

1/8

Distributed Applications in a
Hypermedia Setting

Krishna BHARAT

Graphics, Visualization & Usability Center
Georgia Institute of Technology
Atlanta, GA 30332, USA
Email: kb@cc.gatech.edu

Luca CARDELLI

Digital, Systems Research Center
130 Lytton Avenue
Palo Alto, CA 94301, USA
Email: luca@src.dec.com

ABSTRACT

This paper addresses the issues involved in embedding distributed applications in a
hypermedia web. In particular, we describe how applications generated in the
Visual Obliq programming environment were integrated with the World Wide
Web. We validate our design decisions by addressing pragmatic issues relating to
the authoring process, security, heterogeneity, and response time, and by analyzing
the activities involved in launching and joining a distributed session.

1. INTRODUCTION

Hypermedia creates a pseudo-world where interconnected documents may be
shared by a community of users. Recently, our view of what constitutes a docu-
ment has broadened to include more than traditional “passive” media-types. Much
of the recent interest in the World Wide Web [Berners-Lee 92] has been fueled by
its potential for embedding online services. Already, interactive forms for issuing
queries and sending messages, and “electronic cash” mechanisms for paying for
services, are becoming available in hypermedia documents.

In collaborative work, multi-user applications create “sessions” that are micro-
cosms in their own right. Each session is comprised of users, possibly in different
parts of the world, who sporadically communicate and exchange information. It
would only seem natural to merge the micro-worlds formed by individual multi-
user sessions into the larger context of a hypermedia web.

This document was created with FrameMaker 4.0.4

2/8

In this paper we show how the four major activities required to support multi-user
sessions, namely:

• Finding out what applications are available,

• Starting an application, and hence launching a session,

• Making a session publicly known, and

• Joining a session,

may

all

 be mapped to actions performed on a hypermedia web. Specifically, we
show how the Visual Obliq distributed environment (described in [Bharat 94]) was
integrated with the World Wide Web (often known as just “the web”).

Figure 1: The LunchPlans application deployed from within NCSA’s Mosaic

In the resulting environment, the user is first presented with a web document (usu-
ally called a “page”), which lists a set of applications in Visual Obliq. Each appli-
cation-name is highlighted to show that it is “active.” As shown in Figure 1, when
the user clicks on an application’s name (e.g. LunchPlans), its code will be brought
over and run locally.

3/8

The code that is retrieved from the web is executed on the user’s machine, in a

safe

manner; safe in the sense that the application will be prevented from doing any-
thing malicious or indiscreet in the user’s environment. If it is a multi-user applica-
tion, this action implicitly creates a session, which is automatically registered with
the web. Specifically, the organization that made the application available main-
tains a dynamic list of sessions under way and the participants in each session.

Users who wish to join ongoing sessions can access a corresponding “Sessions
Listing” document, which gets created on the fly and lists all sessions that are
active at that time. As before, names in the listing have active links. Clicking on a
session-name will bring over code that will connect the user to the session. Again,
this will happen in a safe fashion.

It must be noted that the hypermedia environment merely acts as a mediator; it pro-
vides access to applications and connects users to sessions but does not get
involved in the sessions themselves. Once a session is established, the different
parties in the session no longer need the hypermedia environment to communicate.

2. VISUAL OBLIQ

Visual Obliq [Bharat 94] is an environment for designing, programming and run-
ning distributed, multi-user GUI applications. It consists of an interface builder for
interactively constructing the application, and run-time support to handle the distri-
bution. The interface builder was designed on the lines of Microsoft’s Visual Basic,
but specifically for distributed applications, and provides an integrated ‘draw-pro-
gram-and-go’ solution. Moderately sophisticated distributed applications can be
designed, programmed and tested in a matter of minutes. The video [Bharat 95]
demonstrates the interactive construction of a multi-user editor with floor control,
in under seven minutes.

The Visual Obliq interface builder outputs code in an interpreted language called
Obliq [Cardelli 95], which inherently supports distributed computing. When a
Visual Obliq application is started by the user at some site, it creates a “session.”
Other sites can join the session by acquiring a reference to the session called a
“session-handle.” They do not require the application program code. Once they
connect to the session using the handle, the necessary procedures will be shipped
to them over the network from the site that started the session.

There are many ways that a prospective participant may acquire a session-handle.
One way is for the participant to use the names of the application, and the host
where it was launched, to compute where the handle is stored. This address is then
used to explicitly “import” the handle. This is the technique that we employ here.

3. IMPLEMENTATION

In the World Wide Web, organizations run servers to make their documents avail-
able over the network, while users run clients to fetch and display web documents.
The clients and servers talk a protocol called HTTP. In our implementation we
changed neither the server nor the client nor the protocol. Instead we used the
extension mechanisms provided at the server and client ends to register the soft-
ware support needed.

4/8

3.1 Document Provider’s Perspective - Server Side

Any self-contained Visual Obliq application can be placed on the web. The inter-
face builder is able bundle all its program code into a single file, suitable for trans-
mission over the wire as a web document.

There are two kinds of hyperlinks in the web:

•

Direct links

, that cause the server to fetch the specified documents directly, and

•

Indirect links

, that cause the server to hand off the task of fetching documents to
specialized programs called gateways.

Our server side extension was through a gateway program called “VO-Gateway,”
with the following duties to perform:

• When the user clicks on an indirect link

to an

 application

, VO-Gateway is
invoked with the command

get-application

 and the application-name as
an argument. It then ships the text of the application as a document, having
attached to it a MIME header, to give the document a type. The header shows
that it is a Visual Obliq application. Further, if it is a distributed application, the
gateway records the fact that a session has been started.

• When the user clicks on a indirect link

to a

 sessions-listing,

 the gateway is
invoked with the command

get-listing

, and communicates with each ses-
sion on record to check if it is still alive. Finally it returns a document listing the
names of sessions that are presently active, with links to the sessions.

• When the user clicks on a indirect link

to a

session

, VO-Gateway is invoked with
the command

join-session

and the session-name as argument. This causes
it to generate Obliq code that will connect the client site to the session by
importing the session-handle. As before the code is given a MIME header to
show that it is a Visual Obliq application and shipped to the client.

Figure 2: Web structure at the document provider’s server. Indirect links and dynami-
cally created documents are shown in gray. Each indirect link points to the
document that is eventually returned by the VO-Gateway. Typical document
sizes are shown to give an idea of relative access times. The icons labeled
‘VO’ represent Visual Obliq programs, augmented with a MIME header.

Applications

SessionsApplications

App1
App2
LunchPlans
...

get-application

VO

(LunchPlans.vobl)

Sessions

LunchPlans@ash
...

get-listing()

LunchPlans.vobl 38K

VO

join_LunchPlans.vobl 1K

join-session(LunchPlans)

5/8

Figure 3: Bird’s eye view of a distributed session

3.2 End User’s Perspective - Client Side

At the client end, it is possible to register “viewers” to display documents with
media types the WWW client is not able to display. For instance postscript docu-
ments may get handed off to a postscript viewer. For our purpose, we bound the
MIME type corresponding to Visual Obliq applications to a “Safe” Visual Obliq
interpreter. When the application program is received over HTTP, it is immediately
channeled to the interpreter, and gets executed on the client’s machine as if it were
locally resident.

The Safe Visual Obliq Interpreter is a special-purpose Obliq interpreter used to
interpret the applications that come over the network. In Obliq, all unsafe opera-
tions are readily identified by the fact that they require the use of “access” handles
to system resources. This interpreter is considered safe because it conservatively
screens all unsafe operations based on their arguments. As guidance it uses a user-
specific configuration file containing regular expressions that specify which opera-
tions are to be allowed and which are to be blocked. Operations that are allowed by
the configuration file are executed in the regular manner. When a blocked opera-
tion is encountered, the interpreter notifies the user that the program is attempting
something illegal and aborts the application. When an unsafe operation falls in nei-
ther category, which is the default case when no preferences have been specified,
the interpreter rewrites the operation in a human intelligible form, and pops up a
notice to ask the user if it should be allowed to go through.

4. Design Rationale

The implementation that we have described supports well the four activities
needed to launch and maintain distributed sessions (listed in Section 1). In each
case, a single click on a web page is all that is required.

WWW Server

VO - Gateway

LunchPlans Sessions

Safe VO
Interpreter

LunchPlans@ash

ash oak

John clicks on
an application
link.

He starts a
session called

Susan clicks on a
sessions-listing
link...

...and then on a
session-link.

LunchPlans@ash.

She joins
John’s
session.

Obliq code Obliq codeHTML document

WWW
Browser Safe VO

Interpreter

Applications Listing Sessions Listing
Link to

Sessions Listing

6/8

We now evaluate our design on the basis of several other pragmatic considerations:

•

Resonse Time

 - The response time for clicking on each of the three types of indi-
rect links (application, session-listing and session) is increased by the time
required to invoke the VO-Gateway program. This adds about 5 seconds to the
time required to retrieve the document. The code size of average Visual Obliq
programs (38K for

LunchPlans.vobl

 and less than 1K for the code to join

LunchPlans

) is of the same order as normal web documents. However, users
are willing to tolerate much larger response times when launching an application
(especially when it is remotely accessed), than when downloading passive docu-
ments. In the case of application and session links, there is the added overhead
of starting the Visual Obliq interpreter at the client end, to parse and execute the
incoming application, which is again a function of the size of the program. In the
case of LunchPlans, the overall retrieval and launch time is around 40 seconds.
This compares favourably with the several minutes needed to download, uncom-
press and possibly compile applications using conventional means. Other inter-
preted languages such as Perl and TCL have gained popularity on the web for
the same reason. We are planning to precompile Obliq programs to byte-code to
save the interpreter parsing time, thereby further reducing the response time.

•

Security

 - Whenever executable code comes from outside the local environment,
it poses a threat to security and privacy. Nonetheless, users frequently download
and run “shareware” and other forms of code to be found in public repositories.
Distributed applications, which are guaranteed to be “network friendly,” pose a
larger threat than usual. Whenever an attack is mounted, it involves access to
basic system resources such as the disk, operating system, network or the dis-
play. Regulating access to these resources is a reliable way to enforce security.
Interpreted languages are attractive in this respect because interpreters provide
the control needed to regulate access robustly. In Section 3.2 we described how
the Safe Visual Obliq interpreter solves this problem. Other interpreted environ-
ments have similar “safe” interpreters. Currently we only regulate access to the
disk and the operating system, and so our system does not guarantee privacy
within the session. We are in the process of moving our implementation to a
more “secure” transport layer, with encryption, to solve this very problem. It is
worth noting that the restrictions we impose on incoming programs are not
unreasonable, since such applications, which “come over the wire,” are expected
to bring whatever resources they need with them, and should make minimal
assumptions about the system resources at the client end. Notice that we use
HTTP only to connect users to the session. All communication within the ses-
sion may be conducted over safe, encrypted channels.

•

Heterogeneity / Interoperability

 - Distributed applications are more demanding
than others because they need to be run on multiple architectures and interoper-
ate. The SRC Modula-3 distribution provides Visual Obliq interpreters on
numerous platforms, which are intended to interoperate. A more subtle cause of
interoperability is version mismatch. It is important that all parties in a distrib-
uted session make use of the same version of the application. Fortunately, in our
scheme, the application is downloaded from the site where it is maintained,
every time the session is started. Other users get their code directly from the ini-
tiator of the session. Hence incompatabilities are eliminated. This design elimi-

7/8

nates the inertia that prevents distributed applications from being frequently
upgraded. To appreciate the advantage of this, consider for instance, the com-
mon UNIX

talk

 facility. Although it is easy to suggest ways in which the t

alk

protocol may be improved, it is extremely difficult to make any changes,
because that would require changing implementations all over the world!

•

Ease of Authoring

- There are two aspects to authoring. First, the distributed
application itself needs to be created. In [Bharat 94] and [Bharat 95], we illus-
trate how the Visual Obliq programming environment simplifies this process.
Secondly, the application needs to be made publicly available over a hypermedia
protocol such as HTTP. Figure 2 shows how this may be done in the context of
the World Wide Web. To make an application available (e.g.

Lunch-
Plans.vobl

), all that is needed is an indirect link of the form

get-appli-
cation(LunchPlans.vobl)

. Similarly, a

get-listing()

 link will
make session listings available.

•

Ease of Use

 - Users do not need a modified WWW browser to run sessions. All
they need to do is modify their environment to register the Safe Visual Obliq
interpreter as the default viewer for the MIME type corresponding to Visual
Obliq applications. Also, to avoid being interrupted frequently, they need to set
up a configuration file that specifies how unsafe operations are to be treated.
Typically, this will be copied from a prototype created by the system administra-
tor.

•

Robustness

 - The designers of the World Wide Web took care to separate gate-
ways from the server and viewers from the client, so that errors in documents do
not cause the system to crash. Consequently, the distributed session cannot bring
down a web server or client. If the server crashes on its own accord, it will still
be able to link new users to the session upon restarting, since the sessions regis-
try is persistent.

5. CONCLUSION

We believe that hypermedia is a natural environment to embed multi-user sessions.
Groupware applications have traditionally implemented their own session creation
and listing facility. With the increasing popularity of the World Wide Web, it seems
like a more suitable location for such services. The web’s HTTP protocol is able to
subsume the communication needed to initiate, advertise and connect users to ses-
sions. In this paper, having motivated the need for embedding distributed applica-
tions in a hypermedia web, we have shown how this may be done in practice, and
listed many of the attractive features of our design.

6. REFERENCES

[Berners-Lee 92] Berners-Lee T., Cailliau R., Groff J., and Pollermann B.,
“World-Wide Web: The Information Universe”,

Electronic Net-
working: Research, Applications and Policy, Vol. 2(1)

, pp. 52-58,
1992, Meckler Publishing, Westport, CT, USA

8/8

[Bharat 94] Bharat K., and Brown Marc H., “Building Distributed Multi-
User Applications By Direct Manipulation”,

Proc. ACM Sympo-
sium on User Interfaces Software and Technology

, Marina Del
Ray, CA, Nov 1994, pp. 71-82.

[Bharat 95] Bharat K., and Brown Marc H., “Building A Distributed Appli-
cation Using Visual Obliq”, To appear in

 CHI ‘95, Video Pro-
ceedings

.

[Cardelli 95] Cardelli L., “A Language with Distributed Scope”,

Proc. of the
22nd Annual ACM Symposium on Principles of Programming
Languages

, Jan 1995, pp. 286-297.

