An extension of system F with subtyping

Luca Cardelli1 Simone Martini2 John C. Mitchell3 Andre Scedrov*

Abstract

System F is a well-known typed A-calculus with polymorphic types, which
provides a basis for polymorphic programming languages. We study an extension of
F, called F_, , that combines parametric polymorphism with subtyping.

The main focus of the paper is the equational theory of F.., which is related to
PER models and the notion of parametricity. We study some categorical properties of
the theory when restricted to closed terms, including interesting categorical
isomorphisms. We also investigate proof-theoretical properties, such as the
conservativity of typing judgments with respect to F.

We demonstrate by a set of examples how a range of constructs may be encoded
in F_, . These include record operations and subtyping hierarchies that are related to
features of object-oriented languages.

1. Introduction

System F [16] [21] is a well-known typed A-calculus with polymorphic types, which provides a
basis for polymorphic programming languages. We study an extension of F that combines
parametric polymorphism [24] with subtyping. We call this language F__,, where <: is our symbol
for the subtype relation. F_. is closely related to the language F. identified by Curien, and used
by Curien and Ghelli primarily as a test case for certain mathematical techniques [15] [10]. F is, in
turn, a fragment of the language Fun of [9]. In spite of F_,'s apparent minimality, it has become
apparent that a range of constructs may be encoded in it (or in F); these include many of the
record operations and subtyping features of [5], [8], and related work, which are connected to
operations used in object-oriented programming. We illustrate some of the power of F_. in
Section 3; see also [6].

In addition to the connections with object-oriented programming, we have found that the
study of F_, raises semantic questions of independent interest. A major concern in this paper is an
equational theory for F_, terms. The equational axioms for most systems of typed A-calculi arise

1Digital Equipment Corporation,Systems Research Center, 130 Lytton Ave, Palo Alto CA 94301.
2Dipartiment0 di Informatica, Universita di Pisa, Corso Italia 40, 1-56125 Pisa, Italy. This author is partially
supported by the CNR-Stanford collaboration grant 89.00002.26.

Computer Science Department, Stanford University, Stanford CA 94305.
4Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6395.
This author is partially supported by the ONR Contract N0O0014-88-K-0635 and by NSF Grant CCR-87-05596.

Simone Martini and Andre Scedrov would like to thank John C. Mitchell, the Computer Science
Department, and the Center for the Study of Language and Information at Stanford University for their
hospitality during those authors' extended stay in 1989-1990, when much of this research was done.

Luca Cardelli and Simone Martini would like to thank Pierre-Louis Curien, Giorgio Ghelli, and
Giuseppe Longo for many stimulating discussions related to this work. In particular, Curien helped in the
early proof of Top ~3(X)X.

751

naturally as a consequence of characterizing type connectives by adjoint situations (for example).
In addition, it is often the case that provable equality may be captured by a reduction system
obtained by orienting the equational axioms in a straightforward way. However, both of these
properties appear to fail for F_. . A simple example illustrates some of the basic issues.

A straightforward polymorphic type is V(A)A—A—A, which is commonly referred to as Bool
since in system F and related systems there are two definable elements of this type. These
elements are written as the following normal forms:

true & MA) Mx:A)My:A) x
false & MA) Mx:A)My:A)y

In F_. , however, there are two additional normal forms of type Bool. These arise because we have
a maximal type Top, which has all other types as subtypes. The main idea behind the additional
terms is that we can change the type of any argument not used in the body of a term to Top, and
still have a term of the same type (by antimonotonicity of the left operand of — with respect to
<:). This gives us the following two normal forms of type Bool.

true’ & MA) Mx:A)My:Top) x
false’ & MA) Mx:Top) My:A) y

TS

However, true and true’ are completely equivalent terms when considered at type Bool.
Specifically, for any type A, the terms true(A) and true’(A) define extensionally equal functions of
type A—>A—A. Put proof-theoretically, if we take any term a containing true with the property
that when reducing a to normal form we apply each occurrence of true to two arguments, then we
may replace any or all occurrences of true by true’ and obtain a provably equal term. For this
reason, it seems natural to consider true = true’, and similarly false = false’, even though these
terms have different normal forms. When we add these two equations to our theory, we restore
the pleasing property that Bool contains precisely two equivalence classes of normal forms.

While our initial examination of the equational theory of F_. was motivated by a vague
intuition about observable properties of normal forms, our primary guide is the PER semantics of
polymorphic A-calculus with subtyping [4] (7] [15] [23]. One relevant characteristic of PER models is
the parametric behavior of polymorphic functions. Specifically, since polymorphic functions
operate independently of their type parameter, they may be considered equivalent at all their
type instances. In F_, we can state a consequence of this notion of parametricity, namely that
whenever the two type instances have a common supertype, the terms will be equal when
considered as elements of that supertype (see the rule (Egappl2) in section 2.2). Hence the syntax of
F_. can state, at least to some extent, the semantic notion of parametricity investigated in [22], [14],
and [1). A general principle we have followed is to adopt axioms that express parametricity
properties satisfied by PER models, but not to try to explicitly capture the exact theory of PER
models [18]. This leads us to a new angle on parametricity which may prove useful in further
study, and also gives us a set of axioms that are sufficient to prove true = true’, and other
expected equations, without appearing contrived to fit these particular examples.

While F_, differs from each of the A-calculi mentioned above, several properties of F_, transfer
easily from related work. For syntactic properties we have strong normalization [15]; canonical
type derivations, coherence, minimum typing [10}; and confluence of the B-n-TopCollapse
equational theory [11]. The PER semantics follows easily from the work in [4], [7], [15], and [23].
While an alternative semantics could perhaps be developed in the style of [3] and [14], we do not
explore that possibility here.

752

The main results of this paper are an equational theory for F_., some proof-theoretic proper-
ties developed in section 2 including conservativity of F_, typing over F, a set of examples in sec-
tion 3 demonstrating the expressiveness of F_, (some reported earlier in [7] and in [15] with attri-
bution), and some categorical properties in section 4 of the theory when restricted to closed terms.

2. System F..

F_. is obtained by extending F [16] [21] with a notion of subtyping (<:). This extension allows
us to remain within a pure calculus. That is, we introduce neither the basic types, nor the
structured types, normally associated with subtyping in programming languages. Instead, we
show that these programming types can be obtained via encodings within the pure calculus. In
particular, we can encode record types with their subtyping relations [5}.

2.1 Syntax

Subtyping is reflected in the syntax of types by a new type constant Top (the supertype of all
types), and by a subtype bound on second-order quantifiers: V(X<:A)A’ (bounded quantifiers [9)).
Ordinary second-order quantifiers are recovered by setting the quantifier bound to Top; we use
V(X)A for V(X<:Top)A. The syntax of values is extended by a constant fop of type Top, and by a
subtype bound on polymorphic functions: M(X<:A)a; we use AM(X)a forA(X<:Top)a.

Syntax

AB:= Types
X type variables
Top the supertype of all types
A—B function spaces
V(X<:A)B bounded quantifications

ab = Values
% value variables
top the canonical value of type Top
Mx:A)b functions
b(a) applications
MX<:A)b bounded type functions
b(A) type applications

The — operator associates to the right. The scoping of A and V extends to the right as far as
possible. Types and terms can be parenthesized.

A subtyping judgment is added to F's judgments. Moreover, the equality judgment on values
is made relative to a type; this is important since values in F_, can have many types, and two
values may or may not be equivalent depending on the type that those values are considered as
possessing.

Judgments
- Eenv E is a well-formed environment
E Atype Aisatype
EFA<B A is a subtype of B
Ela:A a has type A

EFaob:A a and b are equal members of type A

753

We use dom(E) for the set of variables defined by an environment E. As usual, we identify terms
up to renaming of bound variables; that is, using B(X«C} for the substitution of C for X in B:

V(X<:A)B = V(Y<:A) B{X<Y)
MX<AD = MY<A)b(XeY) Mx:Ab = My:A) blxey)

These identifications can be made directly on the syntax; that is, without knowing whether the
terms involved are the product of formal derivations in the system. By adopting these
identifications, we avoid the need of a type equivalence judgment for quantifier renaming.

Moreover, in formal derivations we restrict ourselves to terms where all bound variables are
distinct, to environments where variables are defined at most once, and to judgments where all
bound and environment-defined variables are distinct. A more formal approach would use de
Bruijn indices for free and bound variables [12].

2.2 Rules

The inference rules of F_, are listed below; the only essential difference between these and the
ones of F [15] [10), is in the more general (Eq appl2). We now comment on the most interesting
aspects of the rules; see also the discussion about (Eq appi2) in section 2.4.

The subtyping judgment, E - A <: B, is, for any E, a reflexive and transitive relation on types
with a subsumption property: that is, a member of a type is also a member of any supertype of that
type. Every type is a subtype of Top. The function space operator — is antimonotonic in its first
argument and monotonic in its second. A bounded quantifier is antimonotonic in its bound and
monotonic in its body under an assumption about the free variable.

The rules for the typing judgment, E |- a : A, are the same as the corresponding rules in F, ex-
cept for the extension to bounded quantifiers. However, additional typing power is hidden in the
subsumption rule, which allows a function to take an argument of a subtype of its input type.

Most of the equivalence rules, E+a ¢ b : A, are unremarkable. They provide symmetry,
transitivity, congruence on the syntax, and and | equivalences. Two rules, however, stand out.
The first, (Eq collapse) (also called the Top-collapse rule), states that any two terms are equivalent
when “seen” at type Top; since no operations are available on members of Top, all values are
indistinguishable at that type. The second, (Eq appi2), is the congruence rule for polymorphic type
application, giving general conditions under which two expressions b’(A’) and b"(A”) are
equivalent at a type C. This rule has many intriguing consequences, which will be amply
explored in the sequel. (We occasionally write E+ A,B<:C for E+ A<:C A E - B<:C, and so on.)

Environments
(Env @) (Env x) (Env X)
E\ Atype xedom(E) El Atype Xedom(E)
- @env I E,x:A env E,X<:A env
Types
(Type X) (Type Top) (Type —) (Type V)
 E,X<:AE’ env FE env EF Atype EF Btype E,X<:A |- B type

E,X<:AE"F X type E |- Top type E A—B type EF V(X<:A)B type

754

Subtypes
(Sub refl) (Sub trans) (Sub X) (Sub Top)
EF Atype EFA<B El B<C F E,X<:A,E’ env E - Atype
EFA<A EFA<C EX<AE'F X<A EF A<:Top
(Sub —) (Sub V)
EFA<A EF BB’ EFA'<cA EX<A'l B<:B’
EFA—B<: A'5B’ EF V(X<:A)B <: V(X<:A')B’
Values
(Subsumption) (Val x) (Val top)
EFaA EF A<B F E,x:AE’ env I E env
ElFa:B Ex;AE" FxA Eltop: Top
(Val fun) (Val appl)
ExAl b:B EFb:A-B ElaA
EF Mx:A)b: A>B Elb(a):B
(Val fun2) (Val appl2)
E, X<A} b:B EFb:V(X<AJB EF A'<A
EF MX<:Ab :V(X<:A)B Eb(A’) : B{(X«A')
Equivalence
(Eq symm) (Eq trans) (Eq x) (Eq collapse)
Elaeob:A EFaob:A EFbeoc:A EFxA EFa:Top EFb:Top
EFbeoa:A EFaeoc:A EFxox:A ErFaeob:Top
(Eq fun) (Eq appl)
ExAkFbeb :B Erbeb' :A->B Elaoa’: A
EF XMx:A)b & Mx:A)b' : A-B ElFba) < b'(a’):B
(Eq appl2)
(Eq fun2) EFbeb” :V(X<:A)JB EFA'A"<A
EX<AF bbb :B EFB(X«A'}), B{X«A"})<:C
EF MX<:Ab & MX<:ADb': V(X<:A)B EFDb(A) b (A"): C
(Eq eta) (Eq eta2)
EFbeb :A>B ye dom(E) EFbeo b :Y(X<A)B Ye dom(E)
EF My:A)b(y) &b’ : A-B EF MY<Ab(Y) & b’ : V(X<:A)B
(Eq beta) (Eq beta2)
ExAFbeb':B ElFawoa' A EX<AFbob':B EFA' <A
EF (Mx:A)b)a) & b'{x<a’}: B EF(MX<AB)A') o b'{XeA') : B{XA')

2.3 Basic properties

We now state some basic lemmas about F_, derivations. Most of these are proven by
(simultaneous) induction on the size of the derivations; the proofs are long, but straightforward if
carried out in the order indicated. We conclude the section with an application of these lemmas,

showing that typing is preserved under B-n-reductions.

755

Notation
Let 9 stand for either C type, C<:C’, c:C, or c&»c’:C.

Lemma (Implied judgments)
(Senv) FEFenv = FEenv and EFF9 = FEenv
(envitype) FEX<DE'env = EFDtye and FExD,E'env = EF Dtype

Lemma (Bound change)
F EX<:D,E'env, EF Dtype = +EX<:D,E env
EX<D'E'\ Ctype, EF Dtype = EX<:D,E'F Ctype

Lemma (Weakening)
Let B stand for either X<:D or x:D. Assume I E,B env, and X,x¢ dom(E’). Then,
FEE'env > FEBE'env and EE'FY = EBEFY
Assume |+ E,F env and dom(F)ndom(E')=@. Then,
FEE'env = + E,F,E env and EE 9 =EFEEFDS

Lemma (Implied judgments, continued)
(subltype) EFC<:C' = EF Ctype, EF C type

Lemma (Bound weakening)
Let <B,B'> stand for either <X<:D,X<:D"> or <x:D,x:D">. Assume E D’<:D. Then,
FEBE env = FEB,E'env and EBEFY = EBE'FY

Lemma (Type substitution)
Assume E+ D'<:D. Then,
F EX<:D,E' env = F EE{X«D'}Jenv and EX<D,E'F 9% = EE{X«D'}F XD’}

Lemma (Value substitution)
Assume either E |- d:D, or d is any term and x¢ FV(9); then
F Ex:D,E' env = + E,E’ env and Ex:D,E'F-9% = EE'F d{xd)

Lemma (Implied judgments, continued)
(valltype) Elc:C = EF Ctype,
(eqlval) Ektcee’ s C =Bkc:C: EEc":C;

Lemma (Eq subsumption)
ElFcee':C, EFC<:D = Eklcexc’':D

Lemma (Implied judgments, continued)
(vallegg EFc:C = Elcec:C

Lemma (Congruence)
EFded :D A Ex:DE' Fc.C = EE'F cxedloclxed’): C
Lemma (Renaming)
Assume Yegdom(E,X<:D,E’). Then,
F E,X<:D,E’env = + E,Y<:D,E'{X<Y}env and E,X<:D,E'F 9= E,Y<:D,E'(X<Y}F 9{X<Y)
Assume yedom(E,x:D,E’). Then,
FEx:D,E’env = F Ey:D,E’ env and Ex:D,E'F9 = E,y:D,E’ F {xey]}
Lemma (Exchange)
Let B stand for either X<:D or x:D. Let B’ stand for either X'<:D" or x":D". Assume I E,B’ env.
FEB,B',E env = + E,B"B,E' env and EBB,E'FS = EB'BEFO

756

Lemma (Substitution exchange)
Let B stand for either x":D’ or X'<:D’. Then,
F E,X<:D,B,E"env = | E,B{X«D},X<:D,E' env
EX<:D,BE'F Ctype = E,B{XeD),X<:D,E'} C type

The following two lemmas draw conclusions about the shape of terms and derivations, from
the fact that certain subtyping and typing judgments have been derived.

Lemma (Subtyping decomposition)

» IfEF A<X, then A=Y; for some type variable Y; and either Y;=X, or for some n>1,
Y <Y,€E.. Y,<:XeE

o IfE,X<:B,E'F X<:A, then either A=X or E,X<:B,E’ I B<:A.

o IfEF Top<:A, then A=Top.

o IfEF B’>B"<:A, then either A=Top or A=A’—-A", E A’<:B’and E - B"<:A”

o IfEF A<:B’—B”, then either A=A’ A" for some A", A”, with E B’<:A’and E - A"<:B ” or
A=X;and for some A", A" n21l: X;<:X, € E.. X,<:A'»A" € EwithE}F B'<:A’and E + A"<:B"

o IfEF V(X<:B')B"<:A, then either A=Top or A=V(X<:A')A”,E} A’<:B’ and E,X<:A’F B"<:A”

o IfEF A<V(X<:B')B”, then either A=V(X<:A’)A" for some A", A", with E B'<:A’ and
EX<:B'F A"<:B", or A=Xjand for some A", A" n21: X;<:X,€ E.. X,<V(X<:A")A" € E
with E+ B'<:A’ and E, X<:B’' A"<:B”

Lemma (Typing decomposition)

o IfEx:DE'F x:C, then EF D<:C

o If E} top:A, then A=Top

o If EF Mx:B')b: A, then either A=Top, or for some A’,A”,B”, A=A’—A” with E} A'<:B’,
EFB"<:A”, and Ex:B'+b:B".

e IfEF b(c):B” then for some B, E+b:B’-B”and E+c: B’

o« IfEF MX<:B')b: A, then either A=Top, or for some A’,A”,B", A=V(X<:A’)A” with
EF A'<B’, EX<:A'FB"<:A",and E,X<:B'Fb:B".

o IfEF b(C): D then for some B',B",X, EF C<:B’, EF B"{X«C}<:D, and EF b:V(X<:B’)B".

We conclude with a proposition about the preservation of typing under p and 1 reduction.
The second-order n case is by far the hardest, and it requires the following lemma about the
elimination of unused free variables (FV).

Lemma (Non-occurring type variable)
If Xe FV(c,E’) and E,X<:D,E’} ¢ : C then for some Cp with Xe FV(C,)
EX<DE'Fc:Cy and EX<D,E'F Cy<:C

Proposition (Preservation of typing under B-1-reductions)
(B1) EF (Mx:B)b)(c): A = EF b{xec): A MD EF Mx:B)e(x): A, x¢FV(c) = EFc: A
(B2 EF (MX<:B)bXC):A = EFb(XeC):A (m2) EF MX<:B)e(X): A, XeFV(c) = EFc: A

Note that this proposition is non-trivial; for example, the (1) case does not follow simply
from the (Eq beta) rule and the eq/val lemma. Moreover, the derivation of E b{x«c} : A will have
in general quite a different shape than the derivation of E - (\(x:B)b)(c) : A.

757

2.4 Derived rules

Most of the lemmas in the previous section can be written down as derived inference rules.
Here we discuss some derived rules of special significance.

First, the eg-subsumption lemma in the previous section gives us a very interesting rule that
lifts subsumption to the equality judgment; we remark that this is proven via the (Eq bets) rule.

(Eq subsumption)
ElFaoa :A EFA<B
Elaoa':B

Note that, in general, it is not true that E+a<«>a’:Band EF A <:Bimply EFa < a’: A.
The following two lemmas concern the equivalence of functions modulo domain restriction;
the first one will find a useful application in section 3.1.

Lemma (Domain restriction)
If f: A—B, then f is equivalent to its restriction f| 4. to a smaller domain A’<:A, when they are
both seen at type A’—B. That is:
(Eq fun’)
E+A'<tA EFB<B’" Ex:Atbeb :B
EF Mx:Ab & Mx:A')b" : A'>B’

Lemma (Bound restriction)
If f: V(X<:A)B, then f is equivalent to its restriction f| 4. to a smaller bound A’<:A, when they
are both seen at type V(X<:A')B. That is:
(Eq fun2’)
EFA'<cA EX<A'FB<:B’ EX<AlFbeb' :B
EF MX<:A)b & MX<A')b' : V(X<:A')B’

We now turn to the (Eg appi2) rule. This rule asserts that if a polymorphic function b : V(X<:A)B
is instantiated at two types A’<:A and A"<:A, then both instantiations evaluate to the same value
with respect to any result type that is an upper bound of B(X«A'} and B{X«A"}.

(Eq appl2)

EFb'&b":V(X<A)JB EFA'<A EFA"<A

EFB{X«A'J<:C EF B{X«A")<:C
EFb'(A) o b"(A"): C
Note that this rule asserts that the result of b(A) is independent of A, in the proper result type.
A simpler derived rule (used in F¢ [10]) is obtained by setting A'=A":

(Eq appl2 A'=A")

EFb'eb”:V(X<tA)B EFA'<A

EFbB'(A) & b"(A'): B(Xe-A')

However, the (Eq appi2) rule is most useful when A'#A" and we can find an interesting upper
bound to B{X«A’} and B{X«A"}). This motivates the following derived rule, which is often used
in practice.

Denote by B(X «-C,X" <D} the substitution of C for the negative occurrences of X in B, and of
D for the positive ones. Take A'<:A” (<: A), then we have (see [15, Sec. 14.3] for a proof):

758

B(X<A') B(X A" X A’} < BX A, X A"
BX<A"} = B(X«A"X'«A") < BX A X'<A")

il

Hence, for A’<:A"<:A we have a (non trivial) common supertype for B{X«A'} and B{X«<A"}.
This fact then justifies the rule:
(Eq appl2~*)
EFb'eb”:V(X<A)B EFA'<A"<A
EFD'(A) & b"(A") : BX <A X A")

This rule is in fact a special case of dinaturality of type application [3], where the dinaturality is
required only with respect to coercions A'<:A”, for all A",A” subtypes of A. We have the diagram:
B{X«A’)

N

V(X<:A)B B(X A" X A"}

~ 7

B{X«A")

The two arrows on the left are the A” and A" instances of generic type application x(X), where x is
a variable of type V(X<:A)B, and B might have the type variable X free. The two arrows on the
right are coercions induced by A’'<:A”. Here V(X<:A)B is constant in X, so the coercion A'<:A”
has no effect on this type. Hence the diagram above is just a brief version of:

V(X<:A)B ——» B{X«A'}

V(X<:A)B B{X A" X «A")

V(X<:A)B — B(X«A")
where now the two horizontal arrows are the A" and A” instances of x(X). In the terminology of
3, p-42], the family given by {x(X) | X<:A} is dinatural in the coercions.

We conclude this section with an application of (Eq appl2), which is used insections 3.3 and 4.

Proposition (Eq-substitution)
Assume E,X<:A,x: SF b:B and X positive in S and B.
IfEF Ay Ay < A EbspS(XeAq), EF 53:5{X¢Ay), EF 51¢95::5(X A}
then E & b{XeAjxes)b XAy xes,): B{X—A)
Proof Let M & MX<:A)Mx:S)b, then E - M : V(X<:A)S—B. Now prove:
(1) EFM(A)(sy) &> M(A)(sq) : B{X«A] by (Eqappl2) and (Eqappl), since X is positive in S and B
(2) EF M(A)(s,5) > M(A)Xs,) : B{X«A} similarly to (1)
(3) EF M(AXs7) & M(A)s,) : B{X<A} by (Eqappi2) and (Eqappl), since El- 5;¢35,:S{X«A}.
Conclude by (Eq trans), (Beta2), and (Beta).
O

The proposition can be easily generalized to the case where there are several variables
x7:Sq, ... X2 S, (X positive in all of them) and terms E F 51:5{X«Aq),..., EF 5,:5(X¢A,}, with
EFA4... A, <Aand E | s;6...05,:5{X—A).

759

2.5 PER semantics

For the PER semantics, the reader can consult [4], [7], [15], and [23]. The interpretation of F_. in
PER is explained in those papers, except that the (Eq appl2) must be shown sound. The soundness
for this rule is relatively straightforward, and omitted.

2.6 Conservativity of typing

Besides the presence of subtypes, the main new feature of F_. with respect to F lays in its
equational theory, which extends the standard -1 equality in two directions, adding a terminal
type Top and introducing the rule (Eqappi2).

First of all, the equational theory («3) of F_, is not conservative over F, the reason being the
rule (Eqappl2). Consider, for example:

Proposition
EF Btype, EFc:V(X)X—B, Eba:A = EF «(Top)top) <> c(AXa): B
Proof
El C(TOP)(tOp) L c(Top)(a) :B val/eqlemma (Eq appi2) (Eq collapse) (Eq appl)
E F c(Top)(a) <> c(A)a) : B val/eq lemma (Eq appl2) (Eq appl)
E F c«(Top)(top) <> c(A)a) : B (Eq trans)
E

By applying this fact twice via (Eq trans) we can show:
y : V(X)X—Bool \- y(Bool)(true) < y(Bool)(false) : Bool

which is an Fjudgment equating two different B-n-normal forms. It is well- known that no such
judgment is derivable in F. A further application of (Eg fun) produces two closed terms with the
same property.

As for the typing theory, however, F_s rules are designed in such a way as to maintain and
carefully generalize those of F. Writing b for derivations in F, and . for derivations in F_., we
can prove the following result.

Theorem
IfEF_a:A, whereE, a, and A are in the language of F, then E Fra:A.

The proof of this statement (inspired by some results in [15]) requires a detour on normal form
proofs in ., a subject studied in [10] for a slightly different system, but sharing with F_. the same
typing judgments. The reason for the detour is that trivial proofs by induction on the derivation
of EF_.a: A do not work, since F_, has “cut rules” (e.g. (Subsumption) OT (Val appl)) that may
introduce non-F types.

2.6.1 Normal and minimal proofs in F o

Subtype proofs
A normal form proof of E -, A<:B is a proof using either a single application of (Sub Refl if A=B,
or it is a proof using only the rules (sub Top), (Sub—), (Sub V), or one of the following two rules:

760

(Sub X-Iter) (Sub X-Trans)
k.. EX<:AE’ env k>1 Fo.EX<AE env EX<AE'F_EXX)<:B
EX<AE'l_X < ENX) EX<AE'l_.X<B

where EI(X) = E(X), and E**1(X)= E(X) if E(X) is not a variable, or E**(X) = EX(E(X)) otherwise.
Moreover, let k be the least k for which EX(X) is not a variable; then define E*(X) = EK(X).

Type proofs
Normal form proofs and minimal normal form proofs of E k. a : A are simultaneously
defined as follows.
A normal form proof of E}-_.a : A is either a minimal normal form proof or has the following
shape:
EF_a:A" EF_A'<A
EFsniA

where A’24, EF_ a: A’ is given by a minimal normal form proof, and E k. A<t Aisgivenbya
normal form proof.

A minimal normal form proofof E+_, a: A is a proof using only the rules: (Val »); (Val top); (Val
fun) with the restriction that the premise is given by a minimal normal form proof; (Val fun2) with
the restriction that the premise is given by a minimal normal form proof; or one of the following
two rules (Val appl-min) and (Val appl2-min).

(Val appl-min)
ElF_b:A-»B El_a:A

Eb_ ba):B

where Et_. a: Ais given by a normal form proof and E -, b : A—B is given by either a minimal
normal form proof or by a proof of the shape:
EF_b:X EF_.X<EXX)
EF.b:EYX)

where E+_, b : X is given by a minimal normal form proof, X is a variable, E*(X) = A—B, and E 4
X <: EX(X) is given by a single application of (Sub X-Iter).

(Val appl2-min)
Eb b:V(X<AB Ek_A'<A

EF_ B(A): B(XA')

where EF-_; A" <: Ais given by a normal proof and E -, b : V(X<:A)B is given by either a minimal
normal form proof or by a proof of the shape:

Ellb. buX Ek. X< EYNX)
El_. b:EXX)

where EF_, b: X is given by a minimal normal form proof, X is a variable, EXX) = V(X<:A)B, and
E k. X <: EX(X) is given by a single application of (Sub X-lter).

Proposition [10]
For any provable judgment E . a : A, there exists a (unique) normal form proof.

761

262F_, typing is conservative over F typing
It is not difficult to see F as a subsystem of F_, . As for the language, just define a translation
function B so that:

BVX.A) = V(X<:Top)B(A) B(AX-M) = MX<:Top) B(M)

and which is the identity on all the other constructs. A well formed environments E in F consist of
a collection E1=Xy,...,X,, of type variables and a list E2=x;: 4, ..., x3,: S, of type assumptions,
where at most the type variables in E1 can appear free. Then:

B(E)= X;<:Top, ..., Xy<:Top, x1:B(Sq), ..., 2:B(Sp).

By this, it is almost obvious that to any F-derivation E Fp a:A corresponds an F_-derivation
B(E) - B(a):B(A) that never uses (Subsumption) (and thus subtyping rules) or Top rules and where (Eq
appl2) is always applied in its special case when A’=A" and C=B{X«A’}. In the following, we will
argue directly in the language of F_, (thus dispensing from J).

Lemma
Let E be an F-environment, and let A and B be F-types.
El_. A<B iff A=B.
Lemma
Let E be an F-environment, a be an F-term, and let EF_. a : A be a minimal normal form
proof. Then A is an F-typeand E lpa : A.
Proof By induction on the minimal normal form proof E_.a: A. O

Theorem (Conservativity of typing over F)
Let E be an F-environment, 2 be an F-term and A be an F-type.
EF.a:A = Elpa:A
Proof Consider a normal form proof of E -, a : A. Note that it is necessarily a minimal normal
form proof. Then the thesis reduces to that of the lemmas. O]

3. Expressiveness

Since F_. is an extension of F, one can already carry out all the standard encodings of
algebraic data types that are possible in F [2]. However, it is not clear that anything of further
interest can be obtained from the subtyping rules of F.., which only involve an apparently
useless type Top and the simple rules for — and V. In this section we begin to show that we can in
fact construct rich subtyping relations on familiar data structures.

3.1 Booleans

In the sequel we concentrate on inclusion of structured types, but for this to make sense we
need to show that there are some non-trivial inclusions already at the level of basic types. We
investigate here the type of booleans, which also illustrates some consequences of the F_, rules.

Starting from the encoding of Church's booleans in F, we can define three subtypes of Bool as
follows (cf. [13]):

Bool
None

V(A) A»A—A True
V(A) Top—»Top—A False

V(A) A-Top—A
V(A) Top—>A—A

Il
> e

where:

762

None <: True, None <: False, True <: Bool, False <: Bool

Looking at all the closed normal forms (that is, the elements) of these types, we have:
truegy, : Bool & MA) Mx:A)My:A) x truer,,, : True AMA) Mx:A)My:Top) x
falsep,,; 1 Bool & MA) Mx:A)My:A)y falsep,, : False & MA) Mx:Top) My:A) y

We obtain four elements of type Bool; in addition to the usual two, trueg,, and falsep,, the extra
truery,, and falser,;, have type Bool by subsumption. However, we can show that trueg,, and
truer,,, are provably equivalent at type Bool, by using the domain restriction lemma (Eq fun’) from
section 2.4.

EA<TopxAyTopkxe<x: A EF A<Top

E,A<Top,x:A+ My:Top) x & My:A) x : A—A (Eq fun’)
E,A<:Top F Mx:A) My:Top) x &> Mx:A) My:A) x : A A—A

EF MA) Mx:A)My:Top) x & MA) Mx:A)My:A) x : V(A) AA—A
EF truer,,, < truep,, : Bool

> 1>

Similarly, we can show that E - falsep,)s, ¢> falsep,, : Bool. Hence, there really are only two
different values in Bool, one value each in True and False, and none in None.

3.2. Simple records

We restrict ourselves to the encoding of simple records (the ones with a fixed number of
components (7]); extensible records are treated in [6].

Cartesian products are encoded, as usual, as AXB £ V(C)(A—B—C)—-C; note that by this
definitions X is monotonic in both its arguments.

A tuple type is an iterated cartesian product; we consider only the ones ending with Top:

Tuple(Aq,...A,Top) & Apx(.X(AxTop)..) n=0

These types have the property that a tuple type with more components is a subtype of a
corresponding tuple type with fewer components. For example:

Tuple(A, B, Top) = AxBXTop <: AxTop = Tuple(A, Top)
because A<:A, BxTop<:Top, and X is monotonic.

Tuple values are similarly encoded by iterated pairing, ending with top. The basic operations
on tuple values are: ali, dropping the first i components of tuple a; and a.i, selecting the i-th
component of 4. These are defined by iterating the product projections.

Let L be a countable set of labels, enumerated by a bijection 1€ L—sNat. We indicate by F, with
a superscript, the i-th label in this enumeration. Often we need to refer to a list of n distinct labels
out of this enumeration; we then use subscripts, as in /;..1,,. So we may have, for example, I,1,,13 =
15,11,177. More precisely, l..1, stands for [9(1),., 150 for some injective oe 1.n—Nat.

A record type has the form Red(lj:A4,..1,:A,,C); in this presentation C will always be Top.
Once the enumeration of labels is fixed, a record type is encoded as a tuple type where the record
components are allocated to tuple slots as determined by the index of their labels; the component
of label /! into the i-th tuple slot. The remaining slots are filled with Top “padding”. For example:

Red(1%:C, I9:A, Top) & Tuple(A, Top, C, Top)

Since record type components are canonically sorted under the encoding, two record types

763

that differ only in the order of their components will be equal under the encoding. Hence we can
consider record components as unordered.
From the encoding, we derive the familiar rule for simple records [5] :

E-A;<B;.. EFA,<B, EFA, jtype .. EF A, type
E & Red(l3:Aq. 1A, LA, Top) <: Red(ly:By,..,1,,:B,, Top)
This holds because any additional field [;:A; (n<k<m) on the left is absorbed either by the Top
padding on the right, if 1(ly)<max(1(Iy)..\(1,)), or by the final Top, otherwise.
Record values are similarly encoded; for example: rcd(12=c, 19=a, top) & tuple(a, top, c, top).
Record selection is reduced to tuple selection by setting r.; £ r.u(;).
From these encodings we obtain all the usual typing rules for records. Moreover, the derived
equational theory exhibits a form of observational equivalence:
EF al(—)bl .'AI w Bl angn:An
E"ﬂn+1:Bn+1 . El-ap:Bp E'_bn+1"cn+1 . El-bq.'Cq
E & red(ly=ay,...L=a,,..L=a,top) <> red(ly=by,..L,=b,,.. [=b,top) : Red(ly:Ay,...1,.:A, Top)
That is, two records are equivalent if they coincide on the components that are observable at a
given type. This holds ultimately because any two values are equivalent at type Top.

3.3. Lists

Following [2] we can define the algebra of parametric lists. List[A] stands for the homogeneous
lists of type A.

List[A] & V(L) L-(A—L—L)—>L

We have:
A<:B = List[A] <: List[B]
nil: V(A) List[A] 2 cons: V(A) A—List[A]—>List[A] 4
MA) ML) Mn:L) Mc:A—L—L) n MA) Mhd:A) ML List[A])
ML) Mn:L) Mc:A—L—L)
length: V(A) List[A]->Nat 2 c(hd)(H(L)(n)(c))
MA) MI:List[A])

I(Nat)(zero)(Ma:A)\Mn:Nat)succ(n))

As an application of (Eq appl2) we can now show some interesting facts. Namely, any two
empty lists are equal in List[Top], and have the same length in Nat. Similarly for two singleton
lists, and so on. In the proof, we will use the Eq-substitution proposition of Section 2.4.

Take b:B and c:C, then:

F nil(B) <» nil(C) : List[Top] (Eq appl2)

F length(Top)(nil(B)) <> length(Top)(nil(C)) : Nat (Eq appl2, Eq appl)

F cons(B)(b)(nil(B)) «> cons(C)c)(nil(C)) : List{Top] ~ by Eqg-substitution, starting from
X<:Top, x:X,I:List[X] - cons(X)(x)(1) : List[X]

F length(B)(cons(B)(b)(nil(B))) <> length(C)(cons(C)(c)(nil(C))) : Nat
by Eq-substitution, starting from
X<:Top, I:List[X] & length (X)X1) : Nat

764

Note that we have proven an interesting property of the behavior of length uniquely from its
type; any function f: V(A) List[A]—-Nat has such a property. This fact is related to the theorems
proved by Wadler in [25] using only the types of terms. A difference is that our proof is carried
out within F ., whereas Wadler uses parametricity properties beyond the proof system of F.

4. The category of closed terms

It is well known that the usual second-order encodings for products and coproducts, while
logically sound, do not define, under B-n-equality, true categorical constructions. One can easily
prove the existence of a term making a certain diagram commute, but its uniqueness does not
follow from the standard equational rules.

As an example of the expressive power of (Eq appi2), we show that those encodings are really
categorical constructions when the underlining equational theory is the one of F_, . In the same
vein, motivated by the semantic isomorphisms obtained in 3] and [14] as consequences of
parametricity, we investigate some provable isomorphisms in a suitable setting. The framework
for our discussion is a category whose objects are the sets of closed terms of a closed type.

4.1 Definitions and basic properties

Recall first (see [LS 86] or [Ms 89]) that given a typed A-calculus language and a A-theory T, a
category CI(T) is determined by taking as objects of CI(T) the (closed) types of T. As for
morphisms, choose first one variable for each type and define the morphisms from A to B to be
equivalence classes of typing judgments x:A |- #:B, where x is the chosen variable of type A4, and
the equivalence relation is given by the equality judgments x:A F t<>t':B of T. We will write [x:A
F :B] for the morphism given by the judgment x:A |- £:B. Identity is given by [x:A x:A] and
composition is defined by substitution:

[y:BFs:Clo [x:AF £:B] = [x:Al s{y«t):.C]

The category CI(F,), obtained by applying this construction to F_, , has a terminal object, given
by Top. For any object A, the canonical morphism from A to Top is [x:A I top:Top]; uniqueness is
guaranteed by (Eg collapse).

Now, given an arbitrary (small) category C with a terminal object 1, consider the canonical
functor "_": C — Sets given by:

For any object A:
"A" = C(1,A) (the set of all morphisms 1—A)
For any morphism fe C(A,B):
’fis the mapping from "A” to'B” given by composing with f
(that is ' (p) = fop for pe C(1,A))
Note that "_" is not faithful if C is not well-pointed. Given f,ge C(4,B), in fact, f " and'g” are set-
theoretical mappings and, therefore, in order to have f ="g" it is sufficient that fop=gep for any
pe C(1,A). The values of the functor”_": C — Sets over all the objects and morphisms of C give a
subcategory of Sets that can be denoted with "C”,
The category we are interested in is "CI(F..)". We will prove, as consequences of (Eq appl2), that
it has finite products and coproducts. For this, however, it is convenient to introduce the category
CL, equivalent to "CI(E_.)", for which we can give a more explicit description.

765

Remark
F A type reads “A is a closed type”
FaA reads “a is a closed term of closed type A”

Definition (cl-equality)

Wesay Ff < f : A>B iff

foralla, Fff:A—>B,\Fa:A = +fla) > f(a):B

The objects of "CI(F_.)" are, for any I A type, the sets of morphisms [2:Top F- t:Al. By (Eq collapse)
and congruence, [2:Top & t:A] = [2:Top & t{z<top):A]. The term t{z«top) is closed and z:Top +
t{ze—top}:A iff - t{z—top):A. Any object of "CI(F,.)" is therefore isomorphic to the the set of
equivalence classes [l a:A] of closed terms of a closed type; the equivalence relation is given by
the equality judgments - a<>a":A (writeF A type for such a set). These sets are the objects of the
category CL.

The morphisms of "CI(F_.)" are, for any morphism f=[x:A - #:B] of CI(F_.), mappings from "A” to
"B’ given by, for any [z:Top & a:Al, f ([z:Top & a:A]) = [z:Top \- t{x<a}:B]. By B- and n-conversion
one obtains a category equivalent to "CI(F,,)" by stipulating that a morphism of CL from I A type
to - B type is an equivalence class of derivable term judgments:

FfA—B

where the morphism equivalence is
(-fA—-B)=(-f:A-B) iff +fetf:A-B.

The identity and the composition judgment judgments are, for any Fh:A—B and I g:B—C:
idy & FMxAx:A>A goh & - \Mx:A)g(h(x)) : A—C

(We also ambiguously use golt & A(x:A)g(h(x)).)

We remark that morphism equivalence is not provable equality. For two morphisms |- fA—B
and I~ f:A—B to be equal it is sufficient that fand f” agree on the closed terms of type A. Similarly,
the following two definitions correspond to isomorphism and uniqueness (for morphisms) in CL.

Definition (cl-isomorphism)
Wesay A ~B iff there exist - f:A—B, - g$:B—A such that
F gof &>idy : A—A F fog &>¢lidy: BB
Definition (cl-uniqueness)
Wessay I f:A—B is the cl-unique f satisfying P(f) iff
for any other I- f:A—B satisfying P(f’) we have I f <>¢/f" : A—B.

In order to prove that CL has finite products and coproducts, we need some more lemmas in
F., and especially the crucial consequence of (Eq appl2) expressed in the eg-var-substitution
lemma, below.

Lemma (Type monotonicity)
Let E X<:BF C<: D <: Band E,X<:B,E' - S type. Then
(i) XpositiveinS = EX<B,E'F 5{X«C)<: S{XD}
(ii) XnegativeinS = EX<:B,E'F S{X«D}<: S{X«C}

Definition (Pointed on X)

Given a type variable X, a type S is pointed on X iff X is positive in S and
S$=V(Y<:By).. V(Yy<:B)T;—(...—(Ty—X)...) for k=0, h=0.

766

Lemma (Generalized collapse)
Let E, X<:Top I- S type, with S pointed on X.
EFDtype and EFs:S(X<D} = EX<Topx:St x¢ss: S(XeTop}

By generalised collapse and the eq-substitution proposition (Sect. 2.4) we obtain the following
lemma, which expresses a parametricity property: A (possibly open) term a of a closed type A is
provably equal to any term obtained by substituting specific types and terms for its free variables.

Lemma (Eq-var-substitution)
Assume, for i=1..n, E’,X<:Top I S; type and S; pointed on X. Let E = E " X<:Top,xy: Sq,00) XS
If - Atype, EFa:A,E'F D type and E' | t;: S{X«D] for i=1..n,
then EFa & a{XeD, xp¢ty, ..., x4} : A.

n

4.2 CL finite products and coproducts; well-pointedness

4.2.1 Terminal objects

Proposition
For any object I- C type, there is a unique morphism - 1-: C—Top.

4.2.2 Binary products
Definition
AXB & V(C)(A-»B—=C)-C

Proposition
For any pair of objects - A type, - B type, the object - AxB type is their categorical product.

d—lAiB—r>B
¢ 'h g

C
That is, there exist - LAXB—A, - 1:AxB—B such that for any - C type, and for any F fC—A,

I 8:C—B, there exists a unique (i.e. cl-unique) - h:C—AxB such that I loh <3¢ f: C—A and I roh
«fg:CB.

Corollary FA~IA’, FB~IB" = | AxB~"A'XB’

4.2.3 Initial objects
Definition
Bot & V(X)X

Proposition
For any object I C type, there is a unique morphism I 0 : Bot—C.

Remark
Bool—Bot is also an initial object since there are no terms of type Bool—Bot. The unique map is

767

the equivalence class of A(x: Bool—Bot) x(true)(C), which includes AMx: Bool—>Bot) x(false)(C). More
generally, any empty type V for which there exists a term I f:V—Bot is initial. The canonical
morphism is the equivalence class of Mx:V) f(x)(C), which is cl-unique since there are no closed
terms Fc:V.

4.2.4 Binary coproducts
Definition
A+ B2 V(C) (A>C)—(B=C)-C
Proposition
For any pair of objects I A type, - B type, the object - A+B type is their categorical coproduct.

£ th
o

That is, there exist F i:A—A+B, |- j:B—A+B such that for any I C type, and for any I fA-C,
I g:B—C, there exists a unique (i.e. cl-unique) - h:A+B—C such that - hoi &4 f: A»C and & hoj
&g :B-C.
Proof Define: i & Mx:A)MCMf:A>CIMg:B—C)f(x) then Fi:A— A+B
j & My:BIMCOOMf:A-CIMg:B—C)g(y) then Fj:B— A+B
case 2 MC)Mf:A—CIME:B—CIMc:A+B)c(C)(f)(g)
then |- case : V(C) (A—C)—(B—C)—(A+B)—C

We will only show that, for any - c:A+B, - C type, - D type, - fA=C, - g:B>CandF kC-D,
F case(D)(kef)(keg)(c) <> (kocase(C)(f)(g))(c) : D.

The normal form of ¢ must have one of the shapes:
c = MC)MF:H)ME :G)f (a)
for some C’'<:Top FA—C <:H, C'<:Top FB—C’<:G, and C'<:Topf Hg :GF a:A
¢ = MC)Mf:H)Mg ' :G)g'(b)
for some C'<:Top FA—C <:H, C'<:Top FB—C'<:G, and C'<:TopfHg"G - b:B
By bound weakening lemma,
C'<Topf:A—C',g"B—>C'Fa:A and C'<Topf:A—C’'g"B>C’+ b:B.
By (Eq fun’), either Fc e MCIMf:A—-C'IME :B—C')f (a) : A+B
or F ¢ ¢ MCMf:A—C'IMg B—C)g'(b) : A+B
In the first case we have:
F case(D)(kof)(kog)(c) <> c(D)(kof)(keg) > k(f(a{C’'D f'kef.g"kog)) : D
F (kocase(CHA()(c) <> k(fla{C'«C,ff,g'<gh): D
From eg-var-substitution lemma:
C'<:Top,f:A—C’ g :B->C'Fa alC'D,fkof,g' <kog}: A
C'<:Top,f:A—C' g B->C FaealC'«Cffg'«gl: A
Conclude by transitivity and (Eqappl).

g

The second case is similar.

768
Corollary FA~IA, FB~4B = | A+B~9A'+B’

4.2.5 Well-pointedness

Recall that a category C with a terminal object 1 is well-pointed iff for any pair of objects A
and B and any f,ge C(A,B) we have:
f=g iff forany he C(1,A), foh = goh.

Proposition
CL is well-pointed. That is, for any - A type, I B type, and any I-f,¢ : A—B, we have:
Ffedg:A5B & forany h:Top—A, b foht ¢3¢ geh : Top—B

4.3 CL Isomorphisms

For the following isomorphisms we have been inspired by [3] and [14].

4.3.1 Double negation

We prove that, for any I A type we have A ~ V(C)(A—C)—C. This is an isomorphism holding
in the models studied in (3], but having no known proof in F (see the remark below).

Proposition
FAtype = FA~4V(CHA—C)—C

Proof
Define: f 2 Mx:V(CAA—C)—C) x(ANid(A)) g 2 My:A) MC) Mz:A—C) z(y)
Then: FA(VC(A-C)-C)>A and Fg: A — (V(CHA—C)—C).

Take a such that I-a:A. Then, by B-conversion:
Ffiga) «>a: A
Take closed b such that + b : V(C)(A—C)—C. Then b has a normal form of the shape
b =MC) Mz:D) z(al)
for some C<:Top - A—C<:D and C<:Top,z:D - al:A. By bound weakening lemma,
C<:Top,zzA—Clal:A
and hence
Fb & MC) Mz:A—C) 2(al) .
Then
F 8(f(b)) & MC) Mz:A—C) 2(al{Ce~A, 2¢id(A)}) : V(C)(A—C)—C
By eq-var-substitution lemma,
C<Top, 2A—ClFal < al{C—A, zid(A)) : A
Hence,
C<Top, 2zA—-Cl2(al) & 2(al{CeA, zid(A)}) : C
That is:
F MC) Mz:A—=C) 2(a1) > MC) Mz:A—C) 2(al{CeA, 2id(A))) : Y(CNA—C)—C
Combining the two equations above:
F8(f(h)) & MC)Mz:A—C) 2(al) & b : Y(C(A—C)—C

769

Remark

Christine Paulin-Mohring has shown that, even for A closed, A ~ V(C)(A—C)—C is not
provable in F via the isomorphism we have used in the proof above. (It is not known whether
some other isomorphism would work.) To see this, let T be V(R)R—R; the term:

MP) Mx(T—T)—P)
x (My:T) y (P—T) (Mu:P)y) (x(Mv:T)v)))
:V(P)(T—T)—P)—>P

is not convertible to any term of the form AP) AMx:(T—T)—P) x(c) where c:T—T is a closed term.
Roberto di Cosmo has shown that A is not isomorphic, in the usual sense, to V(C)(A—C)—-Cin F.

4.3.2 Other isomorphisms

Existentials
Define 3(X<:A)B & V(V)(V(X<:A)B—V)—V and 3(X)B & 3(X<:Top)B. Then:
IX<A)X~A (corollary: 3(X)X ~ Top)

Domain restriction
C ~ V(X) X—=C
A-C ~ V(X<:A) X—-C

Categorical
(AXB)XC ~ Ax(BxC) (A+B)+C ~ A+(B+C)
AXTop ~ TopxA ~ A A+Bot ~ Bot+A ~ A

Various
Top—A ~ A (simple top collapse)
A—Top ~ Top (simple top collapse)
Top ~ V(C)C-C (analyzing the normal forms)
Bot—A ~ Top (analyzing the normal forms)
A—Bot ~ Bot for A nonempty (vacuous fog <€ id conditions: both types are empty)
V(X)(A-X) ~ A-V(X)X (B-n suffices)

References

[1] S.Abramsky, J.C.Mitchell, A.Scedrov, P.Wadler: Relators, to appear.

[2] C.Bohm, A.Berarducci: Automatic synthesis of typed A-programs on term algebras,
Theoretical Computer Science, 39, pp. 135-154, 1985.

[3] E.S.Bainbridge, P.J.Freyd, A.Scedrov, P.].Scott: Functorial polymorphism, Theoretical
Computer Science, vol.70, no.1, pp 35-64, 1990.

[4] K.B.Bruce, G.Longo: A modest model of records, inheritance and bounded quantification,
Information and Computation, 87(1/2):196-240, 1990.

[5] L.Cardelli: A semantics of multiple inheritance, in Information and Computation 76, pp 138-
164, 1988.

[6] L.Cardelli: Extensible records in a pure calculus of subtyping, to appear.

[7] L.Cardelli, G.Longo: A semantic basis for Quest, Proceedings of the 6th ACM LISP and
Functional Programming Conference, ACM Press, 1990.

770

[8] L.Cardelli, J.C.Mitchell: Operations on records, Proc. of the Fifth Conference on Mathematical
Foundations of Programming Language Semantics, New Orleans, 1989. To appear in
Mathematical Structures in Computer Science, 1991.

[9] L.Cardelli, P.Wegner: On understanding types, data abstraction and polymorphism,
Computing Surveys, Vol 17 n. 4, pp 471-522, December 1985.

[10] P.-L.Curien, G.Ghelli: Coherence of subsumption, Mathematical Structures in Computer
Science, to appear.

[11] P.-L.Curien, G.Ghelli: Subtyping + extensionality: confluence of fn-reductions in F., to
appear. u

[12] N.G.de Bruijn: Lambda-calculus notation with nameless dummies, in Indag. Math. 34(5), pp.
381-392, 1972.

[13] J.Fairbairn: Some types with inclusion properties in V, —, yt, Technical report No 171,
University of Cambridge, Computer Laboratory.

[14] P.J.Freyd: Structural polymorphism, to appear in TCS.

[15] G.Ghelli: Proof theoretic studies about a mininal type system integrating inclusion and
parametric polymorphism, Ph.D. Thesis TD-6/90, Universita di Pisa, Dipartimento di
Informatica, 1990.

[16] J-Y.Girard: Une extension de l'interprétation de Godel a I'analyse, et son application a
l'élimination des coupures dans l'analyse et la théorie des types, Proceedings of the second
Scandinavian logic symposium, J.E.Fenstad Ed. pp. 63-92, North-Holland, 1971.

[17] J.Lambek, P.J.Scott: Introduction to higher order categorical logic, Cambridge University
Press, 1986.

[18] J.C.Mitchell: A type inference approach to reduction properties and semantics of polymorphic
expressions, Logical Foundations of Functional Programming, ed. G. Huet, Addison-Wesley,
1990.

[19] J.C.Mitchell, P.J.Scott: Typed A-models and cartesian closed categories, in Categories in
Computer Science and Logic,].W.Gray and A.Scedrov Eds. Contemporary Math. vol. 92,
Amer. Math. Soc., pp 301-316, 1989.

[20] A.M Pitts: Polymorphism is set-theoretic, constructively, in Category Theory and Computer
Science, Proceedings Edinburgh 1987, D.H.Pitt, A.Poigne, and D.E.Rydeheard Eds. Springer
Lecture Notes in Computer Science, vol. 283, pp 12-39, 1987.

[21]].C.Reynolds: Towards a theory of type structure, in Colloquium sur la programmation pp.
408-423, Springer-Verlag Lecture Notes in Computer Science, n.19, 1974.

[22] J.C.Reynolds: Types, abstraction, and parametric polymorphism, in Information Processing
'83, pp 513-523, R.E.A.Mason ed., North Holland, Amsterdam, 1983.

[23] A.Scedrov: A guide to polymorphic types, in Logic and Computer Science, pp 387-420,
P.Odifreddi ed., Academic Press, 1990.

[24] C.Strachey: Fundamental concepts in programming languages, lecture notes for the
International Summer School in Computer Programming, Copenhagen, August 1967.

[25] P.Wadler: Theorems for free!, Proc. of the Fourth International Conference on Fuctional
Programming and Computer Architecture, ACM Press, 1989.

