
Efficient Syntax-driven Lumping of
Differential Equations

Luca Cardelli1, Mirco Tribastone2, Max Tschaikowski2, and Andrea Vandin2

1 Microsoft Research & University of Oxford, UK
2 IMT Institute for Advanced Studies Lucca, Italy

Abstract. We present an algorithm to compute exact aggregations of a class
of systems of ordinary differential equations (ODEs). Our approach consists in
an extension of Paige and Tarjan’s seminal solution to the coarsest refinement
problem by encoding an ODE system into a suitable discrete-state representation.
In particular, we consider a simple extension of the syntax of elementary chemi-
cal reaction networks because i) it can express ODEs with derivatives given by
polynomials of degree at most two, which are relevant in many applications in
natural sciences and engineering; and ii) we can build on two recently introduced
bisimulations, which yield two complementary notions of ODE lumping. Our
algorithm computes the largest bisimulations in O(r ·s · log s) time, where r is the
number of monomials and s is the number of variables in the ODEs. Numerical
experiments on real-world models from biochemistry, electrical engineering, and
structural mechanics show that our prototype is able to handle ODEs with millions
of variables and monomials, providing significant model reductions.

1 Introduction

Ordinary differential equations (ODEs) are widespread in many disciplines including
chemistry, epidemiology, systems biology, electrical engineering, and control theory.
Often, due to the complexity of the system under consideration, the state space size
(intended as the number of ODE variables) is so large that it makes the numerical solution
intractable (e.g., in protein-based interaction networks [1,2]). Formal kinds of analyses
such as reachability computation suffer from the curse of dimensionality, particularly
for nonlinear systems (e.g., [3,4]). It is therefore an important goal to be able to obtain
reduced size models that appropriately preserve the original dynamics.

For discrete-state quantitative models based on labeled transition systems, the notion
of bisimilarity has played a key role for model reduction, with efficient algorithms [5,6,7]
based on Paige and Tarjan’s celebrated solution to the coarsest refinement problem [8].
The main contribution of this paper is to lift this approach to ODE systems. In particular
we focus on a class of polynomial systems, where the time derivatives are multivariate
polynomials of degree at most two in the ODE variables. This class is quite general
because it incorporates models frequently used in (bio-)chemistry (cf. [9]) as well as the
ubiquitous linear ODEs.

We reconcile the established approaches based on discrete-state models with the
continuous-state semantics of ODEs by reasoning at the level of a discrete-state syntactic
representation of the ODE system. In particular, our class of interest can be encoded into

a variant of elementary chemical reaction networks (CRNs). This consists of species
(the ODE variables) interacting through unary or binary reactions that are appropriately
mapped onto monomials that govern the derivative of the species involved. To be able
to encode an arbitrary polynomial ODE system (with degree at most two), we slightly
extend the CRN syntax by allowing negative rates. This has important repercussions on
the applicability of established results of CRN theory (e.g., [10]). Hence, to disambiguate,
we refer to this extension as Reaction Networks (RN). Instead, all the results for exact
quantitative bisimulations for CRNs, recently proposed by these authors in [11] (cf.
Section 2), do carry over to RN. The forward bisimulation (FB) gives a partition of the
ODE variables such that the sum of the ODEs can be written as an explicit function of
the sum of the variables. With backward bisimulation (BB) species in the same block
have the same ODE solution, provided that they start with the same initial condition.

Our key idea is to exploit the fact that the syntactic conditions for an equivalence
relation over species to be either bisimulation can be expressed in the Larsen-Skou style
of probabilistic bisimulation [12]. (Actually, while this is immediate for FB, in this paper
we provide a novel characterization of BB tailored to that format, cf. Section 3.1.) Thus,
we can approach the problem of computing the largest bisimulations by developing a
variant of Paige and Tarjan’s algorithm, along the lines of the efficient partition refinement
algorithms of [6] and [7] for Markov chain lumping [13], and of [5] for probabilistic
transition systems. In particular, for technical reasons that will be clarified later, we build
on the Markov chain lumping algorithm of [7].

Our algorithm, presented in Sections 3 and 4, runs in O(r · s · log s) time, where s is
the number of variables and r is the number of monomials in the ODEs. Interestingly, this
can be related to continuous-time Markov chain (CTMC) lumping. The time complexity
of our algorithm is a tight increase, in the following sense: Since RNs can encode
arbitrary affine ODEs, a fortiori they can encode a CTMC through its Kolmogorov
equations (cf. Section 5). For this encoding we show that FB and BB correspond to the
well-known notions of ordinary and exact lumpability for CTMCs, respectively. In the
affine ODE case, the time complexity of our algorithm collapses to O(r · log s), which
is equivalent to that of the most efficient CTMC lumpability algorithms [6,7].

We show the practical usefulness of our algorithm by means of numerical experiments
(in Section 6), with a prototype available at http://sysma.imtlucca.it/crnreducer/. Using
the benchmark biochemical models of [11], we measure runtime speed-ups of up to
four orders of magnitude over our own more straightforward O(r2 · s5) algorithm used
in [11]. We are now able to reduce the largest benchmark biochemical model within
a few seconds on commodity hardware, as opposed to almost one day as reported
in [11]. To evaluate the effectiveness on affine systems, we propose an application of the
bisimulations beyond ODEs: we consider linear systems of equationsAx = b. Stationary
iterative methods such as Jacobi’s (e.g., [14]) can be interpreted as an affine dynamical
system in discrete time, to which case the bisimulations carry over. For these, we report
considerable aggregations for real-world applications in atmospheric modeling, structural
mechanics, and electrical engineering, taken from the Sparse Matrix Collection [15].

Further related work. FB is a special case of the theory of ODE lumping [16,17],
which is more general because it considers an arbitrary linear transformation of the
state space, as opposed to a sum of variables for FB. While the theory is established,

2

no algorithm is available to compute such aggregations. BB is a generalization of a
behavioral equivalence originally defined for Markovian process algebra [18]. FB and
BB have been recently put in a unifying algorithmic context in [19], using the notions of
forward and backward differential equivalences for a low-level syntax describing a more
general class of nonlinear ODE systems. A symbolic partition-refinement algorithm to
compute the largest differential equivalences is provided through a satisfiability modulo
theories encoding. Clearly, unlike this approach, the algorithm of [19] is independent of
the restriction of the RN language, and is not a variant of Paige and Tarjan’s approach.
As a result, it is more general but less efficient. Indeed, the runtimes reported in [19] are
at best only comparable to those of our earlier algorithm [11].

This is the first application of Paige and Tarjan’s seminal idea for a general class
of ODE systems, whereas automatic exact ODE reduction algorithms are available for
domain specific languages such as rule-based models of biochemical networks [1] and
Markovian process algebra using FB-like (though not BB-like) conditions [20].

2 Background

Reaction Networks. An RN (S,R) is a pair of a finite set of species S and a finite
set of reactions R. A reaction is a triple written in the form ρ

α−−→ π, where ρ and π
are multisets of species, called reactants and products, respectively, and α 6= 0 is the
reaction rate. We restrict to elementary reactions where |ρ| ≤ 2 (while no restriction is
posed on the products). We denote by ρ(X) the multiplicity of species X in the multiset
ρ, and byMS(S) the set of finite multisets of species in S. The operator + denotes
multiset union, e.g., X + Y + Y (or just X + 2Y) is the multiset {|X,Y, Y |}. We also
use X to denote either the species X or the singleton {|X|}.

The semantics of an RN (S,R) is given by the (autonomous) ODE system V̇ =
F (V), with F : RS → RS , where each component FX , with X ∈ S is defined as:

FX(V) :=
∑

ρ
α−−→π∈R

(π(X)− ρ(X)) · α ·
∏
Y ∈S

V
ρ(Y)
Y .

This ODE satisfies a unique solution V (t) = (VX(t))X∈S for any initial condition V (0).
The restriction to elementary reactions ensures that the monomials are of degree at

most 2; unary reactions give degree-one monomials; a nullary reaction, ∅ c−→ X , adds a
constant c to FX(V). (The encoding of an arbitrary polynomial ODE system is shown in
Section 5.) Finally, we remark that a standard CRN with mass-action semantics (where
reactions speeds are proportional to the product of the concentrations of the reactants) is
recovered by restricting to positive reaction rates and nonnegative initial conditions.

Example 1. We now provide a simple RN, (Se, Re), with Se = {A,B,C,D,E} and

Re = {A + C
α−−→ C + E,B + C

α−−→ C + E,C
β−−→ A,D

β−−→ B}, which will be
used as a running example in this section. Its ODE system is

V̇A = −αVAVC + βVC V̇C = −βVC V̇E = αVAVC + αVBVC

V̇B = −αVBVC + βVD V̇D = −βVD
We now overview the main definitions of [11], restating them in terms of an RN.

3

Forward Bisimulation. FB induces a partition associating an ODE with each block,
representing the sum of the species in that block. It is defined in terms of reaction and
production rates.
Definition 1 (Reaction and Production rates). Let (S,R) be an RN, X,Y ∈ S, and
ρ ∈ S ∪ {∅}. The ρ-reaction rate of X , and the ρ-production rate of Y-elements by X
are defined respectively as

crr[X, ρ] := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α, pr(X,Y, ρ) := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α · π(Y)

Finally, for H ⊆ S we define pr[X,H, ρ] :=
∑
Y ∈H pr(X,Y, ρ).

Definition 2. Let (S,R) be an RN, R an equivalence relation over S and H = S/R.
Then,R is a forward RN bisimulation (FB) if for all (X,Y) ∈ R, all ρ ∈ S ∪ {∅}, and
all H ∈ H it holds that

crr[X, ρ] = crr[Y, ρ] and pr[X,H, ρ] = pr[Y,H, ρ] (1)

For instance, it can be shown that HF = {{A,B}, {C}, {D}, {E}} for Example 1 is
an FB. Indeed, the ODEs can be reduced by writing them in terms of VAB := VA + VB :

V̇AB = −αVABVC + βVC + βVD V̇C = −βVC V̇D = −βVD V̇E = αVABVC

Backward Bisimulation. BB leads to partitions where species in the same block have
the same solution when starting with the same initial condition. It is defined according
to the notion of flux rates.

Definition 3 (Cumulative flux rate). Let (S,R) be an RN, X ∈ S, ρ ∈ MS(S), and
M⊆MS(S). Then, we define

fr(X, ρ) :=
∑

ρ
α−−→π∈R

(π(X)− ρ(X)) · α, fr[X,M] :=
∑
ρ∈M

fr(X, ρ).

We call fr(X, ρ) and fr[X,M] ρ-flux rate and cumulativeM-flux rate ofX , respectively.

Definition 4. Let (S,R) be an RN, R an equivalence relation over S, and H = S/R.
Then,R is a backward RN bisimulation (BB) if for any (X,Y) ∈ R it holds that

fr[X,M] = fr[Y,M] for all M∈ {ρ | ρ α−−→ π ∈ R}/ ≈H,
where any two ρ, σ ∈ MS(S) satisfy ρ ≈H σ when

∑
Y ∈H ρ(Y) =

∑
Y ∈H σ(Y) for

all H ∈ H.

It can be shown thatHB = {{A,B}, {C,D}, {E}} is a BB for the running example.
Indeed, it is easy to see that VA(t) = VB(t) and VC(t) = VD(t) at all time points t ≥ 0
whenever VA(0) = VB(0) and VC(0) = VD(0). So, one can remove the ODEs of
V̇B , V̇D and replace each VB with VA and each VD by VC , yielding the reduced ODE:

V̇A = −αVAVC + βVC V̇C = −βVC V̇E = 2αVAVC

In [11] it is discussed how to additionally obtain a reduced network up to a bisimulation
H, having one species per block ofH. For example, it can be shown thatHF induces the

FB-reduced RN SFe = {A,C,D,E} and RFe ={A+ C
α−−→ C + E,C

β−−→ A,D
β−−→

A}.

4

3 Computing the Coarsest RN Bisimulations

As introduced in Section 1, we exploit the fact that the conditions for FB and BB are
in the Larsen-Skou style of probabilistic bisimulation, whereby, roughly speaking, two
states are equivalent if their behavior toward any equivalence class is the same.

For FB, the notion of pr[X,H, ρ] in Definition 2 is already in such desired format:
X is the species for which the equivalence is being checked, H is an equivalence class
of “target” states, while ρ plays the role of a “label”, identifying partner species reacting
with X (akin to an action type in a probabilistic transition system). This is the intuitive
correspondence that suggests us to employ a partition refinement approach based on
Paige and Tarjan’s algorithm, iteratively refining an input partition based on a splitter
block that tells apart the behavior of two species toward that block, for some label ρ.
One fundamental aspect of such an approach is that, at each iteration, the blocks of the
current partition are used as potential splitters. This ensures that the list of splitters can
be updated at essentially no additional cost while splitting the blocks.

For BB, instead, the situation is more delicate because the equivalence condition is
based on the flux rate fr[X,M]. Unlike FB, hereM does not represent an equivalence
class of the species, but it is an equivalence class of multi-sets of species (all the possible
reagents in the RN), which are equal up to ≈H, i.e., the equivalence induced by the
current partition H. Within this setting Paige and Tarjan’s approach cannot be used
directly because the splitters are not the partition blocks of the equivalence relation of
interest. Thus, we first provide an alternative characterization of BB which allows to use
(species) partition blocks as splitters. Then, we discuss a parameterized algorithm that
can compute the coarsest refinement of a given partition of species up to FB or BB.

3.1 Splitter-based Characterization of Backward Bisimulation

The alternative characterization of BB is based on the following.

Definition 5 (Cumulative splitter flux rate). Let (S,R) be an RN, X,Y ∈ S, H a
partition of S, H ∈ H and H ′ ∈ H ∪ {{∅}}. We define

sr(X,Y,H ′) :=
∑
ρ′∈H′

∑
ρ

α−−→π∈R
ρ=Y+ρ′

(π(X)− ρ(X)) · α′, sr[X,H,H ′] :=
∑
Y ∈H

sr(X,Y,H ′).

with α′ = α
2 if Y 6= ρ′ and Y ∈ H ′, or α′ = α otherwise. We call the quantity

sr[X,H,H ′] the cumulative (H,H ′)-splitter flux rate of X .

Note that we account for summands that are counted twice due to the summation
over H and H ′ in sr[X,H,H ′] by choosing α′ ∈ {α, α2 } in the above definition.

Theorem 1. Let (S,R) be an RN, R an equivalence relation over S and H = S/R.
ThenR is a BB if and only if for all (X,Y) ∈ R, all H ∈ H and all H ′ ∈ H∪ {{∅}} it
holds that sr[X,H,H ′] = sr[Y,H,H ′]. 3

3 All proofs are given in a technical report available at http://sysma.imtlucca.it/crnreducer/

5

With this characterization both pr and sr have three arguments, with analogous
meaning, as discussed. In particular, the third argument of sr can now be also interpreted
as a label. However, while in FB this ranges over the set of species (together with the
distinguished species ∅ to indicate unary reactions), in BB it ranges over blocks of the
candidate BB partition to be checked (again, together with the distinguished set {∅}
for unary reactions). When used within the partition refinement algorithm, splitting a
partition block leads to a refinement of the BB labels. In other words, unlike for FB the
set of labels must be updated at every iteration. However, differently from the original
definition of fr, this only requires splitting a block rather than computing an equivalence
relation over the species multi-sets appearing as reaction products. As we will see, this
can be done at no additional cost.

Remark 1. The analogy with the probabilistic-bisimulation condition (where a label
corresponds to an action type and the rates correspond to probabilities) may suggest to
use a variant of the algorithm for probabilistic bisimilarity developed in [5]. Indeed, by
suitably encoding an RN into a hyper-graph, the largest FB can be computed with [5].
However, a similar algorithm cannot be straightforwardly adapted to BB because the
set of labels changes at every iteration. In particular, the bounds of Lemma 4.5 in [5]
would not carry over if the labels were not kept fixed. For this reason, in this paper we
consider an extension of the more recent [7], which also has the advantage of a simpler
implementation because it does not require the intertwining between two classes of
splitters like [5], or splay trees like [6].

3.2 Data Structures

We introduce the data structures used in our algorithm for computing the coarsest RN
bisimulations. To achieve tight time and space bounds, we make use of pointer-based
data structures only. Furthermore, we assume that species, partition blocks and reactions
are stored once and then referred by other data structures via pointers.

Notation. Fix an RN (S,R), set s := |S|, r := |R| and let L(R) := {X | ∃X +Y
α−−→

π ∈ R} ∪ {∅} be the set of all labels. Set l := |L(R)| which can be bounded by
O(min(s, r)). Finally, use p := max{

∑
X∈S 1{π(X)>0} | ρ

α−−→ π ∈ R} to denote the
maximum number of different species which appear as products of a reaction. We will
also use the fact that s is bounded by (2 + p) · r. This is because each reaction can have
at most 2 and p different species as reagents and products, respectively.4

We remark that, in general, p is bounded by s. However, we prefer to explicitly use
this parameter because in the main application of this paper, i.e., the encoding of an
arbitrary polynomial ODE system, p becomes a constant (i.e., 3). Instead, when an RN
is used directly as the input specification to describe a model, as is the case in CRNs, p
is typically small. For instance, in most reactions of biological processes the number of
distinct products is typically one (e.g., for binding and internal state modification) or two
(for unbinding or catalytic reactions). Indeed, across all the benchmark CRNs considered
in Section 6, p never exceeds 3. This is due, for instance, to unbinding reactions favored
by a catalyst, in the form AB + C → A+B + C.

4 We implicitly disregard pathological cases with species not appearing in any reaction.

6

RN representation. Species are stored in a list. We assume that the set L(R) is given
and stored as a list of pointers to species (plus one entry for ∅), requiring O(l) space.
However, its computation requires O(r) time because the reactions have to be scanned
only once, assuming that a vector with a boolean entry per species is used to check (in
constant time) if it has been already added to the list. Indices from 0 to s− 1 and from 0
and l − 1 are implicitly assigned to each species and label, respectively. A reaction is a
structure with two fields, one for each possible reagent, and a list of pairs in the form
(species, multiplicity) for the products. Storing R requires O(p · r) space.

We make use of two vectors, inc and out, indexed by species. Each inc[X] entry
points to a list of pairs (reaction, multiplicity) containing all reactions with
X in their products, accompanied by the corresponding product multiplicity of X for
each reaction. Note that each reaction may appear in inc[X] for at most p species, thus
requiringO(p ·r) to store inc. The vector out is similar, but each out[X] entry points
to a list of reactions having X in their reagents. The space required by out is thus O(r).

In the algorithm we build sets of elements. However, insertions in sets can be
implemented in constant time because an element is never added to a set more than once.

Refinable partition. A partition is stored as a doubly linked list of pointers to its blocks.
Each block record contains an integer to store its size and pointers to two doubly linked
lists that divide the species into marked and unmarked (as a result of operations that
are used to split blocks, discussed later). Each species has a pointer to its block in the
current partition. Thus, finding the block for a species, marking, and unmarking take
constant time. Also, it is possible to scan the species of a block in time linear with respect
to its size, and to split it in time proportional to the number of marked states.

The operation of splitting a block H creates a new block H1 containing the marked
species of H , while H maintains those that are not marked. This requires to assign the
list pointed by H.marked to H1.unmarked and to assign an empty list to H.marked.
These operations are done in constant time, while a time proportional to originally
marked species of H is necessary to update their reference to the new block H1. If
instead H originally contained just marked or unmarked species, then no split is actually
performed, and marked species get unmarked at no further cost.

Splitters. The list of pointers spls refers to the blocks of the current partition that
will be used as splitters. An s× l matrix M of real numbers is maintained to efficiently
compute conditional, production and flux rates. A possible majority candidate (pmc) of
an array A of size s is either the value which appears more than bs/2c times in A, or any
other value if it does not exist. We calculate the pmc row of M by extending the algorithm
from [7] to vectors in a straightforward manner.

We denote the row of species X in M by M[X], that is M[X] ∈ Rl. In the course
of splitting, we sort species according to the lexicographical order on their rows in
M. Clearly, sorting a set H ∈ H takes O(l · |H| · log |H|) time, as O(|H| · log |H|)
comparisons are needed, each requiring O(l) time.

This leads to an overallO(p ·r+ l ·s) ≤ O(s ·r+r ·s) = O(r ·s) space complexity.
Other auxiliary lists and sets of pointers presented in the remainder of the section will
respect the space bound given above.

7

1 CoarsestRNBisimulation(χ,S,R,H) :=
2 M = build an s× l matrix of reals
3 i f (χ = FB)
4 H = RefineCRR(S,R,M,H)
5 spls = shallow copy of H
6 whi le(spls 6= ∅)
7 Hsp = pop(spls)
8 Split(χ,S,R,M,H,Hsp,spls)

Algorithm 1. Computation of the coarsest bisimulations.

3.3 Overview

Algorithm 1 provides the parametric procedure CoarsestRNBisimulation for
computing the coarsest RN bisimulations that refine a given initial partitionH of species
of an RN (S,R). The first argument (χ) specifies either FB or BB.

We first observe that the crr-condition of FB can be implemented as an initialization
step that pre-partitions the species according to the values of crr. This is because crr is
a “global” property of the RN, i.e., it does not depend on the current partition. Instead,
the conditions on pr and sr for FB and BB, respectively, require the iterative partition-
refinement treatment. Consequently, our algorithm starts (Lines 3-4) by invoking, if
necessary, the RefineCRR procedure.

RefineCRR (Algorithm 2). This procedure provides the coarsest refinement ofH which
satisfies the crr-condition of FB. It refinesH according to the ρ-reaction rates for each
species X and label ρ. In particular, in this procedure each entry M[X][ρ] is used to store
crr(X, ρ), and is assumed to be initialized with 0. We can thus compute the values
of crr for all labels and species in one iteration of R only (Lines 3-7), requiring O(r)
time. Then, we refineH (Lines 10-12). This can be done, for each initial block H ∈ H,
by sorting the species X ∈ H according to a lexicographical ordering on their M[X]
row. After sorting, all species belonging to the same sub-block will be alongside each
other, and it is easy to transform them into new blocks in O(|H|) time. As discussed,
the sorting of each block requires O(l · |H| · log|H|) time, and the total time spent in
sorting is thus O(l ·

∑
H∈H |H| · log|H|) ≤ O(l ·

∑
H∈H |H| · log s) = O(l · s · log s).

Finally, Line 13 resets to 0 all entries of M, requiring O(l · s) time.
Overall, this yields O(r + l · s · log s) time complexity. Given that s ≤ (2 + p) · r,

this can be bounded by O(r · p · l · log s).

Iterative Refinement (Algorithm 1, Lines 5-8). The procedure performs the iterative
partition refinement required by our bisimulations as an extension of the algorithm for
Markov chains of [7], as discussed. If χ = FB, blocks ofH are split into sub-blocks of
species with same ρ-production rates towards the block Hsp for all ρ ∈ L(R). Instead, if
χ = BB, blocks are split with respect to their (Hsp, H

′)-splitter flux rates with respect
to all labels H ′ ∈ H ∪ {{∅}}.

Line 5 creates the linked list spls of initial candidate splitters containing pointers
to each H ∈ H: all blocks of H are considered as (initial) candidate splitters. Then,
Lines 6-8 iterate while there are candidate splitters to be considered: after selecting a

8

1 RefineCRR(S,R,M,H) :=
2 //Iterate once R to compute crr[X, ρ] for all ρ and X

3 f o r a l l (X α−−→ π ∈ R)
4 M[X][∅] = M[X][∅] + α

5 f o r a l l (X + Y
α−−→ π ∈ R)

6 M[X][Y] = M[X][Y] + α
7 M[Y][X] = M[Y][X] + α

8 //Refine H according to the M rows, and store it in H′

9 H′ = ∅
10 f o r a l l (H ∈ H)
11 Sort and split H wrt crr[X], for all X ∈ H, yielding H1, . . . , Hb
12 Add H1, . . . , Hb to H′

13 CleanRowsOfMatrix(M,S)

14 return H′

15
16 CleanRowsOfMatrix(M,H) :=
17 f o r a l l (X ∈ H and ρ ∈ L(R))
18 M[X][ρ]=0

Algorithm 2. Pre-partitioning according to the condition of FB on crr.

splitter (Hsp) and removing it from spls, the procedure Split is invoked to refine
each block ofH with respect to Hsp.

We now provide an overview of the Split procedure (Algorithm 3). A detailed
presentation is given in Section 4, together with the complexity results. Split first
computes either pr[X,Hsp, ρ] for allX ∈ S and ρ ∈ L(R) (FB case) or sr[X,Hsp, H

′],
for all X ∈ S and H ′ ∈ H ∪ {{∅}} (BB case). The rates are computed for all labels at
once and are stored in M similarly to RefineCRR. We remark that BB uses different
labels than FB. Nevertheless, as will be discussed in Section 4, the number of labels
used by BB is bounded by l as well, and hence we can safely use M also in the BB case.

Then, we iterate over the set of blocks containing a species for which at least one non-
zero rate has been computed. Each partition block H is split in sub-blocks with either
same pr[·, Hsp, ρ] for all ρ ∈ L(R) (FB), or same sr[·, Hsp, H

′] for allH ′ ∈ H∪{{∅}}
(BB), updating the list spls. Following the usual approach of Paige and Tarjan [8], a
sub-block with maximal size is not added to spls. However, this is done only if the
block that is split (i.e., H) has been already used as a splitter, as otherwise the algorithm
would be incorrect (see the discussion in [7]).

4 The Split Procedure

We now provide a detailed description of the Split procedure shown in Algorithm 3.
It begins (Line 2) by initializing the set of pointers ST that will refer to all species X for
which either there exists a ρ such that pr[X,Hsp, ρ] 6= 0 if χ = FB, or for which there
exists a block H ′ (or {∅}) such that sr[X,Hsp, H

′] 6= 0 if χ = BB. Similarly, Line 3
initializes the set HT which will point to the blocks of the species in ST . We remark
that only the blocks in HT may be split due to the current splitter Hsp. If χ = FB,
Lines 4-8 compute pr[X,Hsp, ρ] and store it in M[X][ρ] for each X and ρ. This is done
by ComputePR in Algorithm 4. The procedure scans all the reactions in the inc list
of each Y ∈ Hsp. We can have either unary or binary reactions (Lines 2-3 or 4-6,

9

1 Split(χ,S,R,M,H,Hsp,spls) :=
2 ST = ∅ //Set of species X with at least a non-zero pr/sr[X,Hsp,·]
3 HT = ∅ //Set of blocks containing the species in ST
4 f o r a l l (Y ∈ Hsp)
5 i f (χ = FB)
6 ComputePR(Y,M) //Compute pr[X,Y, ρ] for all X and ρ. Populate ST
7 e l s e
8 ComputeSR(Y,Hsp,M) //Compute sr[X,Y,H′] for all X and H′. Populate ST
9 //Now each M[X][ρ] stores pr[X,Hsp, ρ] (or sr[X,Hsp, H

′], with ρ = H′.label)
10 f o r a l l (X ∈ ST)
11 H = get block of X
12 Discard label of H, if any
13 i f (M[X] is not a zero row) //Discard spurious species from ST
14 i f (H contains no marked states) //Add only once H to HT
15 Add H to HT
16 Mark X in H
17 whi le(HT 6= ∅)
18 H = pop(HT)
19 H1 = marked states of H
20 H = not marked states of H
21 i f (H = ∅)
22 Give the identity of H to H1

23 e l s e
24 Make H1 a new block
25 pmc = PMCRow(H1,M)
26 H2 = {X ∈ H1 | M[X] not equal to the pmc-row}
27 H1 = H1 \H2

28 i f (H2 = ∅)
29 b = 1 //No need to split H1.
30 e l s e
31 Sort and split H2 according to M[X], yielding H2, . . . , Hb
32 Make each of H2, . . . , Hb a new block
33 i f (H ∈spls)
34 Add H1, . . . , Hb except H to spls
35 e l s e
36 Add [H,]?H1, . . . , Hb to spls except a sub-block of maximal size
37 whi le(ST 6= ∅)
38 X = pop(ST)
39 touched[X]=false
40 CleanRowsOfMatrix(M,X)

Algorithm 3. The Split procedure.

respectively). In the latter case, if the two reagents are equal (i.e., X = X ′) we add
α ·π(Y) twice to M[X][X]. This corresponds to the ρ(X)+ 1 factor of Definition 1. The
actual updates on the entries of M are performed by the simple sub-routine Update in
Lines 9-13 of Algorithm 4 which also updates ST if necessary.

If χ = BB, Lines 4-8 of Algorithm 3 compute sr[X,Hsp, H
′] and store it in

M[X, ρH′] for each X ∈ S and H ′ ∈ H ∪ {{∅}}, with H the current partition. The
symbol ρH′ denotes a label in L(R) which identifies H ′ and is discussed below. The flux
rates are computed by ComputeSR of Algorithm 5. It is similar to ComputePR, but
it scans the reactions in the out lists of each species Y ∈ Hsp. By Definition 5, unary
reactions contribute to splitter flux rates with {∅} as third parameter. Here we associate
the label ∅ ∈ L(R) to unary reactions. For each unary reaction Y α−−→ π ∈ out[Y]
(Lines 2-5), M[Y][∅] is decreased by α and we increase M[X][∅] of each species X in π
by α ·π(X). Instead, each binary reaction Y +Y ′

α−−→ π ∈ out[Y] contributes to those
with the block of Y ′ as third parameter. As depicted in Lines 6-15, we provide each

10

1 ComputePR(Y,M):=

2 f o r a l l ((X α−−→ π, π(Y)) ∈ inc[Y])
3 Update(M,X,∅,π(Y),α)

4 f o r a l l ((X+X′ α−−→ π, π(Y)) ∈ inc[Y])
5 Update(M,X,X′,π(Y),α)

6 Update(M,X′,X,π(Y),α)
7
8 //Sub-routine to update M and ST
9 Update(M,X,ρ,mult,α):=

10 i f (!touched[X])
11 touched[X] = true
12 add X to ST
13 M[X][ρ] = M[X][ρ] + α ·mult

Algorithm 4. Compute pr wrt the splitters.

1 ComputeSR(Y,Hsp,M):=

2 f o r a l l (Y α−−→ π ∈ out[Y])
3 Update(M,Y ,∅,1,−α)
4 f o r a l l (X ∈ π)
5 Update(M,X,∅,π(X),α)

6 f o r a l l (Y +Y ′ α−−→ π ∈ out[Y])
7 H′ = get block of Y ′

8 i f (H′ does not have a label)
9 H′.label = Y ′

10 i f (Y 6= Y ′ and H′ = Hsp)
11 α = α/2

12 Update(M,Y ,H′.label,1,−α)
13 Update(M,Y ′,H′.label,1,−α)
14 f o r a l l (X ∈ π)
15 Update(M,X,H′.label,π(X),α)

Algorithm 5. Compute sr wrt the splitters.

block H ′ with a field label used to point to the label in L(R) assigned to H ′. This will
be a species in H ′∩L(R). In particular, in Line 7 we get the block of Y ′ (H ′). Then, if
no label is currently assigned to H ′, we set Y ′ as label of H ′. Finally, the entries of M are
updated by Update similarly to the FB case, but using H ′.label as label. Note that
all reactions involving species Y ′ of a block H ′ will contribute to the same H ′.label
entries of M, thus computing the summation over the elements of H ′ of Definition 5. We
remark that we may have blocks H ′′ ∈ H with H ′′∩L(R) = ∅. Those do not contribute
to ComputeSR as both reagents of an arbitrary binary reaction are elements of L(R).
Finally, we note that in Lines 10-11 we halve the rate of reactions with two different
reagents Y + Y ′ belonging to the splitter block Hsp, as done in Definition 5.

Now that ST and M have been populated, Lines 10-16 of Algorithm 3 build HT and
mark all species in ST as discussed in Section 3.2. The marking operation could have
not been done in Lines 4-8 because it changes the order of species in a block, and hence
might interfere with the iteration of the forall statement of Line 4. Note that Line 13
discards species in ST whose M-rows have only zeros. This can happen because positive
and negative values can sum up to zero (see, e.g., lines 3 and 5 of Algorithm 5). In
addition, Line 12 reinitializes all label fields of the blocks in HT , a super-set of those
to which ComputeSR might have assigned a label.

It is now possible to refine H and update the list of candidate splitters by splitting
each blockH ∈ HT according to the pr or sr values (Lines 17-36). Lines 19-20 perform
the split operation discussed in Section 3.2. They split (in constant time) the species in
H which appear in HT (the marked ones) from those which do not appear in HT (the
unmarked ones). Those X ∈ H that yield M[X][·] 6= 0 form the block H1, while the
other remain in H . If the new H is empty, H1 contains the elements originally present in
H and thus receives its identity. Otherwise H1 is made to a new block in O(|H1|) time.

Lines 25-27 further split H1 by moving some of its elements in a new block H2 in
O(|H1|) time. In particular, we calculate the pmc-row in order to split H1 into (a new)
H1 and H2. In case more than half of the species of the original H1 have their M-row
equal, the new block H1 will contain those species with the pmc-row; otherwise, it will
contain any sub-set of H1 with same row in M. In both cases the obtained H1 does not

11

need to be further split. Instead H2 might need to be split further. We note that H2 might
be empty, meaning that there was no need in splitting H1. In such case H1 remains
unchanged; in the opposite case, instead, H2 is split in Lines 31-32 and the obtained
sub-blocks are added toH. We remark that we are guaranteed that each sub-block of H2

has at most half the elements originally in H . Moreover, it is worth noting that splitting
blocks inH affects spls because spls stores pointers to the elements ofH.

Finally, we add the so obtained sub-blocks to spls by storing the corresponding
pointers in spls. As discussed, we do not add a sub-block with maximal size if the
original H has already been used as splitter (Line 36). Note that [H,]?H1 means that we
add only one of the two blocks to spls if Line 22 gave the identity of H to H1. Instead,
in Line 34 there is no need to add the new H to spls because it is already there (i.e.,
the original H was there, and hence the refined H inherited its presence).

The procedure terminates by resetting the vector touched, used to build ST , and
the rows of M regarding the species in ST .

Theorem 2. Algorithm 1 calculates the coarsest RN bisimulations that refine a partition
H. Its time complexity is O(r · p · l · log s), while its space complexity is O(r · s).
The proof lifts the ideas of [7] to RNs. As discussed previously, the complexity stated
above relates to an arbitrary RN. We shall see next that in the encoding of a polynomial
ODE system the factor p · l simplifies to s, while it becomes a constant for CTMCs.

5 Applications

We discuss how to encode into an RN an arbitrary polynomial ODE system of degree at
most two. Based on this, we consider the special case of an affine ODE system, which
gives reduced time and space complexities; here, we will show an application of RN
bisimulations for the numerical solution of systems of linear equations using stationary
iterative methods. Finally, we relate RN bisimulations to CTMC lumpability [13].

It is easy to see that the encoding of polynomials ODEs to RNs is not unique (cf. [21]
for CRNs). Here, we propose one for which the algorithmic complexity can be directly
related to the number of monomials appearing in the ODE system, leaving the question
of investigating minimality issues to future work.

Polynomial systems. We consider the ODE system ẏ = G(y) with components

ẏk = Gk(y) :=
∑

1≤i,j≤n

α
(k)
i,j · yi · yj +

∑
1≤i≤n

α
(k)
i · yi + β(k), 1 ≤ k ≤ n, (2)

and with α(k)
i,j , α

(k)
i , β(k) ∈ R.

Lemma 1. The RN (SG, RG), with SG := {1, . . . , n} and

RG :=
{
i+ j

α
(k)
i,j−−−→ i+ j + k | α(k)

i,j 6= 0
}

∪
{
i
α

(k)
i−−−→ i+ k | α(k)

i 6= 0
}
∪
{
∅ β(k)

−−−→ k | β(k) 6= 0
}
,

has ODEs V̇k = Gk(V), for 1 ≤ k ≤ n.

12

Note that with this encoding r relates to the number of monomials used in the ODEs
(while s is the number of ODE variables). As anticipated in Section 1, Theorem 2 and
Lemma 1 imply that Algorithm 1 gives the coarsest FB and BB partitions of an arbitrary
polynomial ODE system in O(r · s · log s) time and O(r · s) space.

Affine systems. Equation (2) also subsumes the interesting case of affine ODE systems
where G(y) = Cy + d for some C ∈ Rn×n and d ∈ Rn. In this case, Theorem 2 and
Lemma 1 imply that the complexity reduces to O(r · log s) time and O(r + s) space.
Here we consider the problem of computing a solution of a linear system of equations
Ax = b, with A ∈ Rn×n and x, b ∈ Rn. Stationary iterative methods approximate a
solution with updates in the form x(k+1) = F (x(k)) where k is the iteration index and
F is affine. For instance, Jacobi’s method is written as x(k + 1) = −Rx(k) +D−1b,
with x(0) = 0, where D,R are such that D is a diagonal matrix and A = D + R.
Under the assumption of strict diagonal dominance for A, it converges to the solution of
Ax = b (e.g., [14]). We interpret this sequence as a dynamical system, but in discrete
time, and observe that the bisimulations carry over to the discrete time case. We denote
the encoding of the Jacobi iterations by the RN (SA,b, RA,b). Then, the following holds.

Theorem 3. An RN bisimulation H = {H1, . . . ,Hm} on (SA,b, RA,b) induces a re-
duced discrete-time model x̂(k + 1) = Âx̂(k) + b̂, with Â ∈ Rm×m and x̂(k), b̂ ∈ Rm.
If H is an FB then, x̂i(k) =

∑
l∈Hi xl(k) for all 1 ≤ i ≤ m and k ≥ 0. If H is a BB

then, x̂i(k) = xl(k) for all 1 ≤ i ≤ m, l ∈ Hi and k ≥ 0.

Here, Â and b̂ can be obtained by constructing the reduced RN up to FB/BB [11].

Continuous-time Markov chains. Let us fix a CTMC with transition rate matrix Q =
(qi,j)1≤i,j≤n. Then the probability distribution π = (πi)1≤i≤n solves the Kolmogorov
linear ODEs π̇ = πQ.

Lemma 2. LetQ be the transition matrix of a CTMC and (SQ, RQ) be the RN encoding
according to (2) of its Kolmogorov ODEs. Then, H is an ordinarily (resp., exactly)
lumpable partition for Q if and only ifH is an FB (resp., a BB) for (SQ, RQ).

By Theorem 2 and Lemma 1, Algorithm 1 calculates the coarsest ordinarily and exactly
lumpable partitions of Q in O(r · log s) time and O(r + s) space. Thus, we recover the
bounds of Markov-chain specific algorithms [6,7]. We also remark that, in the case of
BB, Lemma 2 recovers a result from [19] using an alternative proof. Finally, it can be
shown that Lemma 2 is still valid if the reactions are encoded via RQ = {i qi,j−−→ j |
qi,j 6= 0}, using one-to-one reactions only. Though not affecting asymptotic complexity,
this reduces memory and time consumption, and thus we will use it in our prototype.

6 Evaluation

We evaluate our algorithm using i) the biochemical networks evaluated in [11] as case
studies for degree-two polynomial systems; ii) Ax = b systems from [15]; and iii)
selected CTMCs from the MRMC distribution [33]. Comparing against the reductions
of [11] and MRMC also allowed us to validate the implementation of our algorithm.

13

Original model FB reduction BB reduction

Id Ref. |R| |S| Red.(s) [11] Red.(s) |R| |S| Red.(s) [11] Red.(s) |R| |S|

Biochemical reaction networks

M1 [22] 3 538 944 262 146 4.61E+4 7.49E+0 990 222 7.65E+4 1.21E+1 2 614 222
M2 [22] 786 432 65 538 1.92E+3 1.58E+0 720 167 3.68E+3 2.51E+0 1 873 167
M3 [22] 172 032 16 386 8.15E+1 2.89E–1 504 122 1.77E+2 6.03E–1 1 305 122
M4 [22] 48 18 1.00E–3 1.00E–3 24 12 2.00E–3 2.00E–3 44 12
M5 [23] 194 054 14 531 3.72E+1 3.88E–1 142 165 10 855 1.32E+3 6.00E–1 91 001 6 634
M6 [24] 187 468 10 734 3.07E+1 6.09E–1 57 508 3 744 2.71E+2 1.40E+0 145 650 5 575
M7 [24] 32 776 2 506 1.26E+0 1.19E–1 16 481 1 281 1.66E+1 2.14E–1 32 776 2 506
M8 [25] 41 233 2 562 1.12E+0 2.69E–1 33 075 1 897 1.89E+1 3.97E–1 41 233 2 562
M9 [25] 5 033 471 1.91E–1 1.60E–2 4 068 345 4.35E–1 2.40E–2 5 033 471

M10 [26] 5 797 796 1.61E–1 1.90E–2 4 210 503 7.37E–1 3.30E–2 5 797 796
M11 [27] 5832 730 3.89E–1 1.50E–2 1296 217 6.00E–1 2.40E–2 237 217
M12 [28] 487 85 2.00E–3 2.00E–3 264 56 6.00E–3 3.00E–3 431 56
M13 [29] 24 18 1.20E–2 4.00E–3 24 18 7.00E–3 4.00E–3 7 3

Affine systems

F1 [15] 10 319 760 1 489 753 9.74E+3 8.70E+2 1 295 514 188 101 — 2.23E+2 10 319 760 1 489 753
F2 [15] 8 814 880 1 270 433 8.86E+2 5.58E+2 1 108 224 160 951 — 1.55E+2 4 420 168 639 509
F3 [15] 2 101 250 525 826 3.71E+2 1.24E+1 526 338 131 842 — 4.79E+1 2 101 250 525 826
F4 [15] 4 706 074 143 572 6.72E+0 6.70E+0 565 288 47 858 — 1.47E+1 2 739 188 112 444
F5 [15] 706 577 116 836 3.23E+0 3.11E+0 609 459 73 423 — 2.86E+0 609 307 73 348

Continuous-time Markov chains

C1 [30] 22 871 849 3 101 445 4.00E+4 2.01E+3 1 069 777 135 752 — 1.34E+3 1 166 931 148 092
C2 [31] 11 583 520 2 373 652 1.73E+2 9.78E+1 5 792 531 1 187 597 — 3.07E+2 5 814 622 1 187 597
C3 [32] 10 485 761 1 048 576 1.48E+1 1.76E+1 3301 792 — 1.23E+1 5083 792

Table 1. FB and BB reductions. Entries labeled with “—” indicate that the reduction algorithm
did not terminate within 24 hours. Greyed out entries indicate no reduction.

The results are presented in Table 1. To ease layout, we label the models with short
identifiers (first column), and refer to the publications in the second column for details.
Headers |R| and |S| give the number of reactions and species of the original and reduced
RNs. Headers “Red. [11]” and “Red.” provide the runtimes of the algorithm considered
in [11] and of the proposed approach, respectively. Measurements were taken on a 2.6
GHz Intel Core i5 machine with 4 GB of RAM. The experiments are replicable using a
prototype available at http://sysma.imtlucca.it/crnreducer/.

Biochemical models (M1–M13). For consistency, we computed the coarsest bisimu-
lations that refine the same initial partitions as specified in [11]. Specifically, for each
RN (S,R), in the case of FB we considered the trivial partition {S} (thus yielding the
largest bisimulation); due to the side condition of BB, in that case the initial partition
was chosen in agreement with the initial conditions — two species are in the same initial
block if their initial conditions, read from the original model specification, are equal
(thus ensuring that the reduction is a lossless simplification of the original one).

We refer to [11] for a description of the models and the biological interpretation of
the bisimulations therein computed. Here, we confirm the same reductions, at a much
improved performance over that of [11]. For the largest model (M1) we registered a
speedup of four orders of magnitude —now all cases can be reduced within seconds.

14

Systems of linear equations (F1–F5). These are encodings of the Jacobi iterative
method to solve large-scale real-world linear systems from the Sparse Matrix Col-
lection [15]. F1–F2 (original names Bourchtein/atmosmodl and Bourchtein/atmosmodd,
respectively) arise from atmospheric modeling; F3 (Wissgott/parabolicFEM) is to be
computed during a finite-element-method solution to a convection-diffusion reaction;
F4 (TTK/engine) comes from a problem in structural mechanics; F5 (IBMEDA/dc1)
arises from the simulation of an electrical circuit. For F1–F4 we verified (in O(r) steps)
that the sparse matrix is strictly diagonal dominant, a known sufficient condition for
the convergence of Jacobi’s method. All cases enjoy significant reductions with either
bisimulation, up to one order of magnitude fewer species and reactions for F1.

In some cases (i.e., F2, F4, and F5) the FB runtimes are comparable to those of [11].
This can be explained by noting that, in the encoding of affine ODEs, the splitting based
on the “labels” cannot yield a significant improvement because the RN has only unary
reactions (hence only one label, ∅). This is not the case in the biochemical benchmarks
M1–M13, which as a matter of fact showed significant runtime differences.

Regarding BB, the algorithm of [11] was not able to compute any BB reduction
within 24 hours. The remarkable performance improvement is due to the novel splitter-
based characterization of BB (Section 3.1), while with [11] it was required to compute, at
each iteration, the equivalence classes for multi-sets of species according to Definition 4.

CTMCs (C1–C3). These are the three largest CTMCs of the MRMC distribution [33],
used in [34] to study the impact of ordinary CTMC lumpability in model checking. In par-
ticular, these are: a protocol for wireless group communication (C1, original model name
FDT3E3 PE16E4 S4OD40); a cluster model (C2, WORKSTATION CLUSTER N256);
and a peer-to-peer protocol (C3. TORRENT N04). The initial partitions for both FB and
BB are consistent with the atomic propositions on the CTMC states.

Being affine ODE systems, the above observations regarding the runtime comparisons
with [11] carry over to these models. Instead, a thorough comparison against MRMC
is difficult because of the different languages were used for the implementation (C
with specialized data structures for sparse matrices for MRMC, vs. Java with plain
data structures from its API in our prototype) and because MRMC is CTMC-specific.
However, MRMC ran one order of magnitude faster and was less memory demanding,
indicating the potential in improving performance in optimized versions of our prototype.

7 Conclusion

The main advantage in aggregating dynamical systems from a chemical reaction network
syntax lies in adapting established and efficient bisimulation algorithms for discrete-
state models. The numerical benchmarks have demonstrated scalability as well as the
effectiveness of exact aggregations in non-synthetic models. Future work will concern the
equivalences and related algorithms to handle higher-degree polynomial nonlinearities.

Acknowledgment

This work was partially supported by the EU project QUANTICOL, 600708. L. Cardelli
is partially funded by a Royal Society Research Professorship.

15

References

1. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics
of rule-based models: Exact and automated model reduction. In: LICS. (2010) 362–381

2. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for rule-based
modeling of signal transduction based on the interactions of molecular domains. Bioinformat-
ics 20 (2004) 3289–3291

3. Dang, T., Guernic, C.L., Maler, O.: Computing reachable states for nonlinear biological
models. TCS 412 (2011) 2095–2107

4. Sassi, M.A.B., Testylier, R., Dang, T., Girard, A.: Reachability analysis of polynomial systems
using linear programming relaxations. In: ATVA. (2012) 137–151

5. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for
probabilistic processes. J. Comput. Syst. Sci. 60 (2000) 187–231

6. Derisavi, S., Hermanns, H., Sanders, W.: Optimal state-space lumping in Markov chains. Inf.
Process. Lett. 87 (2003) 309–315

7. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov Chain lumping. In: TACAS.
(2010) 38–52

8. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal on Computing 16
(1987) 973–989

9. Murray, J.D.: Mathematical Biology I: An Introduction. 3rd edn. Springer (2002)
10. Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal

reactors — I. the deficiency zero and deficiency one theorems. Chemical Engineering Science
42 (1987) 2229 – 2268

11. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimula-
tions for chemical reaction networks. In: CONCUR. (2015) 226–239

12. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Compu-
tation 94 (1991) 1–28

13. Buchholz, P.: Exact and ordinary lumpability in finite markov chains. Journal of Applied
Probability 31 (1994) 59–75

14. Saad, Y.: Iterative Methods for Sparse Linear Systems. 2nd edn. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (2003)

15. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math.
Softw. 38 (2011) 1–25

16. Li, G., Rabitz, H.: A general analysis of exact lumping in chemical kinetics. Chemical
Engineering Science 44 (1989) 1413–1430

17. Toth, J., Li, G., Rabitz, H., Tomlin, A.S.: The effect of lumping and expanding on kinetic
differential equations. SIAM Journal on Applied Mathematics 57 (1997) 1531–1556

18. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for Markovian process algebra. In:
CONCUR. LNCS (2012) 380–394

19. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differ-
ential equivalences. In: POPL. (2016) To appear.

20. Iacobelli, G., Tribastone, M., Vandin, A.: Differential Bisimulation for a Markovian Process
Algebra. In: MFCS. (2015)

21. Hars, V., Toth, J.: On the inverse problem of reaction kinetics. In: Colloquia Mathematica
Societatis Janos Bolyai. (1979)

22. Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and coarse-graining
of biological complexity with NFsim. Nature Methods 8 (2011) 177–183

23. Suderman, R., Deeds, E.J.: Machines vs. ensembles: Effective MAPK signaling through
heterogeneous sets of protein complexes. PLoS Comput Biol 9 (2013) e1003278

16

24. Faeder, J.R., Hlavacek, W.S., Reischl, I., Blinov, M.L., Metzger, H., Redondo, A., Wofsy,
C., Goldstein, B.: Investigation of early events in FcεRI-mediated signaling using a detailed
mathematical model. The Journal of Immunology 170 (2003) 3769–3781

25. Barua, D., Faeder, J.R., Haugh, J.M.: A bipolar clamp mechanism for activation of jak-family
protein tyrosine kinases. PLoS Computational Biology 5 (2009)

26. Barua, D., Hlavacek, W.S.: Modeling the effect of apc truncation on destruction complex
function in colorectal cancer cells. PLoS Comput Biol 9 (2013) e1003217

27. Colvin, J., Monine, M.I., Faeder, J.R., Hlavacek, W.S., Hoff, D.D.V., Posner, R.G.: Simulation
of large-scale rule-based models. Bioinformatics 25 (2009) 910–917

28. Kocieniewski, P., Faeder, J.R., Lipniacki, T.: The interplay of double phosphorylation and
scaffolding in MAPK pathways. Journal of Theoretical Biology 295 (2012) 116–124

29. Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Systems
Biology 8 (2014) 84

30. Massink, M., Katoen, J., Latella, D.: Model checking dependability attributes of wireless
group communication. In: DSN. (2004) 711–720

31. Haverkort, B., Hermanns, H., Katoen, J.P.: On the use of model checking techniques for
dependability evaluation. In: SRDS. (2000) 228–237

32. Kwiatkowska, M.Z., Norman, G., Parker, D.: Symmetry reduction for probabilistic model
checking. In: CAV. (2006) 234–248

33. Katoen, J., Khattri, M., Zapreev, I.: A Markov Reward Model Checker. In: QEST. (2005)
243–244

34. Katoen, J., Kemna, T., Zapreev, I., Jansen, D.: Bisimulation minimisation mostly speeds up
probabilistic model checking. In: TACAS. (2007) 87–101

17

