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ABSTRACT. We study theπ-calculus, enriched with pairing, and define a notion of typeassignment
that uses the type constructor→. We encode the terms of the calculusX into this variant ofπ,
and show that all reduction and assignable types are preserved. SinceX enjoys the Curry-Howard
isomorphism for Gentzen’s calculusLK , this implies that all proofs inLK have a representation inπ,
andcut-elimination is simulated byπ’s synchronisation of processes. We then enrich the logic with
the connector¬, and show that this also can be represented inπ.

INTRODUCTION

In this paper we present three encodings of proofs of Gentzen’s (implicative) LK [24] into the
π-calculus [36] that respectcut-elimination, and define a new notion of type assignment forπ so
that processes will become witnesses for the provable formulae. These encodings of classical logic
into π-calculus are attained by using the intuition of the calculus X , which gives a computational
meaning toLK (a first version of this calculus was proposed in [45, 47, 46];the implicative fragment
of X was studied in [10]).

X enjoys the Curry-Howard isomorphism forLK , which it achieves by inhabiting the inference
rules with term information, constructing witnesses for derivable sequents. Terms inX have mul-
tiple named inputs and multiple named outputs, that are collectively calledconnectors. Reduction
in X is expressed via a set of rewrite rules that represent/correspond tocut-elimination inLK ; re-
ducing a term using these rules eventually leads to renamingof connectors and gives computational
meaning to classical (sequent) proof reduction. It is well known thatcut-elimination inLK is not
confluent, and, sinceX is Curry-Howard forLK and its reduction respectscut-elimination, neither
is reduction inX .

These two features –non-confluence and reduction as connection of terms via the exchange
of names– inspired us to consider theπ-calculus as an alternative computational model forcut-
elimination and proofs inLK . The relation between process calculi and classical logic is an inter-
esting and very promising area of research (similar attempts were made in the context of natural
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deduction [33] and linear logic [5, 15, 19, 18]). Our aim is towiden further the path to practical ap-
plication of classical logic in computation by providing expressive interpretations of classical logic
into process algebra, that fully exploit the non-determinism of bothLK andπ.

The aim of this paper is to linkLK andπ via X ; the main achievements are:

• encodings ofX into π are defined that preserve the operational semantics; one that respects
head-reduction, and the other two that respect reduction infull – to achieve these results,
reduction inπ is generalised by adding pairing [2];

• we define a non-standard notion of type assignment forπ (types do not contain channel
information) that encompasses implication;

• the encoding preserves assignable types, effectively showing that all proofs inLK have a
representation inπ;

• in addition to [10], we treat the connective¬ as well.

Classical sequents.Thesequent calculusLK , introduced by Gentzen in [24], is a logical system in
which the rules only introduce connectives (but on either side of a sequent), in contrast tonatural
deduction(also introduced in [24]) which uses rules that introduce oreliminate connectives in the
logical formulae. Natural deduction normally derives statements with a single conclusion, whereas
LK allows for multiple conclusions, deriving sequents of the form A1, . . . , An ⊢ B1, . . . , Bm, where
A1, . . . , An is to be understood asA1∧ . . .∧An andB1, . . . , Bm is to be understood asB1∨ . . .∨Bm.
The versionG3 [34], with implicit weakening and contraction, of Implicative LK has four rules:
axiom, left introductionof the arrow,right introduction, andcut.

(Ax) :
Γ, A ⊢ A, ∆

(⇒L) :
Γ ⊢ A, ∆ Γ, B ⊢ ∆

Γ, A⇒B ⊢ ∆

(⇒R) :
Γ, A ⊢ B, ∆

Γ ⊢ A⇒B, ∆
(cut) :

Γ ⊢ A, ∆ Γ, A ⊢ ∆

Γ ⊢ ∆

SinceLK has only introduction rules, the only way to eliminate a connective is to eliminate the
whole formula in which it appears via an application of the(cut)-rule. Gentzen defined a procedure
that eliminates all applications of the(cut)-rule from a proof of a sequent using an innermost strat-
egy, generating a proof innormal formof the same sequent,i.e., without acut. This procedure is
defined via local reductions of the proof-tree, which has –with some discrepancies– the flavour of
term rewriting [35] or the evaluation of explicit substitutions [17, 1]. Indeed, the typing rule of an
explicit substitution, say inλx [16], is nothing but a variant of the(cut)-rule, and a lot of work has
been done to better understand the connection between explicit substitutions and localcut-reduction
procedures.

The principle of X . The calculusX achieves a Curry-Howard isomorphism, first discovered for
Combinatory Logic [23], for the proofs inLK by constructingwitnessesfor derivable sequents. In
establishing the isomorphism forX , similar to calculi likeλµ [38] andλµµ̃ [22], Roman names
are attached to formulae in the left context, and Greek namesfor those on the right, and syntactic
structure is associated to the rules. Names on the left can beseen as inputs to the term, and names
to the right as outputs; since multiple formulae can appear on both sides, this implies that a term
can not only have more than one input, but also more than one output. There are two kinds of
names (connectors) inX : sockets(inputs, with Roman names, that correspond to values) andplugs
(outputs, with Greek names, that correspond to continuations), that correspond tovariablesand
co-variables, respectively, in [48], or, alternatively, to Parigot’sλ andµ-variables (see also [22]).
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In the construction of the witness, when in applying a rule a premise or conclusion disappears
from the sequent, the corresponding name gets bound in the term that is constructed, and when
a premise or conclusion gets created, a different free (often, but not necessarily, new) name is
associated to it. For example, in the creation of the term forright-introduction of the arrow

P ··· Γ, x:A ⊢X α:B, ∆

x̂Pα̂·β ··· Γ ⊢X β:A→B, ∆

the inputx and the outputα are bound, andβ is free. This case is interesting in that it highlights a
special feature ofX , not found in other calculi. In (applicative) calculi related to natural deduction,
like the λ-calculus, only inputs are named, and the linking to a term that will be inserted is done
via λ-abstraction and application. The output (i.e. result) on the other hand is anonymous; where a
term ‘moves to’ carries a name via a variable that acts as a pointer to the positions where the term
is to be inserted, but where it comes from is not mentioned, and left implicit. Since inX a termP
can have many inputs and outputs, it is unsound to considerP a functionper se; however, fixingone
input x andoneoutputα, we can seeP as a function ‘fromx to α’. We make this limited view of
P available via the outputβ, therebyexportingvia β that ‘P can be used as a function fromx to α’.
The types given to the connectors confirm this view.

Gentzen’s proof reductions bycut-elimination become the fundamental principle of computa-
tion in X . Cuts in proofs are witnessed byPα̂ † x̂Q (called thecut of P andQ via α andx), and
the reduction rules specify how to remove them: a term is in normal form if and only if it has no
sub-term of this shape. The intuition behind reduction is: thecut Pα̂ † x̂Q expresses the intention
to connect allαs in P andxs in Q, and reduction will realise this by either connecting allαs to all
xs (if x does not exist inQ, P will disappear), or allxs to all αs (if α does not exist inP, Q will
disappear). Sincecut-elimination inLK is not confluent, neither is reduction inX ; for example, as
suggested above, whenP does not containα andQ does not containx, reducingPα̂ † x̂Q can lead
to bothP andQ, two different terms.

Reduction inX boils down torenaming: since the calculus is substitution-free, during re-
duction terms are re-organised, creating terms that are similar, but with different connector names
inside.

Capturing X in π. X ’s notion of multiple inputs and outputs is also found inπ, and was the
original inspiration for our research. The aim of this work is to find a simple and intuitive encoding
of LK -proofs in π, and to devise a notion of type assignment forπ so that the types inX are
preserved inπ. In this precise sense we view processes inπ as giving an alternative computational
meaning to proofs in classical logic. To achieve this goal, we made full use of the view ofX -terms
sketched above. Clearly this implies that we had to define a notion of type assignment that uses the
type constructor→ for π; we managed this without having to linearise the calculus asdone in [33],
and this is one of the contributions of this paper.

Although the calculiX andπ are, of course, essentially different, the similarities gobeyond
the correspondence of inputs and output between terms inX and processes inπ. Like X , π is
application free, and substitution only takes place onchannel names, similar to the renaming feature
of X , socut-elimination is similar to synchronisation.

As discussed above, when creating a witness for(⇒R) (the termx̂Pα̂·β, called anexport),
the exported interface ofP is the functionality of ‘receiving onx, sending onα’, which is made
available onβ. When encoding this behaviour inπ, we are faced with a problem. It is clearly not
sufficient to limit communication to the exchange of single names, since then we would have to
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separately sendx and α, breaking perhaps the exported functionality, and certainly disabling the
possibility of assigning arrow types. We overcome this problem by sending out a pair of names, as
in a〈 v, δ 〉. Similarly, when interpreting a witness for(⇒L) (the termPα̂ [x] ŷQ, called animport),
the term that is to be connected tox is ideally a function whose input will be connected toα, and its
output toy. This means that we need to receive a pair of names overx, as inx( v, δ ). P.

A cut Pα̂ † x̂Q in X expresses two terms that need to be connected viaα andx. If we model
P andQ in π, then we obtain one process sending onα, and one receiving onx, and we need to
link these viaα(w). x〈w〉. Since each output onα in P takes place only once, andQ might want to
receive in more than onex, we need to replicate the sending; likewise, since each input x in Q takes
place only once, andP might have more than one send operation onα, Q needs to be replicated.

Related work. The relation betweenlogic andcomputationhinges around the Curry-Howard iso-
morphism (sometimes also attributed to de Bruijn), which expresses the fact that, for certain calculi
with a notion of types, there exists a corresponding logic such that it becomes possible to asso-
ciate terms with proofs, linking the term’s type to the proposition shown by the proof, and proof
contractions become term reductions (or computations). This phenomenon was first discovered for
Combinatory Logic [23], and played an important part in de Bruijn’s Automath1.

Before Herbelin’s PhD [29] and Urban’s PhD [45], the study ofthe relation between computa-
tion, programming languages and logic has concentrated mainly on natural deduction systems(of
course, exceptions exist [25, 26]). In fact, these carry thepredicate ‘natural’ deservedly; in com-
parison with, for example,sequent style systems, natural deduction systems are easy to understand
and reason about. This holds most strongly in the context ofnon-classicallogics; for example, the
Curry-Howard relation betweenIntuitionistic Logicand theLambda Calculuswith types – of which
the basic system is formulated by

(Ax) :
Γ, x:A ⊢λ x : A (→I) :

Γ, x:A ⊢λ M : B

Γ ⊢λ λx.M : A→B
(→E) :

Γ ⊢λ M : A→B Γ ⊢λ N : A

Γ ⊢λ MN : B

– is well studied and understood, and has resulted in a vast and well-investigated area of research,
resulting in, amongst others, functional programming languages and much further to systemF [27]
and the Calculus of Constructions [21]. Abramsky [4, 5] has studied correspondence between multi-
plicative linear logic and processes, and later moved to thecontext of game semantics [6]. In fact, all
the calculi areapplicativein that abstraction and application (corresponding to arrow introduction
and elimination) are the main constructors in the syntax.

The link between Classical Logic and continuations and control was first established for the
λC-Calculus [28] (whereC stands for Felleisen’sC operator). Not much later, Parigot presented
his λµ-calculus [38], an approach for representing classical proofs via a natural deduction system
in which there is one main conclusion that is being manipulated, and possibly several alternative
ones; the corresponding logic is one withfocus. The λµ-calculus is presented as an extension of
theλ-calculus, by extending the syntax with two new constructs that act as witness to the rules that
deal withconflict (⊥):

Γ ⊢λµ M : A | α:A, ∆

Γ ⊢λµ [α]M :⊥ | α:A, ∆

Γ ⊢λµ M : ⊥ | α:A, ∆

Γ ⊢λµ µα.M : A | ∆

1http://www.win.tue.nl/automath

http://www.win.tue.nl/automath
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It uses two disjoint sets of variables (Roman letters and Greek letters). The sequents typing terms
are of the formΓ ⊢ A | ∆ , marking the conclusionA asactive.

The introduction-elimination approach is easy to understand and convenient to use, but is also
rather restrictive: for example, the handling of negation is not as nicely balanced, as is the treatment
of contradiction (for a detailed discussion, see [42]). This imbalance can be observed in theλµ-
calculus: adding⊥ as pseudo-type (only negation, orA→⊥, is expressed;⊥→A is not a type), the
λµ-calculus corresponds tominimal classical logic[7].

Herbelin has studied the calculusλµµ̃ as a non-applicative extension ofλµ, which gives a fine-
grained account of manipulation of sequents [29, 22, 30]. The relation between call-by-name and
call-by-value in the fragment ofLK with negation and conjunction is studied in the Dual Calculus
[48]; as in calculi likeλµ andλµµ̃, that calculus considers a logic withactive formulae, so these
calculi do not achieve a direct Curry-Howard isomorphism with LK . The relation betweenX and
λµµ̃ has been investigated in [9, 10]; there it was shown that it isstraightforward to mapλµµ̃-terms
into X whilst preserving reduction, but that it is not possible to do the converse.

Theπ-calculus is equipped with a rich type theory [41]: from the basic type system for counting
the arity of channels [39] to sophisticated linear types in [33], which studies a relation between Call-
by-Valueλµ and a linearπ-calculus. Linearisation is used to be able to achieve processes that are
functions, by allowing output over one channel name only. Moreover, the encoding presented in
[33] is type dependent, in that, for each term, there are differentπ-processes assigned, depending
on the original type; this makes the encoding quite cumbersome. By contrast, our encoding is very
simple and intuitive by interpreting thecut operationally as a communication. The idea of giving a
computational interpretation of thecut as a communication primitive is also used in [5] and [15]. In
both these papers, only a small fragment of Linear Logic was considered, and the encoding between
proofs andπ-calculus was left rather implicit.

The type system presented in this paper differs quite drastically from the standard type system
presented in [41] in that our types contain no channel information: here input and output channels
essentially have the type of the data they are sending or receiving, and are separated by the type
system by putting all inputs with their types on the left of the sequent, and the outputs on the right.
In our paper, types give a logical view to theπ-calculus rather than an abstract specification on how
channels should behave.

A result similar to ours has appeared as [20], but for the factthat there a relation is established
between theλµµ̃-calculus and theπ-calculus;λµµ̃ has a Curry-Howard relation with a version of
LK with activated formulae, as in Parigot’sλµ, so does not directly representLK . The interpretation
as defined in [20] strongly depends on recursion, is not compositional, and preserves only outermost
reduction, not the (larger) notion of head-reduction we encode with · S; it does follow the reduction
in λµµ̃ closely, though. Also, since in that approach all communication takes place via channels
namedλ, µ andµ̃, it is not immediately clear that a natural notion of type assignment exists forπ
so that also type assignment is preserved.

Overview of this paper. In Section 1, we briefly repeat the definitions of (implicative)X , followed
by the notion of type assignment which establishes the Curry-Howard isomorphism. In Section 2,
we show how to rewrite theX -terms, and show the relation withLK ’s cut-elimination. Theπ-
calculus with pairing is presented in Section 3. Section 4 defines the notion of head-reduction inX ,
which is encoded intoπ via · S; in Section 5 we will modify this encoding to full representX ’s
reduction, via the encodings· F and · R.
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In Section 6, we define a notion of type assignment for theπ-calculus. Then, in Section 7 we
look at how to represent the other connectives inX , and study the relation between these represen-
tations and reduction. We conclude by extending the syntax of names inπ to elegantly represent
the other connectives directly inπ.

In [8], we first presented our results on the encoding ofX -terms in to theπ-calculus; that paper
also presented the notion of type assignment as defined here,as well as a proof that type assignment
is preserved by the encoding. We repeat these results here, with all details of the proofs; however,
here we define a notion of head-reduction ‘→H’ for X , and show that the encoding· S respects
→H; we also add the encodings· F and · R and show that these are faithful with respect toX ’s full
reduction.

1. THE CALCULUS X

In this section and the next we will give the definition of theX -calculus which has been proven
to be a fine-grained implementation model for various well-known calculi [9], like theλ-calculus
[14], λµ, andλµµ̃. As discussed in the introduction, the calculusX is inspired by the sequent
calculus; the system we will consider in this section has only implication, no structural rules and
a changed axiom; we will consider the other connectives in Section 7. X features two separate
categories of ‘connectors’,plugsandsockets, that act as input and output channels, and is defined
without any notion of substitution or application.

Definition 1.1 (Syntax). The terms of theX -calculus are defined by the following syntax, where
the Roman charactersx, y range over the infinite set ofsockets, and the Greek charactersα, β over
the infinite set ofplugs.

P, Q ::= 〈x·α〉 capsule
| ŷP β̂·α export
| Pα̂ [x] ŷQ import
| Pα̂ † ŷQ cut

We can represent these terms via the following diagrams (given just as a visual aid).

-
x α

-
-̂
x P -̂

β -
α P -̂

α [ ] ŷ
- Q-

x P -̂α ŷ Q

As an aid to intuition, ignoring the explicitly named outputs, we can see these terms with the
view of theλ-calculus: thecapsule〈x·α〉 can then be seen as the variablex, theexport x̂Pα̂·β as
the abstractionλx.P, theimport Pα̂ [x] ŷQ as the termxPQ1· · · Qn (whereQ is seen as a context,
acting as a stack of termsQ1, . . . , Qn), and thecut Pα̂ † x̂Q as the substitutionQ 〈x := P〉.

The ·̂ symbolises that the socket or plug underneath is bound in theterm. The notion of bound
and free connector is defined as usual, and we will identify terms that only differ in the names of
bound connectors, as usual.

Definition 1.2. Thefree socketsandfree plugsin a net are defined by:

fs(〈x·α〉) = {x}

fs(x̂Pα̂·β) = fs(P)\{x}

fs(Pα̂ [y] x̂Q) = fs(P)∪{y} ∪(fs(Q)\{x})
fs(Pα̂ † x̂Q) = fs(P)∪(fs(Q)\{x})

fp(〈x·α〉) = {α}

fp(x̂Pα̂·β) = (fp(P)\{α})∪{β}

fp(Pα̂ [y] x̂Q) = (fp(P)\{α})∪ fp(Q)
fp(Pα̂ † x̂Q) = (fp(P)\{α})∪ fp(Q)
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A socketx or plug α occurring inP which is not free is calledbound, written x ∈ bs(P) and
α ∈ bp(P). We will write x 6∈ fs(P, Q) for x 6∈ fs(P) & x 6∈ fs(Q).

The set offree connectorsof P is defined by:fc(P) = fs(P) ∪ fp(P).

We accept Barendregt’s convention on names, which states that no name can occur both free
and bound in a context;α-conversion is supposed to take place silently, whenever necessary. We
will consider also, for example,x bound inP[y/x] andP ··· Γ, x:A ⊢X ∆.

We first define types and contexts.

Definition 1.3 (Types and Contexts). (1) The set of types is defined by the grammar:

A, B ::= ϕ | A→B

whereϕ is a basic type of which there are infinitely many2.
(2) A context of socketsΓ is a mapping from sockets to types, denoted as a finite set ofstate-

mentsx:A, such that thesubjectof the statements (x) are distinct. We writeΓ1, Γ2 for the
compatibleunion ofΓ1 andΓ2 (if Γ1 containsx:A1 andΓ2 containsx:A2 thenA1 = A2), and
write Γ, x:A for Γ, {x:A}. So, when writing a context asΓ, x:A, this implies thatx:A ∈ Γ,
or Γ is not defined onx.

(3) Contexts ofplugs∆, and the notions∆1, ∆2 andα:A, ∆ are defined in a similar way.

The notion of type assignment onX that we present in this section is the basic implicative
system for Classical Logic (Gentzen’s systemLK ) as described above. The Curry-Howard property
is easily achieved by erasing all term-information. When building witnesses for proofs, propositions
receive names; those that appear in the left part of a sequentare named with Roman characters like
x, y, z, etc, and those that appear in the right part of a sequent are named with Greek characters
like α, β, γ, etc. When in applying a rule a formula disappears from the sequent, the corresponding
connector will get bound in the term that is constructed, andwhen a formula gets created, a new
connector will be associated to it.

Definition 1.4 (Typing forX ). (1) Type judgementsare expressed via a ternary relationP ··· Γ ⊢
∆, whereΓ is a context ofsocketsand∆ is a context ofplugs, andP is a term. We say that
P is thewitnessof this judgement.

(2) Type assignment forX is defined by the following rules:

(cap) : 〈y·α〉 ··· Γ, y:A ⊢ α:A, ∆
(cut) :

P ··· Γ ⊢ α:A, ∆ Q ··· Γ, x:A ⊢ ∆

Pα̂ † x̂Q ··· Γ ⊢ ∆

(exp) :
P ··· Γ, x:A ⊢ α:B, ∆

x̂Pα̂·β ··· Γ ⊢ β:A→B, ∆
(imp) :

P ··· Γ ⊢ α:A, ∆ Q ··· Γ, x:B ⊢ ∆

Pα̂ [y] x̂Q ··· Γ, y:A→B ⊢ ∆

We write P ··· Γ ⊢X ∆ if there exists a derivation using these rules that has this judgement
in the bottom line, and writeD :: P ··· Γ ⊢X ∆ if we want to name that derivation.

As in λµµ̃, the term that inhabits left-introduction of the arrow,Qα̂ [z] v̂R, can be seen as a
context with a hole (which in our case carries the namez), or as a list withQ at the head andR at
the tail3.

Notice thatΓ and∆ carry the types of the free connectors inP, as unordered sets. There is no
notion of type forP itself, instead the derivable statement shows howP is connectable.

2These types are normally known assimple(or Curry) types.
3In λµµ̃, (⇒L) is inhabited byv · e, with v a term, ande a context, and, in fact,v·e x =

∆ v α α̂ [x] ŷ e y, where

· . is the interpretation ofλµµ̃ terms intoX ; for details, see [10].
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Example 1.5(A proof of Peirce’s Law). The following is a proof for Peirce’s Law inLK :

(Ax)
A ⊢ A, B

(⇒R)
⊢ A⇒B, A

(Ax)
A ⊢ A

(⇒L)
(A⇒B)⇒A ⊢ A

(⇒R)
⊢ ((A⇒B)⇒A)⇒A

Inhabiting this proof inX gives the derivation:

(cap)
〈y·δ〉 ··· y:A ⊢X δ:A, η:B

(exp)
ŷ〈y·δ〉η̂ ·α ··· ⊢X α:A→B, δ:A

(cap)
〈w·δ〉 ··· w:A ⊢X δ:A

(imp)
(ŷ〈y·δ〉η̂ ·α)α̂ [z] v̂〈v·δ〉 ··· z:(A→B)→A ⊢X δ:A

(exp)
ẑ((ŷ〈y·δ〉η̂ ·α)α̂ [z] v̂〈v·δ〉) δ̂·γ ··· ⊢X γ:((A→B)→A)→A

2. REDUCTION ONX

The reduction rules for the calculusX are directly inspired by thecut-elimination rules inLK .
For example, since

D1

Γ, A ⊢LK B, ∆
(→R)

Γ ⊢LK A→B, ∆

D2

Γ ⊢LK A, ∆

D3

Γ, B ⊢LK ∆
(→L)

Γ, A→B ⊢LK ∆
(cut)

Γ ⊢LK ∆

contracts to both

D2

Γ ⊢LK A, ∆
(W)

Γ ⊢LK A, B, ∆

D1

Γ, A ⊢LK B, ∆
(cut)

Γ ⊢LK B, ∆

D3

Γ, B ⊢LK ∆
(cut)

Γ ⊢LK ∆

and

D2

Γ ⊢LK A, ∆

D1

Γ, A ⊢LK B, ∆

D3

Γ, B ⊢LK ∆
(W )

Γ, A, B ⊢LK ∆
(cut)

Γ, A ⊢LK ∆
(cut)

Γ ⊢LK ∆

the witness for the first proof,(ŷP β̂·α)α̂ † x̂(Qγ̂ [x] ẑR)

-̂
y P -̂β -

α
-̂α x̂ Q -̂

γ [ ] ẑ
- R-

x

reduces to bothQγ̂ † ŷ(P β̂ † ẑR) and(Qγ̂ † ŷP) β̂ † ẑR, being the witnesses for the two resulting
proofs:

Q -̂
γ ŷ P -̂

α ẑ R and Q -̂
γ ŷ P -̂α ẑ R

This behaviour is reflected in rule(exp-imp), as presented in Definition 2.2. We can see thecut
(ŷPα̂·γ)γ̂ † x̂(Qγ̂ [x] ẑR) as a function̂yPα̂·γ (with bodyP, that takes input onx and outputs on
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α) interacting with a contextQγ̂ [x] ẑR (consisting of the function’s argumentQ, x as the hole that
the function should occupy, and the context of this functionapplicationR)4. The contraction of the
cut expresses (in the left-hand diagram) that the body of the function (which represents the result
of the function, but with the substitution of the argument still pending) interacts with the context
before using the argument; the other contraction first uses the argument, before interacting with the
context, which corresponds to the standard way5.

The calculus, defined by the reduction rules below, explainsin detail howcuts are propagated
through terms to be eventually evaluated at the level ofcapsules, where renaming takes place. Re-
duction is defined by specifying both the interaction between well-connected basic syntactic struc-
tures, and how to deal with propagating active nodes to points in the term where they can interact.

It is important to know when a connector is introduced,i.e. is connectable,i.e. is exposed and
unique; this will play an important role in the reduction rules. Informally, a termP introduces a
socketx if P is constructed from sub-terms which do not containx as free socket, sox only occurs
at the “top level.” This means thatP is either animport with a middle connector[x] or acapsule
with left part x. Similarly, a term introduces a plugα if it is an export that “creates”α or acapsule
with right partα.

Definition 2.1 (Introduction). P introduces x: Either P = Q β̂ [x] ŷR with x 6∈ fs(Q, R), or P =
〈x·α〉.

P introduces α: EitherP = x̂Q β̂·α andα 6∈ fp(Q), or P = 〈x·α〉.

The principal reduction rules specify how to reduce a term thatcutssub-terms which introduce
connectors. These rules are naturally divided in four categories: when acapsuleis cut with a
capsule, anexport with a capsule, acapsulewith an import or anexport with an import. There is
no other pattern in which a plug is introduced on the left of a† and a socket is introduced on the
right.

Definition 2.2 (Logical rules). Let α and x be introduced in, respectively, the left and right-hand
side of the maincutsbelow.

(cap) : 〈y·α〉α̂ † x̂〈x·β〉 → 〈y·β〉

(exp) : (ŷP β̂·α)α̂ † x̂〈x·γ〉 → ŷP β̂·γ

(imp) : 〈y·α〉α̂ † x̂(Q β̂ [x] ẑR) → Q β̂ [y] ẑR

(exp-imp) : (ŷP β̂·α)α̂ † x̂(Qγ̂ [x] ẑR) →

{
Qγ̂ † ŷ(P β̂ † ẑR)

(Qγ̂ † ŷP) β̂ † ẑR

The first three logical rules above specify a renaming procedure, whereas the last rule specifies
the basic computational step: it links theexportof a function, available on the plugα, to an adjacent
import via the socketx. The effect of the reduction will be that the exported function is placed
in-between the two sub-terms of theimport, acting as interface. Notice that twocutsare created in
the result, that can be grouped in two ways; these alternatives do not necessarily share all normal
forms (reduction is non-confluent, so normal forms are not unique).

We now define how to reduce acut when one of its sub-terms doesnot introduce a connector
mentioned in thecut. This will involve moving thecut inwards, towards a position where the
connectoris introduced, with the direction taken indicated by the tilting of the dagger. In case both

4This view is confirmed byλµµ̃, where P α̂ † x̂Q X = 〈µα. P X | µ̃x. Q X 〉; in a command〈v | e〉, v is a term,
ande is acontext.

5In fact, inλµµ̃ only the second alternative is represented.
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connectors are not introduced, this search can start in either direction, giving another source of
non-confluence.

Definition 2.3 (Active cuts). The syntax is extended with twoflaggedor activecuts:

P ::= . . . | P1 α̂ † x̂P2 | P1 α̂ † x̂P2

Terms constructed without these flaggedcutsare calledpure.
We define twocut-activation rules.

(a† ) : Pα̂ † x̂Q → Pα̂ † x̂Q if P does not introduceα
( †a) : Pα̂ † x̂Q → Pα̂ † x̂Q if Q does not introducex

Notice that both side-conditions can hold simultaneously.

Similarly to the reasoning above, also the rules dealing with activatedcuts are inspired by
Gentzen’scut-elimination rules. Since

D1

Γ, A ⊢LK A→B, B, ∆
(→R)

Γ ⊢LK A→B, ∆

D2

Γ, A→B ⊢LK ∆
(cut)

Γ ⊢LK ∆

(notice the contraction towardsA→B in the left-hand sub-derivation, so the plug associated to this
formula would not be introduced in the witness forΓ ⊢LK A→B, ∆) contracts to

D1

Γ, A ⊢LK A→B, B, ∆

D2

Γ, A→B ⊢LK ∆
(cut)

Γ, A ⊢LK B, ∆
(→R)

Γ ⊢LK A→B, ∆

D2

Γ, A→B ⊢LK ∆
(cut)

Γ ⊢LK ∆

Notice that now in the conclusion of the left-hand sub-derivation the formulaA→B is not con-
tracted: in the witness for this proof, this corresponds to an introduced plug; in fact, the wit-
ness for the first proof, the term(ŷQ β̂·α)α̂ † x̂P, reduces to the witness for the second proof
(ŷ(Qα̂ † x̂P) β̂·γ)γ̂ † x̂P where nowγ is introduced, as reflected in rule(exp-outs† ) below. So
the diagram

-̂
y Q -̂β -

α
-̂α x̂ P

with α free inQ, reduces to

-̂
y Q -̂

α x̂ P -̂
β -

γ
-̂

γ x̂ P
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Also, since

D1

Γ ⊢LK A→B, ∆

D2

Γ, A→B ⊢LK A, ∆

D3

Γ, A→B, B ⊢LK ∆
(⇒L)

Γ, A→B ⊢LK ∆
(cut)

Γ ⊢LK ∆

(again, notice the contraction) reduces to

D1

Γ ⊢LK A→B, ∆

D1

Γ ⊢LK A→B, ∆

D2

Γ, A→B ⊢LK A, ∆
(cut)

Γ ⊢LK A, ∆

D1

Γ ⊢LK A→B, ∆

D3

Γ, A→B, B ⊢LK ∆
(cut)

Γ, B ⊢LK ∆
(⇒L)

Γ, A→B ⊢LK ∆
(cut)

Γ ⊢LK ∆

the termPα̂ † x̂(Q β̂ [x] ŷR) reduces toPα̂ † ẑ((Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R)), or:

P -̂α x̂ Q -̂
β [ ] ŷ

- R-
x

(wherex occurs free inQ or R) reduces to

P -̂α ẑ P -̂
α ŷ Q -̂

β [ ] ŷ
- P -̂

α ŷ R-
z

as reflected in rule( †imp-outs).
The next rules define how to move an activated dagger inwards.

Definition 2.4 (Propagation rules). Left propagation:

(d† ) : 〈y·α〉α̂ † x̂P → 〈y·α〉α̂ † x̂P

(cap† ) : 〈y·β〉 α̂ † x̂P → 〈y·β〉 β 6= α

(exp-outs† ) : (ŷQ β̂·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P) β̂·γ)γ̂ † x̂P γ fresh
(exp-ins† ) : (ŷQ β̂·γ)α̂ † x̂P → ŷ(Qα̂ † x̂P) β̂·γ γ 6= α

(imp† ) : (Q β̂ [z] ŷR)α̂ † x̂P → (Qα̂ † x̂P) β̂ [z] ŷ(Rα̂ † x̂P)

(cut† ) : (Q β̂ † ŷR)α̂ † x̂P → (Qα̂ † x̂P) β̂ † ŷ(Rα̂ † x̂P)

Right propagation:

( †d) : Pα̂ † x̂〈x·β〉 → Pα̂ † x̂〈x·β〉

( †cap) : Pα̂ † x̂〈y·β〉 → 〈y·β〉 y 6= x

( †exp) : Pα̂ † x̂(ŷQ β̂·γ) → ŷ(Pα̂ † x̂Q) β̂·γ

( †imp-outs) : Pα̂ † x̂(Q β̂ [x] ŷR) → Pα̂ † ẑ((Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R)), z fresh
( †imp-ins) : Pα̂ † x̂(Q β̂ [z] ŷR) → (Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R) z 6= x

( †cut) : Pα̂ † x̂(Q β̂ † ŷR) → (Pα̂ † x̂Q) β̂ † ŷ(Pα̂ † x̂R)

Notice that, in rules(d† ) and( †d), the activatedcut gets deactivated: although the connector
mentioned in thecapsuleis certainly introduced, we cannot guarantee that the otherconnector is not,
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so it might be possible that now a logical rule is applicable;if the other connector is not introduced,
thecut gets activated again, but now in the opposite direction.

Definition 2.5. (1) We write→X for the reduction relation defined as the smallest pre-order
(i.e. reflexive and transitive relation) that includes the logical, propagation and activation
rules, extended with the contextual rules6

P → Q ⇒





x̂Pα̂·β → x̂Qα̂·β

Pα̂ [x] ŷR → Qα̂ [x] ŷR

Rα̂ [x] ŷP → Rα̂ [x] ŷQ

Pα̂ † ŷR → Qα̂ † ŷR

Rα̂ † ŷP → Rα̂ † ŷQ

The reduction→X is not confluent; this comes in fact from the critical pair that activates acut
Pα̂ † x̂Q in two ways. Confluent sub-reduction systems are defined in [10].

Summarising, reduction brings allcuts down to logicalcuts where both connectors are single
and introduced, or to the elimination ofcuts that are cutting towards acapsule that does not
contain the relevant connector. Cuts towards connectors occurring in capsuleslead to renaming
Pα̂ † x̂〈x·β〉 →X P[β/α] and〈z·α〉α̂ † x̂P →X P[z/x], and towards non-occurring connectors
leads to elimination (Pα̂ † x̂〈z·β〉 →X 〈z·β〉 and〈z·β〉 α̂ † x̂P →X 〈z·β〉).

We remark that it is possible to definecut-elimination in many ways, and that the above rules
are not cast in iron, but form a very elegant, natural and minimal set. We could, for example,
replace the deactivation rules(d† ) and ( †d) by 〈z·α〉 α̂ † x̂P → P[z/x] and Pα̂ † x̂〈x·β〉 →

P[β/α], respectively; this yieldsX i, a variant ofX with implicit substitution as defined in [43].
The activatedcutswere introduced by Urban with the main purpose of giving enough control over
cut-elimination to prove strong normalisation, without sacrificing expressivity. The idea is that,
once activated, acut has to run to completion, and cannot be “crossed” with another cut.

The soundness result of simple type assignment with respectto reduction is stated as usual:

Theorem 2.6(Witness reduction [10]). If P ··· Γ ⊢ ∆, andP →X Q, thenQ ··· Γ ⊢ ∆.

In [10, 11] some basic properties are shown, which essentially show that the calculus is well
behaved, as well as the relation betweenX and a number of other calculi. These results motivate
the formulation of admissible rules:

Lemma 2.7(Garbage Collection and Renaming [11]).

(† gc) : Pα̂ † x̂Q →X P if α 6∈ fp(P)

( †gc) : Pα̂ † x̂Q →X Q if x 6∈ fs(Q)

(ren-L) : 〈z·α〉α̂ † x̂P →X P[z/x]

(ren-R) : P δ̂ † ẑ〈z·α〉 →X P[α/δ]

Example 2.8. To illustrate reduction inX , we will reduce the term

(ẑPδ̂·γ)γ̂ † û(〈u·β〉 β̂ † ŷ(Qτ̂ [y] ŵR))

whereP = 〈z·δ〉, Q = 〈v·τ〉 andR = 〈w·σ〉, soγ 6∈ fp(P) andu, y 6∈ fs(Q, R). Notice that, since
u not introduced in the right-hand term, this is not a logicalcut. We show two reduction paths; in

6Since reduction inX is defined via rewriting rules, the contextual rules are normally left implicit; we mention them
here because we will define a restriction of reduction that also limits the contextual rules.
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the first reduction, we contract first the innermost (logical) cut:

(ẑP δ̂·γ)γ̂ † û(〈u·β〉 β̂ † ŷ(Q τ̂ [y] ŵR)) → (imp)

(ẑP δ̂·γ)γ̂ † û(Q τ̂ [u] ŵR) → (exp-imp)

Qτ̂ † ẑ(P δ̂ † ŵR)

We could run this further, but for our purposes this is enough.
In the second, we first activate the outer-mostcut:

(ẑP δ̂·γ)γ̂ † û(〈u·β〉 β̂ † ŷ(Qτ̂ [y] ŵR)) → ( †a, †cut)

((ẑP δ̂·γ)γ̂ † û〈u·β〉) β̂ † ŷ((ẑP δ̂·γ)γ̂ † û(Qτ̂ [y] ŵR)) → ( †d, exp, †imp-ins)

(ẑP δ̂·β) β̂ † ŷ(((ẑP δ̂·γ)γ̂ † ûQ)τ̂ [y] ŵ((ẑP δ̂·γ)γ̂ † ûR)) → ( †cap)

(ẑP δ̂·β) β̂ † ŷ(Qτ̂ [y] ŵR) → (exp-imp)

Qτ̂ † ẑ(Pδ̂ † ŵR)

For another example, letP = 〈z·δ〉, Q′ = 〈u·τ〉 andR = 〈w·σ〉 (notice the difference inQ,
sou is no longer introduced inQ′ τ̂ [u] ŵR).

(ẑP δ̂·γ)γ̂ † û(Q′ τ̂ [u] ŵR) → ( †a)

(ẑP δ̂·γ)γ̂ † û(Q′ τ̂ [u] ŵR) → ( †imp-outs)

(ẑP δ̂·γ)γ̂ † ŷ(((ẑP δ̂·γ)γ̂ † ûQ′)τ̂ [y] ŵ((ẑPδ̂·γ)γ̂ † ûR)) → ( †d, †cap)

(ẑP δ̂·γ)γ̂ † ŷ(((ẑP δ̂·γ)γ̂ † ûQ′)τ̂ [y] ŵR) → (exp),=α

(x̂〈x·ρ〉 ρ̂·γ)γ̂ † ŷ((ẑPδ̂·τ) τ̂ [y] ŵR) → (exp-imp)

(ẑP δ̂·τ)τ̂ † x̂(〈x·ρ〉ρ̂ † ŵR) → ( †a)

(ẑP δ̂·τ)τ̂ † x̂(〈x·ρ〉 ρ̂ † ŵR) → ( †cut)

((ẑP δ̂·τ)τ̂ † ẑ〈z·r〉)ρ̂ † ŵ((ẑP δ̂·τ) τ̂ † ẑR) → ( †d, exp, †cap)

(ẑP δ̂·ρ) ρ̂ † ŵR → (exp)

ẑP δ̂·σ

Example 2.9.We show how to reduce acut containing the witness for Peirce’s law in a context that
offers identity as a first argument:

(ẑ((ŷ〈y·δ〉η̂ ·α) α̂ [z] v̂〈v·δ〉)δ̂·γ)γ̂ † v̂((x̂〈x·σ〉σ̂·τ)τ̂ [v] ŵ〈w·ρ〉) → (exp-imp)
(x̂〈x·σ〉σ̂·τ)τ̂ † ẑ(((ŷ〈y·δ〉η̂ ·α)α̂ [z] v̂〈v·δ〉)δ̂ † ŵ〈w·ρ〉) → (ren-R)
(x̂〈x·σ〉σ̂·τ)τ̂ † ẑ((ŷ〈y·ρ〉 η̂ ·α)α̂ [z] v̂〈v·ρ〉) → (exp-imp)
(ŷ〈y·ρ〉 η̂ ·α) α̂ † x̂(〈x·σ〉σ̂ † v̂〈v·ρ〉) → (cap)
(ŷ〈y·ρ〉 η̂ ·α) α̂ † x̂〈x·ρ〉 → (exp)
ŷ〈y·ρ〉 η̂ ·ρ

Notice that we cannot type these terms: as shown in Example 1.5, the type used forz in the subterm
(ŷ〈y·δ〉η̂ ·α) α̂ [z] v̂〈v·δ〉 is (A→B)→A, and we cannot assign that type toτ in x̂〈x·σ〉 σ̂·τ, since
that term is only a witness of judgements of the shapex̂〈x·σ〉σ̂·τ ··· Γ ⊢X τ:C→C, and we cannot
solve(A→B)→A = C→C. And in fact, to type the final term̂y〈y·ρ〉 η̂ ·ρ, the connectorρ must
haveboth the typesC andC→D, which we cannot express.
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3. THE ASYNCHRONOUSπ-CALCULUS WITH PAIRING

The notion of asynchronousπ-calculus that we consider in this paper is different from other
systems studied in the literature [31], and can be seen as a special case of the polyadicπ-calculus
[37]; the reason for this deviation is made clear in Section 4. One reason for this change lies directly
in the calculus that is going to be interpreted,X , in which a term can be constructed bindingtwo
names simultaneously; we will model this via the sending and receiving pairs of names as interfaces
for functions, so, inspired by [2], add pairing. We take the view that processes communicate by
sending data over channels, so not just names, but also pairsof names.

We will define an encoding ofX into thisπ-calculus with pairing. Almost as usual, we cannot
model full cut-elimination through our first encoding ofX -terms via · S into theπ-calculus; this
is directly caused by the nature of the reduction relation onthe π-calculus, which does not permit
reduction under aninput. This was also the case with the interpretations of theλ-calculus defined
by, for example, Milner [36], Sangiorgi [41], Hondaet al. [33], Thielecke [44], and two of the
authors of this paper [13], where reduction in the original calculus had to be restricted in order to
get a completeness result. However, we will be able to overcome that shortcoming, and define two
encodings thatdo representX ’s reduction in full.

To ease the definition of the interpretation function of terms in X to processes in theπ-cal-
culus, we deviate slightly from the normal practice, and write either Greek charactersα, β, υ, . . .

or Roman charactersx, y, z, . . . for channel names; we usen for either a Greek or a Roman name.
To successfully preserve assignable types, we also introduce a structure over names, such that not
only names but also pairs of names can be sent (but not a pair ofpairs). We also introduce the
let-construct to deal with inputs of pairs of names that get distributed over the continuation.

Definition 3.1 (Asynchronousπ-calculus). (1) Channel names and data are defined by:

a, b, c, d ::= x | α names
p ::= a | a, b data

Notice that pairing isnot recursive.
(2) Processes are defined by:

P, Q ::= 0 nil
| P | Q composition
| ! P replication
| (νa)P restriction

| a(x). P input
| a〈p〉 (asynchronous) output
| let x, y = z in P let construct

(3) We abbreviatea(x). let y, z = x in P by a(y, z). P, and (νm) (νn)P by (νmn)P, and
write a〈c, d〉 rather thana〈 c, d 〉.

(4) A (process) context is simply a term with a hole[·].
(5) We considern bound in(νn)P, and calln free in P if it occurs in P and is not bound; we

write fn(P) for the set of free names inP, and writefn(P, Q) for fn(P)∪fn(P).

Definition 3.2 (Congruence). Thestructural congruenceis the smallest equivalence relation closed
under contexts defined by the following rules:

P | 0 ≡ P ! P ≡ P | ! P ! P ≡ ! P | ! P P | Q ≡ Q | P (νn)0 ≡ 0

(νm) (νn)P ≡ (νn) (νm)P (νn) (P | Q) ≡ P | (νn)Q if n 6∈ fn(P)
(P | Q) | R ≡ P |(Q | R) let x, y = a, b in R ≡ R[a/x, b/y]
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Because of rule(P | Q) | R ≡ P |(Q | R), we will normally not write brackets in a parallel
composition of more than two processes.

Definition 3.3 (Reduction). (1) Thereduction relationover the processes of theπ-calculus is
defined by following (elementary) rules:

(synchronisation) : a〈b〉 | a(x). Q →π Q[b/x]
(binding) : P →π P′ ⇒ (νn)P →π (νn)P′

(composition) : P →π P′ ⇒ P | Q →π P′ | Q

(congruence) : P ≡ Q & Q →π Q′ & Q′ ≡ P′ ⇒ P →π P′

(2) We write→+
π for the transitive closure of→π, and→∗

π for the reflexive and transitive
closure of→π.

Notice that a〈b, c〉 | a(x, y). Q = a〈b, c〉 | a(z). let x, y = z in Q

→π let x, y = b, c in Q

≡ Q[b/x, c/y]

.

Definition 3.4. (1) We writeP ↓ n (P outputs onn) if P ≡ (νb1 . . . bm) (n〈p〉 | Q) for some
Q, wheren 6= b1 . . . bm.

(2) We writeP ⇓ n (P will output onn) if there existsQ such thatP →∗
π Q andQ ↓ n.

(3) We writeP ⊑c Q (and call⊑c thecontextual ordering) if, for all contextsC[·], and for all
n, if C[P] ↓ n thenC[Q] ⇓ n.

(4) We writeP ∼c Q (and callP andQ contextually equivalent) if and only if P ⊑c Q and
Q ⊑c P.

Definition 3.5. (1) Strong equivalenceis the largest relation∼• such thatP ∼• Q implies:
• for each namen, P ↓ n if and only if Q ↓ n;
• for all P′, if P →π P′, then for someQ′, Q →π Q′ andP′ ∼π Q′.
• for all Q′, if C[Q] →π Q′, then for someP′, P →π P′ andQ′ ∼• P′.

(2) Strong bisimilarityis the largest relation∼ such thatP ∼ Q if for all processesR, P | R ∼•

Q | R.

Theorem 3.6([40]). (1) ∼ is a congruence relation.
(2) ∼ implies∼c.

The following lemma was shown in [41] using∼, and states some basic properties on processes
that are relevant to our results; especially the second and third, that state distribution rules, are
important.

Lemma 3.7(cf. [41]). (1) (a) (νx) (! P) ∼c ! (νx) (! P).
(b) (νx) (! Q | ! P) ∼c ! (νx) (Q | ! P)

(2) LetQ, R be processes that useα only for output, andP hasα only as input. Then:
(a) (να) (Q | R | ! P) ∼c (να) (Q | ! P) | (να) (R | ! P)

(b) (να) ((νβ) (Q | R) | ! P) ∼c (νγ) ((νβ) ((να) (Q | ! P)) | R[γ/α] | ! P[γ/α])
(3) LetQ, R be processes that usex only for input, andP hasx only as output. Then:

(a) (νx) (Q | R | ! P) ∼c (νx) (Q | ! P) | (νx) (R | ! P)

(b) (νx) ((νy) (Q | R) | ! P) ∼c (νz) ((νy) ((νx) (Q | ! P)) | R[z/x] | ! P[z/x])
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4. A SIMPLE ENCODING FORX INTO π

In this section we will present an encoding ofX into π which closely follows the structure and
intuition ofX . Our encoding is based on the intuition formulated above: thecut Pα̂ † x̂Q expresses
the intention to connect allαs in P andxs in Q. Translated intoπ, this results in seeingP as trying
to send at least as many times overα asQ is willing to receive overx, andQ trying to receive at
least as many times overx asP is ready to send overα.

Since some sub-terms will be placed underinput, a full representation of reduction inX cannot
be achieved, because it is not possible to reduce the (interpreted) terms that appear under aninput;
prohibiting reduction underinput is necessary for the expansion lemma [41]. In view of the litera-
ture that exists on encodings into theπ-calculus, this is unfortunate but normal: this limitationwas
already evident in [36], which manages only to show a preservation result forlazyreduction [3] for
theλ-calculus, and is also present in [13] where only the notion of spine reduction gets represented.
To accommodate for this shortcoming, to achieve a simulation result using this first encoding, we
restrict the notion of reduction onX to that ofhead-reduction. As can be seen in Definition 4.1,in-
put is only used for the encoding ofimport, so the restriction will consist of removing the rules that
reduce underimport; also, since no congruence rules exist that deal withinput terms, propagation
into animport cannot be modelled.

Although departing fromX it is natural to use Greek names for outputs and Roman names for
inputs, by the very nature of the communication of theπ-calculus (it is only possible to communi-
cate using thesamechannel for in and output), in the implementation we are forced to use Greek
names also for inputs, and Roman names for outputs; in fact, we need to explicitly convert ‘an out-
put sent onα is to be received as input onx’ via ‘ α(w). x〈w〉’ (called aforwarder in [32]), soα is
now also an input, andx also an output channel, which for convenience is abbreviated into α x.

Definition 4.1 (Simple interpretation ofX in π). Thesimpleinterpretation of terms is defined by:

〈x·α〉 S = x(w). α〈w〉

ŷQ β̂·α S = (νyβ) (! Q S | α〈y, β〉)

Pα̂ [x] ŷQ S = x(s, d). ((να) (! P S | ! α s) | (νy) (! d y | ! Q S))

Pα̂ † x̂Q S = (ναx) (! P S | ! α x | ! Q S) = Pα̂ † x̂Q S = Pα̂ † x̂Q S

The approach of· S is to see theimport Pα̂ [x] ŷQ as a delayed communication, that is waiting
for a mediator to arrive inx. Notice that the termP outputs onα, andQ inputs ony, and that these
are bound locally in the construction of theimport, as correctly expressed by(να) (! P S | ! α s),
wheres is the name of an input channel that needs to be received, and(νy) (! d y | ! Q S), whered
needs to be received; in fact,s andd are received together in a pair viainput. Since we here follow
quite closely the structure of terms inX , it is this aspect that gives the moniker ‘simple’ to this
encoding. Notice that we redirect the outputα to s, which is the input channel of the mediator, and
that P S gets replicated since it might be needed more than once in that mediator. We place these
two processes in parallel under the input ofx(s, d), creating

x(s, d). ((να) (! P S | ! α s) | (νy) (! d y | ! Q S)).

Since now sub-terms are placed underinput, we cannot encodeX ’s reduction in full.
As mentioned in the introduction, we added pairing to theπ-calculus in order to be able to deal

with arrow types. Notice that using the polyadicπ-calculus instead would not be sufficient: since
we would like the interpretation to respect reduction, in particular we need to be able to reduce
the interpretation of(x̂Pα̂·β) β̂ † ẑ〈z·γ〉 to that of x̂Pα̂·γ (whenβ not free inP). So, choosing to
encode theexport of x andα over β asβ〈x, α〉 would force the interpretation of〈z·γ〉 to always
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receive a pair of names. But requiring for acapsuleto always deal with pairs of names is too
restrictive, since it is desirable to allowcapsulesto deal with single names as well. So, rather
than moving towards the polyadicπ-calculus, we opt for letting communication send a single item,
which is either a name or a pair of names. This implies that a process sending a pair can also
successfully communicate with a process not explicitly demanding to receive a pair.

Notice that the interpretation of non-activatedcuts is the same as that of activatedcuts; this
implies that we are, in fact, also interpreting a variant ofX without activatedcuts, modelling arbi-
trary movement ofcutsovercuts, but with the same set of rewrite rules. This is very different from
Gentzen’s original definition – he in fact does not define acut-over-cut step, and uses innermost
reduction for hisHauptsatzresult – and different from Urban’s definition: allowing only activated
cutsto propagate is crucial for his Strong Normalisation result. However, this rewriting is still sound
with respect to typeability, in the sense that assignable contexts are preserved under reduction. Here
we can abstract from these aspects, since we only aim to provea simulationresult forX , not full
abstraction, for which the simple encoding will be shown adequate.

The following is straightforward:

Lemma 4.2(Free name preservation). α, x 6∈ fc(P), if and only ifα, x 6∈ fn( P S).

Proof. By easy induction on the structure ofX -terms.

There is a couple of important aspects to our result that needto be pointed out:

(1) One of the main goals we aimed for with our interpretationwas, of course, the preservation
of reduction: if P →X Q, then P S →π Q S; we quickly understood that this was too
ambitious. Take the reduction〈y·α〉α̂ † x̂〈x·γ〉 →X 〈y·γ〉, then

〈y·α〉 α̂ † x̂〈x·γ〉 S =∆ (ναx) (! y(w). α〈w〉 | ! α x | ! x(w). γ〈w〉)
〈y·γ〉 S =∆ y(w). γ〈w〉

but we cannot show that(ναx) (! y(w). α〈w〉 | ! α x | ! x(w). γ〈w〉) reduces toy(w). γ〈w〉.
However, it is easy to show that these processes arecontextually equivalent.

So, can we then show : ifP →X Q, then P S ∼c Q S? Alas, given the reduction rules
in π, this cannot be achieved in full: since, inπ, we cannot reduce under an input, we can
only simulate head-reduction.

(2) Moreover, the reduction inX is non-confluent, so, in particular, a termP can have more
than one normal form. When interpreting a term through its set of normal forms via · NF,
it is easy to show that, ifP →X Q, then Q NF ⊆ P NF; so picking one reduction fromP
can then exclude the reachability of some of the other normalforms, and the set of reachable
normal forms decreases during reduction.

Something similar also holds for our encoding into theπ-calculus: if P →X Q, then
P S has more behaviour thanQ S, expressed viaP S c⊒ Q S.

We now define our notion of head-reduction onX .

Definition 4.3. We define the notion ofhead-reduction→H as in Definition 2.5, by blocking reduc-
tions in and towardimport, via theeliminationof the propagation rules that move into animport:

(imp† ) : (Q β̂ [z] ŷR)α̂ † x̂P → (Qα̂ † x̂P) β̂ [z] ŷ(Rα̂ † x̂P)

( †imp-outs) : Pα̂ † x̂(Q β̂ [x] ŷR) → Pα̂ † ẑ((Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R))

( †imp-ins) : Pα̂ † x̂(Q β̂ [z] ŷR) → (Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R), z 6= x
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as well as the contextual rules:

P → Q ⇒

{
Pα̂ [x] ŷR → Qα̂ [x] ŷR

Rα̂ [x] ŷP → Rα̂ [x] ŷQ

The choice for the terminologyhead-reduction can be motivated as follows. The only remain-
ing reduction rules that deal withimportsare:

(imp) : 〈y·α〉α̂ † x̂(Q β̂ [x] ẑR) → Q β̂ [y] ẑR

(exp-imp) : (ŷP β̂·α)α̂ † x̂(Qγ̂ [x] ẑR) →

{
Qγ̂ † ŷ(P β̂ † ẑR)

(Qγ̂ † ŷP) β̂ † ẑR

Take the logicalcut (ŷPα̂·γ)γ̂ † x̂(Qγ̂ [x] ẑR); as mentioned above, this expresses a function
ŷPα̂·γ interacting with a contextQγ̂ [x] ẑR, whereQ is the function’s parameter, andR is the
context of this function application (we can compare this term, with discrepancies, to(λy.P)QRi,
so R is the context[ ]Ri). We can see the contraction of thiscut as a substitution7, where we insert
P into the holex in the context. The restriction we put on the rewriting system in head-reduction
implies that this only will happen if the left-hand term mentioned in thecut is a value,i.e. either
a capsuleor anexport ŷPα̂·γ with α introduced. In particular, under head-reduction, in the term
T α̂ † x̂(Qγ̂ [x] ẑR) (which we can see asxQRi 〈x := T〉, i.e. as TQRi) all reduction takes place
exclusively inside T (so in the head of the term), and thecut mentioned explicitly will only be
contracted after that reduction produces a term that introducesα, either in acapsule, or in anexport.
So this substitution is postponed (for an introducedx; if x is not introduced, it will always be
blocked, since propagation into animport is no longer allowed) until the term to be inserted has
become a value; notice that reductions inside this value areallowed.

We now come to the correctness result for the encoding, whichessentially states that we can
mimic X ’s head-reduction inπ: if P →H Q, the image of theX -term P under the encoding inπ
reduces to someπ-process that contains the behaviour ofQ, but might have some extra behaviour
that could be disregarded. As is evident from the proofs below, this is in part due to the presence of
replicated processes in the translation of thecut.

The precise formulation of the correctness result now becomes:

Theorem 4.4. If P →H Q, then P S c⊒ Q S.

Proof. Logical rules:

(cap): 〈y·α〉α̂ † x̂〈x·γ〉 → 〈y·γ〉.

〈y·α〉 α̂ † x̂〈x·γ〉 S =∆ (ναx) (! 〈y·α〉 S | ! α x | ! 〈x·γ〉 S) =∆

(ναx) (! y(w). α〈w〉 | ! α x | ! x(w). γ〈w〉) c⊒

(ναx) (y(w). α〈w〉 | α x | x(w). γ〈w〉) ∼c (α, x)

y(w). γ〈w〉 = 〈y·γ〉 S

(exp): (ŷP β̂·α) α̂ † x̂〈x·γ〉 → ŷP β̂·γ.

(ŷP β̂·α) α̂ † x̂〈x·γ〉 S =∆ (ναx) (! ŷP β̂·α S | ! α x | ! 〈x·γ〉 S) c⊒

(ναx) ( ŷP β̂·α S | α x | 〈x·γ〉 S) =∆

(ναx) ((νyβ) (! P S | α〈y, β〉) | α x | x(w). γ〈w〉) →+
π (α, x)

(νyβ) (! P S | γ〈y, β〉) =∆ ŷP β̂·γ S

7In fact, it corresponds to ãµ-reduction inλµµ̃, defined by the rule〈v | µ̃x.c〉 → c[v/x], which performs the
substitution.
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(imp): 〈y·α〉α̂ † x̂(Q β̂ [x] ẑP) → Q β̂ [y] ẑP.

〈y·α〉 α̂ † x̂(Q β̂ [x] ẑP) S =∆ (ναx) (! 〈y·α〉 S | ! α x | ! Q β̂ [x] ẑP S) c⊒

(ναx) ( 〈y·α〉 S | α x | Q β̂ [x] ẑP S) =∆

(ναx) (y(w). α〈w〉 | α x | x(s, d). ((νβ) (! Q S | ! β s) | (νz) (! d z | ! P S))) ∼c (α, x)

y(s, d). ((νβ) (! Q S | ! β s) | (νz) (! d z | ! P S)) =∆ Q β̂ [y] ẑP S

(exp-imp): (ŷP β̂·α) α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷ(P β̂ † ẑR).

(ŷP β̂·α) α̂ † x̂(Qγ̂ [x] ẑR) S =∆ (ναx) (! ŷP β̂·α S | ! α x | ! Qγ̂ [x] ẑR S) c⊒

(ναx) ( ŷP β̂·α S | α x | Qγ̂ [x] ẑR S) =∆

(ναx) ((νyβ) (! P S | α〈y, β〉) | α x |
x(s, d). ((νγ) (! Q S | ! γ s) | (νz) (! d z | ! R S))) →+

π (α, x)

(νyβγz) (! P S | ! Q S | ! γ y | ! β z | ! R S) ≡

(νγy) (! Q S | ! γ y | (νβz) (! P S | ! β z | ! R S)) ∼c (3.7(1a))
(νγy) (! Q S | ! γ y | ! (νβz) (! P S | ! β z | ! R S)) =∆ Qγ̂ † ŷ(P β̂ † ẑR) S

For (ŷP β̂·α) α̂ † x̂(Qγ̂ [x] ẑR) → (Qγ̂ † ŷP) β̂ † ẑR the proof is similar:

(νyβγz) (! P S | ! Q S | ! γ y | ! β z | ! R S) ≡,∼c

(νβz) (! (νγy) (! Q S | ! γ y | ! P S) | ! β z | ! R S) =∆ (Qγ̂ † ŷP) β̂ † ẑR S

Activation rules: Trivial.

Left propagation:

(†† ): 〈y·α〉 α̂ † x̂P → 〈y·α〉α̂ † x̂P. Trivial.

(cap† ): 〈y·β〉 α̂ † x̂P → 〈y·β〉, β 6= α.

〈y·β〉 α̂ † x̂P S =∆ (ναx) (! y(w). β〈w〉 | ! α x | ! P S) ≡ (β 6= α)

! y(w). β〈w〉 | (ναx) (! α x | ! P S) c⊒ y(w). β〈w〉 =∆ 〈y·β〉 S

Notice that, in caseP does not containα, (ναx) (! α x | P S) ≡ (ναx) (! α x) | P S; it is
this what forces the theorem itself to be stated usingc⊒.

(exp-outs† ): (ŷQ β̂·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P) β̂·γ)γ̂ † x̂P, γ fresh.

(ŷQ β̂·α)α̂ † x̂P S =∆ (ναx) (! (νyβ) (! Q S | α〈y, β〉) | ! α x | ! P S) ∼c (3.7(1b))
! (ναx) ((νyβ) (! Q S | α〈y, β〉) | ! α x | ! P S) ∼c (3.7(2b))
! (νγx) ((νyβ) ((ναx) (! Q S | ! α x | ! P S) | γ〈y, β〉) | ! γ x | ! P S) ∼c (3.7(1b))
(νγx) (! (νyβ) ((ναx) (! Q S | ! α x | ! P S) | γ〈y, β〉) | ! γ x | ! P S) ∼c (3.7(1a))
(νγx) (! (νyβ) (! (ναx) (! Q S | ! α x | ! P S) | γ〈y, β〉) | ! γ x | ! P S) =∆

(ŷ(Qα̂ † x̂P) β̂·γ)γ̂ † x̂P S

(exp-ins† ): (ŷQ β̂·γ)α̂ † x̂P → ŷ(Qα̂ † x̂P) β̂·γ, γ 6= α.

(ŷQ β̂·γ)α̂ † x̂P S =∆ (ναx) (! (νyβ) (! Q S | γ〈y, β〉) | ! α x | ! P S) ∼c (3.7(1b))
! (ναx) ((νyβ) (! Q S | γ〈y, β〉) | ! α x | ! P S) ≡

! (νyβ) ((ναx) (! Q S | ! α x | ! P S) | γ〈y, β〉) c⊒

(νyβ) ((ναx) (! Q S | ! α x | ! P S) | γ〈y, β〉) ∼c (3.7(1a))
(νyβ) (! (ναx) (! Q S | ! α x | ! P S) | γ〈y, β〉) =∆

ŷ(Qα̂ † x̂P) β̂·γ S
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(imp† ): Excluded from→H.

(cut† ): (Q β̂ † ŷR)α̂ † x̂P → (Qα̂ † x̂P) β̂ † ŷ(Rα̂ † x̂P).

(Q β̂ † ŷR)α̂ † x̂P S =∆ (ναx) (! (νβy) (! Q S | ! β y | ! R S) | ! α x | ! P S) ∼c (3.7(1a))
! (ναx) ((νβy) (! Q S | ! β y | ! R S) | ! α x | ! P S) ∼c (3.7(2a))
! (νβy) ((ναx) (! Q S | ! α x | ! P S) | ! β y | (ναx) (! R S | ! α x | ! P S)) ∼c (3.7(1a))
(νβy) (! (ναx) (! Q S | ! α x | ! R S) | ! β y | ! (ναx) (! R S | ! α x | ! P S)) =∆

(Qα̂ † x̂P) β̂ † ŷ(Rα̂ † x̂P) S

Right propagation:

( ††): Pα̂ † x̂〈x·β〉 → Pα̂ † x̂〈x·β〉, α not introduced inP. Trivial.

( †cap): ThenPα̂ † x̂〈y·β〉 → 〈y·β〉, y 6= x.

Pα̂ † x̂〈y·β〉 S =∆ (ναx) (! P S | ! α x | ! y(w). β〈w〉) ≡ (y 6= x)

(ναx) (! P S | ! α x) | ! y(w). β〈w〉 c⊒ y(w). β〈w〉 =∆ 〈y·β〉 S

Note again the use ofc⊒.

( †exp): ThenPα̂ † x̂(ŷQ β̂·γ) → ŷ(Pα̂ † x̂Q) β̂·γ.

Pα̂ † x̂(ŷQ β̂·γ) S =∆ (ναx) (! P S | ! α x | ! (νyβ) (! Q S | γ〈y, β〉)) ∼c (3.7(1b))
! (ναx) (! P S | ! α x | (νyβ) (! Q S | γ〈y, β〉)) ≡

! (νyβ) ((ναx) (! P S | ! α x | ! Q S) | γ〈y, β〉) ∼c (3.7(1b))
(νyβ) (! (ναx) (! P S | ! α x | ! Q S) | γ〈y, β〉) =∆ ŷ(Pα̂ † x̂Q) β̂·γ S

( †imp-outs), ( †imp-ins): Excluded from→H.

( †cut): ThenPα̂ † x̂(Q β̂ † ŷR) →X (Pα̂ † x̂Q) β̂ † ŷ(Pα̂ † x̂R).

Pα̂ † x̂(Q β̂ † ŷR) S =∆ (ναx) (! P S | ! α x | ! (νβy) (! Q S | ! β y | ! R S)) ∼c (3.7(1b))
! (ναx) (! P S | ! α x | (νβy) (! Q S | ! β y | ! R S)) ∼c (3.7(3a))
! (νβy) ((ναx) (! P S | ! α x | ! Q S) | ! β y | (ναx) (! P S | ! α x | ! R S)) ∼c (3.7(1b))
(νβy) (! (ναx) (! P S | ! α x | ! Q S) | ! β y | ! (ναx) (! P S | ! α x | ! R S)) =∆

(Pα̂ † x̂Q) β̂ † ŷ(Pα̂ † x̂R) S

Contextual rules:
P → Q ⇒ x̂Pα̂·β → x̂Qα̂·β:

x̂Pα̂·β S =∆ (νxα) (! P S | β〈x, α〉) c⊒ (IH) (νxα) (! Q S | β〈x, α〉) =∆ x̂Qα̂·β S

P → Q ⇒ Pα̂ † ŷR → Qα̂ † ŷR, Rα̂ † ŷP → Rα̂ † ŷQ: By induction.

P → Q ⇒ Pα̂ [x] ŷR → Qα̂ [x] ŷR, Rα̂ [x] ŷP → Rα̂ [x] ŷQ: Excluded from→H.

P → Q & Q → R ⇒ P → R: By induction.

P → Q ⇒ Rα̂ † ŷP → Rα̂ † ŷQ: By induction.

Notice that, in the proof above, the only place where reduction plays a role is in the logical rules;
all other steps are dealt with by the congruence rules, contextual equivalence and/or induction.

Observe that the image ofX in π, being built without using ‘choice’, has no notion oferasure
of processes; thecut Pα̂ † x̂Q, with α not in P andx not in Q, in X runs via erasure to eitherP or
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Q, and reducing it decreases the set of reachable normal forms; but:

Pα̂ † x̂Q S =∆ (ναx) (! P S | ! α x | ! Q S)

≡ ! P S | (ναx) (! α x) | ! Q S ≡ ! P S | ! Q S

which, evidently, has more behaviour than bothP S and Q S. So for anyX -termP, P S essentially
‘contains’ all normal forms ofP in parallel; restricting to either (confluent) call-by-name or call-by-
value reductions, this feature will disappear.

The result presented in [33] is stronger, but only achieved for Call-by-Valueλµ, and at the price
of a very intricate translation that depends on types; sinceλµ is confluent, normal forms are unique.
The result as presented in [20] is achieved for outermost-reduction inλµµ̃; it strongly depends on
recursion, and is not compositional.

Example 4.5. The encoding of ẑ((ŷ〈y·δ〉η̂ ·α) α̂ [z] v̂〈v·δ〉)δ̂·γ S, i.e. the witness of Peirce’s law,
becomes:

(νzδ) (z(s, d). ((να) ! ((νyη) (! y(w). δ〈w〉 | α〈y, η〉) | ! α s) |
(νv) (! d v | ! v(w). δ〈w〉)) | γ〈z, δ〉)

That this process is a witness of((A→B)→A)→A is a straightforward application of Theorem 6.7.
Notice that the second reduction in Example 2.8 propagates into animport, so by head reduction

is limited to:

(ẑP δ̂·γ)γ̂ † û(〈u·β〉 β̂ † ŷ(Q τ̂ [y] ŵR)) → ( †a, †cut)

((ẑP δ̂·γ)γ̂ † û〈u·β〉) β̂ † ŷ((ẑP δ̂·γ)γ̂ † û(Qτ̂ [y] ŵR)) → ( †d, exp)

(ẑP δ̂·β) β̂ † ŷ((ẑP δ̂·γ)γ̂ † û(Qτ̂ [y] ŵR)) → ( †a)

(ẑP δ̂·β) β̂ † ŷ((ẑP δ̂·γ)γ̂ † û(Qτ̂ [y] ŵR))

where the last term is in head-normal form. Since the first reduction in Example 2.8 is also a head
reduction, this shows that head reduction is not confluent.

This reduction is modelled inπ by:

(ẑP δ̂·γ)γ̂ † û(〈u·β〉 β̂ † ŷ(Qτ̂ [y] ŵR)) S =∆

(νγu) (! ẑP δ̂·γ S | ! γ u | ! 〈u·β〉 β̂ † ŷ(Qτ̂ [y] ŵR) S) =∆

(νγu) (! ẑP δ̂·γ S | ! γ u | ! (νβy) (! u(w). β〈w〉 | ! β y | ! Qτ̂ [y] ŵR S)) ∼c,=∆ (3.7)

(νβy) (! (νγu) (! (νzδ) (! P S | γ〈z, δ〉) | ! γ u | ! 〈u·β〉) | ! β y |
! (νγu) (! ẑP δ̂·γ S | ! γ u | ! Qτ̂ [y] ŵR S)) ∼c (γ, u)

(νβy) (! (νzδ) (! P S | β〈z, δ〉) | ! β y | ! (νγu) (! ẑP δ̂·γ S | ! γ u | ! Qτ̂ [y] ŵR S)) =∆

(ẑP δ̂·β) β̂ † ŷ((ẑP δ̂·γ)γ̂ † û(Qτ̂ [y] ŵR)) S =∆

(ẑP δ̂·β) β̂ † ŷ((ẑP δ̂·γ)γ̂ † û(Qτ̂ [y] ŵR)) S

Consider now the third reduction of(ẑPδ̂·γ)γ̂ † û(Qτ̂ [u] ŵR), whereP = 〈z·δ〉, Q = 〈u·τ〉
and R = 〈w·σ〉 (notice that, in Example 2.8,Q = 〈v·τ〉), so u is not introduced inQτ̂ [u] ŵR.
Then the head reduction on this term runs only as follows:

(ẑP δ̂·γ)γ̂ † û(Qτ̂ [u] ŵR) → ( †a) (ẑP δ̂·γ)γ̂ † û(Qτ̂ [u] ŵR)

Since activatedcutsare interpreted in the same way as inactivecuts, this reduction is modelled
in theπ-calculus by equality.
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Notice that, since

(νβy) (! ẑP δ̂·β S | ! β y | ! (νγu) (! ẑP δ̂·γ S | ! γ u | ! Qτ̂ [y] ŵR S)) =∆

(νβy) (! (νzδ) (! P S | β〈z, δ〉) | ! β y | ! (νγu) (! ẑP δ̂·γ S | ! γ u |
! y(s, d). ((ντ) (! Q S | ! τ s) | (νw) (! d w | ! R S))))

there is still a communication possible overγ andy and therefore the interpretation of

(ẑP δ̂·β) β̂ † ŷ((ẑP δ̂·γ)γ̂ † û(Qτ̂ [y] ŵR))

as appears abovecanreduce:

(ẑP δ̂·β) β̂ † ŷ((ẑPδ̂·γ)γ̂ † û(Qτ̂ [y] ŵR)) S =∆

(νβy) (! ẑP δ̂·β S | ! β y | ! (νγu) (! ẑP δ̂·γ S | ! γ u | ! Qτ̂ [y] ŵR S)) =∆

(νβy) (! (νzδ) (! P S | β〈z, δ〉) | ! β y | ! (νγu) (! ẑP δ̂·γ S | ! γ u |
! y(s, d). ((ντ) (! Q S | ! τ s) | (νw) (! d w | ! R S)))) c⊒

(νβy) ((νzδ) (! P S | β〈z, δ〉) | β y | (νγu) (! ẑP δ̂·γ S | ! γ u |
y(s, d). ((ντ) (! Q S | ! τ s) | (νw) (! d w | ! R S)))) →π (β, y)

(νzδ) (! P S | (νγu) (! ẑP δ̂·γ S | ! γ u |

(ντ) (! Q S | ! τ z) | (νw) (! δ w | R S)))

which removes theinput (and allows computation insideQ and R to be modelled, if any were
present); this implies that the simple encoding captures more than just head reduction. This is
essentially caused by the fact that we encode allcuts in the same way, thereby modeling, in the
interpretation, that activatedcutspropagate over activatedcuts, as activated propagate over unacti-
vated.

5. EMBEDDING X ’ S REDUCTION IN FULL

In this section, we define an encoding from terms inX onto processes inπ that fully respects
reduction inX , as a variant of the encoding presented above. In the approach of · S, the import
Pα̂ [x] ŷQ gets expressed using(να) (! P S | ! α s) and(νy) (! d y | ! Q S). However, the vari-
abless and d appearonly in the redirections, not inP S or Q S, so these two processes appear
unnecessarily underinput in the encoding · S. This is what the new encoding· F fixes: we build
what we call acommunication cellin x(s, d). (! α s | ! d y), which deals with the redirections of
the received mediator’s interface, which we put in parallelwith the (replicated) encodings ofP F

and Q F, creating the process

! P F | x(s, d). (! α s | ! d y) | ! Q F

We only need to express that the namesα andy are not visible from outside this process; notice
that, by constructionα occurs only in P F, and andy only in Q F.

So we define:

Definition 5.1 (Full interpretation ofX into π).

〈x·α〉 F = x(w). α〈w〉

ŷQ β̂·α F = (νyβ) (! Q F | α〈y, β〉)

Pα̂ [x] ŷQ F = (ναy) (! P F | x(v, d). (! α v | ! d y) | ! Q F)

Pα̂ † x̂Q F = (ναx) (! P F | ! α x | ! Q F) = Pα̂ † x̂Q F = Pα̂ † x̂Q F
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Notice that (as in Def. 4.1) allcutsare interpreted the same way.

Example 5.2. The encoding of ẑ((ŷ〈y·δ〉η̂ ·α) α̂ [z] v̂〈v·δ〉)δ̂·γ F, i.e. the witness of Peirce’s law,
becomes:

(νzδ) (! (ναv) (! (νyη) (! y(w). δ〈w〉 | α〈y, η〉) | z(v, d). (! α v | ! d v) | ! v(w). δ〈w〉) | γ〈z, δ〉)

That this process is a witness of⊢π γ:((A→B)→A)→A is a straightforward application of The-
orem 6.7.

As above, we will show a preservation result for this encoding modulocontextually equiva-
lence.

Theorem 5.3. If P →X Q, then P F c⊒ Q F.

Proof. Since the only difference betweenP F and P S is the interpretation ofimports, we only need
to check the rules involvingimports; some of these were not considered in the proof of Theorem 4.4,
since omitted from→H.

(imp): 〈y·α〉α̂ † x̂(Q β̂ [x] ẑP) → Q β̂ [y] ẑP.

〈y·α〉 α̂ † x̂(Q β̂ [x] ẑP) F =∆ (ναx) (! 〈y·α〉 F | ! α x | ! Q β̂ [x] ẑP F) c⊒

(ναx) ( 〈y·α〉 F | α x | Q β̂ [x] ẑP F) =∆

(ναx) (y(w). α〈w〉 | α x | (νβz) (! Q F | x(v, d). (! β v | ! d z) | ! P F)) ∼c (α, x)

(νβz) (! Q F | y(v, d). (! β v | ! d z) | ! P F) =∆ Q β̂ [y] ẑP F

(exp-imp): (ŷP β̂·α) α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷ(P β̂ † ẑR).

(ŷP β̂·α) α̂ † x̂(Qγ̂ [x] ẑR) F =∆ (ναx) (! ŷP β̂·α F | ! α x | ! Qγ̂ [x] ẑR F) c⊒

(ναx) ( ŷP β̂·α F | α x | Qγ̂ [x] ẑR F) =∆

(ναx) ((νyβ) (! P F | α〈y, β〉) | α x |
(νγz) (! Q F | x(v, d). (! γ v | ! d z) | ! R F)) →+

π (α, x)

(νyβγz) (! P F | ! Q F | ! γ y | ! β z | ! R F) ≡

(νγy) (! Q F | ! γ y | (νβz) (! P F | ! β z | ! R F)) ∼c (3.7(1a))
(νγy) (! Q F | ! γ y | ! (νβz) (! P F | ! β z | ! R F)) =∆ Qγ̂ † ŷ(P β̂ † ẑR) F

As for · S, for (ŷP β̂·α)α̂ † x̂(Qγ̂ [x] ẑR) → (Qγ̂ † ŷP) β̂ † ẑR the proof is similar.

(imp† ): (Q β̂ [z] ŷR) α̂ † x̂P → (Qα̂ † x̂P) β̂ [z] ŷ(Rα̂ † x̂P).

(Q β̂ [z] ŷR) α̂ † x̂P F =∆

(ναx) (! (νβy) (! Q F | z(v, d). (! β v | ! d y) | ! R F) | ! α x | ! P F) ∼c (3.7(1b))
! (ναx) ((νβy) (! Q F | z(v, d). (! β v | ! d y) | ! R F) | ! α x | ! P F) ∼c (3.7(2a))
! (νβy) ((ναx) (! Q F | ! α x | ! P F) | z(v, d). (! β v | ! d y) |

(ναx) (! R F | ! α x | ! P F)) c⊒

(νβy) ((ναx) (! Q F | ! α x | ! P F) | z(v, d). (! β v | ! d y) |
(ναx) (! R F | ! α x | ! P F)) ≡ (3.7(1a))

(νβy) (! (ναx) (! Q F | ! α x | ! R F) | z(v, d) . (! β v | ! d y) |
! (ναx) (! R F | ! α x | ! P F)) =∆

(Qα̂ † x̂P) β̂ [z] ŷ(Rα̂ † x̂P) F
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( †imp-outs): ThenPα̂ † x̂(Q β̂ [x] ŷR) →X Pα̂ † ẑ((Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R)).

Pα̂ † x̂(Q β̂ [x] ŷR) F =∆

(ναx) (! P F | ! α x | ! (νβy) (! Q F | x(v, d). (! β v | ! d y) | ! R F)) ∼c (3.7(1b))
! (ναx) (! P F | ! α x | (νβy) (! Q F | x(v, d). (! β v | ! d y) | ! R F)) ∼c (3.7(3a))
! (ναz) (! P F | ! α z | (νβy) ((ναx) (! P F | ! α x | ! Q F) |

z(v, d). (! β v | ! d y) | (ναx) (! P F | ! α x | ! R F))) ∼c (3.7(1b))
(ναz) (! P F | ! α z | ! (νβy) ((ναx) (! P F | ! α x | ! Q F) |

z(v, d). (! β v | ! d y) | (ναx) (! P F | ! α x | ! R F))) ∼c (3.7(1a))
(ναx) (! P F | ! α z | ! (νβy) (! (ναx) (! P F | ! α x | ! Q F) |

z(v, d) . (! β v | ! d y) | ! (ναx) (! P F | ! α x | ! R F))) =∆

Pα̂ † ẑ((Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R)) F

( †imp-ins): ThenPα̂ † x̂(Q β̂ [z] ŷR) →X (Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R), z 6= x.

Pα̂ † x̂(Q β̂ [x] ŷR) F =∆

(ναx) (! P F | ! α x | ! (νβy) (! Q F | x(v, d). (! β v | ! d y) | ! R F)) ∼c (3.7(1b))
! (ναx) (! P F | ! α x | (νβy) (! Q F | z(v, d). (! β v | ! d y) | ! R F)) ∼c (3.7(3a))
! (νβy) ((ναx) (! P F | ! α x | ! Q F) |

z(v, d). (! β v | ! d y) | (ναx) (! P F | ! α x | ! R F)) c⊒

(νβy) ((ναx) (! P F | ! α x | ! Q F) |
z(v, d). (! β v | ! d y) | (ναx) (! P F | ! α x | ! R F)) ∼c (3.7(1a))

(νβy) (! (ναx) (! P F | ! α x | ! Q F) |
z(v, d) . (! β v | ! d y) | ! (ναx) (! P F | ! α x | ! R F)) =∆

(Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R) F

P → Q ⇒ Pα̂ [x] ŷR → Qα̂ [x] ŷR, Rα̂ [x] ŷP → Rα̂ [x] ŷQ: By induction.

Example 5.4. Using this full encoding, we can now represent the last reduction of Example 2.8,
i.e. that of

(ẑPδ̂·γ)γ̂ † û(Qτ̂ [u] ŵR)

in π, whereP = 〈z·δ〉, Q = 〈u·τ〉 andR = 〈w·σ〉.

(ẑP δ̂·γ)γ̂ † û(Qτ̂ [u] ŵR) F =∆

(νγu) (! ẑP δ̂·γ F | ! γ u | ! Qτ̂ [u] ŵR F) =∆

(νγu) (! ẑP δ̂·γ F | ! γ u | ! (ντw) (! Q | u(v, d). (! τ v | ! d w) | ! R)) ∼c (3.7)

(νγy) (! ẑP δ̂·γ F | ! γ y |

! (ντw) (! (νγu) (! ẑPδ̂·γ F | ! γ u | ! Q F) | y(v, d) . (! τ v | ! d w) |
! (νγu) (! ẑP δ̂·γ F | ! γ u | ! R F))) c⊒ (=α)

(νγy) (! x̂〈x·ρ〉 ρ̂·γ F | ! γ y | ! (ντw) (! (νγu) (! ẑP δ̂·γ F | ! γ u |

! u(w). τ〈w〉) | y(v, d). (! τ v | ! d w) | ! R F)) →π (γ, u)

(νγy) (! x̂〈x·ρ〉 ρ̂·γ F | ! γ y |

! (ντw) (! ẑPδ̂·τ F | y(v, d). (! τ v | ! d w) | ! R F)) =∆

(x̂〈x·ρ〉 ρ̂·γ)γ̂ † ŷ((ẑPδ̂·τ) τ̂ [y] ŵR) F c⊒
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(νγy) ((νxρ) (! x(w). ρ〈w〉 | γ〈x, ρ〉) | γ y |

(ντw) (! ẑPδ̂·τ F | y(v, d). (! τ v | ! d w) | ! R F)) →π (γ, y)

(νγy) ((νxρ) (! x(w). ρ〈w〉 | (ντw) (! ẑP δ̂·γ F | ! τ x | ! ρ w | ! R F))) ≡

(ντx) (! ẑP δ̂·τ F | ! τ x | ! (νρw) (! x(w). ρ〈w〉 | ! ρ w | ! R F)) =∆

(ẑP δ̂·τ)τ̂ † x̂(〈x·ρ〉 ρ̂ † ŵR) F ∼c (3.7)

(νρw) (! (ντx) (! (νzδ) (! P | τ〈z, δ〉) | ! τ x | ! x(w). ρ〈w〉) | ! ρ w |

! (ντz) (! ẑP δ̂·τ F | ! τ z | ! R F)) c⊒

(νρw) (! (ντx) (! (νzδ) (! P F | τ〈z, δ〉) | ! τ x | ! x(w). ρ〈w〉) | ! ρ w | ! R F) ∼c (τ, x)

(νρw) (! (νzδ) (! P F | ρ〈z, δ〉) | ! ρ w | ! R F) c⊒

(νρw) ((νzδ) (! P F | ρ〈z, δ〉) | ρ w | R F) →π (ρ, w)

(νzδ) (! P F | σ〈z, δ〉)

We will now define the encoding· R as a variant of · F; the main idea of this third encoding is
to see terms as infinite resources rather than using replication to model substitution, so use inherent
replication for all synchronisation. This is achieved by replicating all communication,i.e. all input
andoutput actions. This replicated encoding is easier to understand,but differs from the other two
in that it does not model reduction via reduction, but via contextual equality, whereas the other two
truly useπ’s reduction in the proofs.

Definition 5.5 (Replicative encoding forX in π).

〈x·α〉 R = ! x(w). α〈w〉

ŷQ β̂·α R = (νyβ) ( Q R | ! α〈y, β〉)

Pα̂ [x] ŷQ R = (ναy) ( P R | ! x(s, d). (! α s | ! d y) | Q R)

Pα̂ † x̂Q R = (ναx) ( P R | ! α x | Q R) = Pα̂ † x̂Q R = Pα̂ † x̂Q R

Notice that (as in Def. 4.1 and 5.1) allcutsare interpreted the same way.
This new approach will be as expressive as the full encoding we considered above, but has as

advantage that it is more abstract and gives a better semantics in that the main proof follows more
easily.

For this encoding, we can show that replication is implicit for encoded terms:

Lemma 5.6. P R ∼c ! P R .

Proof. By induction on the structure of terms.

P = 〈x·α〉: 〈x·α〉 R =
∆ ! x(w). α〈w〉 ≡ ! ! x(w). α〈w〉 =∆ ! 〈x·α〉 R.

P = x̂Qα̂·β: x̂Q α̂·β R =
∆ (νxα) ( Q R | ! β〈x, α〉) ≡ (IH) (νxα) (! Q R | ! ! β〈x, α〉)

∼c (3.7(1a)) ! (νxα) ( Q R | ! β〈x, α〉) =∆ ! x̂Qα̂·β R

P = Qα̂ [y] x̂R: Qα̂ [y] x̂R R =
∆ (ναx) ( Q R | ! y(s, d). (! α s | ! d x) | R R) ≡ (IH)

(νxα) (! Q R | ! ! y(v, d). (! α v | ! d x)! R R) ∼c (3.7(1a))
! (ναx) ( Q R | ! y(s, d). (! α s | ! d x) | R R) =

∆ ! Qα̂ [y] x̂R R

P = Qα̂ † x̂R: Qα̂ † x̂R R =
∆ (ναx) ( Q R | ! α x | R R) ≡ (IH) (νxα) (! Q R | ! ! α x! R R)

∼c (3.7(1a)) ! (ναx) ( Q R | ! α x | R R) =
∆ ! Qα̂ † x̂R R

Since by this lemma replication is implicitly used everywhere, we no longer relate two terms
via reduction: it is clear that(νa) (! a(x). P | ! a〈b〉) is equivalent to! P[b/x], but via a reduction
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we can at most show:

(νa) (! a(x). P | ! a〈b〉) ≡

(νa) (! a(x). P | ! a〈b〉 | a(x). P | a〈b〉) →π

(νa) (! a(x). P | ! a〈b〉) | P[b/x] 6= ! P[b/x]

We use this lemma in the next result, when we apply Lemma 3.7’sdistribution rules.

Theorem 5.7. If P →X Q, then P R c⊒ Q R.

Proof. Logical rules:

(cap): 〈y·α〉α̂ † x̂〈x·γ〉 → 〈y·γ〉.

〈y·α〉 α̂ † x̂〈x·γ〉 R =∆ (ναx) ( 〈y·α〉 R | ! α x | 〈x·γ〉 R) =∆

(ναx) (! y(w). α〈w〉 | ! α x | ! x(w). γ〈w〉) ≡

! y(w). α〈w〉 | (ναx) (! α x | ! x(w). γ〈w〉) ∼c

! y(w). γ〈w〉 =∆ 〈y·γ〉 R

(exp): (ŷP β̂·α) α̂ † x̂〈x·γ〉 → ŷP β̂·γ.

(ŷP β̂·α) α̂ † x̂〈x·γ〉 R =∆ (ναx) ( ŷP β̂·α R | ! α x | 〈x·γ〉 R) =∆

(ναx) ((νyβ) ( P R | ! α〈y, β〉) | ! α x | ! x(w). γ〈w〉) ∼c (α, x)

(νyβ) ( P R | ! γ〈y, β〉) =∆ ŷP β̂·γ R

(imp): 〈y·α〉α̂ † x̂(Q β̂ [x] ẑP) → Q β̂ [y] ẑP.

〈y·α〉 α̂ † x̂(Q β̂ [x] ẑP) R =∆ (ναx) ( 〈y·α〉 R | ! α x | Q β̂ [x] ẑP R) =∆

(ναx) (! y(w). α〈w〉 | ! α x | (νβz) ( Q R | ! x(s, d). (! β s | ! d z) | P R)) ∼c (α, x)

(νβz) ( Q R | ! y(s, d). (! β s | ! d z) | P R) =∆ Q β̂ [y] ẑP R

(exp-imp): (ŷP β̂·α) α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷ(P β̂ † ẑR).

(ŷP β̂·α) α̂ † x̂(Qγ̂ [x] ẑR) R =∆ (ναx) ( ŷP β̂·α R | ! α x | Qγ̂ [x] ẑR R) =∆

(ναx) ((νyβ) ( P R | ! α〈y, β〉) | ! α x |
(νγz) ( Q R | ! x(s, d). (! γ s | ! d z) | R R)) ∼c (α, x)

(νyβγz) ( P R | Q R | ! γ y | ! β z | R R) ≡

(νγy) ( Q R | ! γ y | (νβz) ( P R | ! β z | R R)) =∆

(νγy) ( Q R | ! γ y | P β̂ † ẑR R) =∆ Qγ̂ † ŷ(P β̂ † ẑR) R

For (ŷP β̂·α) α̂ † x̂(Qγ̂ [x] ẑR) → (Qγ̂ † ŷP) β̂ † ẑR the proof is similar:

(νyβγz) ( P R | Q R | ! γ y | ! β z | R R) ≡

(νβz) ((νγy) ( Q R | ! γ y | P R) | ! β z | R R) =∆

(νβz) ( Qγ̂ † ŷP R | ! β z | R R) =∆ (Qγ̂ † ŷP) β̂ † ẑR R

Activation rules:

(a† ): Pα̂ † x̂Q → Pα̂ † x̂Q, if P does not introduceα. Since both are interpreted via
(ναx) ( P R | ! α x | Q R), this is immediate.

( †a): Pα̂ † x̂Q → Pα̂ † x̂Q, if Q does not introducex. Similar.

Left propagation:

(d† ): 〈y·α〉α̂ † x̂P → 〈y·α〉α̂ † x̂P. Similar.
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(cap† ): 〈y·β〉 α̂ † x̂P → 〈y·β〉, β 6= α.

〈y·β〉 α̂ † x̂P R =∆ (ναx) ( 〈y·β〉 R | ! α x | P R) ≡ (β 6= α)

〈y·β〉 R | (ναx) (! α x | P R) c⊒ 〈y·β〉 R

(exp-outs† ): (ŷQ β̂·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P) β̂·γ)γ̂ † x̂P, γ fresh.

(ŷQ β̂·α)α̂ † x̂P R =∆ (ναx) ((νyβ) ( Q R | ! α〈y, β〉) | ! α x | P R) ∼c (3.7(2b))
(νγx) ((νyβ) ((ναx) ( Q R | ! α x | P R) | ! γ〈y, β〉) | ! γ x | P R) =∆

(ŷ(Qα̂ † x̂P) β̂·γ)γ̂ † x̂P R

(exp-ins† ): (ŷQ β̂·γ)α̂ † x̂P → ŷ(Qα̂ † x̂P) β̂·γ, γ 6= α.

(ŷQ β̂·γ)α̂ † x̂P R =∆ (ναx) ((νyβ) ( Q R | ! γ〈y, β〉) | ! α x | P R) ≡ (γ 6= α)

(νyβ) ((ναx) ( Q R | ! α x | P R) | ! γ〈y, β〉) =∆ ŷ(Qα̂ † x̂P) β̂·γ R

(imp† ): (Q β̂ [z] ŷR) α̂ † x̂P → (Qα̂ † x̂P) β̂ [z] ŷ(Rα̂ † x̂P).

(Q β̂ [z] ŷR) α̂ † x̂P R =∆

(ναx) ((νβy) ( Q R | ! z(s, d). (! β s | ! d y) | R R) | ! α x | P R) ∼c (3.7(2a))
(νβy) ((ναx) ( Q R | ! α x | P R) |

! z(v, d). (! β v | ! d y) | (ναx) ( R R | ! α x | P R)) =∆

(νβy) ( Q α̂ † x̂P R | ! z(s, d). (! β s | ! d y) | Rα̂ † x̂P R) =∆

(Qα̂ † x̂P) β̂ [z] ŷ(Rα̂ † x̂P) R

(cut† ): (Q β̂ † ŷR)α̂ † x̂P → (Qα̂ † x̂P) β̂ † ŷ(Rα̂ † x̂P).

(Q β̂ † ŷR) α̂ † x̂P R =∆ (ναx) ((νβy) ( Q R | ! β y | R R) | ! α x | P R) ∼c (3.7(2a))
(νβy) ((ναx) ( Q R | ! α x | R R) | ! β y | (ναx) ( R R | ! α x | P R)) =∆

(Qα̂ † x̂P) β̂ † ŷ(Rα̂ † x̂P) R

Right propagation:

( †d): Pα̂ † x̂〈x·β〉 → Pα̂ † x̂〈x·β〉, α not introduced inP. As above.

( †cap): Pα̂ † x̂〈y·β〉 → 〈y·β〉, y 6= x.

Pα̂ † x̂〈y·β〉 R =∆ (ναx) ( P R | ! α x | 〈y·β〉 R) ≡ (y 6= x)

(ναx) ( P R | ! α x) | 〈y·β〉 R c⊒ 〈y·β〉 R

( †exp): Pα̂ † x̂(ŷQ β̂·γ) → ŷ(Pα̂ † x̂Q) β̂·γ.

Pα̂ † x̂(ŷQ β̂·γ) R =∆ (ναx) ( P R | ! α x | (νyβ) ( Q R | ! γ〈y, β〉)) ≡

(νyβ) ((ναx) ( P R | ! α x | Q R) | ! γ〈y, β〉) =∆

(νyβ) ( Pα̂ † x̂Q R | ! γ〈y, β〉) =∆ ŷ(Pα̂ † x̂Q) β̂·γ R

( †imp-outs): Pα̂ † x̂(Q β̂ [x] ŷR) →X Pα̂ † ẑ((Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R)).

Pα̂ † x̂(Q β̂ [x] ŷR) R =∆

(ναx) ( P R | ! α x | (νβy) ( Q R | ! x(s, d). (! β s | ! d y) | R R)) ∼c (3.7(3a)&(3b))
(ναz) (! P R | ! α z | (νβy) ((ναx) ( P R | ! α x | Q R) |

! z(v, d). (! β v | ! d y) | (ναx) ( P R | ! α x | R R)) =∆

Pα̂ † ẑ((Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R)) R
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( †imp-ins): Pα̂ † x̂(Q β̂ [z] ŷR) →X (Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R), z 6= x.

Pα̂ † x̂(Q β̂ [z] ŷR) R =∆

(ναx) ( P R | ! α x | (νβy) ( Q R | ! z(s, d). (! β s | ! d y) | R R)) ∼c (3.7(3a))
(νβy) ((ναx) ( P R | ! α x | Q R) | ! z(s, d). (! β s | ! d y) | (ναx) ( P R | ! α x | R R)) =∆

(Pα̂ † x̂Q) β̂ [z] ŷ(Pα̂ † x̂R) R

( †cut): Pα̂ † x̂(Q β̂ † ŷR) →X (Pα̂ † x̂Q) β̂ † ŷ(Pα̂ † x̂R).

Pα̂ † x̂(Q β̂ † ŷR) R =∆ (ναx) ( P R | ! α x | (νβy) ( Q R | ! β y | R R)) ∼c (3.7(3a))
(νβy) ((ναx) ( P R | ! α x | Q R) | ! β y | (ναx) ( P R | ! α x | R R)) =∆

(Pα̂ † x̂Q) β̂ † ŷ(Pα̂ † x̂R) R

The contextual rules follow by induction.

Notice that part (1) of Lemma 3.7 is not needed in this proof, and thatc⊒ is only needed in part
(cap† ) and( †cap).

This concludes our simulation results. We have shown that our simple interpretation respects
X ’s head-reduction, albeit via a contextual equivalence andperhaps leaving some additional pro-
cesses running in parallel, and that fullX -reduction is respected by the full and replicative encod-
ings.

Example 5.8. Simulating the third reduction of Example 2.8 using the fullinterpretation runs as
follows:

(ẑP δ̂·γ)γ̂ † û(Qτ̂ [u] ŵR) F =∆

(νγu) (! ẑP δ̂·γ F | ! γ u | ! Qτ̂ [u] ŵR F) =∆

(νγu) (! ẑP δ̂·γ F | ! γ u | ! (ντw) (! Q | u(v, d). (! τ v | ! d w) | ! R)) ∼c (3.7)

(νγy) (! ẑP δ̂·γ F | ! γ y |

! (ντw) (! (νγu) (! ẑPδ̂·γ F | ! γ u | ! Q F) | y(v, d) . (! τ v | ! d w) |
! (νγu) (! ẑP δ̂·γ F | ! γ u | ! R F))) c⊒ (=α)

(νγy) (! x̂〈x·ρ〉 ρ̂·γ F | ! γ y | ! (ντw) (! (νγu) (! ẑP δ̂·γ F | ! γ u |

! u(w). τ〈w〉) | y(v, d). (! τ v | ! d w) | ! R F)) →π (γ, u)

(νγy) (! x̂〈x·ρ〉 ρ̂·γ F | ! γ y | ! (ντw) (! ẑP δ̂·τ F | y(v, d). (! τ v | ! d w) | ! R F)) =
∆

(x̂〈x·ρ〉 ρ̂·γ)γ̂ † ŷ((ẑP δ̂·τ)τ̂ [y] ŵR) F c⊒

(νγy) ((νxρ) (! x(w). ρ〈w〉 | γ〈x, ρ〉) | γ y |

(ντw) (! ẑP δ̂·τ F | y(v, d). (! τ v | ! d w) | ! R F)) →π (γ, y)

(νγy) ((νxρ) (! x(w). ρ〈w〉 | (ντw) (! ẑPδ̂·γ F | ! τ x | ! ρ w | ! R F))) ≡

(ντx) (! ẑP δ̂·τ F | ! τ x | ! (νρw) (! x(w). ρ〈w〉 | ! ρ w | ! R F)) =∆

(ẑP δ̂·τ) τ̂ † x̂(〈x·ρ〉 ρ̂ † ŵR) F ∼c (3.7)

(νρw) (! (ντx) (! (νzδ) (! P | τ〈z, δ〉) | ! τ x | ! x(w). ρ〈w〉) | ! ρ w |

! (ντz) (! ẑP δ̂·τ F | ! τ z | ! R F)) c⊒

(νρw) (! (ντx) (! (νzδ) (! P F | τ〈z, δ〉) | ! τ x | ! x(w). ρ〈w〉) | ! ρ w | ! R F) ∼c (τ, x)

(νρw) (! (νzδ) (! P F | ρ〈z, δ〉) | ! ρ w | ! R F) c⊒

(νρw) ((νzδ) (! P F | ρ〈z, δ〉) | ρ w | R F) →π(ρ, w)

(νzδ) (! P F | σ〈z, δ〉)



CLASSICAL CUT-ELIMINATION IN THE π-CALCULUS 29

6. TYPE ASSIGNMENT

In this section, we introduce a notion of type assignment forprocesses inπ as presented in
[8] that describes the ‘input-output interface’ of a process. We will show that, ifP is a witness
to a judgement (in⊢X ), then its interpretations via· S, · F and · R are as well (in⊢π ). Together
with the preservation results we have shown above, this implies that we can encode proofs inLK to
typeable processes, and have modelledcut-elimination - which transforms a proof into a proof. For
the simple encoding, the notion ofcut-elimination that has been modelled is that of head-reduction,
but for the other two encodings,cut-elimination has been modelled in full.

Our notion is different in that it assigns to channels the type of the input or output that is sent
over the channel; in that it differs from normal notions, that would state:

a〈b〉 : Γ, b:A ⊢ a:ch(A), ∆
or a〈b〉 : Γ, b:A ⊢ a:[A], ∆

In order to be able to encodeLK , types in our system need not be decorated with channel informa-
tion.

Definition 6.1 (Type assignment [8]). The types and contexts we consider for theπ-calculus are
defined like those of Definition 1.3, generalised to names, but allowing both Roman and Greek
names onbothsides.

Type assignment forπ-calculus is defined by the following sequent system:

(0) :
0 : Γ ⊢π ∆

(out) : (b 6= a)
a〈b〉 : Γ, b:A ⊢π a:A, b:A, ∆

(|) :
Pi : Γ ⊢π ∆ (i∈n)

P1 | · · · | Pn : Γ ⊢π ∆

(ν) :
P : Γ, a:A ⊢π a:A, ∆

(νa)P : Γ ⊢π ∆

(in) :
P : Γ, x:A ⊢π x:A, ∆

a(x). P : Γ, a:A ⊢π ∆

(!) :
P : Γ ⊢π ∆

! P : Γ ⊢π ∆

(pair-out) : (a, c 6∈ Γ; b 6∈ ∆)
a〈b, c〉 : Γ, b:A ⊢π a:A→B, c:B, ∆

(let) :
P : Γ, y:B ⊢π x:A, ∆

(x 6∈ Γ; y, z 6∈ ∆)
let x, y = z in P : Γ, z:A→B ⊢π ∆

As usual, we writeP : Γ ⊢π ∆ if there exists a derivation using these rules that has this expres-
sion in the conclusion, and writeD :: P : Γ ⊢π ∆ if we want to name that derivation.

Notice that the ‘input-output interface of aπ-process’ property is nicely preserved by all the
rules; it also explains how the handling of pairs is restricted by the type system in to the rules(let)
and(pair-out).

Example 6.2. We can derive

P : Γ, y:B ⊢π x:A, ∆
(let)

let x, y = z in P : Γ, z:A→B ⊢π ∆
(in)

a(z). let x, y = z in P : Γ, a:A→B ⊢π ∆

so the following rule is derivable:

(pair-in) :
P : Γ, y:B ⊢π x:A, ∆

(y, a 6∈ ∆, x 6∈ Γ)
a(x, y). P : Γ, a:A→B ⊢π ∆
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Notice that the rule(pair-out) does not directly correspond to the logical rule(⇒R), as that
(pair-in) does not directly correspond to(⇒L); however, in view of the intended property - preser-
vation of context assignment - this is not problematic, since we will not map rules to rules, but
proofs to type derivations. This apparent discrepancy is solved by Theorem 6.7.

This notion is a true type assignment system which does not (directly) relate back toLK . For
example, rules(|) and(!) do not change the contexts, so do not correspond to any rule inthe logic,
not even to aλµ-style [38] activation step. Moreover, rule(ν) just removes a formula, and rule
(pair-out) is clearly not an instance of an axiom inLK . We leave the exploration of the logical
contents of this system for future work.

The following result is standard.

Lemma 6.3(Weakening and Thinning). The following rules are admissible:

(W ) :
P : Γ ⊢π ∆

(Γ′ ⊇ Γ, ∆′ ⊇ ∆)
P : Γ

′ ⊢π ∆
′

(T) :
P : Γ ⊢π ∆

(
Γ′ = {n:A ∈ Γ | n ∈ fn(P)},

∆′ = {n:A ∈ ∆ | n ∈ fn(P)}
)

P : Γ
′ ⊢π ∆

′

Proof. Directly from Definition 6.1.

This result allows us to be a little less precise when we construct derivations, and allow us
to freely switch to multiplicative style where rules join contexts whenever convenient. In fact, we
could have defined context assignment using another approach, using the alternative rules:

(0) :
0 : ∅ ⊢π ∅

(weak) :
P : Γ ⊢π ∆

(Γ ⊆ Γ′, ∆ ⊆ ∆′)
P : Γ

′ ⊢π ∆
′

(out) : (b 6= a)
a〈b〉 : β:A ⊢π a:A, b:A (|) :

P1 : Γ1 ⊢π ∆1 · · · Pn : Γn ⊢π ∆n

P1 | · · · | Pn : Γ1, . . . , Γn ⊢π ∆1, . . . , ∆n

(pair-out) : (a, c 6∈ Γ; b 6∈ ∆)
a〈b, c〉 : b:A ⊢π a:A→B, c:B

We have a soundness (witness reduction) result, for which wefirst need to prove a substitution
lemma and a congruence lemma.

Lemma 6.4(Substitution). If P : Γ, x:A ⊢π x:A, ∆ then alsoP[b/x] : Γ, b:A ⊢π b:A, ∆.

Proof. Straightforward.

Notice that the casesP : Γ ⊢π n:A, ∆ andP : Γ, n:A ⊢π ∆ can be generalised by weakening
to fit the lemma.

Lemma 6.5(Witness congruence). If P : Γ ⊢π ∆ andP ≡ Q, thenQ : Γ ⊢π ∆.

Proof. By easy induction on the congruence relation.

We now come to the main soundness result for our notion of typeassignment forπ.

Theorem 6.6(Witness reduction). If P : Γ ⊢π ∆ andP →π Q, thenQ : Γ ⊢π ∆.

Proof. By induction on the reduction relation.

a〈b〉 | a(x). Q →π Q[b/x]: Then the derivation is shaped like:

a〈b〉 : Γ, b:A ⊢π a:A, b:A, ∆

Q : Γ, x:A ⊢π x:A, ∆

a(x). Q : Γ, a:A ⊢π ∆

a〈b〉 | a(x). Q : Γ, a:A, b:A ⊢π a:A, b:A, ∆
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By Lemma 6.4, we haveQ[b/x] : Γ, b:A ⊢π b:A, ∆.
a〈b, c〉 | a(x, y). Q →π Q[b/x, c/y]: Similar.

The other cases follow by induction.

The following theorem shows that the encoding· S preserves assignable types.

Theorem 6.7(Type preservation for simple encoding). If P ··· Γ ⊢X ∆, then P S : Γ ⊢π ∆.

Proof. By induction on the structure of terms inX .

〈x·α〉: Then 〈x·α〉 S = x(w). α〈w〉, and theX -derivation is shaped like:

〈x·α〉 : Γ, x:A ⊢π α:A, ∆

Notice that

α〈w〉 : Γ, w:A ⊢π α:A, w:A, ∆

x(w). α〈w〉 : Γ, x:A ⊢π α:A, ∆

x̂Pα̂·β: Then theX -derivation is shaped like:

P : Γ, x:A ⊢π α:B, ∆

x̂Pα̂·β : Γ ⊢π β:A→B, ∆

Then, by induction, P S : Γ, x:A ⊢π α:B, ∆, and we can construct:

P S : Γ, x:A ⊢π α:B, ∆

! P S : Γ, x:A ⊢π α:B, ∆ β〈x, α〉 : Γ, x:A ⊢π α:B, β:A→B, ∆

! P S | β〈x, α〉 : Γ, x:A ⊢π α:B, β:A→B, ∆

(να)(! P S | β〈x, α〉) : Γ, x:A ⊢π β:A→B, ∆

(νxα) (! P S | β〈x, α〉) : Γ ⊢π β:A→B, ∆

Pα̂ [y] x̂Q: Then theX -derivation is shaped like:

P : Γ ⊢π α:A, ∆ Q : Γ, x:B ⊢π ∆

Pα̂ [y] x̂Q : Γ, y:A→B ⊢π ∆
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Then, by induction, we have derivations forP S : Γ ⊢π α:A, ∆ and Q S : Γ, x:B ⊢π ∆,
and we can construct:

P S : Γ ⊢π α:A, ∆

! P S : Γ ⊢π α:A, ∆

s〈w〉 : Γ, w:A ⊢π s:A, w:A, ∆

α s : Γ, α:A ⊢π s:A, ∆

! α s : Γ, α:A ⊢π s:A, ∆

! P S | ! α s : Γ, α:A ⊢π α:A, s:A, ∆

(να) (! P S | ! α s) : Γ ⊢π s:A, ∆

x〈w〉 : Γ, w:A ⊢π x:A, w:A, ∆

d x : Γ, d:B ⊢π x:A, ∆

! d x : Γ, d:B ⊢π x:A, ∆

Q S : Γ, x:B ⊢π ∆

! Q S : Γ, x:B ⊢π ∆

! d x | ! Q S : Γ, d:B, x:B ⊢π x:A, ∆

(νx)(! d x | ! Q S) : Γ, d:B ⊢π ∆

(να)(! P S | ! α s) | (νx)(! d x | ! Q S) : Γ, d:B ⊢π s:A, ∆

y(s, d). ((να)(! P S | ! α s) | (νx) (! d x | ! Q S)) : Γ, y:A→B ⊢π ∆

Pα̂ † x̂Q: Then theX -derivation is shaped like:

P : Γ ⊢π α:A, ∆ Q : Γ, x:A ⊢π ∆

Pα̂ † x̂Q : Γ ⊢π ∆

By induction, we have derivations for bothP S : Γ ⊢π α:A, ∆ and Q S : Γ, x:A ⊢π ∆.
Then we can construct:

P S : Γ ⊢π α:A, ∆

! P S : Γ ⊢π α:A, ∆

x〈w〉 : Γ, w:A ⊢π x:A, w:A, ∆

α x : Γ, α:A ⊢π x:A, ∆

! α x : Γ, α:A ⊢π x:A, ∆

Q S : Γ, x:A ⊢π ∆

! Q S : Γ, x:A ⊢π ∆

! P S | ! α x | ! Q S : Γ, α:A, x:A ⊢π α:A, x:A, ∆

(νx)(! P S | ! α x | ! Q S) : Γ, α:A ⊢π α:A, ∆

(ναx) (! P S | ! α x | ! Q S) : Γ ⊢π ∆

We can also show that the encoding· F preserves assignable types.

Theorem 6.8(Type preservation for full encoding). If P ··· Γ ⊢X ∆, then P F : Γ ⊢π ∆.

Proof. Since · S and · F differ only in the interpretation ofimport, we only need to check that case.

Pα̂ [y] x̂Q: Then theX -derivation is shaped like:

P : Γ ⊢π α:A, ∆ Q : Γ, x:B ⊢π ∆

Pα̂ [y] x̂Q : Γ, y:A→B ⊢π ∆
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Then, by induction, we have derivations forP F : Γ ⊢π α:A, ∆ and Q F : Γ, x:B ⊢π ∆,
and we can construct:

P S : Γ ⊢π α:A, ∆

! P S : Γ ⊢π α:A, ∆

v〈w〉 : Γ, w:A ⊢π v:A, w:A, ∆

α v : Γ, α:A ⊢π v:A, ∆

! α v : Γ, α:A ⊢π v:A, ∆

x〈w〉 : Γ, w:B ⊢π x:B, w:B, ∆

d x : Γ, d:B ⊢π x:B, ∆

! d x : Γ, d:B ⊢π x:B, ∆

! α v | ! d x : Γ, α:A, d:B ⊢π x:B, v:A, ∆

y(v, d). (! α v | ! d x) : Γ, α:A, y:A→B ⊢π x:B, ∆

Q S : Γ, x:B ⊢π ∆

! Q S : Γ, x:B ⊢π ∆

! P F | y(v, d). (! α v | ! d x) | ! Q F : Γ, x:B, α:A, y:A→B ⊢π x:B, α:A, ∆

(νx)(! P F | y(v, d). (! α v | ! d x) | ! Q F) : Γ, α:A, y:A→B ⊢π α:A, ∆

(ναx) (! P F | y(v, d). (! α v | ! d x) | ! Q F) : Γ, y:A→B ⊢π ∆

Notice that(ναx) (! P F | y(v, d). (! α v | ! d x) | ! Q F) = Pα̂ [y] x̂Q F.

We can show this result for the replicative encoding as well.

Theorem 6.9(Type preservation for replicative encoding). If P ··· Γ ⊢X ∆, then P R : Γ ⊢π ∆.

Proof. By induction on the structure of terms inX . Since · R differs from · F only in the use of
replication, and the rule(!) does not change contexts, the proof is much the same as the onefor
Theorem 6.7.

7. EXPRESSINGNEGATION

In this section we will look at the logical connective¬ and how to encode it in theπ-calculus.

Definition 7.1. The sequent rules that correspond to negation are as follows:

(¬R) :
Γ, A ⊢ ∆

Γ ⊢ ¬A, ∆
(¬L) :

Γ ⊢ A, ∆

Γ,¬A ⊢ ∆

To extend the Curry-Howard isomorphism ofX also to these connectors, we follow the same
approach as used for the arrow: a disappearing formula in a context corresponds to a connector that
gets bound, and a formula that appears in a context corresponds to a connector that is introduced.

Definition 7.2. We extendX ’s syntax with the following constructs:

P ::= . . . | x·Pα̂ left inversion
| x̂P·α right inversion

Definition 7.3. We extend the set of types by

A, B ::= · · · | ¬A

(as usual,¬ binds stronger than→) and add the type assignment rules:

(inv-r) :
P ··· Γ, x:A ⊢X ∆

x̂P ·α ··· Γ ⊢X α:¬A, ∆
(inv-l) :

P ··· Γ ⊢X α:A, ∆

x ·Pα̂ ··· Γ, x:¬A ⊢X ∆
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For example, we can show

〈y·α〉 ··· y:A ⊢X α:A

ŷ〈y·α〉·γ ··· ⊢X γ:¬A, α:A

x · (ŷ〈y·α〉·γ)γ̂ ··· x:¬¬A ⊢X α:A

x̂ (x · (ŷ〈y·α〉·γ)γ̂)α̂·β ··· ⊢X β:¬¬A→A

The notion of reduction is extended naturally by adding the following reduction rules.

Definition 7.4. The logical rule for negation is:

(ŷP·β) β̂ † x̂ (x·Qα̂) → Qα̂ † ŷP

We extend the notion of introduced connector by saying that also P = x·Qα̂ with x 6∈ fs(Q) intro-
ducesx, andP = x̂Q·α with α 6∈ fp(Q) introducesα. We add the propagation rules:

(y·Q β̂)α̂ † x̂P → y·(Qα̂ † x̂P) β̂

(ŷQ·β) α̂ † x̂P → ŷ(Qα̂ † x̂P)·β α 6= β

(ŷQ·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P)·β) β̂ † x̂P

Pα̂ † x̂ (y·Q β̂) → y·(Pα̂ † x̂Q) β̂ x 6= y

Pα̂ † x̂ (x·Q β̂) → Pα̂ † ŷ (y·(Pα̂ † x̂Q) β̂)

Pα̂ † x̂ (ŷQ·β) → ŷ(Pα̂ † x̂Q)·β

Notice that now we havecuts that do not contract, as

(ŷQγ̂·α)α̂ † x̂ (x·P β̂)

whereα 6∈ fp(Q), andx 6∈ fs(P), since none of the rules are applicable; however,typeablecutsdo
contract.

We will now extend the three encodings so that we deal with theadded connective as well.

Definition 7.5 (Negation). Negation gets represented in theπ-calculus via the simple encoding as:

x·Pα̂ S = x(z). ((να) (! P F | ! α z))

via the full encoding as:

x·Pα̂ F = (να) (! P F | x(z). (! α z))

x̂P·α F = (νx) (! P F | α〈x〉)

and via the replicative encoding as:

x·Pα̂ R = (να) ( P R | ! x(z). (! α z))

x̂P·α R = (νx) ( P R | ! α〈x〉)

This encoding of inversion explains the role of negation in detail. If P is outputting onα, but no
connection toα is available, input is needed from a processQ that will send one of its input names
z. Once received,P can output onα which gets connected toz; soQ will provide a means forP to
continue, and is therefore aptly called acontinuation.

The full encoding of the witness for¬¬A→A now becomes:

x̂ (x· (ŷ〈y·α〉·γ)γ̂)α̂·β F =
(νxα) (! (νγ) (! (νy) (! y(w). α〈w〉 | γ〈y〉) | x(z). (! γ z)) | β〈x, α〉)]

The following consistency result is now easy to prove.
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Lemma 7.6. (ŷP·β) β̂ † x̂ (x·Qα̂) F c⊒ Qα̂ † ŷP F
, if β, x introduced.

Proof. (ŷP·β) β̂ † x̂ (x·Qα̂) F =∆

(νβx) (! (νy) (! P F | β〈y〉) | ! β x | ! (να) (! Q F | x(z). (! α z))) c⊒
(νβx) ((νy) (! P F | β〈y〉) | β x | (να) (! Q F | x(z). (! α z))) →π (β, x)

(ναy) (! Q F | ! α y | ! P F) =∆ Qα̂ † ŷP F

.

The correctness for the other two encodings follows in a similar way, and that of the propagation
rules follows as above in Theorem 5.3.

We add the following type assignment rules for negation:

Definition 7.7 (Type assignment rules in⊢π for ¬).

(inv-r) : (x 6∈ ∆)
a〈x〉 : Γ, x:A ⊢π a:¬A, ∆

(inv-l) :
P : Γ ⊢π a:A, ∆

(a 6∈ Γ)
x(a). P : Γ, x:¬A ⊢π ∆

We can now check that the extended encoding preserves assignable types as well.

Theorem 7.8. If P ··· Γ ⊢X ∆, then P F : Γ ⊢π ∆.

Proof. By induction on the structure of of terms inX ; we only show the two added cases to the
proof of Theorem 6.7.

x·Pα̂: Then the last rule applied in theX -derivation is(¬L):

P ··· Γ ⊢X α:A, ∆

x ·Pα̂ ··· Γ, x:¬A ⊢X ∆

and, by induction, P F : Γ ⊢π α:A, ∆, and we can construct:

P F : Γ ⊢π α:A, ∆
(|)

! P F : Γ ⊢π α:A, ∆

(out)
z〈w〉 : Γ, w:A ⊢π z:A, w:A

(in)
α z : Γ, α:A ⊢π z:A, ∆

(!)
! α z : Γ, α:A ⊢π z:A, ∆

(inv-l)
x(z). (! α z) : Γ, α:A, x:¬A ⊢π ∆

(|)
! P F | x(z). (! α z) : Γ, α:A, x:¬A ⊢π α:A, ∆

(ϕ)
(να) (! P F | x(z). (! α z)) : Γ, x:¬A ⊢π ∆

x̂P·α: Then the last rule applied in theX -derivation is(¬R):

P ··· Γ, x:A ⊢X ∆

x̂P ·α ··· Γ ⊢X α:¬A, ∆
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and, by induction, P F : Γ, x:A ⊢π ∆, and we can construct:

P F : Γ, x:A ⊢π ∆
(!)

! P F : Γ, x:A ⊢π ∆
(inv-r)

α〈x〉 : Γ, x:A ⊢π α:¬A, ∆
(|)

! P F | α〈x〉 : Γ, x:A ⊢π α:¬A, ∆
(ν)

(νx) (! P F | α〈x〉) : Γ ⊢π α:¬A, ∆

so our extended encoding respects the classical sequent logic rules.

CONCLUSIONS

In this paper we have bridged the gap between the computational content ofcut-elimination
and the semantics of concurrent calculi, by presenting encodings of Gentzen’s classical sequent cal-
culusLK to theπ-calculus that preservecut-elimination. This was achieved through an embedding
of the calculusX into theπ-calculus that implements acut as communication.X ’s terms directly
represent proofs inLK , by naming assumptions with Roman characters, and conclusions with Greek
characters, and seeing these asinput andoutput, respectively, but terms inX can also not corre-
spond to proofs;X ’ introduces a simple concept of input and output that naturally translates into
the input and output primitives of theπ-calculus.

The main operative ofX , thecut, gets represented byPα̂ † x̂Q, and we interpret this term in
theπ-calculus as a communication: we seeP as a process that outputs overα, andQ as a process
that inputs overx, and communication between these terms uses theforwarder α(w). x〈w〉. To
make sure that the correct communication takes place we makeuse of the mobility feature of the
π−calculusi.e.private names are sent to the communicating party and used for later communication
as channel names.

We presented three different encodings, each with specific interesting properties. We first pre-
sented the simple encoding, and showed that it preservesX ’s head-reduction; in this encoding we
cannot represent fullcut-elimination because we place some interpreted terms underinput, in par-
ticular when encoding the witness for(→L). This seems to be a natural consequence, and is a
feature also in the encoding of theλ-calculus [36, 41, 13]; while this initial result is interesting, the
important question to answer is whether full-cut elimination can encoded.

In fact, we have shown in this paper that the limitation ofinput can easily be avoided. To
that purpose, we introduced the concept ofsynchronisation cell, and managed to show that, by
slightly modifying our encoding, we could represents fullcut-elimination. The third encoding is
more abstract, and interprets terms as infinite resources which simplifies the proofs.

By our result, we have shown that theπ-calculus is a fully expressive model of computation,
whereby we extend the results of Milner’s seminal paper [36]and others (see [41]); using our new
approach, we are capable of not just encoding lazy reductionfor theλ-calculus (as in those papers)
or spine reduction as in [13], but can treat reduction in full. And, in fact, this approach can be
extended to theλ-calculus as well, as well as toλµµ̃ [12]. Through this result, we have shown that
theπ-calculus is fully expressive in that it is not only possibleto represent the functional paradigm,
but can also represents bothcontext callandparameter call(as expressed inX via, respectively,
left and right propagation) in full via representing proofsand proof contractions inLK .

The variant of theπ-calculus we considered uses a pairing facility which enables the definition
of a notion of implicative type assignment on processes. Using this notion, we proved that proofs in
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LK have a representation inπ; our cut-elimination results then show that not only do we correctly
represent reduction on the calculusX , but also can model proofs inLK in all detail in such a
way thatcut-elimination is preserved by contextual equivalence. We also represented negation
in X by extending the syntax and reduction rules, and extended our encodings to deal with the
added constructs; we have shown that all representation results still hold; since we have successfully
represented both implication and negation, this implies that this can then easily be extended to
conjunction and disjunction.
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