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Abstract. We present ERODE , a multi-platform tool for the solution and exact
reduction of systems of ordinary differential equations (ODEs). ERODE sup-
ports two recently introduced, complementary, equivalence relations over ODE
variables: forward differential equivalence yields a self-consistent aggregate sys-
tem where each ODE gives the cumulative dynamics of the sum of the original
variables in the respective equivalence class. Backward differential equivalence
identifies variables that have identical solutions whenever starting from the same
initial conditions. As back-end ERODE uses the well-known Z3 SMT solver to
compute the largest equivalence that refines a given initial partition of ODE vari-
ables. In the special case of ODEs with polynomial derivatives of degree at most
two (covering affine systems and elementary chemical reaction networks), it im-
plements a more efficient partition-refinement algorithm in the style of Paige and
Tarjan. ERODE comes with a rich development environment based on the Eclipse
plug-in framework offering: (i) seamless project management; (ii) a fully-featured
text editor; and (iii) importing-exporting capabilities.

1 Introduction

Ordinary differential equations (ODEs) have gained momentum in computer science
due to the interest in formal methods for computational biology [35,14,20] and for their
capability of accurately approximating large-scale Markovian models [24,37,5,40,30].
This has led to a number of results concerning the important, cross-disciplinary, and
longstanding problem of reducing the size of ODE systems (e.g., [32,2,27]) using
techniques such as abstract interpretation [18,13] and bisimulation [39,19,26,9,12].

Our contribution borrows ideas from programming languages and concurrency theory
to recast the ODE reduction problem into finding an appropriate equivalence relation over
ODE variables [9,11,12]. Two equivalence relations are presented in [12] for a class of
nonlinear systems that covers multivariate rational derivatives and minimum/maximum
operators. Forward differential equivalence (FDE) identifies a partition of the ODE
variables for which a self-consistent aggregate ODE system can be provided which
preserves the sums of variables within each block. Variables related by a backward
differential equivalence (BDE) have the same solution whenever initialized equally. The
largest differential equivalence that refines a given input partition is computed via an
SMT encoding, using Z3 [15] as a back-end.

ODEs with derivatives that are multivariate polynomials of degree at most two are
an important sub-class, covering notable models such as affine systems and elementary



chemical reaction networks (CRNs) with mass-action semantics (where each reaction
has at most two reagents). For this class, in [9] we presented the notions of forward
bisimulation (FB) and backward bisimulation (BB). FB is a sufficient condition for
FDE; BB, instead, coincides with BDE for this class of ODEs. The main advantage in
using these bisimulations is that the more expensive, symbolic checks through SMT are
replaced by “syntactic” ones on a reaction network, a finitary structure similar to a CRN
which encodes the ODE system. This has led in [11] to an efficient partition-refinement
algorithm with polynomial space and time complexity. The bisimulations can be seen as
liftings of equivalences and minimization algorithms for continuous-time Markov chains
(CTMCs). Indeed the well-known notions of CTMC ordinary and exact lumpability
[7] correspond to FB and BB, respectively, when the ODEs represent the CTMC’s
Kolmogorov equations; and, in this case, the complexity of our partition-refinement
algorithm collapses to those of the best-performing ones for CTMC minimization [16,42].
As a consequence of this connection, FDE and BDE are not comparable in general.

This paper presents ERODE (https://sysma.imtlucca.it/tools/erode/), a fully-featured
multi-platform tool implementing the reduction techniques from [9,11,12]. The tool
distinguishes itself from the prototypes accompanying [9,11,12] in that: (i) It is not
a command-line prototype but a mature tool with a modern integrated development
environment; (ii) It collects all the techniques of our framework for ODE reduction
in a unified coherent environment; (iii) It offers a language, and an editor, to express
the entire class of ODEs supported by the reduction techniques, while the prototypes
could reduce only CRNs; (iv) It implements an ODE workflow consisting of numerical
solution and graphical visualization of results; (v) It offers importing/exporting facilities
for other formats like biochemical models for the well-known tools BioNetGen [4] and
Microsoft GEC [21], or ODEs defined in MATLAB.

Paper outline. Section 2 reviews the reduction techniques from [9,11,12]; Section 3.1 de-
scribes ERODE ’s architecture, while Section 3.2 details its functionalities by discussing
the components of an ERODE specification. ERODE ’s capabilities are further stated
using a collection of large examples in Section 4. Finally, Section 5 concludes.

2 Theory Overview

The theory behind the techniques implemented in ERODE has been presented in [9,11,12],
while a tutorial-like unifying presentation can be found in [44]. This section provides an
overview that emphasizes relevant aspects for explaining ERODE ’s performance.

Illustrating example. Let us consider an idealized biochemical interaction between
moleculesA andB;A can be in two states, u (unphosphorylated) and p (phosphorylated)
and can bind/unbind with B. This results in a network with five species, denoted by Au,
Ap, B, AuB, and ApB. The dynamics of the system is described in Fig. 1 (a) through a
CRN with six reactions, where r1, r2, r3 and r4, are the kinetic constants. By applying
the well-known law of mass action, each species is associated with one ODE variable
which models the evolution of its concentration as a function of time, with reactions
that fire at a speed proportional to their rate times the concentrations of their reagents.
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Au
r1−→ Ap

Ap
r2−→ Au

Au +B
r3−→ AuB

AuB
r4−→ Au +B

Ap +B
r3−→ ApB

ApB
r4−→ Ap +B

(a)

˙[Au] = −r1[Au] + r2[Ap]− r3[Au][B] + r4[AuB]

˙[Ap] = +r1[Au]− r2[Ap]− r3[Ap][B] + r4[ApB]

˙[B] = −r3[Au][B] + r4[AuB]− r3[Ap][B] + r4[ApB]

˙[AuB] = +r3[Au][B]− r4[AuB]

˙[ApB] = +r3[Ap][B]− r4[ApB]

(b)

Fig. 1: CRN model (a) and underlying ODEs (b) of an idealized biochemical interaction.

For example, Au +B
r3−→ AuB fires at speed r3[Au][B], where [·] denotes the current

concentration of a species. Consequently, this term appears with negative sign in the
ODEs of its reagents (Au and B), and with positive sign in the ODE of its product,
AuB. The resulting ODEs for our sample system are shown in Fig. 1 (b), where the ‘dot’
operator denotes the (time) derivative. The model is completed by an initial condition
which assigns the initial concentration [X](0) to each species X in the network.1

Differential equivalences. It can be shown that {{[Au], [Ap]}, {[B]}, {[AuB], [ApB]}}
is an FDE for our running example. Indeed, exploiting basic properties one can write
self-consistent ODEs for the sums of species in each equivalence class:

˙[Au] + ˙[Ap] = −r3
(
[Au] + [Ap]

)
[B] + r4

(
[AuB] + [ApB]

)
,

˙[B] = −r3
(
[Au] + [Ap]

)
[B] + r4

(
[AuB] + [ApB]

)
, (1)

˙[AuB] + ˙[ApB] = +r3
(
[Au] + [Ap]

)
[B]− r4

(
[AuB] + [ApB]

)
.

By the change of variables [A] = [Au] + [Ap] and [AB] = [AuB] + [ApB], we get:

˙[A]=−r3[A][B] + r4[AB], ˙[B]=−r3[A][B] + r4[AB], ˙[AB]=r3[A][B]− r4[AB]

This quotient ODE model essentially disregards the phosphorilation status of the A
molecule. Setting the initial condition [A](0) = [Au](0) + [Ap](0) and [AB](0) =
[AuB](0) + [ApB](0) yields that the solution satisfies [A](t) = [Au](t) + [Ap](t) and
[AB](t) = [AuB](t) + [ApB](t) at all time points t.

Backward differential equivalence (BDE) equates variables that have the same solu-
tions at all time points, if initialized equally. It can be shown that {{[Au], [Ap]}, {[B]},
{[AuB], [ApB]}} is also a BDE if r1 = r2. In this case, we obtain a quotient ODE by
keeping only one variable (and equation) per equivalence class, say [Au], [B] and [AuB],
and rewriting every occurrence of [Ap] and [ApB] as [Au] and [AuB], respectively:

˙[Au] = −2r1[Au]− r3[Au][B] + r4[AuB]

˙[B] = −2r3[Au][B] + 2r4[AuB]

˙[AuB] = +r3[Au][B]− r4[AuB]

1 Throughout the paper we will work with autonomous ODE systems, which are not dependent
on time. Also, we will use the terms ‘variable’ and ‘species’ interchangeably.
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Both FDE and BDE yield a reduced model that can be exactly related to the original
one. BDE is lossless, because every variable in the same equivalence class has the same
solution, but it is subject to the constraint that variables in the same block be initialized
equally. Instead, with FDE one cannot recover the individual solution of an original
variable in general, but no constraint is imposed on the initial conditions.

Symbolic minimization algorithms. In [12], establishing that a given partition is a
differential equivalence amounts to checking the equality of the functions representing
their derivatives. This is encoded in (quantifier-free) first-order logic formulae over
the nonlinear theory of the reals. The problem is decidable for a large class of ODEs
(and Z3 implements a decision procedure [28]). Such a class is identified by the IDOL
language of [12], covering polynomials of any degree, rational expressions, minima and
maxima. This captures affine systems, CRNs with mass-action or Hill kinetics [45], and
the deterministic fluid semantics of process algebra [24,38].

A partition of ODE variables is a BDE if any assignment with equal values in any
equivalence class has equal derivatives within each equivalence class. Thus, {{[Au], [Ap]},
{[B], [AuB], [ApB]}} is a BDE if and only if the following formula is valid (i.e. true
for all assignments to the real variables [Au], [Ap], [B], [AuB], and [ApB]):

[Au] = [Ap] ∧ [B] = [AuB] = [ApB] =⇒
f[Au] = f[Ap] ∧ f[B] = f[AuB] = f[ApB] (2)

where f[·] stands for the derivative assigned to the corresponding species in Fig. 1 (b).
As usual, the SMT solver will check the satisfiability of its negation.

To automatically find differential equivalences of an ODE model, the SMT checks
are embedded in a partition-refinement algorithm that computes the largest differential
equivalence which refines a given input partition of variables. In particular, a current
partition is refined at each step using the witness returned by the SMT solver, i.e. a
variable assignment that falsifies the hypothesis that the current partition is a differential
equivalence. The algorithm terminates when no witness is found, guaranteeing that the
current partition is a differential equivalence. Let us fix the rates r1 = r2 = 1, r3 = 3
and r4 = 4. Then, {{[Au], [Ap]}, {[B], [AuB], [ApB]}} is not a BDE for our running
example. Indeed, the assignment {[Au] = 1, [Ap] = 1, [B] = 2, [AuB] = 2, [ApB] =
2} is a witness for the negation of Equation 2, since we get f[Au] = 2, f[Ap] = 2, f[B] =
4, f[AuB] = −2 and f[ApB] = −2 under this assignment. This information is then used
to refine the current partition by splitting its blocks into sub-blocks of variables that have
the same computation of derivative, obtaining {{[Au], [Ap]}, {[B]}, {[AuB], [ApB]}}.
No witness can be generated for this partition, ensuring that it is a BDE.

The FDE case is more involved, as discussed in [12]. Considering our running
example, we have that {{[Au], [Ap]}, {[B], [AuB], [ApB]}} is an FDE if and only if

(f[Au]+f[Ap] = f̂[Au]+f̂[Ap])∧(f[B]+f[AuB]+f[ApB] = f̂[B]+f̂[AuB]+f̂[ApB]) (3)

is valid, where each f̂[·] is obtained from the corresponding derivative f[·] by replacing
each variable with the sum of the variables in its block divided by the size of the block.
For example, each occurrence of the term r4[AuB] is replaced by r4

[B]+[AuB]+[AuB]
3 .
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It can be shown that the partition is not an FDE, because a witness falsifying Equation 3
can be found by the SMT solver. However, differently from the BDE case, Equation 3
does not compare single derivatives, but sums of derivatives, hence it cannot be used to
decide how to refine the partition. For this, a “binary” characterization of FDE performs
SMT checks on each pair of species in the same block of a partition to decide if they
have to be split into different sub-blocks.

We remark that the algorithms allow the preservation of user-defined observables.
For instance, a variable of interest can be put in an initial singleton block when reducing
with FDE. Similarly, in order to meet the constraints on BDE, one can build an initial
partition consistent with the initial conditions of the original model (that is, two variables
are in the same initial block if their initial conditions are the same).

Syntax-driven minimisation. A reaction network (RN) differs from an elementary CRN
in that the kinetic constants may be negative. This gives rise to an ODE system with
derivatives that are multivariate polynomials of degree at most two [11]. FB and BB are
equivalence relations over variables/species in the Larsen-Skou style of probabilistic
bisimulation [31]. They are defined in terms of quantities computed by inspecting the
set of reactions [31]. In order to check if a given partition of species H is an FB one
computes the ρ-reaction rate of a species X , and the cumulative ρ-production rate by X
of the species in a block H ∈ H, defined respectively as:

crr[X, ρ] := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α, pr[X,H, ρ] := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α · π(H)

where ρ and π are multisets of species, and ρ(X) and π(H) denote the multiplicity of
X in ρ, and the cumulative multiplicity of species from H in ρ, respectively. We note
that ρ is the reagent partner of X , which can be either ∅ for unary reactions, or a species
for binary ones. Intuitively, crr[X, ρ] quantifies the decrease of X’s concentration
due to reactions where X has partner ρ, while pr[X,H, ρ] quantifies the increase
of its concentration gained by the species in H . In particular, H is an FB if for any
pair of species X , Y in the same block of H it holds that crr[X, ρ] = crr[Y, ρ] and
pr[X,H, ρ] = pr[Y,H, ρ] for all blocks H of H, and all reagent partners ρ. BB is
defined similarly. We refer to [9] for a detailed presentation of FB and BB.

The bisimulation style enabled in [11] the adaptation of Paige and Tarjan’s coarsest
refinement problem [33] to compute the largest FB/BB. This is done by generalizing
algorithms for Markov chain lumping [16,42], obtaining algorithms withO(m ·n · log n)
and O(m · n) time and space complexity, respectively, with m being the number of
monomials appearing in the underlying ODE system, and n the number of ODE variables.

Let us fix r1=1, r2=2, r3=3 and r4=4 in our running example. Then, {{Au, Ap},
{B,AuB,ApB}} is not an FB. The algorithm from [11] proceeds in two steps.

In the first step, crr[X, ρ] is computed for each species X and partner ρ. This infor-
mation is used to refine the input partition, obtaining {{Au}, {Ap}, {B}, {AuB,ApB}}.
The first block is split because we have crr[Au, ∅] = r1 and crr[Au, ∅] = r2. Similarly,
B is singled out because crr[B, ∅] = 0, while crr[AuB, ∅] = crr[ApB, ∅] = r4.

In the second step, the algorithm iteratively refines the current partition by selecting
one of its blocks, Hsp, as a splitter in the current iteration: pr[X,Hsp, ρ] is computed

5



Fig. 2: ERODE ’s Architecture.

for each X and ρ. This can be done efficiently by considering only reactions with
species of Hsp in their products. Let us assume that {Au} is the splitter used in the first
iteration. Only two reactions have Au in their products, leading to the computation of
pr[Ap, {Au}, ∅] = r2 and pr[AuB, {Au}, ∅] = r4. Any other production rate of {Au},
like pr[ApB, {Au}, ∅], has value 0. This information is used to refine the partition,
obtaining {{Au}, {Ap}, {B}, {AuB}, {ApB}}. No further refinement is possible in
the following iterations, hence the partition, which is an FB, is returned.

3 ERODE

ERODE is an application based on the Eclipse framework for Windows, Mac OS and
Linux. It does not require any installation process, and it is available, together with a
manual and sample models, at http://sysma.imtlucca.it/tools/erode.

3.1 Architecture

Figure 2 provides a pictorial representation of the architecture of ERODE . It is organized
in the presentation layer, with the graphical user interface, and the core layer. The
main components of the GUI layer are depicted in the screenshot of ERODE in Fig. 3,
including a fully-featured text editor based on the xText framework which supports
syntax highlighting, content assist, error detection and fix suggestions (top-middle of
Fig. 3). This layer also offers a number of views, including a project explorer to navigate
among different ERODE files (top-left of Fig. 3); an outline to navigate the parts of the
currently open ERODE file (bottom-left of Fig. 3); a plot view to display ODE solutions
(top-right of Fig. 3); and a console view to display diagnostic information like warnings
and model reduction statistics (bottom-right of Fig. 3). Finally, the GUI layer offers a
number of wizards for: (i) updating ERODE to the latest distribution; (ii) creating new
ERODE files and projects; and (iii) importing models provided in third-party languages.
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Fig. 3: A screenshot of ERODE .

The core layer implements the minimization algorithms and related data structures
for FDE, BDE, FB and BB (not detailed here because already addressed in [11,12,44]).
A wrapper to Z3 via Java bindings is included for FDE/BDE reduction. The core layer
also provides functionalities to encode an RN specification in its corresponding explicit
ODE (or IDOL) format, and vice versa, as well as export/import functionalities for
third-party languages. Finally, this layer provides support for numerical ODE solvers,
using the Apache Commons Maths library [3]. When the input is a CRN (i.e. an RN
with only positive rates) it can also be interpreted as a CTMC, following an established
approach [22]. Using the FERN library [17], ERODE features CTMC simulation.

3.2 Language

This section details ERODE ’s features by discussing the parts composing an ERODE
file. We do this referring to the two alternative specification formats of our running
example from Fig. 1, expressed in ERODE in Listings 1 and 2. There are six components
of an ERODE specification: (i) parameter specification; (ii) declaration of variables and
(optional) initial conditions; (iii) initial partition of variables; (iv) ODE system, either in
plain format or as an RN; (v) observables, called views, tracked by the numerical solver;
(vi) commands for ODE numerical solution, reduction, and exporting into other formats.

Parameter specification. An ERODE specification might start with an optional list of
parameters enclosed in the parameters block, each is specified as:

<parameter> = expression

where expression is an arithmetic expression involving parameter names and reals
through the following operators: +, -, *, /, ˆ, abs, min, and max. Parameters can be
used to specify values of initial conditions, kinetic rates, or views.
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begin model ExampleODE
begin parameters
r1 = 1.0
r2 = 2.0
end parameters
begin init
Au = 1.0 Ap = 2.0 B = 3.0
AuB = 0 ApB = 0
end init
begin partition
{Au,Ap}, {AuB}, {B,ApB}
end partition
begin ODE
// C-style comments
d(Au) = -r1*Au + r2*Ap - 3*Au*B + 4*AuB
d(Ap) = r1*Au - r2*Ap - 3*Ap*B + 4*ApB
d(B) = -3*Au*B + 4*AuB - 3*Ap*B + 4*ApB
d(AuB) = 3*Au*B - 4*AuB
d(ApB) = 3*Ap*B - 4*ApB

end ODE
begin views
v1 = Au + Ap
v2 = AuB

end views
reduceBDE(reducedFile="ExampleODE_BDE.ode")
end model

Listing 1: Direct ODE specification.

begin model ExampleRN
begin parameters
r1 = 1.0
r2 = 2.0
end parameters
begin init
Au = 1.0 Ap = 2.0 B = 3.0
AuB ApB
end init
begin partition
{Au,Ap}, {AuB}
end partition
begin reactions
Au -> Ap , r1
Ap -> Au , r2
Au + B -> AuB , 3.0
AuB -> Au + B , 4.0
Ap + B -> ApB , 3.0
ApB -> Ap + B , 4.0
end reactions
begin views
v1 = Au + Ap
v2 = AuB
end views
simulateODE(tEnd=1.0)

end model

Listing 2: Reaction network.

Variable declaration. The mandatory init block defines all ODE variables of the
model, each specified as:

<variable> [= expression]

where expression is an arithmetic expression as above that evaluates to the initial
condition assigned to the variable (defaulting to zero if not specified).

Initial partition of variables. Optionally, a partition of variables can be specified in
the partition block. This can then be used as the initial partition of the partition-
refinement algorithms, as described later. (The user is required to specify only the
partition blocks of interest, while all variables not mentioned explicitly are assigned to
an implicit additional block.) For instance, Listings 1 and 2 represent the same initial
partition {{Au,Ap},{AuB},{B,ApB}}.

ODE Definition. In the direct declaration format (Listing 1) the derivatives are specified
within the ODE block. Each equation is specified as:

d(<variable>) = derivative

where derivative is an arithmetic expression, possibly containing also ODE vari-
ables. This allows to express ODEs belonging to IDOL [12].

In the reaction network format (Listing 2), the ODEs are inferred from reactions of
the form:

reagents -> products, rate
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where reagents and products are two multisets of variables. The multiplicity of
a variable in a multiset can be defined through the + operator or with the * operator
in the obvious way; that is, A + A is equivalent to 2*A. If rate is a variable-free
expression that evaluates to a real number (as in all reactions of Listing 2), then the
reaction represents a dynamics akin to the law of mass action, discussed in Section 2. In
addition, ERODE supports more general arithmetical expressions for rates through the
arbitrary keyword. In this case, the reaction firing rate is explicit. For instance, the
two following reactions are equivalent:

Au + B -> AuB, arbitrary 3.0*Au*B Au + B -> AuB, 3.0

Views. Views are the observations of interest. As for ODEs, each view can be specified
as an arithmetic expression involving variables, parameters and reals. In Listings 1 and 2
the intent is to collect the total concentration of the A-molecules, regardless of their
phosphorylation state (view v1), and the concentration of the species AuB (view v2).

For a CRN specification, views can also contain terms of form var(s1) and
covar(s1,s2), to compute the variance of the variable s1 and the covariance of
s1 and s2, respectively. To do so, ERODE implements the so-called linear noise
approximation (e.g., [6]) to be able to study approximations of higher order moments of
the concentrations of species in a CRN.

ODE Solution. The ODEs can be numerically solved using the command:

simulateODE(tEnd=<value>, steps=<value>, csvFile=<filename>)

It numerically integrates the ODE system starting from the specified initial conditions
up to time point tEnd, interpolating the results at steps equally spaced time points.
Two plots are generated, one for the the trace of each ODE variable and one for the trace
of each specified view, respectively. If the optional argument csvFile is present, the
plots are exported into a comma-separated values format.

Conversion options. An explicit ODE specification can be converted in the RN format
(and vice versa) using

write(fileOut=fileName,format=<ODE|RN|MA-RN>)

If format is set to ODE, then the target file will be in explicit ODE format, while with
RN an RN with possibly arbitrary rates will be generated. If the ERODE input to be
exported is an explicit ODE with derivatives given by multivariate polynomials of degree
at most two, the MA-RN will use the encoding of [11] to output a mass-action RN.

Export to third-party languages. The command:

export<format>(fileOut=fileName)

exports ERODE files into four different target third-party languages:

Matlab : a Matlab function representing an ODE system (extension .m).
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BNG : a CRN generated with the well-established tool BioNetGen version 2.2.5-stable [4]
(extension .net). This is available for CRN specifications only.

LBS : format of the Microsoft’s tool GEC [21] (extension .lbs), available for CRN
specifications only.

SBML : the well-known SBML interchange format (http://sbml.org) (extension .sbml).

Reduction commands. All ODE reduction commands share the common signature

reduce<kind>(prePartition=<NO|IC|USER>, reducedFile=<name>)

where kind can be FDE, BDE, FB, or BB. The ODE input format affects which reduction
options are available. For an ODE system defined directly, only FDE and BDE are
enabled. FB and BB are additionally available for RNs representing polynomial ODE
systems of degree at most two [11]. This is imposed by having reagents multisets of size
at most two in each reaction and restricting to mass-action type rate expressions.

The option prePartition defines the initial partition for the minimization al-
gorithm. The maximal aggregation is obtained with the NO option. If it is set to IC,
the initial partition is built according to the constraints given by the initial conditions:
variables are in the same initial block whenever their initial conditions are equal. If the
option is set to USER, then the partition specified in the partition block will be used.

If reducedFile is present, then a reduced model will be generated according to
the computed partition following the model-to-model transformation from [9] (for FB
and BB) and [12] (for FDE and BDE). This will have the same format as the input, and
will contain one variable for each equivalence class. The name of the variable is given
by the first variable name in that block, according to a lexicographical order.

Considering our running example, no reduction is found running reduceFDE on
Listing 1 if pre-partitioning is set to USER. Instead, when it is set to NO we find the
FDE {{Au, Ap}, {B}, {AuB,ApB}} discussed in Section 2, implying that it is the
maximal one of the model. The output file for the case without pre-partitioning is
provided in Listing 3, which also shows that the association between the original ODE
variables and those in the reduced model is maintained by annotating the output file
with comments alongside the new variables.2 This information can be useful for visually
inspecting the reduced model in order to gain insights into the physical interpretation of
the reduction [9]. Finally, we note that each reduced species has initial concentration
equal to the sum of those in the corresponding block.

In Section 2 we have shown that the partition {{Au, Ap}, {B}, {AuB,ApB}} is
also a BDE provided that r1 = r2. However, this reduction is not found if running
reduceBDE with pre-partitioning set to IC, as it violates the initial conditions for Au
and Ap. Instead, if the pre-partitioning is disabled, then the above partition is the coarsest
refinement, but the user is warned about the inconsistency with the initial conditions.
The BDE reduction without pre-partitioning for r1=r2=1.0 is given in Listing 4. The
initial condition for the ODE of each representative is equal to that of the corresponding
original variable.

2 Here output files have been typographically adjusted to improve presentation.
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begin model ExampleODE_FDE
begin parameters
r1 = 1.0
r2 = 2.0
end parameters
begin init
Au = 1.0 + 2.0
B = 3.0
AuB
end init
begin ODE
d(Au) = - 3*Au*B + 4*AuB
d(B) = - 3*Au*B + 4*AuB
d(AuB) = 3*Au*B - 4*AuB
end ODE
//Comments associated to the species
//Au: Block {Au, Ap}
//B: Block {B}
//AuB: Block {AuB, ApB}
end model

Listing 3: FDE reduction.

begin model ExampleODE_BDE
begin parameters
r1 = 1.0
r2 = 1.0
end parameters
begin init
Au = 1.0
B = 3.0
AuB
end init
begin ODE
d(Au) = - 3*Au*B + 4*AuB
d(B) = - 6*Au*B + 8*AuB
d(AuB) = 3*Au*B - 4*AuB
end ODE
//Comments associated to the species
//Au: Block {Au, Ap}
//B: Block {B}
//AuB: Block {AuB, ApB}
end model

Listing 4: BDE reduction.

begin parameters
r1 = 1.0 r2 = 1.0
end parameters
begin init
Au = 1.0 B = 3.0 AuB
SINK
end init
begin reactions
Au -> 2*Au , r2
Au -> SINK , r1
Au + B -> Au , 3.0
Au + B -> AuB , 3.0
AuB -> Au + B , 4.0
AuB -> B + AuB , 4.0
end reactions
//Comments associated to the species
//Au: Block {Au, Ap}
//B: Block {B}
//AuB: Block {AuB, ApB}

end model

The model of Listing 2 is not reduced
by FB, independently on the pre-partitioning
choice. This is consistent with FB being only
a sufficient condition for FDE (although it is
effective on many meaningful models from
the literature, as discussed in [11]). The re-
sult of the BB reduction is instead provided
in the right inset. As for BDE, we considered
the case r1=1.0 and r2=1.0 without pre-
partitioning. It can be shown that the under-
lying ODEs of the reduced model correspond
to those of Listing 4, as expected. (The place-
holder species SINK is created to rule out re-
actions that have no products.)

4 Evaluation

Prototypal versions of ERODE ’s reduction algorithms have been evaluated in [9,11,12,44]
against a number of models from the literature. The main outcomes of these analyses are:
(i) Our reduction techniques are effective, as we found reductions in many large-scale
models that enjoy substantial speed-ups for the numerical ODE solution [9,11]; (ii) Our
forward and backward notions are not comparable in general, as there are models which
can be reduced by the former but not by the latter, and vice versa [9]; (iii) In some cases,
observables of interest specified by the modeller can be used to automatically generate
initial partitions that lead to forward reductions preserving them [44]; (iv) FDE and BDE
are less efficient than FB and BB, but are more general and lead to better reductions in
the forward case [12]. (v) FB and BB correspond to the notions of ordinary and exact
CTMC lumpability [7], respectively [11]; in particular FB has been validated in [11]
against the ordinary CTMC lumping algorithm [16] implemented in MRMC [29].
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Configuration c FB reduction (s) c BB reduction (s)

|R| |S| Min Avg Max Min Avg Max

1.00E+6 1.00E+5 2.34E+0 2.35E+0 2.38E+0 4.98E+0 5.40E+0 6.17E+0
5.00E+6 5.00E+5 1.95E+1 1.96E+1 1.98E+1 3.91E+1 3.96E+1 3.98E+1
1.00E+7 1.00E+6 3.89E+1 3.91E+1 3.92E+1 9.59E+1 9.77E+1 9.95E+1
1.50E+7 1.50E+6 9.62E+1 9.71E+1 9.86E+1 1.67E+2 1.68E+2 1.69E+2
2.00E+7 2.00E+6 1.58E+2 1.59E+2 1.62E+2 3.30E+2 3.31E+2 3.33E+2
2.50E+7 2.50E+6 3.42E+2 3.46E+2 3.52E+2 8.72E+2 8.92E+2 9.24E+2
3.00E+7 3.00E+6 Out of memory Out of memory

Table 1: FB and BB reductions for random RNs with 30% of binary reactions.

With ERODE we could confirm all these previously reported results. In this section,
we carry out a systematic evaluation of ERODE ’s capabilities in terms of scalability as a
function of: the input model size (Section 4.1), its degree of non-linearity (Section 4.2),
and its degree of aggregability (Section 4.3). For this, we considered a collection of
synthetic benchmarks to be able to gain full control on the model parameters to be
changed for performing these studies.

All experiments were run on a 3.2 GHz Intel Core i5 machine with 16 GB of RAM.
In order to avoid interferences, each single model was tested on a fresh Java Virtual
Machine, with assigned 10 GB of RAM. For each reduction we used initial partitions with
one block only containing all variables. Information on how to replicate the experiments
is available at http://sysma.imtlucca.it/tools/erode/benchmarks.

4.1 Scalability

We begin by studying the scalability of the partition-refinement algorithms in terms of
the model size. Such an assessment has been conducted already in [12] for BDE/FDE,
where it has been shown that BDE can handle models up to 786,432 reactions and 65,538
species, while FDE handled up to 8,620 reactions and 745 species. For larger models Z3
issued out-of-memory errors. Here we confirm these figures when using ERODE .

Instead, to study the scalability of FB and BB, we consider a number of random RNs
underlying degree-two polynomials. The set-up is as follows. First, we fixed 7 different
configurations with increasing number of reactions and species (columns |R| and |S|
of Table 1, respectively). For each configuration, we generated five random RNs, each
having 70% unary reactions in the form A→B, leading to degree-one monomials in the
ODEs for species A and B, and 30% binary reactions in the form A+B→C, leading
to degree-two monomials for A, B, and C. (Here the percentage of binary reactions
was fixed arbitrarily — it will be studied in more detail in the next subsection.) The
species involved in each reaction were sampled uniformly (with re-insertion), while the
kinetic rates were drawn uniformly from the interval [1;10,000]. We ensured that none
of the RNs could be reduced in order to stress the algorithm by forcing it to evaluate the
maximum number of partition-refinement iterations. To reduce noise, the measurements
for each RN were repeated three times, for a total of 15 experiments per configuration.

Table 1 summarizes the results. The columns Min, Avg and Max provide, respectively,
the minimum, average, and maximum reduction times obtained per configuration. FB and
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Percentage of binary reactions

0% 20% 40% 60% 80% 100%

Syntactic reductions |R|=3.50E+6 and |S|=2.50E+5

FFB (s) 6.40E+0 1.31E+1 1.58E+1 2.03E+1 2.18E+1 2.65E+1
FBB (s) 1.51E+1 2.53E+1 3.06E+1 3.61E+1 4.44E+1 4.98E+1

Symbolic reductions |R|=1.50E+3 and |S|=2.50E+2

FDE (s) — 2.81E+2 3.63E+2 4.86E+2 1.06E+3 2.50E+3
BDE (s) 2.87E–1 2.89E–1 2.90E–1 2.92E–1 2.95E–1 2.96E–1

Table 2: Reductions of random elementary RNs with varying ratio of binary reactions.

BB reductions succeeded for models up to 25,000,000 reactions and 2,500,000 species,
requiring about 5 and 15 minutes, respectively. Larger RNs led to out-of-memory errors.
The first and sixth row show that an increment of factor 25 in both the number of species
and reactions leads to about two order of magnitude larger runtimes, consistently with
the algorithms’ complexities (Section 2). Finally, we note that BB reductions were
performed twice as slow as the corresponding FB ones This is consistent with [11],
which shows that for BB the inner loops of the partition-refinement algorithm execute
about twice as many instructions as for FB (see Algorithms 4 and 5 from [11]).

4.2 Degree of Nonlinearity

We now study how the reduction runtimes are affected by the nonlinearity in the model,
here measured as the percentage of monomials of degree greater than one in the ODE.

For FB and BB we fixed a configuration with |R|=3,500,000, and |S|=250,000,
similarly to the largest CRN in [9,11], and considered models with increasing percentage
of binary reactions. For each percentage, we generated five RNs similarly to Section 4.1.
Table 2 gives the reduction runtimes. We note an increase in the runtimes as a function of
the percentage of binary reactions. This is consistent with the time complexity of FB and
BB (Section 2). In fact, RNs with higher ratio of binary reactions have more monomials
in the underlying ODEs (see Section 4.1). However we note that in practice the runtimes
at worst only quadruplicates respect to the linear case (column 0%).

Table 2 also reports the evaluation for FDE/BDE considering RNs of size |R| = 1,500
and |S| = 250. We note that BDE requires much less time than FDE, as expected from
the discussion in Section 2. In addition, we find that the BDE runtimes are essentially
not affected. The same does not hold for FDE: incrementing the percentage of binary
reactions by 20 leads to an increment of factor between 1.3 and 2.3 in the runtimes. The
different impact on the performance of BDE and FDE can be explained by the algebraic
transformations required by FDE to compute the f̂[·] terms shown in Equation (3).
Consider for example a partition H and a species X belonging to a block H of H.
Then, terms of form X2 are substituted with terms of form (

∑
Y ∈H Y )2/|H|2, with an

explosion in the number of monomials appearing in the derivatives. We do not provide the
FDE runtime for the 0% case, because it can be shown that, akin to CTMC lumpability,
partitions with one block only are FDE for RNs with unary reagents and products only.
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FB reduction BB reduction

Sym. Red. (s) Iter. |H| Red. (s) Iter. |H|

9 3.61E+0 223 222 7.60E+0 224 222
8 3.96E+0 663 662 8.12E+0 664 662
7 4.18E+0 1,923 1,922 8.63E+0 1,924 1,922
6 4.51E+0 5,379 5,378 8.73E+0 5,380 5,378
5 4.51E+0 14,339 14,338 8.77E+0 14,340 14,338
4 4.71E+0 35,849 35,842 8.97E+0 35,844 35,842
3 5.29E+0 81,959 81,922 9.58E+0 81,924 81,922
2 5.56E+0 163,910 163,842 9.71E+0 163,845 163,842
0 6.29E+0 262,147 262,146 1.12E+1 262,157 262,146

(a) 9 binding sites, |R|=3,538,944, |S|=262,146

FDE reduction BDE reduction

Sym. Red.(s) Iter. |H| Red.(s) Iter. |H|

4 1.39E+2 13,284 37 4.10E–1 42 37
3 2.66E+2 38,355 82 6.00E–1 81 82
2 3.52E+2 50,517 162 7.75E–1 113 162
0 2.54E+2 37,022 258 2.22E–1 9 258

(b) 4 binding sites, |R|=1,536, |S|=258
Table 3: Reductions for variants of M1 of [9,11] by decreasing binding sites’ symmetries.

We further study the behavior of FDE/BDE as a function of the maximum de-
gree of the polynomials. For this, we constructed RNs with 60% unary reactions and
40% n-ary reactions (leading to degree n monomials in the underlying ODEs), with
n = 20, 40, 60, 80, 100. The RNs have size |R|=1,500, |S|=250, as in the last rows of
Table 2. The runtimes, averaged over 5 random RNs, are given in the bottom inset. The
BDE runtime for n = 20 is five times that of the corresponding one for degree-two
polynomials (third column of Table 2), and it further increases of factor 20 for n = 100.

Maximum degree of the polynomial n

20 40 60 80 100
BDE (s) 1.46E+0 8.30E+0 9.881E+0 1.42E+1 3.34E+1
FDE (s) 7.00E+2 2.00E+3 – “unknown” –

FDE succeeded for up to n = 40, despite
the discussed highly demanding algebraic
manipulations required, while Z3 returned
“unknown” for larger values of n, suggest-
ing an out of memory error.

4.3 Number of Iterations vs Runtime

Finally, we study how the number of performed iterations of the partition-refinement
algorithms affects the runtime. For FB and BB this is done using variants of model M1
of [9,11], with 3,538,944 reactions and 262,146 species. It is the largest of a family of
synthetic benchmarks used in [36] to study the scalability of a network-free simulator
for CRNs. It models an idealized binding/unbiding interaction between two molecules,
A and B, which can take place through A’s nine binding sites. Symmetries in the model
are introduced through the assumption that such binding sites are equivalent, in the sense
that the rate of binding/unbinding does not depend on the identity of the binding site.

Table 3 (a) studies increasingly less symmetric variants of the model, obtained by
changing the binding/unbinding rates of each site; the first column shows the number of
equivalent sites in the model. The columns Red. provide the runtimes of our algorithms.
Columns Iter. and |H| show the number of iterations performed and the blocks for the
coarsest partitions obtained. Decreasing the number of symmetric binding sites by one
leads to an increment of factor between 2 and 3 in the number of iterations and blocks
in the partitions. Instead, the runtime increases only slightly: the number of iterations
between the first and the last experiment are separated by three orders of magnitude
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while their respective runtimes at most only double for both FB and BB. This can be
explained by the fact that, at each iteration, one block of the current partition is chosen
as a potential splitter. Therefore only the reactions that have species belonging to the
splitter in their products will be inspected. As a result, the smaller is the current splitter,
the fewer reactions are scanned in the iteration. More importantly, as discussed in detail
in [11], the FB/BB algorithms follow Paige and Tarjan’s approach of ignoring the largest
sub-part [33]. This means that, whenever a block is split, one of its sub-blocks with
maximal size will not be further used as splitter. This guarantees that each species will
appear in at most log |S| splitters, with S being the species in the model.

Table 3 (b) reports a similar analysis for FDE and BDE. We use a simplification of
M1 where A has only four binding sites, obtaining 1,536 reactions and 258 species, to
which both FDE and BDE can be successfully applied. The table has the same structure
of Table 3 (a), however here Iter. counts the number of performed SMT checks. The
table also shows that our symbolic algorithms are strongly affected by the number of
performed iterations: the nature of the FDE/BDE algorithms does not allow for advanced
optimizations like those discussed for FB/BB. Lastly, it is interesting to note that the
number of necessary iterations decreases in the case when no reduction is found (last
row of Table 3 (b)). Here, the computation of the largest BDE required nine SMT checks:
the SMT solver was able to split the initial block in 250 blocks in the first iteration,
then one new block has been created in the following eight iterations until reaching the
final partition with one block per species. For FDE, instead, 37,022 SMT checks were
necessary. We note that this is relatively close to the number of binary comparisons
among 258 elements, i.e.

(
258
2

)
= 33153, as expected from the discussion in Section 2.

5 Conclusion

We presented ERODE , a tool for the analysis and reduction of ODEs. The main novelty
is in the implementation of partition-refinement algorithms that compute the largest
equivalence over ODE variables that refine an initial partition, using both syntactic
criteria as well as symbolic SMT ones. However, currently ERODE does not support
algorithms required when the modeler is interested in equivalences that satisfy constraints
that are not expressible as initial partitions. An example is the notion of emulation used
for model comparison between two CRNs [8], where each BDE partition block must
contain at least one species of the source CRN, and exactly one of the target. We plan to
integrate ERODE with the algorithm for computing all the BDEs of a CRN from [10].

ERODE is concerned with exact aggregations. These may be too strong in some cases,
as small perturbations in the parameters might prevent reductions for ODE variables
with nearby trajectories in practice. This motivated the development of approximate
notions of equivalence [34,1,43,23]. Preliminary work is treated in [25,41]. However
these approaches lack an algorithm for automatic reduction, and they provide error
bounds that tend to grow fast with time. In the future we aim at tackling these two issues.
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