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Abstract 

The epidermal growth factor receptor (EGFR) signaling pathway plays a key role in 

regulation of cellular growth and development. While highly studied, it is still not fully 

understood how the signal is orchestrated. One of the reasons for the complexity of this 

pathway is the extensive network of inter-connected components involved in the 

signaling. In the aim of identifying critical mechanisms controlling signal transduction 

we have performed extensive analysis of an executable model of the EGFR pathway 

using the stochastic pi-calculus as a modeling language. Our analysis, done through 

simulation of various perturbations, suggests that the EGFR pathway contains regions 

of functional redundancy in the upstream parts; in the event of low EGF stimulus or 

partial system failure, this redundancy helps to maintain functional robustness. 

Downstream parts, like the parts controlling Ras and ERK, have fewer redundancies, 

and more than 50% inhibition of specific reactions in those parts greatly attenuates 

signal response. In addition, we suggest an abstract model that captures the main 

control mechanisms in the pathway. Simulation of this abstract model suggests that 

without redundancies in the upstream modules, signal transduction through the entire 

pathway could be attenuated. In terms of specific control mechanisms, we have 

identified positive feedback loops whose role is to prolong the active state of key 

components (e.g., MEK-PP, Ras-GTP), and negative feedback loops that help promote 

signal adaptation and stabilization. The insights gained from simulating this executable 

model facilitate the formulation of specific hypotheses regarding the control 

mechanisms of the EGFR signaling, and further substantiate the benefit to construct 

abstract executable models of large complex biological networks. 
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Introduction  

Important cellular processes, such as differentiation and division, rely on signal 

transduction cascades that occur throughout the cell. The signal transduction cascade, 

initiated by the binding of epidermal growth factor (EGF) to the epidermal growth 

factor receptor (EGFR), is essential for normal cell growth and development [1]. 

Conversely, aberrant activity of the EGFR signaling cascade has been shown to play a 

key role in tumor cell growth and cell differentiation [2]. Due to the complex inter-

connectivity of the EGFR signaling network, it is difficult to identify conserved 

signaling modules and those specific control mechanisms that modulate the strength of 

EGFR signaling [3]. The high coupling of intermediate components within this signaling 

network has limited our ability to understand their functionality and how they affect 

the robustness of the overall pathway [4]. 

The EGFR signaling cascade is initiated by the binding of EGF to the 

transmembrane EGFR at its extracellular domain. The binding induces dimerization 

and autophosphorylation of its intracellular domains. The dimers form docking sites for 

the recruitment of cytoplasmic enzymes and adapter proteins, starting a complex 

signaling cascade [5]. The subsequent internalization and dissociation of the signaling 

complexes lead to activation of Ras-GTP by hydrolization of Ras-GDP [6] . There are 

two principle pathways leading to this activation, the Shc-dependent and Shc-

independent pathways. The switch-like Ras-GTP plays a significant role in stimulating 

the mitogen activated protein kinase (MAPK) signaling cascade [7]. The end result of 

the cascade is phosphorylated ERK proteins that go on to regulate several cellular 

proteins and nuclear transcription factors important for cell growth and differentiation 

[4]. In this way, the EGFR signaling cascade can be explained as being composed of 

various well-characterized biomolecular networks or pathways. The dynamics of some 

of these smaller pathways, like the MAPK signaling and Ras signaling pathways, have 
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been described under various cellular conditions [7-9]. The EGFR signaling cascade has 

come under increased attention following observations of increased levels of EGFR 

gene expression in cancers of the lung, colon, endometrium, and other areas with 

significant epithelial tissue. A significant portion of that interest has been toward 

identification of highly conserved signaling modules or smaller pathways, which play a 

fundamental role in maintaining the robustness of the overall EGFR signaling network, 

and therefore, key to the persistent growth and development of tumour cells [3].  

Recent advances in the development of new programming languages to describe 

parallel computer systems has proven beneficial toward overcoming the challenge of 

describing highly complex and parallel biological systems [10, 11]. One particular 

programming framework known as the stochastic pi-calculus has allowed a wide range 

of biological systems to be modeled and simulated. The formal language of pi-calculus, 

originally developed for describing concurrent computational systems, specifies a 

framework to model large biological systems incrementally, intuitively building from 

simpler models of subsystems [12, 13]. In pi-calculus, interaction between multiple 

biological processes can be described as synchronous transmission of messages between 

the processes. We can also represent biomolecules or complexes as processes, which 

allows transmissions to model chemical interactions or modifications of these 

molecules. This view concentrates on the components, their states, and their reactions 

and may lead to significant succinctness in representation of the model [14]. The 

underlying semantics of these models incorporates stochastic behaviour through 

association of interaction rates with channels and by setting the delays between 

reactions stochastically according to these rates [15]. The stochastic pi-calculus model 

can be efficiently simulated in a rigorous way that is faithful to chemical interactions. 

This enables us to perform in silico experimentation, and provide guidance for future 
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experimentation. In addition, this modelling approach may be amenable to detailed 

analysis of the stochastic behavior of a network using model checking (cf. [16]). 

Previous studies of the EGFR signaling pathway have combined mathematical 

modeling and quantitative experimentation. These studies revealed insights into the 

functionalities of the pathway [6, 17] and feedback loops [18]. By using experimental 

results to formulate and validate computational models, intrinsic behaviour of known 

EGFR modules can be explained at the system level. For instance, observations from 

kinase assays and computational simulations indicate that the MAPK cascade is robust 

and its signal response is quite insensitive to transient stimuli or low reaction rates [18, 

19]. Simulation of deterministic and non-deterministic models of the EGFR signaling 

cascade has demonstrated that signal responses to EGF stimulation becomes much 

more sustained as we move downstream in the cascade [20, 21]. The attenuation of 

signal response is also found to become more insensitive to varying levels of EGF 

stimulation as we move closer to the ERK protein at the end of the cascade [21]. More 

recent studies using control analysis have suggested that only a small proportion of 

reactions substantially control signaling [6, 22]. In particular, the Raf protein, an 

oncogene, was highlighted as an important mediator in the signal response of 

phosphorylated ERK, but little is known about the mechanism by which this control is 

exerted.  

The ability of the EGFR signaling cascade, as with many other receptor tyrosine 

kinase signaling systems, to maintain a reproducible output despite input variations 

can be attributed to the module diversity and redundancy that allows for compensatory 

functioning in case of component failure [23]. It is this robustness feature of EGFR 

signaling cascades which enables signaling in tumour cells to be so resistant to anti-

cancer therapeutics. But the high degree of reliance by the tumours on specific 
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oncogenes or hub proteins in the signaling network gives us hope in identifying fragile 

sites in the network which may be possible targets for new drug therapies.  

Here we present a modularized model of the EGFR signaling cascade within a 

single cell in the pi-calculus framework. Our model is adapted from previous 

mathematical models describing the same pathway [17, 21]. Modules are not related to 

compartments in the cell and serve to emphasize the cause and effect relationships 

between different parts of the model. Compartments in the cell are indirectly 

represented in the model through their effect on reaction rates, as is also the case in the 

original mathematical models. Initial analysis shows that our model reproduces 

previous results. We further analyze this model by simulation under knock-out 

perturbations. These tests confirm the robustness of the upstream parts of the signalling 

pathway to perturbation; however, they also show that downstream parts of the 

pathway are less resistant to perturbations. Analyses under multiple simultaneous 

inhibitions reconfirm this relative robustness of up-stream modules and sensitivity of 

down-stream modules. Further investigation identifies positive feedback loops that 

help maintain stability of the signal under perturbations and negative feedback loops 

that help attenuate the signal and preserve its capacity over time. The analysis suggests 

a modular view of the signal. We suggest an abstract model concentrating on interfaces 

between the modules, which reproduces important behaviors of the pathway. Analysis 

of the abstract model confirms the importance of redundancies in upstream modules to 

preserve system robustness.  

Methods 

Model construction 

The original kinetic model of the EGF-induced signaling pathway [6, 21] was updated 

and implemented in the stochastic pi-calculus. The mathematical models in [6, 21] 
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describe the dynamics of this pathway in terms of kinetic equations which were 

converted into ordinary differential equations [21, 24]. Our model in the stochastic pi-

calculus (Figure S1) contains kinetic parameters (e.g., rate constants of association and 

dissociation) and state variables (e.g., the number of molecules of a particular species or 

component). Second-order kinetics is used to describe enzyme-substrate binding, and 

also association/dissociation of EGF and signaling proteins to their receptors. The 

appropriate first- or second-order kinetics is used to describe each enzyme activity for a 

particular species (e.g. EGFR auto-phosphorylation and formation of ERK-PP). In the 

stochastic pi-calculus model, the dynamics of a component is described by the inputs 

and outputs of a process acting on communication channels. Once these processes are 

defined, communication channels are also defined with the communication rates 

associated with them. These rates are used to calculate the probabilities of all reaction 

events that happen in the biological system. The translation of the pi-calculus model to 

a continuous time Markov chain is standard [12]. We assume that the association of the 

different adaptive molecules is competitive, and binding of signaling molecules protects 

the corresponding phosphotyrosine residues from phosphatases. An EGF stimulus of 50 

ng/ml is assumed to be enough to saturate all 50,000 EGF receptors of a HeLa cell. 

Further assumptions and estimation of parameters are described in the literature [6, 21]. 

Modularization and perturbation of the model 

The original model by Schoeberl et. al. [21] is modularized according to the location of 

oncogenes and components identified as important to the control of the EGFR signaling 

cascade [3, 6, 20, 23]. Specifically, these protein components define most of the interface 

regions of the modules. Figure 1 depicts the substances and interactions covered by the 

model and illustrates the boundaries of the modules. Boundaries of modules are 

defined so that a small number of reactions cross between modules. We seek a partition 

of the model to components so that the molecules of one component do not interact 
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with molecules of other components unless it is an interface of the component. We call 

such a region, where control mechanisms are contained within the boundaries of the 

region a signaling module. Signaling modules are important for modularization of the 

EGFR signaling pathway as well as more generally for reuse and integration of modules 

in larger system models. Perturbations to the model were done by knocking-out 

reactions feeding in and out of the components highlighted in Figure 1 by setting the 

reaction rates to zero. Since we model inhibition of either association or dissociation of 

proteins and not both, we removed forward and reverse reaction rates independently. 

Forward reactions are specified by the direction of the arrows in Figure 1. Perturbation 

of sensitive reactions is achieved by multiplying the rate constants by a factor. For 

instance, 90% inhibition of the EGF-EGFR signaling complex's auto-phosphorylation 

process by tyrosine kinase inhibitors is modeled by multiplying the v3 forward reaction 

rate in the model by 0.1. The reaction rate is then converted into the communication 

rates defined on the communication channels. 

Stochastic pi-calculus 

Similar to the procedure of modeling concurrent computational systems, biological 

systems can be described in the stochastic pi-calculus language. The behaviour of a 

molecule, such as a protein or a signaling complex, can be described as a process P, and 

actions describe possible interactions between molecules. Possible actions π include: (1) 

a delay action delay@r describes a change in the internal structure of a molecule with a 

delay whose rate is r. (2) an input action ?x(m) describes interaction with another 

molecule sending an output m on same channel x. (3) an output action !x(n) describes 

interaction with another molecule receiving an input n on same channel x. The 

specification do π1.P1 or … or πN.PN , where πi stands for one of the three previous 

actions, represents the ability of a molecule to react in N different ways. The parallel 

composition P|Q represents the existence of molecules in parallel. By defining X(m) = P, 
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we can define a molecule of type X parameterized by m. Each type of molecule will 

have its definition recorded in a constant environment E. For a more complete 

introduction to stochastic pi-calculus, we refer the reader to [12]. Essentially, the 

calculus allows a set of chemical reactions to be described in a modular fashion. This is 

achieved by splitting each reaction x into two complementary actions, a send !x and a 

receive ?x. The set of chemical reactions is then derived automatically by application of 

the rules of the calculus, which allow senders and receivers on the same channel to 

interact with each other. It is this ability to decompose a reaction into two parts that 

allows us to model the behaviour of individual components in a system. The pi-calculus 

approach allows a biological system to be programmed in a scalable manner, by 

allowing models of individual proteins to be directly composed to form subsystems, 

which can in turn be composed together to form larger systems. This allows new 

components to be added incrementally without having to re-wire the existing model, 

which also improves the usability of models. We stress the importance of pi-calculus for 

the ease of creation and simulation of perturbed models, as the parts of the model are 

directly related to the physical entities of the biological system. In essence, the 

behaviour of each substance in the system is described as a separate pi-calculus process. 

Thus, a mutation that relates to some substance is easily incorporated in the model by 

changing the corresponding pi-calculus process. Furthermore, the modular structure of 

the biological system and the pi-calculus model are in direct correspondence.  

Simulation and analysis 

Our model was executed using the Stochastic Pi Machine (SPiM) simulator version 1.13. 

The stochastic pi-calculus code for executing the unperturbed model in SPiM was 

modified to run simulations on a perturbed EGFR signaling pathway. Each simulation 

of the EGFR model was carried over 3,600 time units, which is the equivalent of 60 

minutes real time, and 100,000 sampling events took place over this time range.  
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Observables generated by SPiM from the state variables were converted into absolute 

numbers of molecules for each species (each complex of different compounds was 

considered a unique species). Simulation of each perturbed model was carried over ten 

replicates and the number of molecules of ERK-PP was averaged over each time unit. 

The molecular profiles were plotted using the R-statistical platform, and a LOWESS 

method was applied to smooth the graphs.  

In these simulations, we identify active signal response as the molecular profile 

of components in the signaling pathway when 50ng/ml of EGF is added as a stimulus, 

and the inactive signal response as the molecular profile when no EGF is stimulating 

the system. We summarize the information from these knock-out experiments in a 

diagram (Figure 6). The diagram includes all the interface components from Figure 1; 

interfaces are connected if one is the input to a module and the other is the output of a 

module or if the connection between them in Figure 1 is between the modules. We try to 

simplify the connection between these interfaces by concentrating only on their 

activity/inactivity state and deduce whether a component is required for the activation 

of another component or not (Tables S1-S8). The activity or inactivity of a component is 

determined by a threshold for the amplitude and the duration of the component’s 

signal response. A molecular component is defined as active if its observed profile 

corresponds to a profile of ERK-PP, where there are at least 5000 molecules for a period 

of 60 minutes. Connections depicted in black or green are required for the activation of 

the molecular component. Connections depicted in orange or red are not required in the 

sense that if one of them is knocked-out there is no major effect on the behavior of the 

molecular component. We inhibit specific reactions (column headings of Tables S1-S8) 

to generate the various knock-out conditions needed for inferring which connections 

are required or not.   
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We have also created a smaller stochastic pi-calculus model that includes only 

these key molecular components and their connectivity as presented in Figure 6. This 

smaller model is obtained by replacing edges or sections of the pathway (Figure 1) that 

connect nodes in the diagram (Figure 6) by a single reaction. The rates limiting reaction 

between two interface components were chosen to set reaction rates for edges in the 

diagram. For instance, since the auto-phosphorylation reaction (v3) of the EGF-EGFR 

complex is rate limiting for the pathway between EGF to (EGF-EGFR)2*, its rate is used 

for the single  reaction that transforms EGF to (EGF-EGFR)2* in the smaller model. The 

diagram only describes the key signaling pathways between the interface components 

of the modules, therefore, many short redundancies within the modules were 

abstracted away. In the implementation of the smaller pi-calculus model, parts of the 

pathway that are not represented in the diagram were removed through complete 

inhibition. Initial conditions for simulating the smaller model were identical to those 

used for the full pi-calculus model.   

Results 

Dependence of the signaling cascade response on EGF stimulation 

Our model of the EGFR signaling pathway is an updated version of previous models 

[17, 21]. It is comprised of 148 molecular processes and 103 variable molecular species 

(Figures 1, S1). The signal cascade is initiated by induction of EGF to the system and the 

presence of other signaling molecules. We traced the dynamics of several important 

contributors to the signal cascade at varying levels of EGF stimulus, as shown in Figure 

2. Results of these simulations are compared to simulations of previous models [17,21]. 

The close resemblance of simulations serves as a sanity check to the correctness of our 

translation from a mathematical to a computational model.  
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Analysis of these initial simulations reveals interesting features that hint to the 

results of later deeper analysis of the model. The activation of the EGF-receptors, in the 

dimerized and phosphorylated form, clearly depends on the concentration of EGF, 

responding with greater amplitude and earlier peaks. Although EGF concentration 

heavily affects membrane receptor activation, there is less concentration sensitivity as 

we trace down the signaling cascade. In particular, the amplitude and duration of the 

signal response in ERK-PP is hardly affected, even at low levels of stimulus. As 

suggested from the sharper and much shorter duration in the signal response of Ras-

GTP and Raf-P, it is likely that the degree of activation in upstream components have 

little effect on the downstream signaling components. Following activation of Raf and 

Ras, there is considerable signal amplification occurring in the pathways leading to 

MEK and ERK activation. Even though the amplitude of the signal response does not 

seem to be significantly affected by the amount of EGF stimulation, the sustainability of 

the signal response in most components, including ERK-PP, seems to be attributed to 

the high EGF concentrations.  

We partition the model into functional modules based on the common biological 

concept of the importance of substances in the pathway. This partition is highlighted in 

Figure 1 and depicted in high level in Figure 3. Each signaling module contains 

signaling processes that lead to the activation of a key molecular complex and are 

observed as clusters in the signaling network. Therefore, the boundaries of the modules 

are indicated by molecules or nodes of high connectivity, where bottlenecks in the 

signaling network may occur. The signaling modules communicate with each other 

through the interface components at the boundaries, and the evolution of these 

components over time describes the EGF signal as it propagates down the pathway. We 

use the modules boundaries as a guide to perturbations. We perturbed the EGFR 
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signaling pathway model by systematically inhibiting each reaction completely and 

partially, as described below.  

Signaling network robustness and redundancy 

An important characteristic of the EGFR signaling cascade is its ability to maintain 

output reproducibility, despite input variation or system perturbation. Design features, 

like network redundancy, may attribute to this functional robustness. Our first analysis 

consists of systematic inhibition of each reaction in the model separately. We include in 

Figure 4 simulation of the pathway under nine different knock-out perturbations. 

Additional simulations are given in Figures S2-S8. These simulations show regions of 

robustness in the signaling network. Evidence of robustness in the signaling network is 

particularly apparent in the Grb2 module, where insensitivity by the system to all single 

knock-outs is observed. This suggests for the presence of redundancy in the signaling 

network, which allows for signal sustainability even when parts of the signaling 

network are inactive. For instance, inhibition of a suggested target for kinase inhibitors, 

v23, did not have significant affect on signal transduction, except for the slight delay 

recorded in the activation of ERK. Note that the inhibition of either gateway reactions, 

v16 (leading to the Shc independent signaling pathway) and v22 (leading to the Shc 

dependent signaling pathway), do not inhibit ERK activation, but inhibition of both 

reactions does inhibit ERK activation. Although the EGF module may not contain as 

much redundancy as the Grb2 module, two pathways leading to the activation of 

internalized and external EGF receptors contribute to signal transduction. The 

simulations describe the sole dependence of ERK-PP signal response on the activation 

of external EGF receptors (v3), but the association of GAP with external receptors to 

form the EGFR signaling complex (v8) is not a necessary process for signal 

transduction. The inhibition of the v8 reaction does, however, drastically delay the 
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activation of ERK and limit the amplitude of the signal response. Thus, the contribution 

of activated, internalized EGF receptors to EGF signaling remains unresolved.  

Greater sensitivity to perturbations in Raf, MEK and ERK modules 

In the middle of the pathway, the Ras modules seem to maintain both fragile and robust 

network elements. Robustness of the two modules may be attributed to their extensive 

feedback mechanisms, and fragility may be due to the criticality of Ras-GTP for 

persistent signal transduction. Inhibition of v31 does not affect ERK from attaining 

maximal activation, but does affect the sustainability of its activated state (Figure 4). 

The observations suggest that the redundancy in the Ras Shc-independent pathway 

helps maintain greater network robustness than the Ras Shc-dependent pathway. But 

an interesting characteristic to be noted in the Ras Shc-independent pathway is how 

ERK-PP is continuously active when v20, a feedback mechanism, is removed - a sign of 

an inhibitory role Ras-GTP may play on ERK-PP. Significant, critical reactions are 

observed in the Raf, MEK and ERK modules. This may be attributed to the existence of 

redundant reactions, which play similar roles in propagating signal response and are 

not apparent in these modules. In particular, there is a chain of critical reactions 

spanning along the downstream modules, and completely inhibiting any of these 

reactions would halt signal transduction. Aside from the reactions important for the 

sustainability of signal transduction, simulations of our model also identify a number of 

reactions which may be crucial to the termination of the EGFR signal, like v42, v48 and 

v56. Reactions in the ERK module which do not affect ERK-PP evolution still play an 

important role in the inhibition of Sos-bound signaling complexes, and is identified as 

negative feedback. All this evidence suggests that each process in the downstream 

modules is involved critically in EGF signaling, therefore, contributing to a greater 

sensitivity to perturbations. 
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The effect of single and multiple inhibitions on ERK signal 

Our next analysis is by simulation of the pathway under inhibition of multiple reactions 

(Figure 5). Reactions that caused sensitivity in the signaling network, as identified by 

the single knockout simulations, were exposed to varying levels of inhibition but never 

complete inhibition (knock-out). This simulates the action of hypothetical kinase and 

contact inhibitors on their respective phosphorylation and association reaction targets. 

The target for single inhibition is the phosphorylation of the EGF receptor (v3 and v7 

reactions), which is known to be the site targeted by many tyrosine kinase inhibitors in 

common anticancer therapies. Inhibition activity at multiple sites (v3, v16, v23, and v25) 

in the upstream modules has a limited affect on ERK activation compared to single 

target inhibition. It is interesting that the combined reduction of EGF-receptor 

phosphorylation and GAP association rates have such little impact on ERK activation, 

even when complete inhibition eliminates EGF signaling. When multiple downstream 

signaling processes (v26, v28, v44, and v52) are targeted for inhibition, the ERK-PP 

signal response becomes much more sensitive to the levels of inhibition. The complete 

termination of EGF signaling for systems subjected to above 50% inhibition of 

downstream targets suggests that there exist a sensitive threshold for ERK activation. 

Lower levels of inhibition seem to affect the duration of the activated response, and 

increasing inhibition levels eventually delay the response and limit the activation 

maxima. Finally, there is evidence supporting the inhibitory effectiveness of combined 

inhibition at multiple target provides a much greater reduction in EGF signaling than 

90% inhibition of a single phosphorylation reaction. 

Dependencies in Ras, Raf, and MEK signaling pathways 

As a result of our simulations under extensive perturbation of the computational model 

we can generate dependence relationships between key components in the EGFR 

signaling pathway. We exhaustively examined all conditions across the EGFR signaling 
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pathway where components achieve active and inactive states. Activity/inactivity 

values for the molecular activities were compiled for each key component in order to 

map dependency of activity between these components. The resulting dependencies are 

summarized in Figure 6. Two interface components are connected in this diagram if 

they are connected in the full model in the same module or the connection between 

them does not pass other interfaces. A connection is colored black or green if 

inactivation of the input disables activation of the output. Inactivation of one of the 

substances in orange or red does not affect activity of the output. In the case that a 

substance has only orange connections then one is required for activation but not both. 

The red connections denote inhibition and all others activation. Therefore, this 

representation of the EGFR signaling pathway provides a summary of the key 

mechanisms controlling signal transduction between components, and also suggests an 

intuitive way of understanding how the activation or inactivation of each component 

can affect the whole system. This representation captures the relations between 

substances but is not intended to be perceived as purely Boolean. We stress that 

deactivation of a red/orange input may still affect the amplitude or duration of activity 

of the signal, however, it remains active.  

From the connectivity diagram in Figure 6 we can deduce the type of control 

mechanisms affecting each component. For instance, both Raf* and ERK-PP are 

required to the activation of MEK PP. The loop in the signal transduction from MEK-PP 

to ERK-PP and then back to MEK-PP, all of which are necessary for activation, 

highlights a critical positive feedback mechanism (green wires in Figure 6). Another 

instance of a positive feedback is identified by the connection from Raf* to Ras-GTP. 

Negative feedback mechanisms (red connections in Figure 6) are identified, whereby a 

signal from an activated component is a deactivating signal, as is the case with the two 

outputs from activated ERK. Where there are two orange connections entering a 
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component then one signal is sufficient for activation. Our simulations reveal that Ras-

GTP can be activated as long as there is a signal from either Sos signaling complexes 

(Shc dependent or Shc independent). Similarly, one of the internalized and externalized 

versions of the EGF receptors is sufficient for the activation of (EGF-EGFR*)2-GAP. 

When a component integrates required (black/green) and optional (red/orange) inputs 

then removing one of the optional inputs does not affect the overall activity of the 

component. For example, the activation of (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos requires 

an activating signal from (EGF-EGFR*)2-GAP-Shc*, but signals from Ras-GTP and no 

signal from ERK-PP are optional for activation. 

The connectivity diagram is justified by pi-calculus (SPiM) simulations. A 

consistent signal response could not be generated using just the connectivity diagram. 

Simulation of the reduced pi-calculus model showed attenuation of the signal response 

in the Grb module, specifically, we observed no activation signal at the (EGF- EGFR*)2-

GAP-Shc*-Grb2-Sos  and (EGF- EGFR*)2-GAP-Grb2-Sos complexes (Figure S10). When 

we provide an activation signal for those two complexes and carried on with the rest of 

the simulation downstream in the pathway, activation of ERK-PP is achieved (Figure 

S11).  As seen in the diagram, the abstracted version of the Grb module is represented 

by two edges from (EGF-EGFR*)2-GAP to EGF-EGFR*)2-GAP-Shc*-Grb2-Sos  and 

(EGF-EGFR*)2-GAP-Grb2-Sos. However, when we substitute this abstract Grb module 

with the Grb module from the full model (with all the redundancies), activation of ERK-

PP is also achieved. That is, the abstract model with one concrete module generates a 

behavior comparable to that of the full model. This suggests that the removal of 

redundant pathways in the Grb module prevented our abstract model from simulating 

signal.   
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Discussion 

This work presents a computational model of the EGFR signaling pathway. The model, 

written in the stochastic pi-calculus language, represents our current understanding of 

EGFR signaling dynamics and the contribution of important signaling components to 

this pathway. Execution of the model allowed us to simulate and observe signal 

transduction through the pathway under various conditions. Some simulations match 

the experimental observations and increase our confidence in the model and its 

consistency with previous models [24,27,21]. Other simulations enable us to further 

analyze and hypothesize on the roles of different components in the pathway. Our aim 

was to identify and analyze the control mechanisms associated with key components. 

We simulated single knock-outs and multiple inhibitions of reactions. Our choice for 

inhibitions is guided by a partition of the model into behavioral modules that are 

inspired by the biological understanding of importance of the different components in 

the pathway. We could identify differences in network robustness and inhibition 

sensitivity between the different parts of the signal network. 

The insights gained from simulation and analysis of the kinetic behaviour of the 

EGFR signaling pathway helps us understand not only the terminal signal response to 

EGF stimulus, but also the response at various levels of the signaling cascade. The 

analysis suggests that there is high sensitivity in upstream components to variations in 

transient EGF stimulus, but this sensitivity does not translate to differential signal 

response in downstream components. Specifically, sensitivity analysis reveals greater 

sensitivity in the EGF binding reaction and the Raf dephosphorylation reaction [22]. In 

addition to this, the significant amplification of the EGF signal reported by the profile 

trace from the upstream signaling components to downstream components, even at low 

EGF dosages, highlights the importance of binding kinetics to the formation of the 

EGFR signaling complex [17]. As suggested by previous models [20, 21], and also 
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apparent in our simulations, attenuation of signal response occurs after an apparent 

reduction in signal duration caused by decreasing levels of EGF stimulus. It is clear 

from the results of the simulations at varying levels of EGF stimulus that in order to 

accurately predict the response to EGF stimulus, we need to break down our EGFR 

model and understand the functionality of intermediate signaling components. 

Partitioning of the EGFR signaling network into modules is not a trivial task, but 

it leads to a simpler model of the signaling cascade which offers clarity and 

computational tractability [25]. Identification of modules based on the clustering of 

network components and localization of signal control mechanisms is presented as an 

approach to attaining a simplified version of the EGFR signaling model. The observed 

modularity of the EGFR signaling pathway has offered us an insight into the reuse of 

shared pathways in the cellular system. We know that many biological networks have 

features suggesting that they have modularity, defined by the separability of its design 

into independently functioning units [26].  Furthermore, these network modules show 

reuse in many different parts of the system, and allow for the construction of extremely 

complex systems by using simple building blocks [27]. The common signaling modules 

identified in our model could be used as building blocks for models of other systems or 

more complex networks. Reuse of these modules in future models would be very 

simple, because the stochastic pi-calculus implementation of our model allows for the 

code to be partitioned easily and integrated with other models implemented in the 

same language.  

By comparing the results of the simulations in terms of signaling modules, we 

further verify differences between modules based on network characteristics, like 

redundancy and robustness to perturbations. Some of these characteristics, such as the 

dependence of ERK-PP signal response on the activation of EGF receptors in the EGF 

module, may be an indication of why contact and tyrosine kinase inhibitors continue to 
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be an elective means of preventing EGFR signaling [28]. Our knock-out simulations 

confirmed the network robustness of the Grb2 module, which can be attributed to the 

forking of the activation signal into both Shc-dependent and Shc-independent 

pathways. Although signal response primarily proceeds through the Shc-dependent 

pathway [22], as shown by lack of signal attenuation when reactions feeding into the 

Shc-independent Ras module are knocked out, significant redundancy and feedback 

mechanisms allow for signal retention when either pathway fails. Also, another 

characteristic, present particularly in the Grb2 module and may be an explanation for 

the sustainability of signal transduction in the face of partial system failure, is the 

presence of numerous of reservoirs of Shc, Grb and Sos compounds that are involved in 

a number of reactions feeding into interface components. It is then interesting to note 

that simulations conducted with other network models show the distribution of Sos to 

be higher in regions of the network with active signal transduction compared to regions 

disrupted by mutations [29]. Such a result demonstrates the signaling network's ability 

to adapt and alter signaling component profiles when under unfavorable conditions. In 

contrast, the lack of network redundancy and the lack of reservoirs of important 

compounds acting on various parts of downstream signaling modules results in greater 

network fragility for those downstream modules. This places extra responsibility on the 

interface components (Ras-GTP, Raf-P, and MEK) to maintain signal transduction in the 

presence of an activating signal. We provide evidence which shows that while the 

activity of Raf is in strong control of all characteristics of the transient profile in ERK 

phosphorylation [6], the combined activity of other downstream components may also 

have strong control over ERK phosphorylation. Our simulation results suggest that 

extra sensitivity in the downstream regions of the EGFR signaling pathway may be 

exploited for the purpose of inhibiting EGFR signaling in tumour cells.  
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The ability to perturb a biological system without any cost, except for those that 

are computational, truly attests to the important practicality of conducting in silico 

experimentations on computational models. More importantly, computational models 

have been widely used in the fight against numerous detrimental diseases by helping to 

determine possible targets for drug therapies. Interestingly, through our tests to 

determine the effectiveness of targeting multiple inhibition sites as a means of 

combination therapy, we discovered a higher level of system sensitivity to targets in the 

downstream modules (Raf, MEK and ERK) as opposed to targets in the upstream 

modules (EGF and Grb2). Specifically, we did not detect any evidence of significant 

attenuation of EGFR signaling when phosphorylation reactions in the upstream 

modules are targeted for partial inhibition, contradicting the results of analysis done on 

other mathematical models [24]. Since high sensitivity to reaction rates in the upstream 

modules were reported [6], it would not be surprising that discrepancies in these results 

are attributed to differences in reactions rates and initial conditions chosen by the 

different models. Although our results may suggest that the combined inhibitory 

targeting of multiple downstream reactions in the EGFR signaling pathway could be an 

effective means of halting EGFR signaling in tumour cells, utilizing these sites as an 

actual drug target would be a daunting challenge due to lack of specificity, since these 

reactions appear in many important cellular processes. 

As a means of compiling our observations of the various states that the 

components in the EGFR signaling pathway achieved under different conditions, and as 

a way of demonstrating model abstraction with the aid of models in the pi-calculus 

language, we produced a simplified connectivity diagram (Figure 6). The diagram 

depicts signal transduction through the EGFR signaling pathway abstractly. We 

summarize the control mechanisms determining the activation state of an interface 

component. From this graphical representation, we can easily identify relationships in 



Wang et al. ’09                                                                                                                              November 5th, 2009 

 

22 

 

the EGFR signaling pathway that are essential and those that are optional. Essential 

positive feedback mechanisms shown in the diagram have been well studied and their 

ability to produce an actively maintained 'memory' of transient inductive stimulus in 

the MAPK signaling cascade has been characterized [18]. While the negative feedback 

loops stemming from ERK-PP are shown to bring about adaptation and robustness to 

parameter variations, they can also induce dampened or sustained oscillations 

whenever activation attains certain threshold strength [4]. The diagram also supports 

the notion that while single inhibition may lead to loss of signal output, dual inhibition 

may lead to partial restore of the lost function [22]. Alternative methods of graphically 

describing the signaling relationships involving the EGFR pathway have been proposed 

[30, 31], and although they seek to depict the enormous amount of information to be 

conveyed to each component in the network and describe the high cross-connectivity in 

the pathway, scalability becomes an issue with these methods and it would be difficult 

to systematically translate their graphical model to automata. One can also argue that 

our diagram makes over-simplifications toward the discreteness of the signaling 

system, and non-apparent relationships between signaling components may be lost in 

the model abstraction. In the case of the Grb module, removal of its redundant 

pathways in our pi-calculus simulations shows that signal transduction cannot occur 

without those redundancies. However, as exhibited by simulation of the abstract model 

with the full Grb module reproducing signal transduction, the rest of the abstract model 

does capture essential parts of the signalling pathway. This is why we present the 

connectivity diagram here as a summarization of the dynamics in the EGFR signaling 

pathway. Since the EGFR signaling pathway can be described as a formal system, there 

is great opportunity for other complex biological signaling pathways to be modeled and 

validated using formal verification methods [32]. 
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In order to perform our analysis we have chosen to use the SPiM simulator, 

which is based on the pi-calculus formalism. There is a wide range of existing tools 

based on process calculi,  such as  BetaWorkbench [33], Bio-Pepa [34], and Cellucidate 

[35], which all use Continuous Time Markov Chains as the underlying computational 

model. Each tool has its own distinctive characteristics and advantages; for example, 

Cellucidate is a rule-based formalism, which directly models the reactions between 

components as opposed to the behaviour of the individual components themselves. 

Rule-based modeling gives greater flexibility in describing the reactions of a biological 

system. Bio-Pepa is, likewise, a reaction-based formalism in which the reactants and 

products can be described separately. BetaWorkbench relies on an individual-based 

formalism, where each biological entity is encapsulated inside a boundary and local 

processes inside the boundary are used to model changes in state. This extra layer gives 

more modeling flexibility but at the expense of additional complexity. In general, expert 

modelers could have used any one of these languages to create the EGFR model 

presented here. Our choice of SPiM was motivated by our interest in perturbed versions 

of the same model. Using SPiM, we were able to automate thousands of model 

simulations using a simple command-line script. In addition, SPiM’s individual-based 

formalism, simplified language primitives, and its support for a graphical 

representation of models, simplified the creation and manipulation of this model. In 

particular, the one-to-one correspondence between the graphical notation and program 

code allows both graphics and text to be used interchangeably.  Process calculi are 

rapidly establishing themselves as computational formalisms of choice for modeling 

molecular interactions. Stochastic or hybrid versions of Petri Nets [36] can be viewed as 

a reaction-based modeling formalism that supports a range of powerful analysis 

techniques, though its core language is not as rich as process calculi. StateCharts [37], on 

the other hand, provide an extremely rich language for modeling, but at present do not 

support exact stochastic simulation techniques and, like discrete versions of Petri Nets, 
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are thus more appropriate to create abstract models of biological systems. For a review 

of several computational approaches and their adequacy for different kinds of models 

we refer the readers to [38]. 

In conclusion, through simulation of the EGFR signaling model under different 

perturbation conditions, we can discover regions of network robustness and fragility. 

The molecular profiles of the important signaling components presents evidence for the 

increasing insensitivity to low EGF stimulus as we move down the signaling pathway. 

In contrast, greater sensitivity is exhibited by the signaling system when downstream 

signaling modules are perturbed. There seems to be significant redundancy that is 

contributing to network robustness in Grb2 and Ras signaling modules. Further study 

of partial inhibition at the important reactions demonstrates that high signal attenuation 

is achieved when multiple sites in downstream signaling modules are targeted. By 

analyzing the behaviour of interface components as the signal passes through the 

modules, we are able to produce a mapping of signaling modules to simplified 

operations, and thereby, generating a connectivity diagram for the EGFR signaling 

pathway. From the diagram, we can see important feedback mechanisms, some of them 

crucial to the maintenance of activated response in ERK and could explain the 

irreversible maturation of tumour cells. As is shown, the results from these simulations 

of the EGFR signaling pathway can be used to help formulate hypotheses, regarding the 

dynamics of EGFR signaling, to be tested in the 'wet lab'. Furthermore, the experimental 

results can be used to eliminate spurious assumptions in the model and hence further 

verify it.  
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Figure 1. The biochemical map of reactions involved in the EGFR signalling pathways 

[6]. Reactants are connected by arrows that indicate interaction (and consumption) with 

other reactants. Each reaction has a number depicted in grey, and those with a second 

number refer to the reaction of internalized species. For example, reaction v1 binds 

together an EGF and an EGFR molecule; reaction v13 produces EGFR molecules. Each 

reaction can be also reversed. Dotted coloured lines indicate the boundaries of seven 

signaling modules: EGF (blue), Grb2 (red), Ras Shc-dependent (light green on the left), 

Ras Shc-independent (dark green on the right), Raf (pink), MEK (yellow), and ERK 

(maroon). The interface molecules which interact between modules are highlighted in 

yellow boxes. 
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Figure 2. Molecular profiles of molecular components at different EGF concentrations. 

50 ng/ml(green line), 25 ng/ml (blue line), and 0.5 ng/ml (red line). The (EGF-EGFR*)2 

indicates the dimerized and autophosphorylated form of the EGF receptor. Shc* and 

Raf* is the phosphorylated form of cellular Shc and Raf. Ras-GTP is the formed complex 

of Ras and GTP. MEK-PP and ERK-PP are the doubly phosphorylated forms of MEK 

and ERK. 
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Figure 3. Simplified graphical representation of the modules in the pathway with 

interface components. Colored lines indicate the boundaries of the modules and the 

edge labels indicate reactions that are crucial to signaling between the molecular 

components. 
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Figure 4. Behavior of ERK-PP in response to complete inhibition of crucial reactions. 

For each specific reaction that is inhibited, the molecular profile of ERK-PP is plotted 

over time. 
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Figure 5. Behavior of ERK-PP under various inhibitory conditions. When the 

phosphorylation reaction of EGFR alone is targeted by kinase inhibitors (Single 

inhibition), when phosphorylation of EGFR and association of GAP are targeted 

(Multiple inhibitions: upstream targets A), when phosphorylation of EGFR and several 

other association reactions in the Grb2 module are targeted (Multiple inhibitions: 

upstream targets B), and when association reactions in the Ras Shc-dependent, Raf, 

MEK, and ERK modules are targeted (Multiple inhibition: downstream targets). 

Various levels of inhibition are represented by the green (10%), blue (30%), red (50%), 

yellow (70%) and brown (90%) lines. 
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Figure 6. Connectivity diagram of key components in the EGFR signaling pathway. Each gate 

represents a series of reactions resulting in the production of the substance connected to the 

curved side. The substances connected to the flat side of a gate are the inputs. The initial inputs 

are set by the state of EGF species (internal and external). The connections show all paths 

between key components in the EGFR signaling pathway. Red connections indicate inhibition 

and all others activation. A connection is colored black or green if inactivation of the input 

disables activation of the output. Disconnection of one of the substances in orange or red does 

not affect activity of the output. The diagram clearly shows which paths carry signal that do not 

affect the overall activation of the component (red and orange wires), and which paths carry 

signals that are necessary to activate the component (green and black wires).  
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Supplementary Material 

 

Figure S1. Stochastic pi-calculus model of the biochemical interactions involved in the EGFR signalling pathways. The model is 

based on the reaction map of Figure 1. Essentially, each connected graph represents the set of possible states of a given protein, 

where each node represents a protein in a particular state. For example, in the top right there are three graphs for proteins Phase1, 

Phase2 and Phase3, where each of these proteins can be in two possible states, bound or free. Proteins can change their state by 

interacting with each other over shared channels, where each labelled edge represents an action that a protein can perform in order 

to change from its current state to a new state. For example, the protein Phase1 can become bound by interacting on channel phase1, 

and can then become free by interacting on channel p. The channel phase1 is parameterised by p, written phase1(p). This indicates 

that the protein becomes bound on p after the interaction takes place. In this figure we have grouped sets of proteins together into 

subsystems, denoted by rectangular boxes. For example, in the top right we have grouped the proteins Phase1, Phase2, Phase3, Raf, 

MEK and ERK into a cascade subsystem. All the channels inside a given subsystem are local to that subsystem, apart from those 

that are represented between boxes. For example, in the cascade subsystem the channels phase1, phase2 and phase3 are local and 

cannot interact with any of the other subsystems, while channels rasgtp and erkpp can interact with two other subsystems. This 

gives an overall schematic for the interactions between the various subsystems. We observe that the ERK subsystem can interact 

with the Grb2 subsystem on channel erkpp. Similarly, the EGF subsystem can interact with the Grb2 subsystem on channel 

complex, representing the EGF-EGFR’2-GAP complex. Finally, we observe that the RasGTP subsystem can interact with both the 

cascade and the Grb2 subsystem. Note that the interactions with RasGTP are parameterised by channels r,r’ and rd, indicating that 

the bound RasGTP protein can unbind in three different ways, resulting in RasGTP, RasGTP’ or RasGDP. A corresponding set of 

chemical reactions can be automatically generated for the entire system, but note that the translation does not preserve the modular 

description of the system. The model is available at http://research.microsoft.com/en-us/um/people/aphillip/egfr09/ and the SPiM 

simulator is available at http://research.microsoft.com/spim/  
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Figure S2. Behaviour of ERK-PP in response to complete inhibition of key reactions in 

the EGF module.  
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Figure S3. Behaviour of ERK-PP in response to complete inhibition of key reactions in 

the Grb2 module. 
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Figure S4. Behaviour of ERK-PP in response to complete inhibition of key reactions in 

the Ras Shc-independent module. 
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Figure S5. Behaviour of ERK-PP in response to complete inhibition of key reactions in 

the Ras Shc-dependent module. 
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Figure S6. Behaviour of ERK-PP in response to complete inhibition of key reactions in 

the Raf module. 
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Figure S7. Behaviour of ERK-PP in response to complete inhibition of key reactions in 

the MEK module. 
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Figure S8. Behaviour of ERK-PP in response to complete inhibition of key reactions in 

the ERK module. 
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Table S1. Boolean table for inferring logical inputs for (EGF-EGFRi)2* 
 
EGF 
v3 

EGFi 
v7 (EGF-EGFRi)2* 

0 0 0 

0 1 1 

1 0 0 

1 1 1 

  

Table S2. Boolean table for inferring logical inputs for (EGF-EGFR*)2-GAP.  
 
(EGF-EGFR)2* 

v8 
(EGF-EGFRi)2* 

v14 
(EGF-EGFR*)2-GAP-Grb2-Sos 

v34 (EGF-EGFR*)2-GAP 

0 0 0 0 

0 0  1 0 

0  1 0  1 

0 1 1 1 

1 0  0  1 

1 0 1 1 

1 1 0 1 

1 1 1 1 

  

Table S3. Boolean table for inferring logical inputs for (EGF-EGFR*)2-GAP-Shc* 
 
(EGF-EGFR*)2-GAP 

v22 
(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos 

v32 (EGF-EGFR*)2-GAP-Shc* 

0 0 0 

0 1 0 

1 0 1 

1 1 1 
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Table S4. Boolean table for inferring logical inputs for (EGF-EGFR*)2-GAP-
Grb2-Sos 

 
(EGF-EGFR*)2-GAP 

v16 
Ras-GTP 
v20 

ERK-PP 
v126 (EGF-EGFR*)2-GAP-Grb2-Sos 

0 0 0 0 

0  0  1 0 

0  1 0  0 

0 1 1 0 

1 0  0  1 

1 0 1 1 

1 1 0 1 

1 1 1 1 

 
Table S5. Boolean table for inferring logical inputs for (EGF-EGFR*)2-GAP-Shc*-
Grb2-Sos 

 
(EGF-EGFR*)2-GAP-Shc* 

v23 
Ras-GTP 
v31 

ERK-PP 
v128 (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos 

0 0 0 0 

0  0  1 0 

0  1 0  0 

0 1 1 0 

1 0  0  1 

1 0 1 1 

1 1 0 1 

1 1 1 1 

  

 
Table S6. Boolean table for inferring logical inputs for Ras-GTP 
 
(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos 

v27 
(EGF-EGFR*)2-GAP-Grb2-Sos 

v19 
Raf* 
v42 Ras-GTP 

0 0 0 0 

0  0  1 0 

0  1 0  1 

0 1 1 1 

1 0  0  1 

1 0 1 1 

1 1 0 1 

1 1 1 1 
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Table S7. Boolean table for inferring logical inputs for Raf* 
 
Ras-GTP 
v28 

MEK-PP 
v48 Raf* 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

  

Table S8. Boolean table for inferring logical inputs for MEK-PP 
 
Raf* 
v44 

ERK-PP 
v56 MEK-PP 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
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Figure S9. Molecular profiles of interface components as a result of perturbations on 

two different input signals.  See highlighted rows in Table S2-S6.  
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Figure S10: Molecular profile of ERK-PP in response to signal from the EGF-EGFR 

complex as simulated by the abstract pi-calculus model. 

 

Figure S11: Molecular profile of ERK-PP in response to signal from the EGF-EGFR 

complex as simulated by the abstract pi-calculus model, but without abstraction of the 

Grb module. 


