as followgarsieg phaseexpands the syntax
extensions. Then, scoping phasexpands type definitions, converts identifiers to de Bruijn indices, and detects
unbound identifiers. Next, ehecking phaseerifies the typing correctness of types and terms. Theayaation
phasenormalizes terms. Finally, @inting phaseprints the results; identifiers with the same name but different de
Bruijn indices are decorated in different ways. If an error occurs in one of these phases, the file name (if any) and
the line position of the error is reported.

Each phrase is elaborated in the context of the previous top-level phrases.

« A type definition phrasbas the form:

- Let X1<: Al = Bl ...Xn<: An = Bn,
where the bounds<t A’ can be omitted, withA’ defaulting to Top’. Each ‘A’ and ‘B¢’ is in the scope of

‘X1’ ... ' X" and of all the previous top-level definitions. Type definitions are fully expanded before typechecking.
« A term definition phraséas the form:

-let xyi A= by..Xxpi A= by

where the domains ‘A’ can be omitted, with4’ being inferred from b;". Each ‘A1’ and ‘bj;¢ " is in the scope
of ‘xq" ... 'x;” and in the scope of all the previous top-level definitions.
« A type phraséias the form:

-0 A
which results in checking the typé ‘with respect to the current top-level definitions.
« Aterm phraséhas the form:
a,
which results in checking and evaluating the teafnwith respect to the current top-level definitions.

« Anenvironmente (often called also acontextor anassignmentis a possibly empty sequence of either type
variables with a bound X<: A) or term variables with a domainx( A). Each variable is in the scope of the
environment to its left and in the scope of the top-level definitions.
« A judgmentis one of the four formal statements axiomatized in Appendix D, each involving an environment.
Each of the four statements has a corresponding phrase, as follows.

An environment judgment phrabas the form:
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- judge env E

where the environmentE' is in the scope of the previous top-level definitions (and similarly for the following
judgments).
A type judgment phradeas the form:

- judge type El|- A
A subtype judgment phrasas the form:
- judge subtype E |- A<B
Finally, aterm judgment phraseas the form:
- judge term E|- aA

If the correctness of one of these judgments is established, a sokple printed. It is informative to turn on
tracing (as described below) when elaborating judgments.

. A command phraseas used to switch on and off various options. It has the form:
-do command argument ;

One can get a list of all the available commands by writing:
- do;

and one can find out about an individual command by writing:

-do command

The commanddo Version; ' prints the current version of the system.

After issuing the commanddld ShowParsing On; ' the result of parsing each phrase is printed. This is
useful for debugging syntax extensions.

After issuing the commanalo ShowVarindex On; ' the de Bruijn indices of variables are printed along
with the variables.

The commanddo QuantifierSubtyping X; ' switches between the undecidable: rule for quantifier

subtyping & = LeastBound ), the decidable Fun rule [Cardelli, Wegner 198%] £ EqualBounds ) and a
decidable rule proposed by Giuseppe CastagralopBound ).
After issuing the commandl6 TraceType On; ', each call to theype routine of Appendix E is traced.
Similarly, ‘do TraceSubtype On; "and ‘do TraceTerm On; ' correspond to theubandtermroutines.
Some other commands are used for system debugging and are not documented here.

6. Type inference by “argument synthesis”

In pure F-sub one has to write down an often overwhelming amount of type information. This is already
evident when encoding something as simple as pairing constructs. For example, through syntax extensions we can
define a cartesian product operaté*B’ as ‘All(C){A->B->C}->C " (see Appendix A), along with the
operations:

pair: All(A)Al(B)A->B->A*B
fst: Al(A)AII(B)A*B->A
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snd: All(A)AlI(B)A*B->B
To create and manipulate simple pairs we have to write, for example;

- let a = pair(Bool)(Top)(true)(top); (* the pair (true,top) *)
- fst(Bool)(Top)(a); (* the first component of pair a *)

A triple is already quite a challenge:

- pair(Bool)(Top*Bool)(true)(
pair(Top)(Bool)(top)(false)); (* the triple (true,top,false)*)

What is worse, we cannot even define a syntax extension of the form, for examplefor pairs, because the type
arguments must be provided somehow.

Fortunately, a form of type inference is available. To enable it, we append question Markshe type
parameters that we would like to omit (loosely following [Pollack 1990]). For example, the polymorphic identity
could be written:

- Let Id = AlI(X?)X->X;
- letid: Id = fun(X?)fun(x:X)x;

Then, the type arguments corresponding to question-mark parameters must be omitted:

- id(top); (* instead of id(:Top)(top) *)
e top : Top

In this situation, we say that the type parame¥rof ‘Id ' is stripped to compensate for the missing type
argument, and that the argument is |aterthesized
A type quantifier is stripped by introducing a fragfification variablethat may be instatiated later, or never; a

unification algorithm is responsible for the synthesis of the argument. Type parameters are stripped if and only if
they appear at the beginning of the type of a term identifier (that is, not an arbitrary term): we found this restriction
useful both for the inference algorithm and in understanding how inference behaves in actual programs. Here is a
situation where stripping occurs, and a unification variable is exposed in the printed result:

- id;

- ffun(x:X?)x} : {X?->X?}
If needed, we can prevent stripping by placing an exclamation mark after a term identifier:

-id!;
- <jg> : <|d>

This option is useful, for example, if we want to pass the (unstripped) polymorphic identity as an argument to an-
other term.
Going back to pairs, we can now rewrite our primitives so that they admit type inference:

pair: All(A?)AII(B?)A->B->A*B
fst: AlI(A?)AII(B?)A*B->A
snd: All(A?)AlI(B?)A*B->B

This allows us to write triples a bit more compactly, by omitting the type arguments:

- pair(true)(pair(top)(false)); (* the triple (true,top,false) *)
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But, what is more important, we can now put syntax extensions to work and define a ainfplectation:

- syntax
termoper = *_1
["" termOper_2 ] => pair(_1)(_2);

- true,top,false; (* the triple (true,top,false) *)
We are finally able to write pairs in a convenient notation, by the interplay of type inference and syntax extensions.

We conclude this section with some general remarks about this form of type inference; details of the algorithm
are in Appendix F.

The typesAll( X?<: A) B and ‘All( X<: A) B are incomparable. A typeAll( X?<:Top) B is stripped to
‘B where ‘X is treated as a fresh unification variable. Instead, a ¢ ‘X?<: A) B with a non-Top’ bound is
stripped simply to B{ X<-A}'.

When an occurrence oK' bound by an X?' appears nested within other quantifiers, it must not be instantiated
in a way that will cause variable captures. To this end, wefirsedrder unification under a mixed pref[Xiller
(to appear)]. For a practical example of where this matters, see the Existentials section in Appendix A. As an ad-hoc
example, consider the following term where a type parameter is omitted in the applicétion of

- fun(FAICY 2){AW)W->Y}->Y) f(fun(Z)fun(z:2)2);

m Type error. Type inference rank check: instantiation type for
Y? contains a (different) variable Z that is bound deeper
than the Y? binder:

Z(=W) (last input line, char 46)
Error detected (last input line, char 51)

If ordinary unification is used instead of mixed-prefix unification, we matd{w)W->Y? against All(Z2)Z-
>Z, causing the unification of? with Z. Hence the whole term above acquires the type:

(AIY2)H{AIW)W->Y}->Y} -> Z

where the finalZ (which is unified withY) has escaped its scope and remains unbound. We can then provide the
following argument for the term above, obtaining a term that has the escaped Z as its type:

fun(Y?)fun(g:All(W)W->Y)g(Top)(top)

After typechecking an entire top-level phrase, some of the unification variables used for type inference may
remain undetermined. We choose to tolerate this situation in term-phrasgs l§ut we report an error in term-
definition-phrases (et ...; ).

We believe that our type inference algorithm is essentially the same as the one used in LEGO [Pollack 1990]
and a first-order version of the one used in ELF [Pfenning 1989] (although we have no detailed knowledge of those
implementations). We believe the algorithm is sound, but is not complete, particularly because we are using
unification in a subtyping context. As a heuristic, this inference algorithm works exceedingly well.

7. Recursion

In this section we describe an extension of F-sub with recursive types and recursive values. The integration of
recursion with subtyping in a first-order system is studied in [Amadio, Cardelli 1991]. The ideas described there

Page 18



should work in a second-order system such<as. However, here we take a simpler approach to recursive types, to
minimize their interference with second-order types and type inference techniques.

The main idea is that the isomorphism between a recursive tRae(X) B and its unfolding
‘B{ X«-Rec( X) B} is made explicit in the syntax of terms. In first approximation, we have:

unfold : Rec( X) B-> B{ X«Rec( X) B}
fold : B{X«<Rec( X) B} -> Rec( X) B

More precisely, we extend the syntax of F-sub as follows:

A B:= .. types as before, plus:
Rec( X) B recursive types
ab:= .. terms as before, plus:
fold:  A( b) fold b into an element of the recursive type
unfold(  b) unfold an elemenb of a recursive type
rec( x: Ab recursive terms

Since the isomorphism is explicit, we dot have Rec( X) B = ‘ B{ X«-Rec( X) B}'. Instead, two recursive
types are equal only if their respectivRet’ binders are found in corresponding positions. Given this restriction,
the recursive subtyping algorithm becomes much simpler (while remaining non-trivial). The central type rule for
recursive subtyping is unchanged, but the auxiliary judgment and rules having to do with type g&uatiiy,
Cardelli 1991Jare dropped. The type rules and algorithms are described in Appendix G.

As a simple use of recursive types, let us define the type of untyped lambda-terms, and some standard
combinators.
Let V = Rec(V) V->V;
let lam: {V->V}->V = fun(f:V->V) fold(:V)(f)
app: V->{V->V} = fun(f:V) fun(a:V) unfold(f)(a);

leti: V = lam(fun(x:V)x)
k: V = lam(fun(x:V) lam(fun(y:V) x))
s: V = lam(fun(x:V) lam(fun(y:V) lam(fun(z:V)
app(app(x)(2))(app(y)(2)))));
lety: V =rec(y:V) lam(fun(f:V) app(f)(app(y)());

With a bit of syntax extension one can eliminate thm® and ‘app’ clutter (see Appendix A).
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Appendices

Appendix A. Examples

Identity
This is the file Id.fsub . It defines the polymorphic identity in such a way that its type parameter can be
omitted.
module Id;
Let Id = AlI(X?) X->X;
let id: Id = fun(X?) fun(x:X) x;

Unit

This is the file Unit.fsub . ‘Unit ' is the encoding of a data type with a single elemenit’ . It is
essentially the same as the polymorphic identity, but because of the intended wsé of type inference is not
desirable.

module Unit;
(* Defines:
Unit = AlI(X)X->X
unit: Unit
")
Let Unit = All(X) X->X;
let unit: Unit = fun(X) fun(x:X) x;

Booleans

This is the file Bool.fsub . This is the encoding of a data type with two elemerttae‘ ' and false .
Also provided are two subtypes ddol ’ containing one element each. Standard boolean operators are defined.
The syntax of terms is extended with two keywortge' ' and false ', with conditionals, and with two infix
operators.

module Bool;
(* Defines:
Bool = All(X)X->X->X
True, False <: Bool
true, false: Bool
tt: True
ff: False
not: Bool->Bool
and, or, _\_, _\V/_: Bool->Bool->Bool
if _then _else _end
")
Let Bool = All(X) X->X->X
True = All(X) X->Top->X
False = All(X) Top->X->X;

let true: Bool = fun(X) fun(x:X) fun(y:X) x
false: Bool = fun(X) fun(x:X) fun(y:X) y;

let tt: True = fun(X) fun(x:X) fun(y:Top) x
ff: False = fun(X) fun(x:Top) fun(y:X) y;

let cond = fun(X?) fun(b:Bool) b(:X);
(* Bool, true, and false are turned into keywords *)
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syntax
typeBase ::= ...
"Bool" :> Bool

termBase ::= ...
{"true" => true
"false" => false
["if* term_1 "then" term_2 "else" term_3 "end" ]
=>cond(_1)(_2)(_3)}
let not: Bool->Bool =
fun(x:Bool) if x then false else true end
and: Bool->Bool->Bool =
fun(x:Bool) fun(y:Bool)
if X then y else false end
or: Bool->Bool->Bool =
fun(x:Bool) fun(y:Bool)
if X then true else y end;

syntax
termOper ::= ... *_1
{["\" termAppl_2 ] =>and(_1)(_2)
["\W"termAppl_2]=>o0r(_1)(_2)}

Products

This is the file Product.fsub . It defines a cartesian product operator, extending the syntax of types, and a
pairing operator, extending the syntax of terms. Syntax extensions and type inference interact in this situation, so
that pairs can be constructed simply by infixing a *

module Product;
(* Defines:
A*B = All(C){A->B->C}->C
_,_: All(A?) All(B?) A->B->A*B
pair: All(A?) All(B?) A->B->A*B
fst: All(A?) All(B?) A*B->A
snd: All(A?) All(B?) A*B->B
*
)
syntax
typeOper ::=...* 1
["*" typeOper_2]
> All(C) {_1->_2->C}->C

let pair: All(A?) All(B?) A->B->A*B =
fun(A?) fun(B?) fun(a:A) fun(b:B)
fun(C) fun(p:A->B->C) p(a)(b);
let fst: All(A?) All(B?) A*B->A =
fun(A?) fun(B?) fun(p:A*B) p(:A)(fun(a:A)fun(b:B)a);
let snd: All(A?) All(B?) A*B->A =
fun(A?) fun(B?) fun(p:A*B) p(:B)(fun(a:A)fun(b:B)b);
syntax
termOper = ... *_1
["," termOper_2] => pair(_1)(_2)

Sums
This is the file Sum.fsub . It defines a disjoint union operator, extending the syntax of types, acaba "
construct extending the syntax of terms. Note tba$é ’ introduces local bindings.

module Sum;

(* Defines
A+B = All(C){A->C}->{B->C}->C
inl: All(A?) All(B?) A->A+B
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inr: All(A?) All(B?) B->A+B
sum: All(A?) All(B?) All(C?) A+B->{A->C}->{B->C}->C
case term
inl(ide:type) term
inr(ide:type) term
end,
)
syntax
typeOper ::=...* 1
["+" typeOper_2]
> All(C) {_1->C}->{_2->C}->C

letinl: All(A?) All(B?) A->A+B =
fun(A?) fun(B?) fun(a:A)
fun(C) fun(f:A->C) fun(g:B->C) f(a);
letinr: All(A?) All(B?) B->A+B =
fun(A?) fun(B?) fun(b:B)
fun(C) fun(f:A->C) fun(g:B->C) g(b);
let sum: All(A?) All(B?) All(C?) A+B->{A->C}->{B->C}->C =
fun(A?) fun(B?) fun(C?)
fun(s:A+B) fun(f:A->C) fun(g:B->C)
s(C)(M();

syntax

['case" term_1

"Ift" (" termlde_2 ":" type_3")" term_4
"rht" (" termlde_5 ":" type_6 ")" term_7
"end"]
=>sum(_1)(fun(_2:_3)_4)(fun(_5:_6)_7)

Tuples

This is the file Tuple.fsub . It defines type tuples as iterated cartesian products endingVaifh, ‘so that a
longer tuple type is a subtype of a shorter tuple type. Note that the previously defined syntax for cartesian products
is used here to provide a further syntax extension. Tuple values are iterated pairings endtog with *

module Tuple
import Product;
(* Defines:
Tuple(type ... type)
tuple(term ... term)
)
syntax
typeBase ::= ...
["Tuple" "(" typeTuple_1")"]:>_1
typeTuple ::=
{[type_1typeTuple_2]:> _1* 2
[[:>Top}

syntax
["tuple" "(" termTuple_1")"]=>_1
termTuple ::=

{[term_1termTuple_ 2]=>_1, 2
[ =>top}

Inductive Lists
This is the file IndList.fsub ". It defines List(A) ' data types encoded by inductive definitions (that is,
without using recursion over types). Syntax extensions are used here to simulate a third-order dpstatyr (‘
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within a second-order languagé:ist(A) ' is a second-order type only for a fixed'.' Note that the action for

‘List ' uses a local variableL' that must be kept distinct from any variable that may appear in a parameter to
‘List ’; this is taken care of by the action instantiation algorithm. The syntax of terms is extended with a case
construct and a convenient way of building lists of many elements; again, syntax extensions and type inference
interact in interesting ways.

module IndList
import Bool;
(* Defines:
List(A) = All(L) L->{A->L->L}->L,
nil: All(A?) List(A),
cons: All(A?) A->List(A)->List(A),
null: All(A?) List(A)->Bool,
hd: All(A?) List(A)->A->A,
tl: All(A?) List(A)->List(A)
caselList term
nil() term
cons(ide:type ide:type) term
end,
list(term ... term)
*)
syntax
typeBase ::= ...
[ "List""(" type_1")"]
> All(L) L->{_1->L->L}->L

let nil: All(A?)List(A) =
fun(A?)fun(L)fun(n:L)fun(c:A->L->L)n;

let cons: All(A?)A->List(A)->List(A) =
fun(A?)fun(hd:A)fun(tl:List(A))
fun(L)fun(n:L)fun(c:A->L->L)
c(hd)(ti:L)(n)(c));
let iterList: AlI(A?)AII(B?) List(A)->B->{A->B->B}->B =
fun(A?)fun(B?)fun(l:List(A))
fun(n:B)fun(c:A->B->B)
I:B)(n)(c);

syntax

{"nil" => nil
"cons" => cons
['caselList" term_1
"nil" (" ")" term_2
"cons" "(" termlde_3 ":" type_4 termlde_5 ":" type_6 ")" term_7
"end"]
=> iterList(_1)(_2)(fun(_3:_4)fun(_5:_6)_7) }

let null: All(A?)List(A)->Bool =
fun(A?)fun(l:List(A))
caselList |
nil() true
cons(hd:A tl:Bool) false
end;

let hd: All(A?)List(A)->A->A =
fun(A?)fun(l:List(A))fun(a:A)
caselList |
nil() a
cons(hd:A tl:A) hd
end;
let tI: All(A?)List(A)->List(A) =
fun(A?)fun(l:List(A))
caselList |
nil() nil
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cons(hd:A tl:List(A)) tl
end;

syntax

["list" "(" termList_ 1 ")"]=>_1
termList ::=
{[term_1 termList_2 ] => cons(_1)(_2)
[=>nil}

Recursive Lists

This is the file RecList.fsub . It provides the same constructions &wlList.fsub ', except that lists
are encoded via recursive types. Note how the operators provided here encapsulate the folding and unfolding of
recursion, so that they need not be used directly.

module RecList
import Bool;
(* Defines:
List(A) = Rec(L) All(C) C->{A->L->C}->C,
nil: All(A?) List(A),
cons: All(A?) A->List(A)->List(A),
null: All(A?) List(A)->Bool,
hd: All(A?) List(A)->A->A,
tl: All(A?)List(A)->List(A),

caseList term
nil() term
cons(ide:type ide:type) term
end,
list(term ... term)
)
syntax
typeBase ::= ...
[ "List""(" type_1")"]
> Rec(L) All(C) C->{_1->L->C}->C

let nil: All(A?)List(A) =
fun(A?)
fold(:List(A))(fun(C)fun(n:C)fun(c:A->List(A)->C)n);

let cons: All(A?)A->List(A)->List(A) =
fun(A?)fun(hd:A)fun(tl:List(A))
fold(:List(A))(fun(C)fun(n:C)fun(c:A->List(A)->C)c(hd)(tl));
let recList: All(A?) All(B?) B->{A->List(A)->B}->List(A)->B =
fun(A?) fun(B?) fun(n:B) fun(c:A->List(A)->B)
fun(l:List(A)) unfold(l)(:B)(n)(c);

syntax
termBase ::= ...
{"nil" => nil

"cons" => cons
['caselList" term_1
"nil" (" ")" term_2
"cons" "(" termlde_3":"type_4 termlde_5""type_6 ")" term_7
"end"]
=> recList(_2)(fun(_3:_4)fun(_5:_6)_7)(_1)
h

let null: All(A?)List(A)->Bool =
fun(A?)fun(l:List(A))
caselList |
nil() true
cons(hd:A tl:List(A)) false
end;

let hd: All(A?)List(A)->A->A =
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fun(A?)fun(l:List(A))fun(a:A)
caselList |
nil() a
cons(hd:A tl:List(A)) hd
end;

let tl: All(A?)List(A)->List(A) =
fun(A?)fun(l:List(A))
caselist |
nil() nil
cons(hd:A tl:List(A)) tl
end;

syntax
termBase ::= ...
["list""(" termList_1")"]=>_1
termList ::=
{[term_1 termList_2 ] => cons(_1)(_2)
[ =>nil}

Existentials
This is the file Some.fsub ’. Bounded and unbounded existential quantifiers are encoded in terms of
universal quantifiers. Syntax is provided which is analogous to the built-in syntax for universal quantification.

module Some;
(* Defines
Some(ide)type, Some(ide<:type)type
pack ide<:type=type as type with term end
open term as ide<:type ide:type in term end
*
)
(* easy version:
syntax
typeBase ::= ...
["Some" "(" typelde_1 "<:" type_2 ")" type_3]
> AlV?) {All(1<:_2) 3->V}->V
%)
(* some interesting pattern-variable manipulation: *)
syntax
typeBase ::= ...
["Some" "(" typelde_1
{['<:" type_2 ")" type_3]
> AlV?) {All(1<:_2) 3->V}->V
[)" type_3]
>AlV?) {AlCL) _3->V}y->V

]>_4
syntax
termBase ::= ...
{["pack" typelde_1 "<:" type_2 "="type_3 "as" type_4
"with" term_5 "end" ]
=> fun(V?) fun(fAll(_1<:_2) 4->V) f(:_3)(_5)
["open" term_1 "as" typelde_2 "<:" type_3 termlde_4 ":" type_5
"in" term_6 "end" ]
=> _1(fun(_2<:_3)fun(_4:_5)_6)}

(* Example:
load Bool; load Product;

Let Spec = Some(X<:Bool) X*{X->Bool};

let impl: Spec =
pack X<:Bool=True as X*{X->Bool}
with tt, fun(x:True)true end;
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open impl as X<:Bool p:X*{X->Bool}
in snd(p)(fst(p)) end;

Note: trying to extract fst(p) rightfully causes a type-inference
rank-check, which would not be captured by the normal first-order
unification algorithm.

%)

UntypedA-terms
This is the file Scott.fsub . It uses recursive types to encode the untypedlculus.

module Scott;
(* Defines
V =V->V
\x e untyped lambda
e.e untyped application
ik,s,y: V the usual combinators
*
)
Let V = Rec(V) V->V;

syntax
termBase ::= ...
["\" termlde_1 term_2]
=> fold(:V)(fun(_1:V)_2)
termOper = ... *_1
[*." termAppl_2]
=> unfold(_1)(_2);
leti=\xx
k =\x\y x
s =\x\y\z {x.z}{y.z}
y =\ {x £ f{x.x3}
(* Note: the evaluator is eager; k.i.{y.i} will diverge. To fix this, use:

module Scott
import Unit;

Let V = Rec(V) {Unit->V}->V;

syntax
termBase ::= ...
{['@" termlde_1]
=>_1(unit)
["\" termlde_1 term_2]
=> fold(:V)(fun(_1:Unit->V)_2) }
termOper ::=...*_1
[*." termAppl_2]
=> unfold(_1)(fun(u:Unit)_2);

leti=\x @x;

letk =\x\y @x;

lets =\x\y\z {@x.@z}{@y.@z};

lety = \f {\x @f. {@x.@x}}.{\x @f {@x.@x}};

k.ify.i};
)
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Appendix B. Lexicon

The ASCII characters are divided into the following classes:

Blank HT LF FF CR SP
Reserved "~
Delimiter O, ;01_{1?!
Special HSWN&*+-/:<=>@\"|
Digit 0123456789
Letter ABCDEFGHIJKLMNOPQRSTUVWXYZ
"abcdefghijklmnopgrstuvwxyz
lllegal all the others
Moreover:

- a StringChar is either
- any single character that is not an lllegal character or oné,of *, ‘\ ".

- one of the pairs of characteks “, ‘\" ’, “\\ ’
- a Comment is, recursively, a sequence of non-lllegal characters and comments

enclosed between*{and *) .

From these, the followingexemesre formed:

Space a sequence of Blanks and Comments.

AlphaNum a sequence of Letters and Digits starting with a Letter.

Symbol a sequence of Specials.

Char a single StringChar enclosed between two *

String a sequence of StringChars enclosed betweer'two

Int a sequence of Digits, possibly preceded by a single minus-sSign
Delimiter a single Delimiter character.

A stream of characters is split into lexemes by always extracting the longest prefix that is a lexeme. Note that
Delimiters do not stick to each other or to other tokens even when they are not separated by Space, but some care
must be taken so that Symbols are not inadvertently merged.

A tokenis either a Char, String, Int, Delimiter, Identifier, or Keyword. Once a stream of characters has been
split into lexemestokensare extracted as follows.
- Space lexemes do not produce tokens.
- Char, String, Int, and Delimiter lexemes are also tokens.
- AlphaNum and Symbol lexemes are Identifier tokens, except when they have been
explicitly declared to b&eywordsin which case they are Keyword tokens.
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Appendix C. Syntax
The predefined keywords are:
For grammar definitions:
char end ide in int string syntax ;= =>:>* =
For F-sub proper:
All Let Rec Top fold fun judge let rec top unfold : <: -> = |-
» The grammar of phrases is as follows.
phrase ::= (* public *)
{""
["Let "typeBinding " "]
["let "termBinding " "]

[":"type " "]
[term " "]
[ synDecl’ "]

["judge "{["env"env]
["type "env']- "type ]
["subtype "env'l]- "type '<:"type]

["term "env']- "term " " type]
Pt
["reload "{ide string}"; "]
["restore "{ide[]}";"]1[{"save " "establish ""load "}ide"; "]

[ "module "ide { "import "ideList}"; "]
["do"{[ide{ide1}]0}" ;"]
}
ideList ::=
{[ide ideList][] }
typeBinding ::=
{[ide {["<:"type][]}"="type typeBinding ] ] }
termBinding ::=
{[ide{[":"type]][]}"="term termBinding ][] }
env ;=
{[ide{["<:"type][" "type]}][]}
» The grammar of types and terms is as follows.

pvar ::=
["_"int]
binder ::=
{ide pvar}
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type ::= (* public *)
[ typeOper {[*>"type []]}]

typeOper ::= (* public, hook for client infixes *)
(typeBase *_1{})

typelde ::= (* public *)
ide
typeBase ::= (* public *)

{typelde pvar Top"

["All " "(" binder {">" [ }{[" <: "type] [} ") "type]
["Rec""("ide ") " type ]

["{"type}"]}
term ;= (* public *)
termOper
termOper ::= (* public, hook for client infixes *)

(termAppl *_1 {})

termAppl ::= (* public *)
(termBase *_1
{0 (1" " type] term } ) ]

"1"1) (* "I" must follow an identifier or keyword *)
termlde ::= (* public *)
ide
termBase ::= (* public *)

{termlde pvar top "

["fun " (" binder {[": "type ]["<: "type ] ["2" {["<:"type]0}]10}") " term]

["fold ""("": "type")""("term") "]

["unfold ""("term") "]

["rec ""("ide™ "type ") " term]

["{"term"}"]

synTerm }
e The grammar of syntax extensions is as follows. Note that the grammar for synTerm cannot be  written down
precisely in this notation.

synDecl ::=
["syntax " {"toplevel "[]}grammar ]

synTerm ::=
["syntax " grammarin " ... "end"]

grammar ::=
clauseSeq

clauseSeq ::=
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[ide ":= " extends gramExp { clauseSeq[] } ]

extends ::=
(e {pvar 03030}
gramExp ::=
[ gramExpBase
{["=>"term]
[">"type]
pvar

03]

gramExpBase ::=
{ide string 'ide " "int " "char " "string
["[ " gramExpList] "]
["{" gramExpList } "]
["("gramExp {[™*"{pvar[] } gramExp ][]} ") "]}
gramExplList ::=
{[ gramExp gramExpList][] }
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Appendix D. Typing rules
These are the typing rules of F-sub, as described in [Caetadli,1991].

Environments

(Envg) (Envx ) (EnvX )
EF Atype  x3 domE) EF Atype  X{ domE )

F ¢ env F E,x:Aenv F E,X<: Aenv
Types

(TypeX ) (TypeTop ) (Type->) (TypeAll )

FEX<AE env F Eenv E F Atype E - B type E,X << AF Btype

E. X< AFE F Xtype E - Top type E - A-> Btype E F Al( X:) A Btype
Subtypes

(Sub refl) (Sub trans) (SubX ) (SubTop )

E I Atype EFA<B EF B C FEX<AE env E F Atype

EF A<A EF A<C EX<AE F X< A EF A<Top

(Sub->) (SubAll )

EFA<A EFB< B’ EF A <A EX< A FB< B’

EFA->B< A->B' EFAI X)ARI < )X AB

Terms

(Subsumption) (Termx ) (Termtop )

EFaA EF &< B F Ex:AE env F Eenv

EF-aB EXAE FXxA E I topTop
(Term fun) (Term appl)
ExAFbB E+- bA->B EFaA
EF fun( x)Ab A->B EFba: B
(Term fun2) (Term appl2)
EX<AF bB EF BAI( X) AB Et<A A
EFfun( X )AAI <) X AB EF bt A: B <A}
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In preparation for the typing algorithms, these are the same type rules expressed with de Bruijn indices. The
notatione A stands for either A or <: A Lifting is Al , andsubstitutionis B{i < 4 ; the latter is to be invoked as

B{l< A .
At = A9 mMi=na<j); nt=n+in >j); Topt =Top
(A->B)N = Al-> g™ (Al<:) ABMAK<: ) Al gi*t

n{i «<C} =n(n <i; nin «c}y <1t ; Ai<«G =n-1n i Tdpi «G =Top
A->B{i G =R« F->{B+1<}C (Al ) AB <} SK< { pgd £ iB+1¢ C

Environments

(Envg ) (Envx ) (EnvX )
E - Atype E - Atype
E - g env F E;Aenv F E< Aenv

Types
(TypeX ) (TypeTop ) (Type->) (TypeAll )
FE<AecA4,...cA env F Eenv E.AF Btype E,<<AF Btype
E,<<AcA.,...«cAF ntype E F Top type E F A-> Btype E F Al(<: ) A Btype
Subtypes
(Sub refl) (Sub trans) (Subx ) (SubTop )
E + Atype E+ A< B EF B C FE<AcAh,,...cA env E - Atype
EFA<A EF A<C E<AchAq,...cAF A, E - A<Top
(Sub->) (SubAll )
EFA<A E,A" FB< B EFA<A Ec: A" FB< B’
EFA->B< A->B' E F Al ) ARl(<: ) A' B
Terms
(Subsumption) (Termx ) (Termtop )
EFaA EF A< B FE/AcA,,...cA env F Eenv
EF aB E;AcA ,...cAF nA, E I topTop
(Term fun) (Term appl)
E.AF bB EF bA->B EFaA
EF fun( )Ab A->B EFbg: B
(Term fun2) (Term appl2)
E<AF bB EF bAl<) AB E<A' A
E F fun(<: )AAl(<: ) AB EF bt A): 1B{ A}
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Appendix E. Typing algorithm

The parsing phase eliminates all the syntax extensions. A scoping phase converts variables to de Bruijn indices,
and checks that all variables are properly bound. (Variables in type contexts should be bound by type binders, while
variables in term contexts should be bound by term binders.) The scoping phase also expands all the top-level type
definitions. Therefore, only the following data structures have to be considered for typecheckinghgdiere

PreType

ST= n|Top| S—>T|All(<: ST
PreTerm

ab = njtop|fun(: S b| b(a)]fun(<: Sb| b S
Env

E= ¢| E< Al E: A

Type
AB= n|Top| A->B| All(<: A B

The following algorithms are expressed in the form of deterministic labeled transition systems [Plotkin 1981].
(They can be read much as Prolog programs.) Each kind of “arrow” defines a (functional) relation. The name of the
relation is on top of the arrow, the main parameters are on the left, additional parameters are below, and results are
on the right. The main parameters are, by convention, the ones subject to structural induction. The signature of each
relation is given in a box, and includes parameter names as comments; the rofgtibh means thab is the
default value of the parametrwhen that parameter is omitted.

There is a direct correspondence between each relation and a recursive procedure in the implementation code,
and between each rule and a case branch in the implementation code.

To preserve all the internal invariants, we assumedypatndterm are the top-level algorithms, and that they
are started with an empty environment. Typechecking failure is (implicitly) represented as a “stuck” condition of the
transition system.

What follows is the now well known sound and complete algorithm for F-sub [Curien, Ghelli 1991]. Giorgio
Ghelli has shown that this algorithm diverges in some situations where it should fail, and Benjamin Pierce has
further shown that the type system of Appendix D is undecidable [Pierce 1992].

Lift increases indices above a cutoff index.

lift
type: Type result: Type
ype:1yp by: Int,cutoff: Int(= O)D p

nﬁm(nsj) nﬁw +i6 >j) Topﬁﬂop
i i iy
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oA s M g Al a4 g it
I ] ,]+1 I ] ] +1
lift

'

A

A->B

> A= >B' All<: ) A B'iﬁ'fj&t@: ) A'B

’

Replaceperforms a substitution and lowers fhee indices.

replace

typeType result: Type|
ypelyp index: Int, with: Type, lift: Int(= O)D p
lift
C—n>»C
rgplacebn (n <i) _ I|ace n re_:placebn 10 i) Top rgplace
i,C,l n p S C' i,C,l i,C\l
nC,l
re_:placeDA, _ replace . B rgplaceDA, _ replace . B
i,C,l i+1C,I +1 i,C,l| i +1C,| +1
A->B r?p'aC%A' _sB’ All<: ) A B%‘?ﬁh@ ) AB

Typeldeextracts the bound of a type identifier from an environment.

env:Env typelde - >result: Type
index: Int, depth: IntE index)

AE>A' E typeldeDB E typeldeDB
d n,d n,d
E < Atypeldep A E < AtypeldeDB E, AtypeldeDB
1d n+1d n+1d

Termldeextracts the type of a type identifier from an environment.

termlde
env: Env - >result: Type
index: Int, depth: Inté index)

AE>A' E termldebB E termldeD
d n,d n,d
E':AtermldeDA, E’<Atermlde>B E,Atermlde[>
1,d n+1d n+1d

ExposeArrowstrips type variables until it finds an arrow type.
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typeType—eXposeArrOV\é outType: Type
env:Env

EtypeldeD A A exposeArrO\év A
8 exposeArrow . A->B
p SXPOSEAITOV, .

E

exposeArrow
EXposeArroy >A-> B

ExposeAlistrips type variables until it finds a forall type

typeTypewSQAI |1> outType: Type
env: Env

EtypeldeD A A exposeAg A

n E All<: ) A B%L@ ) AB

n exp(I)EseAILA,

Subtests subtyping between two types.

small, big Typeﬂ> result{ok}
env: Env

<ub <ub gpelde 4 B%b» ok
A Top— ok n,n=—1u ok n = (B#n, B#Top)
E E n,B—mok
E
sub sub sub sub
A"A—nrpok B B' k A" A —pok B B’ k
AE° P Ea° AE" P Eca’®
A->B,A'—>B' S?”bpok Al<: ) AB<: ) A'B' S?”bmk

Typechecks that a pretype is well-formed and returns the corresponding type.

pre: PreTypetyL> result: Type
env:Env(w )
g ypelde sHPe 4 pOPe g sWPe 4 r BPE g
nty%epn E S—>Tty?pe>A—>B Al<: ) S TtlEp,cﬁbg:) AB
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Termchecks that a preterm is well-typed and returns its type.

pre: PreTermﬂ >result: Type
env:Env(z )
g lermide sWPe A pBM g sHPE 4 p tem
n top term1>Top E E;A E E<A
n%"»A E fun(: )S b%“»A— B fun(< )S btiErrfflJu@: ) AB
b termDc CexposeArrOV\g> A >B a termDA AA i‘bb ok B replaceD B
E E E 1A
na termDB,
E
pMoc  cPOAL i< ya B sYPea aa S o g lePlace
E E E 1A
b § —teém> B
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Appendix F. Typing algorithm with argument synthesis

We now extend the typing algorithm of Appendix E with type inference. The inference mechanism is based
syntactically on [Pollack 1990], and algorithmically on [Miller (to appear)].
The necessary data structures are as follows, wgze?er q is empty.

PreType
ST= n|Top|S>T|AI( g<: 9T

PreTerm
ab = n|n |top |fun(: S b|b(a) [fun( g<: S b|b(: S

Env
E= g|E< AlE: A

Type

AB= «al|n|Top |A>B|AI( g<: A B
Subst

o= ¢|ap0|aeA,G|O'ﬂ|GU

A substitutiono binds unification variables that may occur in terms, types and environmenisstantiated
variable appears ag<A in the substitution. Aon-instatiatedvariable appears as, in the substitution, where the
rank ris an index into an environment. Rank 1 points to the right of the rightmost component of the environment;
rank 2 points between the rightmost component and the one to its left, and so on. This information eno@dks a
prefix [Miller (to appear)]: universally quantified variables are represented by de Bruijn indices into the
environments, while existentially quantified (unification) variables have ranks pointing between components of the
environment. (Therefore, the order of universal quantifiers matters, but the order of contiguous existential
guantifiers does not.)

The operationssl and ol shift all the (free) de Bruijn indices and rankscirby +1 or -1. The notatios\c
indicates removingt«A or o, from o.

Lift increases indices above a cutoff index.

lift
type: Type result: Type
YPe: YR Int.cutoff: Int 0) P

aﬁba nﬁw <) nﬁw +160 >j) Topﬁﬂop
i j I ] I ]

|,J ’ ’ ’

At a0 g M g A a0 g M g
I ] i,j+1 I, ] i, +1
A—>B|i|f} > A —>B' All( g: )AB%M < 9 AB

Retrieveretrieves the instance or rank of a type variable from a substitution.
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subst Subst retrieve
lift: Int(= 0), var: TypeVar

>instance:Types rank:In

i retrieve
LY o P A
! = (B# )
retrieve retrieve
a< Aoc— >A' p<«<B,o : >A
’ ,0!
retrieve retrieve retrieve
. A A A
retrieve . e i.a g g i+lLa g 7 i-la g
r i b rétrieve (57 a) retrieve retrieve
ha B o— >A = >A ol— > A
l,a L, l,a

Replaceperforms a substitution with an index shift of -1 on “free indices”. A type variable shall not depend on the

replacement index.

replace

>result: Type

typeType
ypelyp index: Int, with: Type

lift

C >C'

o re.placeba re.placepn (n <i) n-1 re.placepn 1 >i) Top re.place[>_|_op

i,C i,C replace _, i,C i,

n >C
nC

A re.placeD A rleplaceD I replaceD r.eplace[> g

1,C i+1,C I,C i +1C

A pgrePlace L g Al( §:)A B%t{ < g AB

Strip expands question-mark quantifiers and introduces ranked variables in substitutions.

strip

type: T
ype-1yp subst: Subst

>outType: Type, outSubst: Subst

retrieve strip ., retrieve
o >A —> A0 o strip
a < g Sm“ A >Aoc (AZa, AZAI?<: ) C B
a—pDA' o' a—pba,a °
(2 (2
repl ri i
B ef aceD g B strip B o replaceD B I strip B o
acd strial,a (anew ing ) LA < g A#Top)
Al?<Top) B>P. g & Ale<) AB P, g o
o o
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Typeldeextracts the bound of a type identifier from an environment.

env: Env typelde - >result: Type
index: Int, depth: Int& index)

lift E typelde[> B typelde

oA E B
A d >A n,d n,d g
E'<Atypelde>A, E,<Atypelde>B E,AtypeldebB

1,d n+1d n+1d

Termldeextracts the type of a type identifier from an environment.

termlde
env:Env - >result: Type
index: Int, depth: Inté index)

AE>A' E termldeDB E termldel>
d n,d n,d
E: Atermldep A E < AtermldeDB 3 termldel>
1,d n+1d n+1d

ExposeArrowstrips variables until it can find or generate an arrow type.

type: Type EXposeArrow >outType: Type, outSubst: Subst
env: Env, subst: Subst

E typeldeD A A exposeArrovpv

E Ao exposeArrow
: exposeArrow < A-> P E >A->Bo
p SXPOSCATIOV] .- o
E,o
retrieve exposeArrow \
o >A Api >A" o
a E,o
exposeArrow ,
a pi >A' ,O
E,o
retrieve
o >r
[24

(o ,&" newino)
o exposeArrOV\[/>

(d=>d" ) (e (d->d)ad, d, (c\a))
E.c

ExposeForallstrips variables until it can find a forall type or can generate a¥hdorall type.
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type: Type exposeAll >outType: Type, outSubst: Sulbyst
env: Env, subst: Subst

EtypeldeD A A exposeAg Ao

e
A
: EC Al g)ABEP M <)y aBo
exposeAll Eo
nibA f ]
E.,o
o retrleveDA Awﬂ Ao
a E,o
exposeAll .-
E.c
retrieve
o >r
exposeAll “ (@ ,d" newinc)
pib(A"(<Z Yo' &' ) (e A ) o d')d,.d. (c\a))

OccurChecHests for circular instantiations and rank violations (variable captures).

occurCheck
type: Type > result: Subst
var: TypeVar, varRank: Int, subst: Subst, level: Int(= 0)
retrieve retrieve
o ﬂ >S o ﬂ >S
>
occurCheck (@7 f,s<r) occurCheck (@7 B s=1)
f——————pf (c\p) = ">
a,lo,l a,lo,l
retrieve occurCheck ,
o >B B———————po
Yij a,ro,l (@ p) n occurCheckD (o >i An<r)) To occurCheckD
occurCheckNT, “ .o, o " P a,ro, ¢
a,ro,l
occurCheck occurCheck N occurCheck occurCheck Y
Ai_ > o B— Ai > o B— >o
a,ro,i ar+lofhi+1 a,no,i ar+1a i +1
A B occurCh'eck[> ol Al( & )AB occurCh.eck[> o'l
a,lo,l a,lo,l

Subtests subtyping between two types.

small,big: Type sub > substOut: Subst
env: Env, substin: Subst
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sub sub

ATop—n>ro a,0——>po
,O- ,O-
i retrieve sub
o retneveDA AB Esub[> o o 5 5B AB = b o
¢ 9 (B#a, B#Top) ! A#B)
sub sub
a,B >0 Ap >E,o
E.c E,o
retrieve occurCheck retrieve occurCheck |
o > B——""pd o >r Afwy
T @,ho (B #a, B#Top) £ & pro (A% p)
a,B >a <« B,(c'\a) A,ﬂE > f <« A(c'\p)
1 ,O-
" E typeldeDA AB Esub> o
nn—po n <6 ® ___ (B#y, B#n, B#Top)
Eo n,B >0
E,o
sub sub sub sub
A ! BB ——bvo" A >0 BB —— 0"
A ,O'DG B E, A eal | 7 A E.c e B E<: A’ o e
A-sB A—->B U Al g ) AN < 9 AB UL
E.c Nez
Typechecks that a pretype is well-formed and returns the corresponding type.
pre: PreTypety¢> result: Type|
env:Env(s )
Etypelde[> A S typeb A T typeb B S typeD A T type B
n type ; E E< A
VDe Top——>rTop Voo n
nYPe E S—>T%>A>B Al( ¢ )S Tlé’.cﬁt( <) AB

Termchecks that a preterm is well-typed and returns its type.

pre: PreTerm term >type: Type, substOut: Subst
env: Env(3 ), substin: Subst

termlde strip termlde

E >A A > A", o E >A
rm
s term =2 ternm top S0P
nEMoa o n =M A =
Noy E,c
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term

StyﬁaDA bteiDB,a' Sty—peDA — B,
E,Acf E E< Aol
rm r
fun( )s b M A5 B,o'l un( g S b <y ABo
E,c E,o
m X Arrow m repl
p Moo COPOSCATOW \ g a®Ma, A SUB,, g reRlace g
E.c ' E.c" E.p 1,A
term _,
K3 "B
Nox
term , exposeAll , type , Sub | replace _,
b >C,o C——>All g )A'B,p S—>prA AA >0 B >B
Noj ' E E.p 1,A
term _,
b $ "B/
Nox

ExpandTyperormalizes a type-substitution pair, eliminating the substitution. Alth&@xglandTypés not invoked
by the other routines, it can be useful for printing.

type: Typeexpanﬂi type: Type
subst: Subst

retrieve expandType _,

o >A A——F A

o S o n expandTyp(E n Top expandTyEﬁzop

o P prA, o o
o
AexpandTypE A B expandTyg;a AexpandTypeD A B expandTygg,
(e Gﬂ (e (Tﬂ
A-> gSXPANATYPE ) Al g )ABZPIIRE oy A B
o (e
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Appendix G. Recursion

As explained in section 7, two recursive types are equal only Rézebindings occur in the same positions.

That is, unfolding a recursion does not produce, in general, an identical type. Since variables are replaced by de
Bruijn indices, equality of recursive types is then simple identity.

Still, precisely because of de Bruijn indices, the subtyping test for recursive types is not trivial. The formal
subtyping rule requires that the body of two recursive types be tested for inclusion under the assumption that the
corresponding variables are includiedone direction But since the de Bruijn indices are identical in both types,
they will match inboth directions For exampleRec(X)X->Bool <: Rec(Y)Y->Top should fail, while the
de Bruijn versiorRec()1->Bool <: Rec()1->Top would, naively, succeed. Hence, before testing the bodies
we compute théies between the recursion variables, which can be positive (covariant), negative (contravariant), or
both. If the ties are only positive, we test the bodies for inclusion, otherwise we test the bodies for equality
(inclusion in both directions). The ties are computed by mimicking a subtype test.

G.1. Typing Rules

Contractivity Relation A>X)
Y>XoY#X Top> X (A )B-X, Al <)Yy AB X
(Rec( Y)B>X< B~ XA B-YA Y£ X

Types

(TypeRec )
E,X <Top F Btype

E F Rec(X) Btype

(B>X)

Subtypes

(SubRec )
E F Rec(X Btype E FRec( )Y Ctype Esffop <X W< B C

E F Rec(X B<:Rec( )Y C

Terms
(Termfold ) (Termunfold )
EF aB{X<«Rec( X B E F aRec( X B
E I fold(Rec( ) X )ERee( ) X B E F unfold( ya B{XRee( ) X B
(Termrec )
Ex:AFaA

EFrec( x)Aa A
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This is now the de Bruijn-index version.

(Rec() B MRec() BH™ (Rec() B{i« GRec() R <« €
Ao AL nm-me nzZ m Top> n (A>)B-n (AI<)) AB n
(Rec() B>n< B>l A B>

Types
(TypeRec )
E,<Top F Btype

(B>)
E F Rec() Btype

Subtypes
(SubRec )
: . . 0
E,<Tops:1 + BW: CTl(B>,C>)
E F Rec() B<:Rec() C

Terms
(Termfold ) (Termunfold )
EF aB{l «Rec() B} E I aRec() B
E F fold(Rec() )( )BRed) B E  unfold( ya 1B{Re€() B}
(Termrec )
E;AF aAl,

EFrec()Aa A
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G.2. Typing algorithm

i j

PreType
S5T= ..|Rec() T
PreTerm
ab = ..|fold(: T)( a) | unfold( a) | rec(: Sb
Type
AB= ..|Rec() B
. |.Ift . B B replace . B T type B contractsD ok
] +1 i+1C,l +1 E,<Top
Rec) B Rec) B Rec() Br?LC'al&eeeo B’ type

’CEﬁz e BCg ;li)b > ok
=P o (€ <{posh
Rec() BRec() C?Dok

Rec() T E Rec() B

’ ties vC BC sub sok G sub > ok
E,<Top E,dop i
<ib (Gz{pos})
Rec() BRec() C?l>ok
TP Reco B a®Moa g roPACC g ap SUDL oy
E E 1,Rec() B E
fold: X7} a tﬁé@@o B
atermDA AexposeRegReCO B B replace o B StypeDA atermDA AEDA' B A sub[>0k
E 1,Rec() B E E,A 1 2
term

fold —B
unfold( ) a E >

Contractstests whether a type is formally contractive in a variable.

contracts

type: Type————
ype:1yp index: Int(= 1)

> result:{ok}

n contracts contractsb contracts

>ok (n Zm) Top

ok A- >B—— > ok All(<:
m

rec(: )G) a %‘DA

Cco I‘\tl’rf:lCtS}[>
m

A B ok
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contracts contracts
—— ok B—b
1 m+1

Rec() B COI‘\tI’<’:1Ct$[>0k

B ok

ExposeRestrips type variables until it finds a recursive type.

type: Typeemoil:ze E outType:Type
env: Env

EtypeldeD A A exposeR%c "

exposeRe
n E Rec() B P2 Checy B
n exposeRegA, E

Tiescomputes the subtyping constraints between two recursive variables, by minsicking

small, big: Type ties »result:P{pos, neg}
T env: Env, index: Int(= 1), variancépos, neg} (0s ) ' ’

ties ties ties E typeldeDA AB Etl'eS >o
ATop——>{} n,n {y nn——§( i#n n : LV ¢ B#n B#Top
E,i,v E,nv E,i,v ties
n,B——»¢
E,i,v
A A ties be B B ties . A A ties be B B ties b
E,i,—v E;A |i+1v E,i,—v TOES ALi+1v
A->B,A'—>B' E“?S bEUL A< ) AMB<: ) A’ B’ Et'efs bEUL
BB ties vl BB ties b
"~ EJpos E <Top ,i +1v ({g{pos}J
Rec() BRec() B’ E“?S b v o=t
B B ties ol BB ties b
"~ EJ,pos E <Top ,i +1v ((Z{POS}]
Rec() BRec() B’ Eu?sv>{pos, neg} ne#g
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G.3. Typing algorithm with argument synthesis

contracts Al g A)B contracts
ties ties
. . A A - > BB —— ¢
ties ties E,i,—v E< A ,i+lv
a'BEiVD{} AﬁEivD{}( AZY ties -
X s AI( ) AMB( < 9 A'BT T pCul
i
it g replace_p, p_ocourCheck
i j+1 i+1,C ar+lohi+1
Rec() B “ft Rec() B' Rec() B%O B' Rec() Bwkp 'l
I ] I,C a,l,o,l
type p goontracts B, ties ;B sub
E,<Top E,<Top E,<Top of
type sub (¢ = {pos})
Rec() T ?cRec() B Rec() BRec() C = >o'll
’ ties vC BC sub bo G sub 5o
E,<Top E,<Top ,of E,<Top o'
sub (¢z{pos})
Rec() BRec() C?DG"U
TP Rec) B a®May B 1P g g SUD
E E,o 1,Rec() B E,o'

fold: )T a %ryé’@() B.o"

24 AexposeRegReCO B.o" B replace .,
Nel E,c' 1,Rec() B
unfold( ) a ™ B o
E,o
sWPE 4 4 M g o A%DA' Ba U

> >
E E;Acf E: Ao
term

rec(: )6) a =

>Ac" |

expandTypeD B
ot
Rec() BM%@CO B’
(e}

B
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type: Type exposeRec >outType: Type, outSubst: Subyst
env: Env, subst: Subst

EtypeldeDA A exlp_z)oseReDcA, p ro0seRe
: exposeRec < Rec) B 2P ERec) B.o
p SXPOSEREL . & o
E,o
retrieve exposeRec ,, |,
o >A ———— b Ao
a E,o
exposeRecD: Ao
E,o
retrieve
o >r
a (¢ newino)

QME(R%O o )(a<Rec) o), (c\a))
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