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Abstract

We introduce a rich language of descriptions for semistruc-
tured tree-like data, and we explain how such descriptions re-
late to the data they describe. Various query languages and
data schemas can be based on such descriptions.

1  Introduction

1.1  Trees and their Descriptions
We consider data that is represented as labeled trees, and we
ask: how can we describe the structure of such data? We use
descriptions (or, more precisely, formulas in a special logic)
to talk about properties of labeled trees. A description denotes
the collection of trees that, by a precise definition, match the
description. 

A description can be used as a yes/no query against la-
beled trees: “Does the tree under consideration match the de-
scription?”. With some extensions, a description can be used
as a query returning a complex result. Hence, description lan-
guages can be seen as kernels of query languages. Some spe-
cial classes of descriptions can be used as path queries, or as
flexible type systems (schemas) for the data.

We aim to find a very general class of descriptions, so we
can accommodate a large class of actual or potential schema
languages and query languages. Most of all, though, we aim
to communicate an approach to formalizing descriptions that
can be adapted to different contexts. The presentation here is
introductory and not completely formal; we refer to other
work for full details [11].

We consider only labeled trees, not labeled graphs. La-
beled trees are closer to common practice in XML, while la-
beled graphs are the more general model used for
semistructured data. While graphs are natural generalizations
of trees, descriptions of graphs are much more complex than
descriptions of trees. So, for the moment at least, we just re-
strict ourselves to trees.

We want both our data and our descriptions to be compo-
sitional: if � is a description of a tree, and � is a description

of another tree, then a simple composition (e.g., root-merge)
of the trees should correspond to a simple composition of �
and �. Note that this means that we are not just interested in
describing paths through a tree, but also in describing how
trees branch out. 

Our syntax for labeled trees, and a small but important
fragment of our description language, are summarized below:

The description T describes any tree. The description 0 de-
scribes the empty tree (consisting of just a root node). The de-
scription n[�] describes a tree consisting of a single edge
labeled n off the root, leading to a subtree described by �.
The description � | � describes any tree that can be seen as
the root-merge of two trees that are described by ��and �.

1.2  Historical Remarks
This work arose originally from the observation that the areas
of semistructured databases [4] and mobile computation [9]
have some surprising similarities at the technical level. These
areas are inspired by the need to find better ways to describe,
respectively, data and computation on the Internet. The tech-
nical similarities permit the transfer of some techniques be-
tween the two areas. More interestingly, if we can take
advantage of the similarities and generalize them, we may ob-
tain a broader model of data and computation on the Internet.

The ultimate source of similarities is the fact that both ar-
eas have to deal with extreme dynamicity of data and behav-
ior. In semistructured databases, one cannot rely on unifor-
mity of structure, because data may come from heteroge-
neous and uncoordinated sources. Still, it is necessary to per-
form searches based on whatever uniformity one can find in
the data. In mobile computation, one cannot rely on uniformi-
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Syntax for Trees
P, Q ::=

0
n[P]
P | Q

root
edge
composition

Basic Descriptions
�, � ::=

T
0
n[�]
� | �

there is anything
there is only a root
there is one edge n to a subtree
there are two joined trees
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ty of structure because agents, devices, and networks can dy-
namically connect, move around, become inaccessible, or
crash. Still, it is necessary to perform computations based on
whatever resources and connections are available on the net-
work.

As examples of the potential convergence of these two ar-
eas, consider the following arguments. First, one can regard
data structures stored inside network nodes as a natural exten-
sion of network structures, since on a large time/space scale
both networks and data are semistructured and dynamic.
Therefore, one can think of applying the same navigational
and code mobility techniques uniformly to networks and data.
Second, since networks and their resources are semistruc-
tured, one can think of applying semistructured database
searches to the network structure. This is a well-known major
problem in distributed computation, going under the name of
resource discovery. 

2  Labeled Trees
We begin with a simple syntax for semistructured data. 

• 0 represents the tree consisting of a single root node.

• n[P] represents a tree consisting of a single edge labeled
n off the root, leading to a subtree represented by P.

• P | Q represents the tree obtained by taking the trees rep-
resented by P and by Q, and by merging their roots.

For example, the following piece of data:

Cambridge[Eagle[chair[0] | chair[0]]]

represents: “in Cambridge there is (nothing but) a pub called
the Eagle that contains (nothing but) two empty chairs”. 

We consider here a commutative composition operation
P | Q, for unordered trees. However, it is easy to consider a
non commutative operation, say P ; Q, for ordered trees, that
can replace or be added to P | Q. This may be necessary, for
example, to model certain XML trees more precisely and
conveniently.

The description of trees in the syntax given above is not
unique. For example the expressions P | Q and Q | P represent
the same (unordered) tree; similarly, the expressions 0 | P and
P represent the same tree. We consider two expressions P and
Q equivalent when they represent the same tree, and we write
P � Q. The relation P � Q is an equivalence and a congruence
(i.e., equals can be replaced by equals in any syntactic con-
text). Moreover, the following simple properties hold:

P | Q � Q | P
(P | Q) | R � P | (Q | R)
P | 0 � P

3  Descriptions
As an example, here is a description asserting that there is ex-
actly one edge labeled Cambridge, leading to at least one
edge labeled Eagle, leading to least one edge labeled chair,
leading to nothing:

Cambridge[Eagle[chair[0] | T] | T]

This assertion happens to be true of the tree shown earlier. In
general, our descriptions include both assertions about trees,
such as the one above, and standard logical connectives for
composing assertions.

The exact meaning of descriptions is given by a satisfac-
tion relation relating a tree with a description. The term sat-
isfaction comes from logic; for reasons that will become
apparent shortly, we will also call this concept matching. The
basic question we consider is: does this tree match this de-
scription?

The satisfaction/matching relation between a tree P (actu-
ally, an expression P representing a tree) and a description �
is written, for the purposes of this paper:

P matches �

Informally, the matching relation can be described as follows,
where at the same time we introduce the syntax of descrip-
tions and their meaning. It is important to realize that a de-
scriptions states a property that holds at a certain place in the
tree: a top-level description talks about a tree from its root,
and a sub-description may talk about a part of the whole tree.

• Invariance

if P matches ��and P ��Q
then Q matches �

• T: anything

any P matches T

• ¬�: negation

if P does not match �
then P matches ¬�

• � ∧ �: conjunction

if P matches ��and P matches �
then P matches � ∧ �

• 0: root

0 (the tree expression) matches 0 (the description) 

• n[�]: edge

if P matches ��

then n[P] matches n[�]

Syntax for Trees
P, Q ::=

0
n[P]
P | Q

root
edge
composition
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• � | �: composition

if P matches ��and Q matches �
then P | Q matches � | �

• �x.�: universal quantification

if, for all labels n, P matches �{x←n}
(i.e., � where x is replaced by n)
then P matches �x.�

• µX.�: least fixpoint (with X occurring positively in �)

if P is contained in the least fixpoint of the 
function λX.�, taken over the collection 
of sets of labeled trees ordered by inclusion,
then P matches µX.�

Many useful derived connectives can be defined from the
ones above. For example:
Derived Connectives

• Many operators are derived as standard DeMorgan duals:
disjunction, existential quantification, and the everywhere
modality.

• Decomposition, � || �, is the DeMorgan dual of compo-
sition. A decomposition description � || � is satisfied if
for every parallel decomposition of the tree in question,
either one component satisfies � or the other satisfies �. 

• Then, �� means that in every decomposition either one
component satisfies � or the other satisfies F (� ¬T);
since the latter is impossible, in every possible decompo-
sition one component must satisfy �. For example:
(n[T]�n[m[T]])� means that every edge n that can be
found off the root leads to a single edge m. The DeMorgan
dual of �� is ��, which means that it is possible to find a
decomposition where one component satisfies �. For ex-
ample, n[m[T]�]� means that there is at least one edge n
that leads to at least one edge m.

• Normal Implication: ��� � � ¬��∨ �. This is the
standard definition of implication. Note that this means

that P matches ��� � if whenever P matches � then the
same P matches �. As examples, consider Borders[T] �
Borders[Starbucks[T] | T], stating that a Borders book-
store must contain a Starbucks shop, and (NonSmoker[T]
| T) � (Smoker[T] | T), stating that if there is a non-smok-
er, there is also a smoker nearby (the tree P must be com-
posed of both a smoker and a non-smoker).

• Parallel Implication: � |� � � ¬(� | ¬�). This
means, by definition, that it is not possible to split the root
of the current tree in such a way that one part satisfies �
and the other does not satisfy �. In other words, every
way we split the root of the current tree, if one part satis-
fies �, then the other part must satisfy �. For example,
NonSmoker[T] |� (Smoker[T] | T) is a slightly more
compact formulation of the property of nonsmokers given
above.

• Nested Implication: n[��] � ¬n[¬�]. This means, by
definition, that it is not possible that an edge n leads to a
tree that does not satisfy �. In other words, if there is an
edge n, it leads to a tree that satisfies �. For example: Bor-
ders[�Starbucks[T] | T] is, again, a slightly more com-
pact formulation of the property of Borders given above.

• Greatest Fixpoint: The dual of the least fixpoint operator
µX.� is the greatest fixpoint operator νX.�. For example
µX.X is equivalent to F, while νX.X is equivalent to T.
More interestingly, µX. 0 ∨ m[X] describes every tree of
the form m[m[... m[0]]], and, on finite trees, it is equiva-
lent to νX. 0 ∨ m[X]. However, if we consider infinite
trees, the distinction between least and greatest fixpoint
becomes more important. For example, the infinite tree
m[m[...]] satisfies νX. 0 ∨ m[X], but does not satisfy µX. 0
∨ m[X]. When we consider only finite trees, as we do here,
the µ and ν operators are quite similar in practice, since
most interesting descriptions have a single fixpoint.

• Somewhere. A tree P satisfies �� if there is a subtree Q
of P that satisfies �. This is defined by a recursive de-
scription.

• Everywhere: �� � ¬�¬�. What is true everywhere?
Not much, unless we qualify a property by negation or im-
plication. For example, �¬(n[T]�) means that there is no
edge called n anywhere. Moreover, we can write �(� �
�) to mean that everywhere ��is true, � is true as well.
For example, �(NonSmoker[T] |� (Smoker[T] | T)): ev-
erywhere there is a non-smoker there is also a smoker.

4  Equivalent Descriptions
A precise semantics of descriptions helps in deriving equiva-
lences between descriptions (and, further, between queries)
[11]. Many such equivalences can be derived; we list some of
them here, just to give an idea of the rich collection of prop-
erties one can rely on. Equivalences can be used by a query
optimizer; in particular, they can be used to push negation to
the leaves of a description, by dualizing operators.

F � ¬T
� ∨ � � ¬(¬� ∧ ¬�)

false
disjunction

� � � � ¬� ∨ � implication
� ⇔ � � (� � �) 

∧ (� � �)
logical equivalence

�x.� � ¬�x.¬�

� || � � ¬(¬� | ¬�)
�� � � || F
�� � � | T

existential quantification
decomposition
every part matches �
some part matches �

�� � µX. � ∨ �x. x[X] | T
�� � ¬�¬�

somewhere � holds
everywhere � holds

� |� � � ¬(� | ¬�)
n[��] � ¬n[¬�]
νX.� � ¬(µX.¬�{X←¬X})

parallel implication
nested implication
greatest fixpoint
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Equivalent Descriptions

5  From Descriptions to Queries
A satisfaction relation, such as the one defined in the previous
section, is not always decidable. However, in some interest-
ing cases, the problem of whether P matches ��becomes de-
cidable [14]; some complexity results are also known [16]. A
decision procedure for such a matching problem is also called
a modelchecking algorithm. Such an algorithm implements a
matching procedure between a tree and a description, where
the result of the match is just success of failure. 

For example, the following match succeeds. The descrip-
tion can be read as stating that there is an empty chair at the
Eagle pub; the matching process verifies that this fact holds
starting from the root of the tree:

Eagle[chair[John[0]] | chair[Mary[0]] | chair[0]]
matches
Eagle[chair[0] | T]

More generally, we can imagine collecting information,
during the matching process, about which parts of the tree
match which parts of the description. Further, we can enrich
descriptions with markers that are meant to be bound to parts
of the tree during matching; the result of the matching algo-
rithm is then either failure or an association of markers to the
trees that match them.

We can thus extend descriptions with matching variables,
�. For example by running the matching computation for:

Eagle[chair[John[0]] | chair[Mary[0]] | chair[0]]
matches 
Eagle[chair[�] | T]

we obtain, bound to �, either somebody sitting at the Eagle,
or the indication that there is an empty chair. Moreover, by
matching:

Eagle[chair[John[0]] | chair[Mary[0]] | chair[0]]
matches
Eagle[chair[(¬0)∧�] | T]

we obtain, bound to �, somebody (not 0) sitting at the Eagle.
Here the answer could be either John[0] or Mary[0], since
both bindings lead to a successful global match. Moreover, by
using the same variable more than once we can express con-
straints: the description 

Eagle[chair[(¬0)∧�] | chair[�] | T] 

is successfully matched if there are two people with the same
name (or any two equal structures) sitting at the Eagle.

These generalized descriptions that include matching
variables can thus be seen as queries. The result of a success-
ful matching can be seen as a possible answer to a query, and
the collection of all possible successful matches as the collec-
tion of all answers.

For serious semistructured database applications, we need
also sophisticated ways of matching labels (e.g. with wild-
cards and lexicographic orders) and of matching paths of la-
bels. For the latter, though, we already have considerable
flexibility within the existing logic; consider the following
examples:

• Exact path. The description n[m[p[�]] | T] means: match
a path consisting of the labels n, m, p, and bind � to what
the path leads to. Note that, in this example, other paths
may lead out of n, but there must be a unique path out of
m and p.

• Dislocated path. The description n[�(m[�] | T)] means:
match a path consisting of a label n, followed by an arbi-
trary path, followed by a label m; bind � to what the path
leads to.

• Disjunctive path. The description n[p[�]] ∨ m[p[�]]
means: bind ��to the result of following either a path n,p,
or a path m,p.

• Negative path. The description �m[¬(p[T] | T) | q[�]]
means: bind ��to anything found somewhere under m, in-
side a q but not next to a p.

• Wildcard and restricted wildcard. m[�y.y≠n ∧ y[�]]
means: match a path consisting of m and any label differ-
ent from n, and bind � to what the path leads to. (Inequal-
ity of labels can be easily added to the descriptions [11]).

• Kleene Star for paths. µX. � ∨ (m[X] | T) means: match a
path consisting of any number of m edges leading to a sub-
tree that matches �.

Although we have a lot of power and flexibility in defining
descriptions for paths, we may want to have a convenient syn-
tax for such common situations; a syntax for paths that easily
translates into our descriptions is defined in [11].

In related work [11], we use a rather traditional SQL-style
select-from construct for constructing answers to queries, af-
ter the matching phase described above. The resulting query

n[�] ⇔ n[T] ∧ n[��]
n[��] ⇔ n[T] � n[�]
n[F] ⇔ F
n[�T] ⇔ T
n[� ∧ �] ⇔ n[�] ∧ n[�]
n[�� ∨ �] ⇔ n[��] ∨ n[��]
n[� ∨ �] ⇔ n[�] ∨ n[�]
n[�� ∧ �] ⇔ n[��] ∧ n[��]
n[�x.�] ⇔ �x.n[�]  (x≠n)
n[��x.�] ⇔ �x.n[��] (x≠n)
� | F ⇔ F
� || T ⇔ T
T | T ⇔ T
F || F ⇔ F
� | (� ∨ �) ⇔ (� | �) ∨ (� | �)
� || (� ∧ �) ⇔ (� || �) ∧ (� || �)
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language, TQL [3], is fairly similar to XML-QL [4], perhaps
indicating a natural convergence of query mechanisms.

We should emphasize, though, that our composition oper-
ator is very powerful, and not very common in the query lit-
erature. It can be used, for example, for the following
purposes:

• Composition makes it easy to describe record-like struc-
tures both partially ((b[T] | c[T] | T) means: contains b, c,
and possibly more fields) and completely ((b[T] | c[T])
means: contains only b and c fields); complete descrip-
tions are difficult in path-based approaches.

• Composition makes it possible to bind a variable to ‘the
rest of the record’, as in “� is everything but the paper ti-
tle”: paper[title[T] | �].

• Composition makes it possible to describe schemas, as
shown next.

6  Schemas
Path-like descriptions explore the vertical structure of trees.
Our descriptions can also easily explore horizontal structure,
as is common in schemas for semistructured data. (E.g. in
XML DTDs, XDuce [19] and XMLSchema [1]. However,
our present formulation deals directly only with unordered
structures.) 

For example, we can extract from our description lan-
guage the following regular-expression-like sublanguage, in-
spired by XDuce types. Every expression of this language
denotes a set of trees:

0 the empty tree
� | � an � next to a �
� ∨ � either an � or a �
n[�] an edge n leading to an �
�* � µX. 0 ∨ (� | X)

finite composition of zero or more � 's
�+ � � | �* finite composition of one or more � 's
�? � 0 ∨ � optionally an �

In general, we believe that a number of proposals for describ-
ing the shape of semistructured data can be embedded in our
description language, or in something closely related. Each
such proposal usually comes with an efficient algorithm for
checking membership or other properties. These efficient al-
gorithms, of course, do not fall out automatically from a gen-
eral framework. Still, a general frameworks such as ours can
be used to compare different proposals.

7  Conclusions
Semistructured databases have developed flexible ways of
querying data, even when the data is not rigidly structured ac-
cording to schemas [4]. In relational database theory, query

languages are nicely related to query algebras and to query
logics. However, query algebras and query logics for semis-
tructured database are not yet well understood.

We believe we have provided at least an example of a que-
ry logic that is suitable for semistructured data. Moreover, in
related work [11,12] we describe a table algebra for our que-
ry logic; this has the same function as relational algebra for
relational databases, and can take advantage of a rich set of al-
gebraic properties, such as the ones listed in section 4.

An implementation of a query language, TQL [3], based
on these ideas is being carried out in Pisa by Giorgio Ghelli
and co-workers. The current prototype can be used to query
XML documents accessible through files or through web
servers.
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