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Abstract

A polymorphic function is parametric if its behavior
does not depend on the type at which it is instantiated.
Starting with Reynolds' work, the study of parametricity is
typically semantic. In this paper, we develop a syntactic
approach to parametricity, and a formal system that embod-
ies this approach: system R . Girard's system F deals with
terms and types; R.is an extension of F that deals also with
relations between types.

In R, it is possible to derive theorems about functions
from their types, or "theorems for free", as Wadler calls
them. An easy "theorem for free" asserts that the type
V(X)X—Bool contains only constant functions; this is not
provable in F. There are many harder and more substantial
examples. Various metatheorems can also be obtained, such
as a syntactic version of Reynolds' abstraction theorem.

1. Explicit relations

A polymorphic function is parametric if its behavior
does not depend on the type at which it is instantiated
[Strachey 1967]. A function that reverses lists, for example,
is parametric because it does not look at the types of the el-
ements of the lists given as inputs. There are important non-
parametric polymorphic functions, such as a print function
that maps values of any type to text representations. With
this caveat, it can be argued that "truly" polymorphic func-
tions are parametric, and in any case it is the parametric
polymorphic functions that form the core of languages such
as ML [Milner, Tofte, Harper 1989].

Reynolds' work provides a precise counterpart to the
informal definition of parametricity just given [Reynolds
1983]. Reynolds' abstraction theorem concerns a language
similar to Girard's system F [Girard, Lafont, Taylor 1989],
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and says that the instances of a polymorphic function at dif-
ferent types behave in "related" ways. For example, let f be
an expressible function of type V(X)X—X (the type of the
identity function), and let f(A) and f(B) be its instantiations
at types A and B, respectively. In this case, the theorem
says that, for any relation S between A and B, if (a,b)es
then (f(A)(a),f(B)(b))eS. A bit of calculation reveals that the
identity function is the only function with this property, so f
must be the identity function. This is what Wadler would
call a "theorem for free" [Wadler 1989]: a result about a
function that is obtained by examining its type only, and not
its code. Reynolds' results about his system suggest that,
more generally, one should view a function as parametric if
and only if its instances at related types behave in related
ways.

In the preceding discussion, functions, types, and rela-
tions are all semantic objects. Reynolds' results concern the
models of polymorphic languages, such as F, and only indi-
rectly their syntax. Similarly, Wadler's free theorems con-
cern semantic objects in these models, and do not immedi-
ately refer to the world of syntax, where they might serve in
proving properties of programs.

In this paper we develop a syntactic approach to para-
metricity. This approach is embodied in an extension of F,
called ®, where relations between types are constructed
and treated formally. In R, the free theorems can be stated
and proved in a logical framework and without reference to
particular classes of models. Several of these free theorems
come from Wadler's work, and we hope that our detailed,
formal treatment illuminates their proofs; others seem to be
new and intriguing. Various metatheorems about % can
also be obtained, for example a syntactic version of the ab-
straction theorem. In all cases our results are not limited to
closed terms.

The study of ®. seems to help in clarifying the notions
of parametricity and the properties of parametric models.
Semantic explorations steer a difficult course between
heavyweight categorical constructions and lightweight
fuzzy explanations; in contrast, we use a precise, elemen-
tary syntax. With this syntax, it is possible to formulate re-
sults and conjectures that relate the intuitive definition of
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parametricity ("types are not needed at run time") with
Reynolds' mathematical one.

The remainder of this introduction contains an informal
technical introduction and a comparison with a few recent
related works. Sections 2 and 3 introduce %, its theory, and
then some of the free theorems. In the conclusions we dis-
cuss further work. An appendix contains the complete set of
rules of the system.

1.1 Parametricity

As an introduction to parametricity and to X, we give
an example: we prove that all parametric functions of type
V(X)X—Bool are constant. (Here Bool is the type of
booleans as encoded in F.) We start with an informal dis-
cussion of the functions of this type, then make the reason-
ing a little more precise, and later introduce the judgments
and some of the rules of &, which enable us to formalize
the reasoning for this and other free theorems.

At the very least, a function f in V(X)X—Bool maps
values of any type to booleans. More precisely:

@) If A is a type and b has type A,
then f(A) maps b to a boolean.

(Throughout we focus on total functions. The complications
in dealing with partial functions are well known.)

The primary examples of functions that satisfy (i) are
the constant functions whose instances map any input to ei-
ther true or false. But, in some models, there are other func-
tions that satisfy (i) and that may be considered as belong-
ing to V(X)X—Bool, such as a function zero-p with in-
stances that always map 0 to true and any other input to
false. It is hard to code these additional functions in such a
way that a typechecker would accept them, and the result-
ing code requires the use of types at run time. Hence, none
of these functions can be considered parametric. Only the
constant functions remain.

The sort of discussion of parametric functions that we
just went through, to exclude for example zero-p, is vague
and not entirely satisfactory; it depends on the use of partic-
ular models and on implementation intuitions. Reynolds'
more satisfactory approach is based on relations between
types. But before we discuss relations in general, it is con-
venient to introduce the per model [Longo, Moggi 1991],
which is based on special relations.

In per semantics, types are interpreted as pers, that is,
as partial-equivalence relations (symmetric and transitive
relations on the universe of values). Intuitively, b and ¢ are
related by the type A if they are equal elements of A, and in
particular b is related to itself if it is an element of A. For
example, A may be the type of all records with a field n of
type Nat, and b and ¢ may be two records that have a field n
with the value 3, but differ on other fields; in this case b
and c are related by A. We write b[A]c for (b,c)e A.
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Given two pers A and B, the set of all functions from A
to B is also represented as a per:

f{A—B]g iff for all x, y, if x[Aly then f(x)[B]g(y)

That is, two functions are equal in A—B if they map inputs
equal in A to results equal in B. Universal quantification is
interpreted as intersection, with bound variables ranging
over pers.

For example, in the language of pers, the condition for
f to be in the type V(X)X—Bool is that f[V(X)X—Bool]f.
It follows that f(A)[A—Boollf(A), for all A, and then:

(ii) If b and c are equal as elements of A,
then f(A) maps b and c to the same boolean.

In the per model, the only functions of type V(X)X—Bool
are the two obvious constant functions (but this does not
follow from (ii) alone). In case A is a record type, for in-
stance, requirement (ii) implies that f(A)(b) cannot depend
on fields in b not shown in the definition of A.

Reynolds' work does not assume a per semantics, but
his notion of parametricity can be seen as a strengthening of
requirement (ii); in this example, it says:

(iii) If § is a relation between types A and B,
withain A, bin B, and Srelating a and b,
then f(A)(a) and f(B)(b) are equal booleans.

Requirement (ii) corresponds to the special case $= A = B.

Intuitively, as Reynolds suggests, we may think of A
and B as two different representations of the same type, and
of a and b as two different representations of the same
value; then requirement (iii) means that the function f re-
spects representation abstractions, returning results inde-
pendently of the representation of its input.

In order to state the general form of (iii), we extend the
operations — and V. They are defined on arbitrary relations
just as they were on pers, except that the variables bound by
V (now written U, ¥, W, X, ...) range over all relations, not
just over pers. With this notation, there is a natural relation
A* associated with each type expression A: the relation de-
noted by the type expression, where all quantified variables
are interpreted as ranging over arbitrary relations rather
than over pers. For example, the relation (V(X)X—Bool)*
is V(W)W — Bool,, and (V(X)X—=Y)*is Vi)w - Y.

The general form of (iii) can now be stated:

An element of type A is related to itself by the
associated relation A*,

Essentially, Reynolds' abstraction theorem says that all the
functions expressible in F satisfy this property. Thus, ac-
cording to the abstraction theorem, if f is expressible with
type V(X)X—Bool, then f must be related to itself by
V(W)W — Bool. It follows that if A and B are two types
and S a relation between them, then f(A) and f(B) are re-
lated in $—Bool, and so if S relates a and b it follows that
Bool relates f(A)(a) and f(B)(b), as stated in (iii).



With (iii), it is simple to prove that constant functions
are the only elements of the type considered: Let f be a
function of this type, let A be a type, and let S be the rela-
tion between A and Bool that associates every element of A
with true. Then f(A) and f(Bool) are related by S—Bool,
and if a is an element of A then f(A)(a) and f(Bool)(true)
are related by Bool, that is, f(A)(a) is equal to the fixed
boolean f(Bool)(true), independently of A and a. By exten-
sionality, f is one of the two constant functions. (The use of
Bool and true is arbitrary; they can be replaced with any
other closed type and closed term of that type.)

1.2 Formal parametricity

The relational approach to parametricity lends itself to
a syntactic treatment. System % provides such a treatment,
based on judgments and rules in the style of those of F.
Three judgments generalize those of F:

FE E is a legal environment
A
EF R R is relation between A and B in E
B
a:A
EF ® R relates a of type A and b of type B in E
b:B

In addition, an auxiliary judgment concerns relation equali-
ties:
A

EFR=S R, S are equal relations between A and B
B

An equality judgment at the level of values is not needed.

Instead of writing that b and ¢ are equal in A, we can pro-

mote the type A to a relation (between A and A; intuitively,

the identity relation) and write that A relates b and c. As a

consequence we write:

EF b :AA corresponding to the F judgment
o x i EFb=c: A

The environments of ! extend those of F. They contain
two sorts of assumptions from F and two new ones:

X X is a type variable

X:A x is a variable of type A

'?/(V Wis a relation variable between type

Y variables X (domain) and Y (codomain)
X g:(A the variables x and y have types A and B,
y: respectively, and are related by %

Using these judgments, we now review some of the
central rules of ®. We start with rules that imitate those of
Ffor—» and V.

The introduction and elimination rules for — are, re-
spectively:

x: A b:B B . &b
E, R F S EF § X¢b
x:A b :B B’
Ax:Ab: A—>B
EF RS
AX:ZAY : A’ B’
b: A—>B a:A
EF RS EF R
b : A-»B’ a A
b() : B
E+ S
b'@) : B’

These rules follow the same pattern as the F rules:

E,x: AFb:B
EFAx:Ab : A—>B

E-Fb: A—>B Ela: A
EFb@) : B

The introduction rule says: Assume that if ® relates x of
type A and x' of type A', then § relates b of type B and b’ of
type B'. Then 8 — S, a relation between A—B and A'—5B',
relates the functions A(x:A)b of type A—B and A(x":A")b' of
type A'—B'. An extra hypothesis that § relates B and B' is
added to simplify our technical lemmas. The elimination
rule works in the opposite direction, applying related func-
tions to related arguments and obtaining related results.
The introduction and elimination rules for V are:

X’ b: . B’ X ¢b,B,5
A(X)b : V(X)B
E+ Vs
AX’ : V(X)B’
b : V(X)B C
EF VWS EFT
b’ : V(X")B’ C

b(C) : B{(X « C}
EF SW
b’(C) : B{X'« C’}

These rules are generalizations of the F rules:

E.XEb:B EFb: VX)B EEC
EFAX)b : VX)B EFb(C) : B{X«C}

The introduction rule says: Assume that if 7/ is a relation
between types X and X', then Srelates b of type B and b' of
type B'. Then V(m)s, a relation between V(X)B and
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V(X")B', relates the polymorphic terms A(X)b of type
V(X)B and M(X")b' of type V(X")B'. Again, the elimination
rule works in the opposite direction: it applies two related
polymorphic terms to related types, obtaining related in-
stances.

Relations can be formed by quantification over relation
variables, as in the rules above, or by quantification over
type variables (see the appendix). Two kinds of quantifiers
are needed because of the two kinds of environment as-
sumptions for relation variables and type variables. The fol-
lowing rule connects the two quantifiers, and is a formal
counterpart to Reynolds' identity extension property dis-
cussed in section 2.

X B X¢BLS,S’
E,WES=S X' ¢B,S,S’
X’ B’ Z ¢dom(E)
VX)B
E+ Y@)SW « Z} = Yw)s’
V(X)B'

This rule is very powerful, as it equates the two quantifiers
in arbitrary relation expressions; unfortunately it is also a
source of semantic difficulties (see section 4). We have
considered several restrictions of this rule, but they lead to
syntactic difficulties, and we are not certain they solve the
semantic ones. Hence, we prefer to keep the general rule
above and to leave the complete semantics of ® for further
work.

For our example of section 1.1, this rule yields
V(X)X—Bool = V@)W — Bool, and hence that if f has
type V(X)X—Bool then it is related to itself by
V(W)W — Bool. From here we can apply the elimination
rules for V and —, and obtain requirement (iii). This kind
of reasoning is common in our examples of section 3.

Until now, the relational constructions have followed
closely the ordinary type constructions. In addition we al-
low relations defined from functions:

E-Fb: A—>B EFa: A
a:A
EF (b
b(a) : B

a: A :
EF (b) EFb: A—B
c:B

b(a) : B
= B
c& B

With these rules, terms can be turned into relations: any
function b from A to B can be seen as a relation (b) between
A and B, intuitively the graph of the function. The rules for
functional relations have no analogue in F.

Our formalism yields the results typically associated
with parametricity only when we include rules for con-
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structing functional relations. Functional relations are often
useful for obtaining free theorems; for the example of sec-
tion 1.1, the relevant functional relation is a constant one,
obtained from the function from A to Bool that maps any a
in A to true.

One can easily imagine mechanisms for defining rela-
tions beyond taking the graphs of functions. We have not
yet found examples where these mechanisms are needed.

1.3 Related work

By now there are many papers on semantic aspects of
parametricity ([Bainbridge, et al. 1990; Hasegawa 1991;
Ma, Reynolds 1991; Hasegawa 1992; Mitchell, Scedrov
1992], and others). On the other hand, the syntactic study of
parametricity is about one-year old. Some recent work is
related to ours.

Mairson advocated and developed a syntactic approach
to parametricity in order to provide careful formal versions
of some of Wadler's theorems [Mairson 1991]. Mairson's
approach consists in translating a polymorphic language
into a second-order logic. Because the second-order logic
used is fairly weak, induction arguments become necessary
in some of the proofs; our proofs, like Wadler's, do not rely
on induction. Mairson treated a system with implicit typing;
this stands in contrast with our approach where types and
relations are treated explicitly. The resulting formalisms
have very different properties.

Cardelli et al. have defined F.., an extension of F with
subtyping [Cardelli, et al. 1991]. Curiously, the rules for
F.. capture some aspects of parametricity; see sections 3.4
and 4 below.

Ma suggested another syntactic approach to para-
metricity [Ma 1992]; it is based on encoding relations using
subtyping. The power of Ma's system seems to be less un-
derstood; there is also some difficulty in finding a model
for all the desired subtyping rules.

Longo, Milstead, and Soloviev investigated para-
metricity in a system like F with just one new rule (a spe-
cial case of one of the rules of F..) [Longo, Milstead,
Soloviev 1992]. The system is clearly weaker than ®, and
leads to different sorts of results.

Finally, a forthcoming paper [Plotkin, Abadi, Cardelli
1992] explores an alternative formalization of parametricity
closer in spirit to Mairson's. That paper describes a second-
order logic with an axiom of parametricity; this logic is not
an extension of system F, like K , but rather a logic about
system F terms.

2. Formal parametricity

In this section we describe our formalization of para-
metricity. We aim at a hypothetical system called % that
would be sufficient to prove all the desired parametricity



properties of polymorphic programs. Our current approxi-
mations to R, are called ®° and R.

The system % is a rather weak system of pure relations
with relational constructions induced by the type construc-
tions of F. A number of technical lemmas can be proved for
®°, and these lead to several interesting metatheorems. For
example, a suitable encoding of F in K’ yields all F typings
and F equalities. In addition, ®? is a conservative extension
of F for typing and equality derivations. The abstraction
theorem for F holds in ®? but it is not very useful (as the
conservativity result indicates) without some additional
means for constructing relations. Hence, we extend ®° with
functional relations, obtaining ®’. Relation expressions be-
come dependent on value expressions, and the syntactic
properties of the system become considerably more com-
plex. Fortunately, most R’ metatheorems extend easily to
R2, simply because R° derivations are also ®! derivations.
As a typing system, R is still conservative over F, but new
equations are provable.

The appendix contains the full set of rules of ®?, and it
indicates which rules must be subtracted to obtain % In
this section, results are stated for ®? unless otherwise indi-
cated.

Preliminaries

o We use H¥ for derivations in F, and F* (or simply ) for
derivations in either ®° or KY, as appropriate.

s We use the abbreviations:

A
EF* A
A

>

EF* A

a: A
EF*a: A &2 EF* A
a:A

« We often use the derived rule:

(Rel Val Appl2 XR)
b: VX)B A
EF VX)) EF R
b : V(X)B’ A’

b(A) : B{(X < A}
EF SIX R}
b’(A”) : B (X« A’
Our first result, the conservativity over F for typing, re-
quires a definition for flattening an ® environment E into an

F environment (E);. The relation part of E is forgotten in
By

Definition (Environment flattening)
L (¢)F =g

e E,X)p = (E)F7X

e E;x:A) = B)p,x:A

4]
o |[EW| = ®nXY
Y F

x: A
o [E, R = (E)g,x:A,y:B
y:B),

Theorem (Conservativity over F for typings)

+FE = |"F (E)F

A
cEFR=5 = EFF A A EpH B
B

A
+EFR = (E)p}—"A A (E)Fl—"B
B
a: A
+EF & = (E),,i—"a:A A (E),,I—Pb:B
b:B

A simple encoding of F in K is implicit in the following
soundness theorem. Using the abbreviations introduced
above, we have:

Theorem (Soundness of F in )
«H'E = FE
+EH'a: A = EFa:A
-EI‘FA = El‘RA

a:A
«EHa=b: A = EF A

b:A

There is also a more interesting way of embedding F in

R, by splitting an F judgment into two related F judgments.
This relational interpretation of F turns out to be the funda-
mental theorem about %Y, and it yields the abstraction theo-
rem as a corollary. The following definitions are needed:

Definition

e The translation [-]; decorates each variable occurring
in an F or R term or judgment with the subscript s.
Subscripts can be numbers or other symbols. (We assume
that this translation does not introduce variable clashes.)
For example:

[E, X, x: V(X > Y X],
= [El, X, x V(DX - Y, FF X,

e The translation [Al, transforms an F-type into an R:
relation. In particular, it transforms type quantifiers into re-
lation quantifiers, and free type variables into free relation
variables.

o[Xl, & x
« [A—B], £ [Al; >I[Bl,
« [V(X)B], £ VXIB],
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. 1 . .
o The translation [-]x transforms an F environment into
an K environment.

<[z 2 g
1 1 Xl
o [E, X]z & [Elz, X
2 2 X2
. . g AT
o[E, x:Alz £ [E]z, [Al,
) 2 x, 1 [AL

Theorem (Relational interpretation of F in R)
HF'E = % [E]a:c

. [a], : [A],
«EFa:A = [ERRF (A,

[al, : [Al,

. [A)

«EF A = [El& F* [A],

[Al,

+EFfa=b:A
. &l c [A) M L) VA
= [Elx F* [Al, A [ElR X [Al,

[bl, : [Al, lal, : [A],

Corollary (Reynolds' abstraction theorem)
Assume EF"a: A andlet X=X,..X, be the collec-
tion of all type variables in dom(E).

B

B!l
Assume E, :l(ll «.EyF R, dom(E;) N dom(E)=g.
C C

1 n
x, : D(X « B}
Let ¢ £Eq; (F.X)2F; (Fx:DY2F, DX<R)_
X, : D{X«C}

_ [a:AL{IX], « B)
Then: EF [Al {X]; « R} .
[a: AL{[X], «C}
The interpretations of F in ® and the abstraction theo-
rem do not depend on the rule (Rel Eq Forall X#/). Using
(Rel Eq Forall X7/ ) we obtain a further result: a syntactic

version of Reynolds' identity extension lemma. The relation
A* was discussed in the introduction.

Definition

o X*¥=X

o (A-B)* = A*—B*

o (V(X)B)* = V(x) (B*{X«X})

Theorem (Identity extension lemma)

A
EFFA => EF A= A*
A
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A weak form of this result, for closed terms, is prov-
able without using the rule (Rel Eq Forall X %/):

a:A
% A

b: A

a3
= F* A%
b:A
This explains why, in reasoning about closed terms, it is
generally possible to avoid uses of (Rel Eq Forall X#).
Finally, we show that ®° equality is no stronger than F
equality.

Definition

Let {El<« E!} be the substitution that:
X
for each 7/ in E replaces Y with X,
Y

x: A
foreach ® inEreplacesy with x.
y:B
(The X and x:A components of E are ignored.)

Let (E! « El) be defined symmetrically.

Theorem (Conservativity of K2 over F for equalities)
a: A
EFY A
b:A
= (E)pF (@a=b: A(El«EN A
(E)y ' (a=b : A){E! < El)

This result does not extend to ®?, as the theorems for free of
the next section show.

3. Theorems for free, syntactically

In this section we illustrate the power of &2 by carrying
out formal proofs. The results given below apply to all
terms, and not just to closed terms. In some cases, even the
results for closed terms are somewhat difficult; Wadler's
work includes a few interesting semantic results that can be
read as results about closed terms. In order to deal with
open terms we do not use structural induction (like
Mairson), but rather the rule (Rel Eq Forall X%) and the
identity extension lemma.

3.1 V(X)X — X contains only the identity

As a first example we show that all terms of type
V(X)X—X equal the polymorphic identity function id =
AX)A(x : X)x, and hence that this type is terminal. For
closed terms this result follows easily from strong normal-
ization, but a strong-normalization argument does not ex-
tend to open terms.



Proposition
f:VX)X->X
EFf:VX)X—->X = EF VXXX
id:VX)X-> X
Proof

By (Rel Val Fun A), (Rel Val Fun2 X), (Rel Val Eta), and
(Rel Val Eta2), it suffices to prove:

fX)(x): X
FX

EX.x:X
XX
Using (Rel FRel) we first obtain:
VY)Y->Y

EX,x: XF<Ag: VY)Y > Y)x >
X

Hence we derive, using the identity extension lemma and
(Rel Val Appl2 W):
E, X,x:X}F
VY)Y 5 Y): (VY)Y 5 V) > (VY)Y = Y)
<A VY)Y -5 V)x>9<Ag: VY)Y 5 V)x >
fX): X—>X

By (Rel Val FRel Intro), we have:

f:VY)Y>Y
EX,x: XF<Ag: V(Y)Y = Y)x >
x: X

and by (Rel Val Appl):

VY)Y 5> V) : V(Y)Y > Y)
<Mg: VY)Y - Y)x>
fX)(x): X

Finally by (Rel Val FRel Elim) we obtain:
x:X
E. X, x: X X
fX)(x): X

EX,x:XF

and the claim follows by (Rel Val Symm).
O

3.2 Properties of map

The naturality conditions that arise from parametricity
have mundane applications, for example in proving proper-
ties about the type of the map function:

Y(X) Y(Y) (X—Y) — List{X) — List{Y})

where List{B} denotes the type of B-lists, encoded as usual
as VX)X-5B-oX-X)—>X.

Here we include only one theorem about this type;
Wadler and Mairson have treated this theorem too.
Wadler's map theorem asserts that any term m of this type

is the composition (in either order) of map and a rear-
rangement function, like reverse. The rearrangement func-
tion is retrieved from m by instantiating X and Y to a same
type, say X, and then by applying m(X)(X) to the identity
on X; the resulting term has type List{X}—List{X}. The
usual composition operation A(x)g(f(x)) is written (f;g).

Proposition
LetE = X, Y, mV(X)V(Y)(X->Y)—>(List{X}—List{ Y}),
f:X—Y. Then:
m(X)(Y)(f) : List{X} — List{Y}
List{X} — List{Y}
m(X)(X)(id(X)) ; map(X)(Y)(f) : List{X} — List{Y}

m(X)(Y)() : List{X} — List{Y}
E List{X} — List{Y}
map(X)(Y)(f) ; m(Y)(Y)(id(Y)) : List{X} — List{Y}

For the (omitted) proof of this proposition, as well as for
many others, we need a commutation lemma described
next.

3.3 A commutation lemma

We say that a type A is covariant in X when X occurs
only positively in A. For example, (X —»Y)— X and
List{X} are covariant in X. A type A depending on X (the
other free variables being considered as fixed parameters)
may be viewed as a map B — A{X«B} from types to
types. When A is covariant in X, it determines a (covariant)
functor, which associates with any h:B—B' a term
A{X¢h} of type A{X«B} —-A{X«B'} as follows:

IfEFa: AA>A,EFb: B—B',then
a—>bi

A(x: A - B)A(y: A'")b(x(a(y))) : (A—>B)—(A'>B)
IfE,YFa: A— A', then
V(Y)a £

A(x: V(Y)A) AY) a(x(Y)) : (V(Y)A) - (V(Y)A')
Then A{X«h} is defined inductively:

«X{X<h) 2h

« (A>B){X« h) 2 A{X < h} - B(X < h)

¢ Y(X¢h) 2id(Y) forY #X

« (V(Y)A)(X < h} 2V(Y)A{X <h} forY#X

For example, for each h:B—B’, map(B)(B')(h) is simply
List{Y«h}.

Typically, in our proofs, we get relations of the form
A{X<¢<h>} from an application of the identity extension
lemma and (Rel Val Appl2 W), while <A {X«h}> may be
needed. The following lemma says that covariant functors
commute with functional relations, so A {X«<h>} can be
transformed into <A {X<«h}>.
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Lemma
Assume E,X F A, where A is covariant in X, and
EFh:B— B'. Then:

A{X « B}
EFA{X«<h>}=<A[{X «h}>

A{X « B'}

The proof of this lemma relies on the rule (Rel Eq
Extension) given in the appendix; this rule says that any
two relations with the same graph are equal. Without this
rule, an "extensional" version of the lemma could still be
obtained, and it would suffice for our purposes.

3.4 Type isomorphisms and initial algebras

Given a type A covariant in X, an A-algebra is a pair of
a type B and a morphism t:A{X«B}—B. An A-algebra
morphism from (B,t) to (B',t') is a term h:B—B' such that
t;h = A{X«h};t'. An initial A-algebra is an A-algebra
(T,in) such that for any other A-algebra (B,t) there exists
exactly one A-algebra morphism from (T,in) to (B,t). The
goal of this subsection is to show that, given A covariant in
X, the type T =V(X)(A — X) — X can be turned into an
initial A-algebra. This means that the initial algebras useful
in programming (for example, that of natural numbers) can
be defined properly as polymorphic types; see [Bohm,
Berarducci 1985] for background and [Wadler 1991] for a
semantic proof. We define:

fold: VX)A—->X)—>(T—-X)=
AX) Ak: A - X) Ax: T) x(X)(k)

in:AXe«T}>T=
Ay AX<THAX) Ak:A—>X)
k(A{X « foldX)K)} ()

out:T— A{X «T}=
Jold(A{X « T})(A{X «in})

Here fold(X)(k) takes an algebra (X,k) to an algebra mor-
phism A(x:T)x(X)(k) from (T,in) to (X,k). Initiality of
(T,in) means that if a is a morphism from (T,in) to (X k),
then a must equal fold(X)(k):

Theorem
(T, in) is initial. That is:

int:A(X«T}>T
EX, ki:A->XF <A{X«a}>—<a>
k:A—>X

a:T—-X
T->X
foldX)(k): T—> X

= EX k:A->XF

A consequence of initiality is that in is actually an isomor-
phism from A{X « T} to T. Hence, the initial A-algebra is
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a solution for the fixpoint equation X = A{X]}; and in and
out are the two halves of the isomorphism between T and
A{X«T}. Polymorphic types thus suffice to encode covari-
ant recursive types. In particular, if X does not occur in A,
then A and V(X)(A — X) — X are isomorphic.

Other universality properties are expressible and prov-
able in %, for example:

- V(X)X — X is a terminal object 1 (as already proved).

- V(X)(B - B'— X) — X is a product BXB' of B and B'.

- V(X)X is an initial object 0.

- VX)B — X) - (B'—> X) » X is a coproduct B+B' of
B and B'.

- The type Bool = V(X)X — X — X is isomorphic to 1+1.

- The type Nat = V(X)X — (X = X) = X of Church inte-
gers is the initial A-algebra for A=1+X. Hence Nat and
1+Nat are provably isomorphic in %.

- The type List{B} is the initial A-algebra for A=1+(BxX).
Hence List{B} and 1+(BxList{B}) are provably iso-
morphic.

Weaker forms of these results, for a category of closed
terms, were already available in F_..

We put the universality properties to use in the proof of
a property of Bool. In F the two only closed normal forms
of type Bool are:

true = AZ)A(x : Z)A(y : Z)x
false = A(Z)A(x: Z)A(y : Z)y

We prove that any two functions from Bool that coincide
on true and false are equal. For example the terms
A(x:Bool) 3 and A(x:Bool) if x then 3 else 3 are provably
equal.

Proposition
Let EFA, EFb: Bool> A, and EFDb': Bool—> A.
Then:

btrue): A b(false): A
A A

E EF

b (true): A b' (false): A

b: Bool - A
= EF Bool— A
b': Bool - A

Proof

We exploit the following isomorphisms: Bool is isomorphic
to 1+1, (C+C")—A is isomorphic to (C—A)X(C'—=A) for
any C and C', and 1-A is isomorphic to A. Hence
Bool—A is isomorphic to AXA. The two halves of the iso-
morphism are:

i = Af:Bool > A)A(Y)A(g:A>A—>Y)
g(f(true))(f(false))

j=Ah:VY)A—>A—>Y)> Y)A(x:Bool)
h(A)(x(A))



The conclusion follows by transitivity and replacement of
equals for equals:

- it is enough to prove the equality of i(b) and i(b") (since b
is equal to j(i(b)), and similarly for b');

- i(b) and i(b") are equal since the argument f occurs only in
the contexts f(true) and f(false) in i.

O

3.5 On erasures

We end the section with a collection of examples of a
somewhat different flavor. They are all examples of a gen-
eral "erasure conjecture”. Roughly, the conjecture states
that two F terms having the same type in the same environ-
ment and having the same erasure are provably equal in R.

The erasure of an F term is the untyped term obtained
by erasing all its type information. Formally:
erase(x) =X
erase(a(b)) = erase(a)(erase(b))
erase(M(x:A)a) = A(x) erase(a)
erase(a(A)) = erase(a)
erase(MX)a) = erase(a)

The precise formulation of the conjecture is:

Conjecture

IfEFFa: A, EFF b : A,and erase(a) = erase(b), then:
a: A

EF A
b: A

If the conjecture holds, it gives precise evidence that
Reynolds' notion of parametricity, which our formal system
captures in syntax, reflects the intuition that types do not
matter in computations of polymorphic programs.

Here we neither prove nor disprove the conjecture, but
simply verify some instances:

Instance 1
Let EFFa: V(X)A, where X¢ A, and let EFFB and
EF'C. Then:

a(B): A
A
alC): A

E

Proof
We show how to prove:

aVX)X): A
EF A
a(B): A

aVX)X): A
El A
aC): A

The desired result follows from (Rel Val Symm) and (Rel
Val Saturation Lft). We derive the first judgment ; the other
derivation is similar. From the hypotheses and the sound-

ness of Fin R, we have E F* a : V(X)A. Moreover, (Rel
FRel) yields:
VX)X
E F (A(x: YV(X)X)x(B))
B

We conclude by using (Rel Val Appl2 XR) (see section 2).
O

This first instance is the ® analogue of Axiom C, the rule
that Longo, Milstead, and Soloviev add to system F.
The second instance concerns the terminal type:

Instance 2

x(VX)X): V(X)X
V(X)X
x: VX)X

x: VX)X

Proof
We start by constructing a functional relation:

VYOY
XF < A(x: V()Y()Y)X(X) >

By applying (Rel Val Appl2 X®) we get:

x(V(Y)Y): V(Y)Y
x: VY)Y, XF < Ax: VY)Y)xX) >
x(X): X
and (Rel Val FRel Elim) leads to:
(VY)Y)X): X
x:VY)Y, X+ X
x(X): X

The result follows by (Rel Val Eta2).
O

A simple variant of this proof yields:

Instance 3
Assume E -a: A and X¢A.

x(VX)X)a): V(X)X
V(X)X
AMX) x(X)(a): V(X)X

E, x: VX)A->XF

The final instance is based on two different ways of as-
signing the type (V(X)X — X) — (V(X)X — X) to the un-
typed term A(x) x(x):

Instance 4

(VX)X - X)(x): VXX - X
VX)X - X
AX) x(X - X)(x(X)): VX)X > X

x: VX)X -5 XF
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Proof ) )
We start by constructing a functional relation:

VX)X - X
x: VX)X - X, Y <Ax: VX)X - X)x(Y)>
YooY

By applying (Rel Val Appl2 XR) we get:
x: VXXX, YH
x(VE)X = X): (VX)X - X) = (VX)X - X)

< Ax: V(X)X = X)x(Y) >>< Ax: VX)X - X)x(Y) >
(Yo Y): (YY) (YY)

By (Rel Val FRel Intro) we have:

x: VX)X > X
x: VXXX, Y F <Ax: VX)X - X)x(Y) >
x(Y): Y'Y

Hence, by (Rel Val Appl) we obtain:

*(VX)X - X)(x): (VE)X - X)
< AX: VX)X - X)x(Y) >
x(Y > Y)(x(Y)): (YY)

x: VX > X, YF

and after (Rel Val FRel Elim):

X(VEOX - X)(x)(Y): (Y > Y)
x: VX)X ->X, Y+ YooY
x(Y > Y)(x(Y)): (YY)

The result follows using (Rel Val Eta2).
O

Of course R, yields far more equations than the ones
arising from the conjecture. For example, we can show that
V(X)X — Bool contains only constant functions, and
hence that f(A)(a) and f(B)(b) are equal for any
f: V(X)X — Bool. Here a and b can be any terms, of types
A and B, respectively. In particular the terms f(A)(a) and
f(B)(b) need not have the same erasure.

4. Conclusions

After working with R for some time, we feel that it is a
useful system, with good syntactic properties. In particular
we are able to prove theorems and metatheorems in full
generality for open terms. However, the power of %, both
in syntactic and in semantic terms, seems to deserve further
exploration.

In the realm of syntax, we are particularly interested in
the conjecture discussed in section 3.5 that if two F terms
have the same erasure and the same type, then they are
provably equal in %.

As for semantics, we have constructed a model for our
rules except (Rel Eq Forall X%/). The model is an exten-
sion of a model of F based on pers. The works of Hasegawa
[Hasegawa 1991] and Hyland, Robinson, and Rosolini
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[Hyland, Robinson, Rosolini 1990] suggest that the usual
per model, or closely related ones, may validate (Rel Eq
Forall X W).

We have investigated other relational constructions,
such as relational inverse and composition. These create
further syntactic and semantic complications. In particular
the natural generalization of (Rel Eq Forall X 7/) seems un-
sound, since for example V(X) (XoX)—X contains the
polymorphic identity function while V(%) (W.W)—W is
empty.

As mentioned in the introduction, system F_. [Cardelli,
et al. 1991] captures some aspects of parametricity. An ex-
tension of ® with subtyping may yield an encoding of F_.
and provide a basis for studying parametricity in languages
with subtyping. An analogous extension of a logic for
parametric polymorphism is carried out in [Plotkin, Abadi,
Cardelli 1992].
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Appendix: System &?

Notation

o We use the following metavariables: x,y,z range over value variables; X,Y,Z range over type variables; 7/ ranges over
relation variables; a,b,c,d range over value terms; A,B,C,D range over type terms; ®_,5,7,U range over relation terms; E

ranges over environments.

A
o We use the abbreviations: EFA & EF 2 Ela:A
Environments
(Env ¢) (Env X) (Envx)
FE X ¢ dom(E) EFA x ¢ dom(E)
F g FE, X FE, x: A
(Env XWY) (Env xRy)
FE X Yddom®) g2 xyfdomE)
X, W,Y distinct B X,y distinct
X X : A
FE, W FE, <®
4 y:B
Related types
(Rel W) ([Rel X) (Rel WX) (Rel WY)
X X X
FE, W, E” FE, X, E” FE, w,E” FE’, w,E”
Y Y Y
X X X X
E, W,E"F W E, X,E"F X E, W,E"FX E, W,E’FY
Y Y Y Y
(Rel Arrow)
A B
EF R EF S
A’ B’
A—>B
EFR—>S
A’—» B’
(Rel Forall W) (Rel Forall X) (Rel Forall X%)
X B X¢B,S B X B X¢B,S
E, WES X’¢B’5 E, XFs E, Wk s X' ¢B,sS
X B J B’ X' B Z ¢dom(E)
V(X)B V(X)B V(X)B
E+ Vw)s EF YVX)s$ EF Y@Z)SfW « Z)
VX’)B’ V(X)B’ V(X')B'
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E}+

a:A
A
a: A



(Rel FRel) [ only]

EFA—>B EFb: A—>B
A
E I (b)
B
Relation equality
(Rel Eq Symm) (Rel Eq Trans)
A A A
EFR=S EFR=S EFs=17T
B B B
A A
EFSsS=1R EFR=T
B B
(Rel Eq %) (Rel Eq X) (Rel Eq wX) (Rel Eq WY)
X X
FE, W, E” FE, X, E” FE, W, E” FE, W, E”
Y Y Y
X X X X X X Y
E, W,E'FW=w E, X,E’F X=X E, W,E’F X=X E, W,E"F Y=Y
Y Y X Y X Y Y
(Rel Eq Arrow)
A B
EF R =g EFs=s
A’ B’
A—B
EFRo>S5=R>S
A’» B’
(Rel Eq Forall W) (Rel Eq Forall X) (Rel Eq Forall XW)
X B X¢B’S, S X B X¢BLS,S’
EEWEs=5 X ¢B.S.S E, XFs=5 E, WEs=g5 X’ ¢B,S,S’
X’ B’ 2 B’ X’ B’ Z ¢dom(E)
Y(X)B V(X)B V(X)B
EF Y)s = Vs’ EF VX)S$ = V(X)s’ EF Y@Z)StW «Z} = Yw)s'
V(X)B’ V(X)B’ V(X)B'
(Rel Eq Extension) [R ! only]
XxX:A x:A x:A x:A
E, R +F § E, § F &
y:B y:B y:B y:B
A
EFR=5$
B
Related values
(Rel Val Symm) (Rel Val Saturation Lft) (Rel Val Saturation Rht) (Rel Val Rel Eq)
a: a: A b: A b: A c:B a:A A
EF A EF A EF R EF 7 EF B EF R EFR=S
b: A b: A c:B c:B d: B b:B B
b: A a: A b: A a: A
EF A EF g EF R EF §
a: A ¢t B d:B b:B
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(Rel Val xRy) (Rel Val x) (Rel Val ®x) (Rel Val Ry)
X : X2 X :
I_ E! ) R' s E” }__ E’, x : A, E)’ l_ E’ 5 x‘ 3 E” }_ E'l ! R 5 E’,
y:B y:B y:B
X : A X : A X : A X : A
E, % ,E'F R E,x:AE’Fx: A E, ® ,E'Fx:A E', ® ,E’Fy:B
y:B y:B y:B y:B
(Rel Val Fun ) (Rel Val Fun A) (Rel Val Appl)
x: A b:B Bx¢b’ b:B B b: A—>B a:A
E, = F § EE § X b E, x:AF § EF s EF -5 EF R
xX>: A" b:B B’ b’ : B’ B’ b’ : A’»B’ a A
Ax:A)b : A>B A(x:Ab : A—>B b(@) : B
ElF RS EF A—S El S
AX:TAY : A’ B’ Ax:Ab : A B’ b’@) : B’

(Rel Val Fun2 %) (Rel Val Fun2 Xl))
X b:B ) :
E,WF § §F¢bt;%’f E,XF $
X b:B > b’ :B
AX)b : V(X)B A(X)b : V(X)B
EF v EF VXS
AX)b’ : V(X’)B’ AX)b’ : VX)B’
(Rel Val Appl2 W) (Rel Val Appl2 X) [derivable in %9
b : V(X)B C b : V(X)B
EF VWS EFT  EF YX)S EFC
b : W(X)B’ oy b : V(X)B’
b(C) : B{X«C} b(C) : B{X « C}
EF S{X «C}

(Rel Val FRel Intro) [R ! only]

b’(C) : B{X«C}

(Rel Val FRel Elim) [ ! only]

a:
E-Fb: A>B Ela: A EF (b EFb: A—>B
c:B
a: A b(a) : B
EF (b = B

b(a) : B c:B
(Rel Val Beta) (Rel Val Beta2)
E,x:AFb:B Ela: A E,XFb:B EF A

(A(x:A)b)a) : B
EF B

(AX)b)(A) : B{X « A}
El B{X « A)

b{x«a} : B b{X < A} : B{X« A}
(Rel Val Eta) (Rel Val Eta2)
EFb: A—>B x ¢ dom(E) EFb: VX)B X ¢ dom(E)
Ax:Ab®K) : A—>B AX)b(X) : V(X)B
EF A—>B E V(X)B
b: A>B b : V(X)B
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