

Oct 22 16:40 1984 genesis.txt Page 1

Crab Genesis

~~~~~~~~~~~~

Introduction: laws and wviolations.

A bitmap screen is a graphic universe where windows, cursors and icons
live in harmony, cooperating with each other to achieve functionality

and esthetics. A lot of effort goes into making this universe consistent,
the basic law being that every window is a self contained, protected world.
In particular: (1) A window shall not be affected by the internal
activities of another window. (2) A window shall not be affected by
activities of the window system not concerning it directly, i.e

(2.1) it shall not notice being obscured (partially or totally) by other
windows or obscuring (partially or totally) other windows, (2.2) it shall
not see the *imagezﬁpf the cursor sliding on its surface (it can only ask
for its position).

Of course it is difficult to resist the temptation of breaking these
rules. Viclations can be destructive or non-destructive, useful or
pointless. Useful non-destructive violations include programs printing
cut an image of the screen, or magnifying part of the screen in a "lens"
window. Useful destructive viclations are represented by the "pen"
program, which allows one to scribble on the screen. Pointless
non-destructive violations include a "magnet" program, where a moving
picture of a magnet attracts the cursor, so that one has to
continuously pull away from it to keep working. The first pointless,
destructive program we wrote was crabs.

The history of crabs is presented here with dates, times and people.

Not that we kept notes, of course. The dates and times were reconstructed
months later by loocking at the creation date of files, and by what we
could remember.

Prologue: Peek

Crabs was written by Mark Manasse and me in November 1982, and evolved

in about two days to its present form. The basic principles cof
law-violation where investigated a few months earlier (August 5, 1982)

when Bart Locanthi brought in a Smalltalk videctape. It featured, among
other things, a "peek" demo. This is a program which looks at a rectangular
portion of the screen (controlled by meoving the cursor around) and
replicates it in its own screen space in real time. Beautiful
self-referential effects are cbtained when this window peeks itself, or
part of itself. This is a digital version of a video-camera looking at

its own tv screen.

Copying data from another window, as peek does, can already be considered
a violation of the rules. But what peek does is even worse because, for

a given window, peek will only copy that part of the window which is
visible on the screen (i.e. not obscured by other windows). This cannot
be done by asking a window to access its data: a window is not aware

of what parts are visible. This is stealing data directly from the screen.
A well-structured graphics interface will not allow this, and one has to
use low-level routines which are not-meant-to-be-used-by-normal-people.
Needless to say, Bart and Mark rushed to implement it.



Oct 22 16:40 1984 genesis.txt Page 2

Step 1: QIX

(November 16, 1982y dinner time) Mark wanted to implement the QIX
video game for ourTg}it terminals (knowledge of QIX is assumed here).
A QIX screen can get very complicated, and there are complex rules
about how things are allowed to move. Mark started figuring out
clever data structures and algorithms to compute fast line operations.
After a while I said, "Wait a second. Atari is selling arcade QIX
machines and there is no way they can have enough memory to run those
algorithms. How are they doing it?" After some thinking: "I bet they
don’t keep line segments in data structures, but they draw lines on a
bitmap and (goshl) they just look at what is in the bitmap to determine
line intersections. Gee, this is awful." Althcugh this was repulsive
to our trained algorithmic minds, that was the germ of the crabs
collision~detection trick. We never implemented QIX.

Step 2: Measles

(November 16, later) After a while Mark was convinced and we

started implementing. We decided to start with a single QIX

(i.e. a single line with two bouncing dots at the ends) for simplicity,
and to use window boundaries to test the line intersection trick.

Mark started dictating code and I typed it down. This was still a

bit too hard, so we simplified it further: forget the QIX, let’s just
have little balls floating in the grey area between windows and bouncing
against window borders. We would look at the raw screen bits to determine
where a window border was (is there grey there?). Mark kept dictating,
and after a while it was working. It was just about one page of code.
Mark called this "measles"; we had a lot of measles bouncing around

the screen. They were also bouncing off each other for free because they
would see non-grey and change direction. This was wery cheap and
convenient: normally you would have to test the position of every measle
against the position of every cther measle to determine whether there

is a collision.

Step 3: Angry Measles

(November 17, very early) Now a problem came up. We have all these measles
bouncing around, and you create a new window and slap it on top of them.
Suddenly those poor trapped measles have nowhere to go, no grey area to
run to. They are frozen, paralyzed with terror, and buried underneath

a window. Mark didn’t like that at all, and came up with the concept

of "angry measles". Waen a measle gets buried underneath a window, it
starts flashing so that it is visible through the window, like saying
"Hey, get that window off me". It turns out that little flashing things
are very annoying to the human eye, and you would take the window away
just to shut them up. At this point, tired and satisfied, we went to
sleep.

Step 4: Hungry Measles =

(November 17, late morning) I slept a lot less then Mark did. When I

came in, I started shcwing measles to people. They though it was cute stuff.
Some objected to the flashing measles solution. We had considered many
alternatives the night before, and I wasn’t totally satisfied with that



Oct 22 16:40 1984 genesis.txt Page 3

Step 5:

solution either. Dave MacQueen said something like "they should eat
their way out". I thought that was a possibility, only sillier than most.
After he left, however, that idea kept coming back. I went to look at
the code (as I said, Mark did the dictating because he was more familiar
with blits then I was), and discovered that I could implement Dave’s
suggestion by changing a single line of code. That seemed to be easy
enough, so I did it. When a measle was confronted with a non-gray

area, it would change a little bit of that area to grey. Trapped measles
could then build up grey regions and eventually escape.

The new version "hungry measles” had quite a different character.

It wasn’t cute, it was awesome. Those little balls would eat away your
windows. If trapped, they would escape, leaving you wounded. There was
no protection against them. You could set up barricades of windows to
protect a part of the screen yocu wanted to work in, and they would erode
them. They would infiltrate along the borders of the screen, where

you are not allowed to put windows. You couldn’t keep them all under
control: they were too many, too quick. You couldn’t get distracted.

Crabs

(November 17, afterncon) I went up to the machine room and started the
program on a terminal. People gathered, and several expressions of
disgust were heard. Jim Weythman said "they look like crabsl".

Everybody knew instantly that that was the right name for it. I went
back to my room and designed the basic crab icon. Mark came back.

With his help, we prepared the crab icon so that it would look nice on
a grey background. We made it so that crabs would move sidewise, and
would turn around according to their prevalent direction. We made the
crabs window self-destruct so that there was no way of stopping crabs,
short of rebocting the terminal. Finally, we allowed the crabs to see
the image of the cursor on the screen, so that you could use the cursor
to poke them (they would bite it, but the cursor regenerates).

We showed it to Rob Pike again. He said "That’s it, don’t touch

it any more".

Conclusions

In the next few days, unaware people were expcsed to crabs in the
comfort of their own terminal ("Let me show you something...").

The question would always come up: "How do you stop them?" "you can’t"
"yes, but how do you stop them?". Crabs could be downloaded remotely,
on somebody else’s terminal, while he was working. They could be left
dormant (Rob‘s idea) during the lunch hour, to suddenly come up

in the middle of the afternocon. They could be timed to start in the
middle of an important demonstration. Once, Rob got them to eat
(irrecoverably) part of a picture an artist was drawing on a blit.

The artist was offended, not by the damage picture, but by such
inexplicable violation of what she considered to be laws of nature.
Very soon, nobedy could pass by Bell Labs without being exposed to crabs.

Programs were written to fight crabs on their own grounds. The idea was
to run a program which would neutralize the crabs and allow you to
keep working, without rebooting the terminal. These program were either
unsuccessful, or partially neutralized the crabs but made the blit



Oct 22 16:40 1984 genesis.txt Page 4

practically unusable. One day we got a program in the mail, called
"squishcrabs". It would poke the process table looking for a process
which looked like it may be crabs, and killed it. On top of that

it would "squish" every crab on the screen to a black blob. That was
cheating, but it worked. However, squishcrabs was too dependent on the
process and program structure, and stopped working in later versions
of the system.

In the following months Mark and I wrote many crab-like programs. Although
interesting in their own way, none came close to the appeal crabs have.
The best use we have for them is to make them fight overnight against
crabs for screen territory, and watch the result in the morning.

Crabs are still undefeated; they either wipe cut the opposition, or

come to a stable situation with crabs in one region of the screen and
opponents in the other.

Luca Cardelli



Oct 21 19:13 1984 crabs.txt Page 1

Rules:

(1) Crabs live on grey screen arcas.

(2) On grey areas they move around randomly, but smocthly.
The orientation of the crab icon is determined by its direction of movement,
so that they always appears to move sidewise.

(3) When they bump into non-grey areas (including other crabs) they "bite" them
by changing a little ncon-grey region into a grey region. After that they
bounce off in a new random direction.

The crab-like (or insect-like) random motion on grey areas is obtained as follows.
Every crab step is, in first approximation, determined by the current velocity.
Every step has a probability (e.g. one in seven) of being subject to a

deviation. If the deviation takes place, it is a small random deviation

(e.g. =1, 0 or +1) of the current velocity, independently chosen for the x and y
components. There is a maximum crabs speed (e.g. 7 pixels per step).

Every crab does the following:

0. Draws itself in the initial position.
Starts with a random direction and velocity.

1. Removes itself from the old position (by drawing itself in XOR mode).
2. Determines its new position, based on its current direction and velocity.
3. Loocks to determine whether it is about to move on a grey area:
Yes: 3.1. Moves there. Goes to 4.
No: 3.2. Makes the new position grey by drawing a 4x4 grey pattern.

3.3. Does not move. Picks a new randcem velocity, independent
of the current veliocity. Continues at 4.

4. Draws itself (in XOR mode) in the new position, as determined in 3.1 or 3.3.
5. Adds a random deviation to its wvelocity, as described above.

6. Back to 1.

Note: Crab icons must be drawn in XOR mode, to be able to restore the background
when the crab moves away. Unfortunately, if one draws a crab icon in XOR
mode on a gray background, the crab itself gets "greyed".

To avoid that, crab icons are prepared so that they will look right
when greyed. This is done by greying them beforehand (two XOR greying
operations cancel) in all possible relative positions of the crab and
the grey background. For the grey pattern we use, which repeats every
two pixels vertically and every four pixels horizontally, there are 8
possible relative positions,



Oct 21 19:13 1984 crabs.txt Page 2

Note: Some of the black pixels of the background immediately adjacent to
a crab icon "stick" to it, wvisually. Depending on the speed of
movement, this produces an optical illusion so that the crab legs
appear to move.

Luca Cardelli

Crabs was written by myself and Mark Manasse on November 16 and 17, 1982.

Figures:

(Figure Crabs.0)

Top Right: crab icons in two orientations.

Top Left: greyed-out crabs.

Bottom: upward-looking crabs on grey, in all possible relative
displacements w.r.t the background.

(Figure Crabs.1) Thirty crabs start at the top of the screen, threatening
the top window with pictures of me and Mark.

(Figure Crabs.2) Crabs start eating the top window. On the bocttom left there is
a "lens" window magnifying an area at the top of the screen.

(Figure Crabs.3) Killer crabs start eating their authors. The top part of the
screen is full of crab-shit, a by-product of crab collisions.

(Figure Crabs.4) A new widow is placed on top of three crabs. The crabs start
eating the window from underneath.

(Figure Crabs.5) The three trapped crabs are now almost fully visible. This

effect of "eating from underneath" is a totally unexpected non-obvious consequence
of the crabs drawing algorithm.

(Figure Crabs.6) One of the trapped crabs breaks loose.

(Figures Crabs.7 .. Crabs.9) More scenes of cannibalism and destruction.

(Figure Crabs.10) The lens has been moved to show text being eaten away.

(Figures Crabs.11 .. Crabs.14) More of the same. The lens window is almost
unharmed because it regenerates.



4 o
it N




B ]
15:22 0.25 +9.81 i

TTY STAT TIME COMMAND

pti4 8:09 sh

pti4 fusr/jerq/bin/2pi

ptl4 sh =c fusr/jerq/bin/321d /usr/jera/mbin/pads.

pt14
pti2
ptl0
pt10
ptog
pto4
pto4
ptoo
ptoo
pt9o
14

/gsr/jerq/bin/BZld fusr/jerq/mbin/pads.m
s
i
i
&
sh

ps
sh
i
5 Jusr/jerq/bin/vismon =1
mux

PO bt b T LS5 bt b b e L) o rd bed

: mail tac

consratglations for the beautiful 3pi feature of shifting the scree
n around.
dHow did you think of that?

peek tty9?

.news_t ime dead. letter macguts
pen tuid

.profile machines

peter
Alloc_mod2 macwr i te
player®. icon unixlicence
iDavidJordan fie mail
i upenn
quest.profile malleoc
valis
ToGregHager icon mbox
regexp vaxur ite




TTY STAT TIME
ti14 I 0:00
0:00
0:00

6:00
0:60
9:060
6:01
B8:00
9:81

i
I
S
I
I
I
I
S
R
I
I
S
R

.34 -0.46

CFHHQND

sh

fusr/jerq/bin/3pi

sh -c /usr/jerq/bin/321d /usr/jerg/mbin/pads.

/ﬁsr/jerq/bin/321d fusr/jerq/mbin/pads.m
s

sh
3pi
sh
sh

Jusr/jerq/bin/vismon -1
mux

congratulations for the beautiful 3pi feature of shifting the scree

gin around.

{How did you think of that?

peek tiy6?
-news_t ime dead. letter macguts
pen twid
.profile emacs machines
ufos

peter
Allecc_mod2 faces macwr ite
player®. icon unixlicence
Daviddordan fie mail
i upenn
guest.prefile malloc
valis
ToGregHager icon mbox
regexp vaxurite




TTY STAT TIME

pti4
pti4
pti14

pti4
pti2
ptl0
pt19
ptos
pto4
pto4
pteo
ptBo
pt6o
14

: mail tac

AN AT e b e = ) et bt b

0:00
6:09

9:00
0:60
0:00
9:01
6:00
0:01
9:01
0:00
0:00
8:55
5:17

CEHHRND

7u5r/jerq/bin/3pi

sh =c /usr/jerq/bin/321d /usr/jerq/abin/pads.
/ﬁsr/jerq/bin/321d fusr/jerq/mbin/pads.m

s

sh
3pi
sh
sh

ps
sh

=
fusr/jerq/bin/vismon -1
mux

congratulations for the beautiful 3pi feature of shifting the scree

in around.

How did you think of that?

peek tty0?
-news_t ime dead. letter
pen twid
.profile emacs
ufos

peter
Alloc_mod?2 faces
player®. icon unixlicence
DavidJordan fie
i upenn
guest.profile
valis
icon
regexp vaxurite

macguts
machines
macwr i te
mail
malloc

mbox




TTY STAT TIME
5 ptl4 6:00
ptl4 %:00
pti4 0:00
9:060

8:00
6:060
0:61
6:00
6:01
0:01
8:00
0:00
?:55
5:17

I
I
I
S
I
I
1
I
S
R
I
1
S
R

o

=

fusr/jerq/bin/3pi

sh =c /fusr/jerq/bin/321d /usr/jerq/mbin/pads.
/tﬁsr/jerq/binlazld Jusr/jera/mbin/pads.m

ch

3pi

sh

sh

fusr/jerq/bin/vismon -1
mux

congratulations for the beautiful 3pi feature of shifting the scree

n arcund.

jHow did you think of that?

peek tiy!
.news_t ime dead. letter macguts
pen tuid
.profile emacs machines
ufes

pe

Alloc_mod2 faces macuwr i te
player®. icon unixlicence

BavidJordan fie mail

upenn
guest.profile malloc
valis
ToGregHager icon mbox
regexp vaxur ite




15:34 0.55 +9.22

STAT TIME COMMAND
0:69

h
?usr/jerquin/api
sh =c fusr/jerq/bin/321d /usr/jerq/mbin/pads.

fusr/jerq/bin/321d Jusr/jerq/ubin/pads.m
sl

i
i
h
sh
ps
sh

s
fusr/jerq/bin/vismon -1
mux

1
I
I
S
I
I
I
I
]
R
I
I
S
R

oS e®

: mail tac
congratulatiens for the beautiful Zpi feature of shifting the scree
in around.

ow did you think of that?

reel Y
news_t ime dead. letter
pen tuid
profile emacs
ufos

peter

Alloc_mod2 faces
player®. icon unixlicence

i Daviddordan fie

X qix upenn
fﬁamber guest.profile
: referee valis
oCGregHager icen
resexp vaxwrite

macguts
machines
macwr ite
mail
malloc

mbox




6.88 +0.05

D TTY STAT TIME COMMAND
t14 0:00 sh
fusr/jerq/bin/3pi
sh =c /usr/jerq/bin/321d /usr/jerq/mbin/pads.

/ﬂsr/jerq/bin/SZld fusr/jerg/mbin/pads.m
5

: 7usr/jerq/bin/vismon -1
5:17 mux

I
1
I
S
I
I
|
I
S
R
I
1
S
R

congratulations for the beautiful 3pi feature of shifting the scree
n around.
How did you think of that?

peek t1y0?
nexs_t ime dead. letter macguts
pen tuid
.profile emacs machines
peter ufos
Alloc_mod2 faces macwr i te
player®. icon unixlicence
i Daviddordan fie mail
; i upenn
quest.profile malloc
valis
i ToGregHager icon mbox
regexp . vaxurite




15:40  1.01 +0.52

COMHAND
h

sl
fusr/jerq/bin/3pi
sh =c /usr/jerq/bin/321d /usr/jerq/mbin/pads.

/ﬁsr/jerq/bin/321d fusr/jerq/mbin/pads.m
sl

sh
3pi
sh
sh
ps
sh
sh
fusr/jerq/bin/vismon -1
mux

I
I
)
I
I
I
1
)
R
I
I
S
R

: mail tac

congratglatians for the beautiful 3pi feature of shifting the scree
‘n around.

{How did you think of that?

P Y
nens_t ime dead. letter macguts
pen tuid
.profile emacs machines
peter ufos
Alloc_mod2 faces macwur ite
player®. icon unixlicence
iDavidlordan fie mail
qQix upenn
amber guest.profile malloc
referee valis
ToGregHager icon mbox
% regexp vaxWrite




%)
it}
>
-
-
[}

i cgnmm)

/usr/Jerq/bln/3
sh ~-c /usr/Jerq/blnIQZId /usr/Jerq/mbln/pads

/asr/jerq/bin/321d Jusr/ jerq/mbin/pads.m
=

sh
3pi
sh
sh

ps
sh
sh

fusr/jerq/bin/vismon -1
mux

OO0

AT AT
= 0 g
NUOOR=RERO®

FOU e et ZI UV b b bt bt ) e el e
SOOCDOOD

14
: mail tac
congratulations for the beautiful 3pi feature of shifting the
in around.
How did you think of that?

pee i
.news_t ime dead. letter
pen twid

.profile emacs
peter ufos
Alloc_mod2 faces
player®. icon unixlicence
DavidJordan fie
i upenn
guest.profile
valis
ToGregHager icon
regexp vaxurite

macguts

machines
macwr i te
mail
malloc

mbox




Jusr/jerq/bin/3pi |
sh =¢ /usr/jerq/bin/321d /usr/jerq/mbin/pads.{

/gsr/jerq/bin/QZld /usr/jerq/mbin/pads.m
=

sh

3pi

sh

sh

2
I
I
I
S
I
I
1
I
S
R
1
I
S

fusr/jerq/bin/vismon =1
mux

U‘l@@@&@&@@@? e

NAS82232888 88

R

congratulations for the beautiful 3pi feature of shifting the scre
in arcund.
How did you think of that?

peel yO7
news_t ime dead. letter macguts
pen tuid
.profile emacs machines
peter ufos
Alloc_mod?2 faces macur ite
player®. icon unixlicence
ADavidJordan fie mail
i upenn
qguest.profile malloc
valis
i ToGregHager icon mbox
regexp vaxwrite




h
fusr/jerq/bin/3pi
sh —c /usr/jerq/bin/321d /usr/jerq/mbin/pads

/gsr/jerq/bin/321d fusr/jerq/mbin/pads.m
sl

(9900900000 SO0

I
I
I
S
I
I
I
I
S
R
I
I
S
R

fusr/jerq/bin/vismon -1
mux

cengratulations for the beautiful 3pi feature of shifting the scre
n around.

How did think eof that?

3o,

y0
dead. letter
twid
emacs machines
ufos
faces macur i te
player®. icon unixlicence
i Daviddordan fie mail
qix upenn
amber guest.profile malloc
referee valis
aGregHager icon mbox
regexp vaxurite

Poed b o o £ e e e




fusry jerq/bin/3pi

sh ~c /fusr/jerq/bin/321d /fusr/jera/mbin/pads
/ﬁsr/jerq/bin/BZld Jusr{ jerq/mbin/pads.m

s

sh
3ﬂi
sh

oo oooas oy

I
S
I
I
I
I
S
R
I
I
S
R

mux

congratglatinns for the beautiful 3pi feature of shifting the scre
n around. e
How did you think of that?

tuid
emacs
ufos
faces
player®. icon unixlicence
%DavidJordan fie
i upenn
guest.profile
valis
icon

machines
macur ite
mail
malloc

mbox




/ﬂsr/jerq/bin/321d fusr/jerq/mbin/pads.m
=

i
-
sh

fusr/jerq/bin/vismon -1
mux

5}
0
4]
9:
©:
(4}
08
0
’H
8:
0:
B:
5

HU‘IQ@&Q&&Q&% 8

SNUOORE=OROO
gl

ratglations for the beautiful 3pi feature of shifting the scre
ound.
i did you think of that?

i

nens,.,
pen Wit

.profile emacs machines
peter ufos

Alloc_mod2 faces macur ite
player®. icon unixlicence

Daviddordan fie mail
qix upenn

amber guest.profile malloc
referee valis

oGregHager icon mbox
regexp axur ite




id /usr/jerq/mbin/pads.m

=
fusr/jerq/bin/vismon =1
mux

S
I
I
I
I
S
R
I
I
)
R

u think of that?

mail

Lapenn
guest.profile malloc
valis
icon mbo




=i
i
c
=]
[
u

q/bln/\n'

jer

5 fusr/
¢ mux













\

—


















Oct 20 10:50 1984 tracks.txt Page 1

"Tracks" gives the illusion of animals walking on your windows and
leaving footprints. There are cats, birds, unicorns and little people.

Tracks are not left on the background, only on windows. However tracks can
cross grey regions and continue on another window.
The random motion is obtained as in crabs, with slightly different parameters.

Luca Cardelli

Tracks was written by myself as a crabs spin-off.



| 0x3E7C #6x0009,
¥ A & ¢ O

s
Bitmap feet = *)Feet , 32/HORDSIZE.{{0.6}.{32.15}}}? =
Bitmap bird = *)Bird, 32/WORDSIZE,{{0,6},{32,16333;° <« «
B#imap bear = x*)Bear , 32/WORDSIZE,{{9,0},{32,16}33}»

itmap horse = {(lord *)Horse,32/WORDSIZE,{{0.,0},{32,16}3};

Rectangle ltrackup = {{0.,0}.,{8.8}}; ©
Rectangle rtrackup = {{8.,0}.{16.83}}; 5
Redtangle 1trackdown = {{8.83}.,{16,16}3};

355

e

EEpEes

ig-.:
E

zégg\‘;

£

NN RAEEE




C,0x0008, ¢%
e, OxPB1E, ¢
IC600xEGGR?, 4
4
9x4182,0xC003 4
3 0x22494,0x0603,4
Ox2244., ﬁxEﬁ%.
1

OxFFE Ox7B1E, &

Bx3E?C /0x6000 , o ]

i :‘ gn* & ¢ & (‘-‘:
Bijmap feet = {(WoPd)Feet, 32/WORDSIZE.{(0.0}.{3271E6}}}; ¢
Bitmap bird =3{({ord *%Bird, 32/WORDSIZE,{{0,0},{32,16}}};°
Bitmap beam = {(Word XJBear, 32/WORDSIZE,{{0,6}.{32,1633}»
Bitmapshgrse = {(Kord *)I&Jgse.32/NORDSI£E.{{0,0};{32.15}}}:.u

Rg?:tgmgle ltrackup = {{0,03,5(8.8}};
Rectangle rtrackup = {{8.,0} ~{16,8}3};
Req:tangle ltrackdoun = {{8,8}»{16,16}};

A

s 0=
v (083




o

& ¢
‘shoyt Horselde= {4
Ox3E L, Ox0068, « %
"RE,Ox?81E, ¢
OxG3C6IKEGLL?, 4
0x1H182 {90083, +
§;1182,03C093A

2244, 9x0H03, 4
2244, OxEBB R,

@x7FFE, x?géé. - s Y 4 e

Ox3E7C }0x00808 , 6w % s v ¥

Bl em By G 4y e

Bitmap feet = {(Matd¥k)Feet, 32/MORDSIZE,®(8.0},(32 M6)33; ¢

Bitmap bird =g4fdlord x%Bird, 32/WORDSIZE.L{0,0},€32,16}3);°

Bi'tndp beam a=of (Mord *JBear, 32/MORDSIZE,{{0%0); {32,163} »

Bj tmap.-,hw‘sE.g {(Word x}orse,32/WORDSIZE ., ({0¢¥}, (32,1633 ,,
Y

Reltingledtrackib = {{0,0348,803; 4+ ¥ 0N
ﬂqptang*e rirackupt= {{8,6} n{16,833};, ¥
e

Re¢§§£g ltrackdown = {{8,83n{16,16Y};¥
: e 7

s
[
c 4




Kok
U @ws y MHF“
= cgg,g A8.8YF ¥, 4

ol O 50 L8 E Y
‘atbﬁ?lﬁ {{898";1?7215{ ;%&;W
» by Yo

VYV Cag f:%‘.ﬁf-.c'«{{.‘ﬁ ;
b
3

Wy <
b Gc
B = “5 9{1_’:‘
£ 3 » o




Oct 20 11:51 1984 pogo.txt Page 1

A pogo stick is a pair of bouncers (dots) connected by a stick (line).
Pogo sticks (or "pogos", for short) hate grey, and love any other

color. In non-grey areas, the bouncers float freely, until they bump into
grey areas. When that happens, the bouncers change direction and

bounce off. The opposite bouncers of a pogo loosely attract each other.

A bouncer may overshoot a boundary between non-grey and grey, because of inertia,
and get temporarily trapped in a grey area. In this situation the bouncer is
continuously bouncing agains grey, and assumes a kind of brownian motion.
Fortunately, the opposite bouncer will very likely pull it out of trouble.

If both bouncers are trapped into grey, the pogo may randomly wander in grey
areas for a long time, looking like it is in a epileptic fit.

However, when a bouncer is trapped in grey, it tries actively to make itself a
home but turning all the grey it touches into black. Eventually this can create
large black areas where the pogo can again float free.

Luca Cardelli

Pogo was written by Mark Manasse, as a crabs spin-off.



Layer *1;
1 = P=->layer;
while (1=->front)

1 = 1->front;
layerblt (1,

rc (r.cornef iProcess: P=9x/30133
ro (r.origif HALTED:

lc (1->rect Ypogo.c:153 main(arge=1,argv=0x744E
lo (1-)>rect

layerblt(1,r)
i ayer *1;
<3§ectan91e r;

TV ST Oy N\

layéﬁgii(i-)back. Rpt(ro,Pt(rc.x,1




layer;
while (1->front)

1 = 1=>front;
layerblt (1,

>

#define rc (r.cornen
#define ro (r.origir
tidefine le (1=Jrect
tidefine lo (1=>rect

layerblt(1l,r)
Layer *1;
%ectangle rs

if (1)

if 4n

TT T us

M lsyerblt(l->hacks RptlrosPtlrc-x:l

!ufote pog0.c




Oct 20 12:25 1984 screenwars.txt Page 1

Screen Wars

Here we see crabs fighting against pogo sticks for the control of the screen.
(Figure Pogo.1) Three pogo sticks start at the top of the screen.

(Figure Pogo.2) Two pogos have migrated to the lower window.

A pogo in a large white space tends to stay there for long periods, because it is
very unlikely that it will have both bouncers outside at the same time and on the
same side, so that they can wander off. It is likely that pogos will

eventually migrate to the largest window available.

(Figure ScreenWars.l) The third pogo also migrated to the large window, and at the
top of the screen there are new intruders: crabs.

(Figure ScreenWars.2) Here the crabs have eaten half of the upper window and have
attacked the large window. Meanwhile the pogos have sprinkled black at the
perimeter of the window.

(Figure ScreenWars.3) A pogo wandered in the top left corner, aquiring a lot

of black territory. At the same time a single crab was trapped inside the large
window by the black stuff pogos drop, and deeply eroded it. The crabs have totally
eaten the top window and have invaded the lower regicns of the screen.

The pogos are gaining territory around the window, where the black stuff

keeps the crabs away.

(Figure ScreenWars.4) Pogos have control of the center and top left of the screen,
except for a crab trapped in the top left which maintains its own grey territory,
and another crab which goes deeper and deeper in the large windcw. The crabs have
control of the bottom and right side of the screen, which is now full of
crab-shit (crab-shit is the product of a crab biting another crab; it is a
non-obvious side-effect of the crabs drawing algorithm).

(Figure ScreenWars.5) More of the same.

(Figure ScreenWars.6) The pogos keep slowly gaining territory. One of the
prisoner crabs has escaped, the other one is moving to the right. It is not
clear why these crabs are moving coherently, over large periods, in one
direction; maybe there is a slight bias in the random walk algorithm.

(At this point I went to sleep)

(Figure ScreenWars.7) Seven hours later the situation hasn’t changed much,
except that the other prisoner crab has escaped. The boundary between crabs
and pogos is sharp and stable. The whole process took 12 hours.

Other fights:

Tracks do not stand a chance against crabs, because tracks do not attack crab
territory (unless they happen to step on a crab, in which case they leave a
footprint there, but this is unfrequent), while crabs attack tracks territory.
Eventally, tracks loose their "footing".



Oct 20 12:25 1984 screenwars,txt Page 2

Tracks and pogos cooperate, and the result is a totally black =creen.

Luca Cardelli

P.S. some inconsistencies in the figures, e.g. windows appearing and disappearing,
are due to the fact that I have to use a couple of windows to print out the
screen dumps, and I have to fight pogos and crabs while doing that.



Layer *1;
1 = P=->layer;
while (1->front)

1 = I=>front;
layerblt(1,

e rc (r.cornes
ro {r.oriqir
le (1-)rect

(Process: P=0x/38138
TED

layerblt(
Layer x1;
%ectangle

TT XTOsy <~ IU-

lay 'réff:)back. Rpt(ro,Ptlrc.x,1




ETE

} i
Ox 7391
#defin rcl(r.cornet S 5 3

#definelro (r.origin
#def inetlc (1->rect

#define lo (1-drect MProcess: P=0x?30138

HALTED:
layerblt(1,r)
Layer *]1;
%ectangle rs

if (1)

!wrote POgo.C

o8

iy




Se e LINENUM 3
#tdef ine SLEEPTINME 16

Jsundef bitblt
| /% tundef
”de%LnT_LiLLl

OXLXIXIV OXTTT VY

exi111, ¢




vidg?" :

{8 b LINENUM 3
{udefine SLEEPTIME 1¢|

ORTTITIOR T T oRT Ty oA rTrrosrrro—oexiill,

Ox1111, Ox44144 Ox1111, Ox444%, @x1111, Ox444%, Bx1111,




AT T AT T T AT T I I T UATT T T oxTTTrr—owprrr—oxi 111,

@x1111, 0x1444, Ox1111, Bx4144, Ox1111, Bx444%, Bx1111,




texture
[0 N R |




LIMENUY 3
SLEEPTINME 1€

inundef bitblt
/% tundef
Helofino bith s (o

eil ]2 |




0.98 -0.66 chbosqgd!ewl

rabBlit(p,v)
zoint PrV;

int x,y,index;
Bitmap *whichcrab:;
if (visible) {
if (abs(v.x)>=abs(v.y)) {
if (v.x>0) whichcrab = Qupcrabmap;
else whichcrab = downcrabmap;
} else {
if (v.y>8) whichcrab = 2rightcrabmap;
5 else whichcrab = Rleftcrabmap;
x = p.x % 4;
y = p.y % 2;
index = (y<<2)+x;
bitblt (whichcrab,Rect (index<<{3,0, (index+1)
M<<3,8) ,8screen,p,F_XOR);




1.49 +0.86 cbosgd!eul

Point p,v;
{

int x,y,index;
Bitmap *whichcrab;
if (visible) {
if (abs(v.x)>=abs(v.y)) {
if (v.x>0) whichcrab = Rupcrabmap;
else whichecrab = &downcrabmap;
} else {
if (v.y>3) whichcrab = &rightcrabmap;
else whichcrab = Rleftcrabmap;

P-x % 4:

p.y % 2;
index = (y<{{2)+x;
bitblt (whichcrab,Rect (index<<3,0, (index+1)
4<<3,8) ,&screen,p,F_XOR);

»




1.61 -0.55 cbosgd!ewl

ra
Point p,v;
{

nt x,y,index;

itmap *whichcrab;

f (visible) {

if (abs(v.x)>=abs(v.y)) {
if (v.x>8) whichcrab = Rupcrabmap;
else whichcrab = &downcrabmap;

} else {
if (v.y>8) whichcrab = &rightcrabmap;
else whichcrab = Rleftcrabmap;

i
g
i

¥

x =p-x % 4;

Yy =p.y % 2;

index = (y<<2)+x;

bitblt (whicherab,Rect (index<<3.,0, (index+1
<<3,8),&screen.,p,F_X0R);




int x,y,index;
Bitmap *uhichcrab;
if (visible) {
if (abs(v.x)>=abs(v.y)) {
if (v.x>8) whichcrab = Rupcrabmap;
else whichcrab = &downcrabmap;
else {
if (v.y>0) whichcrab = &rightcrabmap;
else whichecrab = &leftcrabmap;

pP-x % 4;

p-y % 25

ex = (y<{L2)+x;

blt (whichcrab,Rect (index<<3,0, (index+1)

screen,p,F_XOR);




Point p,v;
{

nt x,y,index;
itmap #*whichcrab;
f (visible) {
if (abs(v.x)>=abs(v.y)) {
if (v.x>0) whichecrab = upcrabmap;
else whichcrab = fdouncrabmap;
} else
if (v.y>0) whichcrab = &rightcrabmap;
else whichcrab = Rleftcrabmap;

p-x % 4;
b4 p-y % 2;

index = (y<<2)+x;

bitblt (whichcrab,Rect (index<<3,0, (index+1)
<<3,8),8screen,p,F_XOR);

i
B
i

¥
x




