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Abstract. Both experimental and computational biology is becoming
increasingly automated. Laboratory experiments are now performed au-
tomatically on high-throughput machinery, while computational models
are synthesized or inferred automatically from data. However, integra-
tion between automated tasks in the process of biological discovery is
still lacking, largely due to incompatible or missing formal representa-
tions. While theories are expressed formally as computational models,
existing languages for encoding and automating experimental protocols
often lack formal semantics. This makes it challenging to extract novel
understanding by identifying when theory and experimental evidence
disagree due to errors in the models or the protocols used to validate
them. To address this, we formalize the syntax of a core protocol lan-
guage, which provides a unified description for the models of biochemical
systems being experimented on, together with the discrete events repre-
senting the liquid-handling steps of biological protocols. We present both
a deterministic and a stochastic semantics to this language, both defined
in terms of hybrid processes. In particular, the stochastic semantics cap-
tures uncertainties in equipment tolerances, making it a suitable tool for
both experimental and computational biologists. We illustrate how the
proposed protocol language can be used for automated verification and
synthesis of laboratory experiments on case studies from the fields of
chemistry and molecular programming.

1 Introduction

The classical cycle of observation, hypothesis formulation, experimentation, and
falsification, which has driven scientific and technical progress since the scientific
revolution, is lately becoming automated in all its separate components. Data
gathering is conducted by high-throughput machinery. Models are automatically
synthesized, at least in part, from data [7,11,4]. Experiments are selected to max-
imize knowledge acquisition. Laboratory protocols are run under reproducible
and auditable software control. However, integration between these automated
components is lacking. Theories are not placed in the same formal context as the
(coded) protocols that are supposed to test them. Theories talk about changes
in physical quantities, while protocols talk about steps carried out by machines:
neither knows about the other, although they both try to describe the same
process. The consequence is that often it is hard to tell what happened when
experiments and models do not match: was it an error in the model, or an error



in the protocol? Often both the model and the protocol have unknown param-
eters: do we use the experimental data to fit the model or to fit the protocol?
When most activities are automated, we need a way to answer those questions
that is equally automated.

In this paper we present a novel language to model experimental bio-chemical
protocols that gives an integrated description of the protocol and of the under-
lying molecular process. From this integrated representation both the model of a
phenomenon (for possibly automated mathematical analysis), and the steps car-
ried out to test it (for automated execution by lab equipment) can be separately
extracted. This is essential to perform automated model synthesis and falsifica-
tion by taking also into account uncertainties in both the model structure and
equipment tolerances. Our goal in this paper is to define a simple core language

Fig. 1: (A) Graphical representation of the protocol. Dispose operations discard
a sample and are implicitly considered inside Dispense operations (See Section
7 for details) (B) Graphical representation of the Chemical Reaction Network
(CRN) between the different DNA strands in the considered solution. The CRN
is written according to the language for modelling composable DNA system
presented in [23]. For example, in the second reaction, strand {1∗}[2 3]{4∗}
reacts with 〈1∗ 2〉 at a rate 0.0003, and there exists an inverse reaction with rate
0.1126.

for modelling biological protocols and formalize its semantics. We then show how
our language can easily be extended to collect observations of the process and to
model complicate protocols. An example of an experimental biological protocol
is shown in Example 1.

Example 1. We consider an experimental protocol for DNA strand displacement.
DNA strand displacement (DSD) is a design paradigm for DNA nano-devices



[10]. In such a paradigm, single-stranded DNA acts as signals and double-
stranded (or more complex) DNA structures act as gates. The interactions be-
tween signals and gates allow one to generate computational mechanisms that
can operate autonomously at the molecular level [26]. The DSD programming
language has been developed as a means of formally programming and analyzing
such devices [19,10]. In Figure 1, we consider an AND circuit implemented in
DSD, which can be represented with the Chemical Reaction Netowrk (CRN)
in Figure 1b. Strands Input1 = 〈1∗ 2〉 and Input2 = 〈3 4∗〉 represent the two
inputs, while strand Output = 〈2 3〉 is the output. Strand Gate = {1∗}[2 3]{4∗}
is an auxiliary strand. The Output strand is released only if both the inputs
react with the Gate gate. The protocol in Figure 1a proceeds as follow: Output
and GateB strands are dispensed from the original samples. Then, they are let
evolve for t1 seconds to create Gate strands. Then, the two inputs are dispensed
from their samples. The resulting samples are mixed and the resulting solution
evolves for t2 seconds. Finally, we collect the final sample and observe the results.

Fig. 2: Graphical representation of an
acid-base titration protocol. The proto-
col is initialized with samples A (con-
taining H+ and Cl−) and B (contain-
ing Na+ and OH−). Some fraction of
each sample (p1 and p2) is mixed to-
gether and the resulting sample is let to
equilibrate for t seconds.

We present two semantics for the
introduced language: a deterministic
semantics and a stochastic semantics.
In both cases, the resulting mathe-
matical model is an hybrid system,
where the discrete dynamics are used
to map the discrete operations of a
lab protocol, while the continuous dy-
namics model the evolution of the
physical variables. In the determinis-
tic semantics, physical variables are
modeled in terms of ordinary dif-
ferential equations (ODEs) given by
the rate equations [15], while discrete
operations are mapped into discrete
events that are triggered by some de-
terministic guards. The stochastic se-
mantics extends the deterministic se-
mantics: it allows one to model uncer-
tainties that are intrinsic in the dis-
crete operations of the protocol, such
as those due to lab equipment and whose error ranges have also been standard-
ized (standards ISO 17025 and 8655). Thus, in the resulting stochastic model,
the time at which a discrete event happens, may be a random variable with
exponential distribution. We show that the resulting stochastic semantics is a
Piecewise Deterministic Markov Process (PDMP). That is, a class of Markov
stochastic hybrid processes where the continuous variables evolve according to
ODEs and the discrete variables evolve by means of random jumps [12].



On examples from chemistry and molecular programming, we demonstrate
how our integrated representation allows one to perform analysis and synthesis
of both the discrete steps of the protocol and of the underlying biological system.

Related Work Several factors contribute to the growing need for a formaliza-
tion of experimental protocols in biology. First, better record-keeping of exper-
imental operations is recognized as a step towards tackling the reproducibility
crisis in biology [16]. Second, the emergence of cloud labs [17] creates a need for
precise, machine-readable descriptions of the experimental steps to be executed.
To address these needs, frameworks allowing protocols to be recorded, shared,
and reproduced locally or in a remote lab have been proposed. These frameworks
introduce different programming languages for experimental protocols including
BioCoder [3], Autoprotocol, and Antha [24]. These languages provide expres-
sive, high-level protocol descriptions but consider each experimental sample as a
labelled black-box. This makes it challenging to study a protocol together with
the biochemical systems it manipulates in a common framework.

In contrast, we consider a simpler set of protocol operations but capture
the details of experimental samples, enabling us to track properties of chemical
species (e.g. amounts, concentrations, etc.) as they react during the execution
of a protocol. This allows us to formalize and verify requirements for the correct
execution of a protocol or to optimize various protocol or system parameters to
satisfy these specifications.

2 Chemical Reaction Networks

A CRN C = (A,R) is a pair of finite sets, where A denotes a set of chemical
species, |A| is its cardinality, and R denotes a set of reactions. A reaction τ ∈ R
is a triple τ = (rτ , pτ , kτ ), where rτ ∈ N|Λ| is the source complex, pτ ∈ N|Λ| is
the product complex and kτ ∈ R〉0 is the coefficient associated with the rate of
the reaction. The quantities rτ and pτ represent the stoichiometry of reactants
and products. Given a reaction τ1 = ([1, 0, 1], [0, 2, 0], k1), we often refer to it
visually as τ1 : λ1 + λ3 →k1 2λ2. The net change associated to τ is defined by
υτ = pτ − rτ .

Many models have been introduced to study CRNs [6,9,15,8]. Here we con-
sider the rate equations [15], which describe the time evolution of the concen-
tration of the species in C, in a sample of temperature T and volume V , as
follows:

dΦ(t)

dt
= F (t) =

∑
τ∈R

υτ · γS(Φ(t), kτ , V, T ), (1)

where γS(Φ(t), kτ , V, T )) is the propensity rate, and in case of mass action ki-
netics we have

γS(Φ(t), kτ , V, T )) = kτ (T )
∏
S∈Λ

Φ
rS,τ
S (t),

where ΦS and rS,τ are the components of vectors Φ and rτ relative to species S,
and where in kτ (T ) we make explicit the dependence from temperature T .



Definition 1 (Chemical Reaction System) A chemical reaction system (CRS)
C = (A,R, x0) is defined as a tuple, where (A,R) is a CRN and x0 ∈ N|Λ|
represents its initial condition.

Example 2. Consider the CRS C = (A,R, x0), evolving in a volume V and at
temperature T , where A = {H2O,Na

+, OH−, Cl−, H+} and R is composed of
the following reactions:

Na+ +OH− +H+ + Cl− →k H2O +Na+ + Cl−

where k = 2.81e−10 is the rate constant at temperature T = 298 Kelvin. Then,
according to Equation (1), we have that the state of H+ is given by the solution
of the following ordinary differential equation:

dH+(t)

dt
=− kNa+(t)OH−(t)H+(t)Cl−(t), (2)

with H+(0) =
x0,H+

V , where x0,H+ is the component of x0 corresponding to H+.
Note that Equation (2) is given in terms of concentrations of species instead of
molecular numbers.

In order to introduce a formal semantics for experimental protocols, we first
need to define a formal semantics for a CRS, which has been only introduced
informally in the previous section. Let S = (R|A| × R≥0 × R≥0) be a sample.
Then, we define the semantics for a CRS as follows.

Definition 2 (CRS Semantics) Let C = (A,R) be a CRN, x0 ∈ R|A|≥0 , V, T ∈
R≥0 be the initial concentration (moles per litre), volume (liters) and temper-
ature (degrees Kelvin). Call F (V, T ) : R|A| → R|A| the drift at volume V and
temperature T for C. Then, the semantics of the CRS (A,R, x0) at volume V ,
temperature T and time t, for a time horizon H ∈ R≥0 ∪ {∞},

[[·]] : ((((CRS × R≥0 × R≥0)→ R≥0 ∪ {∞})→ R≥0)→ S)

is defined as

[[((A,R, x0), V, T )]](H)(t) = (G(t), V, T )

where G : [0...H)→ R|A| is the solution of G(t′) = x0 +

∫ t′

0

F (V, T )(G(s))ds.

If for such an H, G is not unique, then we say that [[((A,R, x0), V, T )]] (H)(t)
is ill posed.

In Definition 2 we have explicitly introduced a dependence on the time horizon
H, because it may happen that the solution of the rate equations is defined
only for a finite time horizon [15]: For instance, the CRN given by the reaction
A+A→ A+A+A, with initial concentration for A of 0.1 mol/l, is ill-posed for
H =∞ since it does not admit a unique solution over an infinite time horizon.



3 A Language for Experimental Biological Protocols

We introduce the syntax of a new language for modelling experimental protocols.
A formal semantics of the language, based on denotational semantics [25], is then
discussed. The physical process underlying a biological experimental protocol is
modeled as a Chemical Reaction Systems (CRS) (Definition 1).

Definition 3 (Syntax of a Protocol) Given a set of variables V ar, the syntax
of a protocol P for a given fixed CRN C = (A,R) is

P = x (sample variable)

(x0, V, T ) (initial condition)

Mix(P1, P2) (mix samples)

let x = P1 inP2 (define variable)

let x, y = Dispense(P1, p) inP2 (dispense samples)

Equilibrate(P, t) (equilibrate for t seconds)

Dispose(P ) (discard P)

where T, V, t ∈ R≥0, x0 ∈ R|A|, x, y ∈ V ar, and p ∈ R(0,1) is a unit-less fraction.
Moreover, let-bound variables must occur (as free variables) exactly once in P2.

A protocol P yields a sample, which is the result of operations of Equilibrate,
Mix, Dispose and Dispense, over a CRS. This syntax allows one to create and
manipulate new samples using Mix (put together different samples), Dispense
(separate samples) and Dispose (discard samples) operations. Note that the CRN
is common for all samples. However, different samples may have different initial
conditions. The single-occurrence (linearity) restriction implies that a sample
cannot be duplicated or eliminated from the pool.

Remark 1. In the syntax presented in Definition 3, we are implicitly assuming
that all the samples evolve at constant temperature, volume and pressure, and
we are not considering the effect of having samples with different heat capacities.
This is due to the fact that in this work we mainly target dilute aqueous solutions,
and for these solutions the heat capacities are very similar to those of water.
Thus, assuming the heat capacity is constant for all samples is a reasonable
approximation. However, for more general protocols the heat capacity will need
to be taken into account explicitly. This can be easily done by storing the heat
capacity of each sample in the protocol and then computing the heat capacity
of the resulting sample after a mixing operation [27].

Example 3. We use let x, = Dispense(P1, p) inP2 as a short-hand for let x, y =
Dispense(P1, p) inMix(Dispose(y), x). Given a CRN C = ({H+, Cl−, Na+,
OH−, H2O},R), where R = {Na++OH−+H++Cl− →k H2O+Na++Cl−},
the protocol (call it Pro1) represented graphically in Figure 2 is defined formally



as

Pro1 =letA = ([(H+, 0.1M); (Cl−, 0.1M)], 1.0mL, 298.15K) in

letB = ([(Na+, 0.1M); (OH−, 0.1M)], 1.0mL, 298.15K) in

let a, = Dispense(A, p1) in

let b, = Dispense(B, p2) in

Equilibrate(Mix(a, b), t).

In the formula above, [(H+, 0.1M); (Cl−, 0.1M)] is a short-hand for vector [0.1, 0.1, 0, 0, 0]
representing the initial concentration of the species in sample A for CRN C, where
we made clear that the concentration is specified in molar units (M).

The following equivalences can be shown structurally, namely based on the stan-
dard definitions of substitution (P{x← P ′}) and free-variables (FV (P )):

Proposition 1. (Equivalence Relationships)

let x = P1 inP2 = P2{x← P1}
let x = P1 inP2 = let y = P1 in (P2{x← y}) for y 6∈ FV (P2),

where P2{x ← P1} is the capture-avoiding substitution of P2 for x in P1, and
FV (P2) are the free variables of P2.

We stress that in order to define a semantics for the protocol language in Def-
inition 3, we require a pair (P, C), where P is a protocol and C is a CRN. In
the next Section we formally introduce CRNs. However, we should also stress
that many languages exist to represent CRNs. For instance, graphical languages
or implicit representations, as those that we use in Example 1, where the set of
reactions can be determined just from the structure of the initial DNA strands,
by the rules of DNA strand displacement [23]. In this paper, we do not require
a particular representation language for CRNs. We simply assume that we can
always extract a representation of a CRN, which matches the definition given in
the next Section.

4 Deterministic Semantics of Experimental Protocols

In an experimental protocol discrete operations are mixed with physical vari-
ables, namely concentration of the species of a CRN that evolve continuously in
time. We first consider a deterministic semantics for the language presented in
Definition 3. Then, in the next section, we extend such a semantics in order to
take into account errors and inaccuracies within a protocol, which in practice
can be quite relevant: this leads to probabilistic semantics.

The deterministic semantics of a protocol P for a CRN C = (A,R), under a
given environment ρ : V ar → S, is a function [[P ]]ρ : (V ar → S) → S, where S
is a sample as defined in Section 2, defined inductively as follows.



Definition 4 (Deterministic Semantics of a Protocol) Let S = (R|A| × R≥0 ×
R≥0), then the deterministic semantics of a protocol P for CRN C = (A,R),
under environment ρ : V ar → S is defined inductively as follows

[[x]]ρ = ρ(x)

[[x0, V, T ]]ρ = (x0, V, T )

[[Mix(P1, P2)]]ρ = (
x10V1 + x20V2
V1 + V2

, V1 + V2,
T1V1 + T2V2
V1 + V2

)

where (x10, V1, T1) = [[P1]]ρ and (x20, V2, T2) = [[P2]]ρ

[[let x = P1 inP2]]ρ = [[P2]]ρ1

where (x0, V, T ) = [[P1]]ρ and ρ1 = ρ{x← (x0, V, T )}
[[let x, y = Dispense(P1, p) inP2]]ρ = [[P2]]ρ1

where (x0, V, T ) = [[P1]]ρ

and ρ1 = ρ{x← (x0, V · p, T ), y ← (x0, V · (1− p), T )}
[[Equilibrate(P, t)]]ρ = [[(A,R, x0), V, T )]](H)(t)

where (x0, V, T ) = [[P ]]ρ

[[Dispose(P )]]ρ = (0|Λ|, 0, 0),

where H ∈ R≥0 is such that for any Equilibrate(P, t), [[(A,R), x0, V, T )]](H)(t)
is well posed. If such an H does not exist, we say that P is ill posed.

The above semantics identifies a protocol with the concentration of the species,
the volume, and the temperature of the sample at final time. Note that in
Definition 4 we are assuming that the temperature stays constant during each
equilibration step. This is reasonable for many lab protocols, where temperature
is carefully regulated. Alternatively, the above semantics can easily be extended
by introducing an additional ODE to model the evolution of the temperature
over time. Nevertheless, this would also require updating our definition of CRNs,
as the reaction rates are generally influenced by the temperature.

Example 4. Consider the protocol Pro1 introduced in Example 3. The CRN of
the system comprises the reactions given in the CRN in Example 2. According to
Definition 4, the state of variable H+ at the end of Pro1 is given by the solution
of the following equation:

[[Pro1]]ρ(H+) = H+(0)−
∫ t

0

kNa+(s)OH−(s)H+(s)Cl−(s)ds,

whereH+(0) = p10.1+p210
−7.4

p1+p2
, ρ is any environment, and [[Pro1]]ρ(H+) stands for

the component relative to H+ of the sample after the execution of the protocol.

5 Stochastic Semantics of Experimental Protocols

In this Section we introduce the stochastic semantics for an experimental proto-
col, and show that any program defined according to Definition 3 can be mapped



onto a Piecewise Deterministic Markov Processes (PDMPs) [12]. PDMPs, intro-
duced in Section 5.1, are a class of stochastic hybrid systems where continuous
variables evolve deterministically according to a system of ordinary differential
equations (ODEs), while discrete operations may be probabilistic, and introduce
noise in the system.

5.1 Piecewise Deterministic Markov Process

The syntax of a PDMP is given as follows.

Definition 5 A Piecewise Deterministic Markov Process (PDMP) H is a tuple
H = (Q, d,G, F, Λ,R), where

– Q = {q1, ..., q|Q|} is the set of discrete modes
– d ∈ N is the dimension of the state space of the continuous dynamics. The

hybrid state space is defined as S = ∪q∈Q{q} × Rd
– G : Q× Rd → {0, 1} is a set of guards
– F : Q× Rd → Rd is a family of vector fields
– Λ : S ×Q → R≥0 is an intensity function, where for (qi, x) ∈ S, qj ∈ Q, we

define Λ((qi, x), qj) = λi,j(x) and λqi(x) =
∑
qj 6=qi λi,j(x)

– R : B(S) × S → [0.1] is the reset function, which assigns to each (q, x) ∈
S a probability measure R(·, q, x) on (S,B(S)), where B(S) is the smallest
σ−algebra on S containing all the sets of the form ∪q∈Q{q}×Aq, where Aq
is a measurable subeset of Rd.

For t ∈ R≥0, q ∈ Q, x ∈ Rd, we call Φ(q, t, x) the solution of the following
differential equation:

dΦ(q, t, x)

dt
= F (q, Φ(q, t, x)), Φ(q, 0, x) = x.

The solution of a PDMP is a stochastic process Y = (α,X), whose semantics is
classically defined according to the notion of execution (see Definition 6 below)
[13]. In order to introduce such a notion, we define the exit time t∗(q, x,G) as

t∗(q, x,G) = inf{t ∈ R≥0 | G(q, Φ(q, t, x)) = 1} (3)

and the survival function f(q, t, x) =

{
e−

∫ t
0
λq(Φ(q,τ,x))dτ if t〈t∗(q, x,G)

0 otherwise.
.Here

t∗(q, x,G) represents the first time instant, starting from state (q, x), when the
guard set is reached by a solution of the process; further f(q, t, x) denotes the
probability that the system remains within q, starting from x, at time t [12],
which depends on random arrivals induced by the intensity function Λ. The
semantics of a PDMP for initial condition (q0, x0) is provided next.

Definition 6 (Execution of PDMP H)
Set t := 0
Set (α(0), X(0)) := (q0, x0)
While t〈∞



Sample R≥0-valued random variable T such that

Prob(T 〉t̄) = f(α(t), t̄, X(t))

∀τ ∈ [t, t+ T ) Set (α(τ), X(τ)) := (α(t), Φ(α(t), τ − t,X(t)))
If t+ T 〈∞

Sample (α(t+ T ), X(t+ T )) according to
R(·, (α(t), Φ(α(t), T,X(t)))

End If
Set t := t+ T

End While

For further details on PDMPs and on their measure theoretic properties we refer
to [12].

5.2 Stochastic Semantics

Let us recall that the semantics of Definition 4 are fully deterministic. However,
it is often the case that operations of Dispense and Equilibrate are stochastic
in nature, due to experimental inaccuracies related to lab equipment. In what
follows, we encompass these features by extending the semantics, previously
defined as deterministic, with stochasticity. More precisely, we account for the
following:

– in the Equilibrate(P, t) step, time is sampled from a distribution;
– the resulting volume after a Dispense step is sampled from a distribution.

The first characteristic models the fact that in real experiments the system is
not equilibrated for exactly t seconds, as it may start or be stopped at different
time instants, and it accounts for the fact that after a mix of samples well mixed
conditions are not reached instantaneously; whereas the second feature takes into
account the experimental errors associated to pipetting devices whose ranges
have been standardized (standard ISO 8655). For the first feature, consider the

function T (t′, t) = e−
t′
t , defined for two values t′, t ∈ R≥0: this corresponds to the

density function of an exponential random variable, modelling random arrivals.
For the second feature, let B(Rm≥0) be the Borel sigma-algebra over Rm≥0, m〉0.
Then, we consider the following function D : B(R[0,1]) × R≥0 × R[0,1] → [0, 1],
which assigns to D(·, V, p) a probability measure in B(R[0,1]). Function D is used
to reset the volume randomly, after a discrete operation. (As an anticipation
of upcoming results, notice that both functions T and D can be mapped to
elements in the syntax of a PDMP model.)

We define the Stochastic Semantics of a protocol as an extension of the
deterministic ones from Definition 4. For the sake of compactness, we write
explicitly only the operators that differ from the earlier definition.

Definition 7 (Stochastic Semantics of a Protocol) Let S = (R|A|×R≥0×R≥0),
then the semantics of a protocol P for CRN C = (A,R), under environment



ρ : V ar → S and functions T , D, as defined above, is defined inductively as
follows

[[let x, y = Dispense(P1, p) inP2]]ρ = [[P2]]ρ1

where (x0, V, T ) = [[P1]]ρ

and ρ1 = ρ{x← (x0, V · p′, T ), y ← (x0, V · (1− p′), T )}
for p′ being sampled fromD(·, V, p)

[[Equilibrate(P, t)]]ρ = [[(A,R, x0), V, T )]](H)(I)

where (x0, V, T ) = [[P ]]ρ

and I is aR≥0 − valued random variable such that for s ∈ R≥0
Prob(I > s) = T (s, t)

where H ∈ R≥0 is such that for any Equilibrate(P, t), and any I random vari-
able such that Prob(I〉s) = T (s, t), [[(A,R), x0, V, T )]](H)(I) is well posed with
probability 1. If such an H does not exist, we say that [[P ]]ρ is ill posed.

D is a transition kernel that depends only on the current state of the system. T
is the cumulative probability distribution of a random variable with exponential
distribution. As a consequence, according to Definition 6, [[P ]]ρ induces semantics
that are solution of a PDMP. T determines the probability of changing discrete
state and D acts as a probabilistic reset, there are no guards, and the continuous
dynamics evolve according to the ODE in Definition 2. More formally, given a
protocol P and an environment ρ, [[P ]]ρ induces semantics that correspond to
the solution of a PDMP H = (Q, d,G, F, Λ,R) as per Definitions 5 and 6. In H,
Q represents the set of discrete operations, d = |A| + 1 denotes the continuous
dimension (the number of continuous variables plus one ODE for modeling the
time evolution). The vector field F is given by Definition 2, with an additional
clock variable time representing time as dtime

dt = 1. For each Equilibrate(P, t)
step, t is sampled from T . D is a reset associated to Dispense operations. It
is also worth stressing that in Definition 7 all dispense operations are sampled
from the same distribution. However, it would be a trivial extension to have
different distributions for different dispense steps. This would for instance model
a scenario where different instruments are used.

We can now leverage results from the analysis of PDMP models and export
them over the protocol language. The following assumptions guarantee that [[P ]]ρ

exists, is a strong Markov process, and allow us to exclude pathological Zeno
behaviours [12,18].

Assumption 1

– Let A0, A1 ⊂ B(R[0,1]) be the smallest sets in B(R[0,1]) containing respectively
0 and 1. Then, D(A0, V, p) = D(A1, V, p) = 0 for any p ∈ (0, 1), V 6= 0. That
is, the Volume of a sample after a dispense is zero with probability zero.

– Let F be the drift term of the rate equations (Eqn (2)). Then, F is a globally
Lipschitz function.



– For any Equilibrate(·, t) we have that t〉0.

Let us interpret these assumptions over the protocol languages. The first as-
sumption guarantees that the volume of a non-empty sample is almost-surely
not equal to 0. The second assumption guarantees that the solution of (2) exists
and does not hit infinity in finite time. This excludes non-physical reactions like
X + X → X + X + X. The third assumption guarantees that we have a finite
number of jumps over a finite time, thus excluding Zeno behaviours [12,13].

Example 5. Consider the protocol introduced in Example 3. For σ1〉0, A ⊂ R[0.1,0.8].

Assume that D(A, p, V̄ ) =
∫
A
e
− x−p

2σ21 dx∫ 0.8
0.1

e
− x−p

2σ21 dx

. That is, D(·, p, V ) is a truncated Gaus-

sian measure centered at p and independent of the volume. Then, according to
Definition 7, we have the following final value for H+:

H+(I) =H+(0)−
∫ I
0

kNa+(s)OH−(s)H+(s)Cl−(s)ds,

with HCl(0) = V10.1+V210
−7.4

V1+V2
. Here I is a random variable with an exponential

distribution with rate 1
T , V1 is a random variable sampled from D(·, p1, 1), and

V2 is a random variable sampled from D(·, p2, 1).

Remark 2. The deterministic semantics (Definition 4) can also be mapped into
the framework of PDMPs. More specifically, Definition 4 induces a PDMP H =
(Q, d,G, F, Λ,R), where Q is the set of discrete operations, Λ((qi, x), qj) = 0 for
any qi, qj ∈ Q, x ∈ Rd, G is a set of guards hitting the changes in the discrete
locations when the variable modelling the time reaches a threshold, F is given
by Definition 2, and the reset R is a Dirac delta function.

6 Extending the Protocol Language with Observations

The language introduced in Section 3 can be extended in a number of direc-
tions, according to specific scenarios envisioned for the protocols. For instance,
a common laboratory task is to take observations of the state of the samples
handled by a protocol. That is, often it is useful to store the state of the system
at different times or when a particular event happens. As some of the events
may be stochastic, in general it is not possible to know before the simulation
starts when a particular event happens. Consequently, observations need to be
included in the language.



Definition 8 (Extended Syntax). Given a set of variables V ar, the syntax of a
protocol for a given fixed CRN C = (A,R) and idn ∈ N is

P = x (sample variable)

(x0, V, T ) (initial condition)

Mix(P1, P2) (mix samples)

let x = P1 inP2 (define variable)

let x, y = Dispense(P1, p) inP2 (dispense samples)

Equilibrate(P, t) (let time pass)

Dispose(P ) (discard P)

Observe(P, idn) (observe sample)

where T, V, t ∈ R≥0, x, y ∈ V ar, p ∈ R[0,1]. Moreover, let-bound variables must
occur exactly once ( that is, be free) in P2.

Observe(P, idn) makes an observation of protocol P after its execution, and
identifies such an observation with identifier idn. In order to include observations
we extend the semantics as detailed next, where we consider in detail just the
deterministic semantics, focusing on a few key operators. Extensions to the other
operators and to Stochastic Semantics follow intuitively.

Definition 9 (Extended Deterministic Semantics) For CRN C = (A,R) let S =
R|A|×R≥0×R≥0, Obs = R|A|×N×R≥0, Obs∗, an eventually empty set of Obs
and M = S × Obs∗ × R≥0. The semantics of a protocol P , under environment
ρ : V ar →M, is a function [[P ]] : (V ar →M)× R≥0 →M defined inductively
as follows

[[Mix(P1, P2)]]ρt =

((
x10V1 + x20V2
V1 + V2

, V1 + V2,
T1V1 + T2V2
V1 + V2

), Obs1 :: Obs2,max(t1, t2))

where ((x10, V1, T1), Obs1, t1) = [[P1]]ρt and ((x20, V2, T2), Obs2, t2) = [[P2]]ρt

[[Observe(P, idn)]]ρt = ((x0, V, T ), Obs ∪O, t1)

where ((x0, V, T ), Obs, t1) = [[P ]]ρt andO = (x0, idn, t1)

[[Equilibrate(P, t)]]ρt′ = ([[(A,R), x0, V, T )]](H)(t), Obs, t1 + t)

where ((x0, V, T ), Obs, t1) = [[P ]]ρt′ ,

where H ∈ R≥0 is such that for any Equilibrate(P, t), [[(A,R), x0, V, T )]](H)(t)
is well posed. If such H does not exist, we say that P is ill posed.

Observations are stored as a list of strings, each of which memorizing the con-
centration of the species at the observation, the identificator of the observation,
and the observation time. Note that the above syntax does not prevent the pro-
grammer to assign the same identifier to two distinct observations. We further
stress that often observations of the state of an experiment are not exact, but



corrupted by sensing noise. For instance, this is what happens with noisy fluores-
cence measurements. This noise can be easily taken into account at a semantical
level by sampling an observation from a distribution with additive noise, where
the noise level depends on the particular measure technique or instrumentation.
Finally, we can also extend the sample semantics to take into account noise in
Dispense operations.

7 Case Study

As a case study we consider the experimental protocol for DNA strand dis-
placement presented in Figure 1. The protocol in Figure 1a can be written for-
mally as follows. We use let x, = Dispense(P1, p) inP2 as a short-hand for
let x, y = Dispense(P1, p) inMix(Dispose(y), x)

P1 =let In1 = ((Input1, 100.0nM), 0.1mL, 298.15K) in

let In2 = ((Input2, 100.0nM), 0.1mL, 298.15K) in

letGA = ((Output, 100.0nM), 0.1mL, 298.15K) in

letGB = ((GateB , 100.0nM), 0.1mL, 298.15K) in

let sGA, = Dispense(GA, p1) in

let sGB, = Dispense(GB, p2) in

let sIn1, = Dispense(In1, p3) in

let sIn2, = Dispense(In1, p4) in

Observe(Equilibrate(Mix(Mix(Equilibrate(Mix(sGA, sGB), t1), sIn1), sIn2), t2), idn),

where Input1, Input2, Output, GateB are species of the CRN represented graph-
ically in Figure 1, t1 = 3000, and t2 = 5·106. According to the standard ISO 8655
for a volume of 1mL, the maximum standard deviation of a particular pipetting
device is 0.3µL per single operation. In order to incorporate such an error in our
model, we make use of the stochastic semantics. Thus, the concentration of the
Output strand at the end of the protocol is a random variable. It is also common
that the reaction rates of the physical system are not known exactly and they
may be affected by extrinsic noise [22]. This leads to another source of uncer-
tanity in the output of the protocol, which can be easily incorporated in our
semantics. We assume that the rate of each reaction has a normal distribution
with variance equal to half of its mean (sub-Poisson noise). In Figure 3a we plot
4500 executions resulting from the protocol. From the figure it is easy to realize
how the two difference sources of noise may have a distinctive effect on the final
outcome of the experiments.

In many experimental protocols, one of the key challenges is to synthesize
the optimal discrete parameters to maximize the probability of obtaining desired
behaviours. From now on, we assume perfect knowledge of the reaction rates of
the physical system, while the discrete operations of the protocol and the times
in each equilibration operation are still noisy. We assume p1 = p2 = 0.4, and
our goal is to see how the concentration of the Output changes while varying



(p3, p4) ∈ [0.45, 0.65]× [0.45, 0.65]. We are interested in the following property

PSafe([3.0·10−4, 3.5·10−4]) = Prob(Output(t′) ∈ [3.0·10−4, 3.5·10−4]|t′ = tfinal),

where tfinal is the final time of the protocol. The following probability is esti-
mated using Statistical Model Checking [21] in Figure 3b, which in this context
reduces to Monte-Carlo sampling. From Figure 3b it is easy to infer that the

Fig. 3: (A): (red) 1500 execution of the protocol assuming the physical model is
fully known, and the only source of noise is in the discrete parameters of the
protocols (p1, p2, p3, p4). (yellow) 1500 executions of the protocol when the rates
of the physical system are sampled from a sub-Poisson distribution, and discrete
operations are not affected by noise. (blue) 1500 simulations of the protocol when
both sources of noise are active.(B): PSafe([3.0 · 10−4, 3.5 · 10−4]) as a function
of p3 and p4. Each cell is estimated from 20000 executions of the protocol.

optimal value for such property is not unique (it is attained at values over the
yellow band) and obtained, for instance, at (p3, p4) = (0.5, 0.54).

8 Discussion

We have presented a language to formalize experimental biological protocols, and
provided both a deterministic and a stochastic semantics to this language. Our
language provides a unified description of the system being experimented on, to-
gether with the discrete events representing parts of biological protocols dealing
with the handling of samples. Moreover, we allow the modeller to take into ac-
count uncertainties in both the model structure and the equipment tolerances.
This makes our language a suitable tool for both experimental and computa-
tional biologists. Our objective has been that of providing a basic language with
an integrated representation of an experimental biological protocol. To this end,
we have kept the language as simple as possible, showing how different exten-
sions can be easily integrated. For instance, in our denotational semantics, the
dynamics of a physical process is given by a set of ODEs. This is accurate when
the number of involved molecules is large enough, as in the discussed example of
DNA strand displacement (DSD). However, in other scenarios, such as localized
computation or gene expression, this might be unsatisfactory, as stochasticity
becomes relevant [5,14]: the semantics presented here can be easily extended to



incorporate such stochasticity, which can be achieved by considering more gen-
eral classes of stochastic hybrid processes, such as switching diffusions [20,1,28]
or continuous-time Markov chains (CTMCs) [2].

One of the main advantages in providing a language with formal seman-
tics for experimental protocols is that protocols can now be quantitatively an-
alyzed inexpensively in-silico, and classical problems of analysis of CRNs, such
as parameter estimation [7], can be studied within the corresponding modelling
framework; this can also take into account the discrete operations of the pro-
tocol, which influence the dynamics of the system. An additional target of this
work is to provide automated techniques to synthesise optimal protocols, or to
certify that protocols perform as desired. This can be attained by tapping into
the mature literature on formal verification and strategy synthesis of PDMPs,
or that of other more specialised models that the given protocol can be mapped
onto. Notions of finite-state abstractions [29] and of probabilistic bisimulations
[1,2], as well as algorithms for probabilistic model checking of stochastic hybrid
models [20] will be relevant towards this goal.
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