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ABSTRACT. We study thet-calculus, enriched with pairing, and define a notion of tgpsignment
that uses the type constructes. We encode the terms of the calculdsinto this variant ofr,
and show that all reduction and assignable types are pegkefinceX enjoys the Curry-Howard
isomorphism for Gentzen'’s calculug, this implies that all proofs ink have a representation in,
and cut-elimination is simulated byr’s synchronisation of processes. We then enrich the lodilc wi
the connector-, and show that this also can be representen.in

INTRODUCTION

In this paper we present three encodings of proofs of Geistfenplicative) LK [24] into the
rt-calculus [36] that respeciut-elimination, and define a new notion of type assignmentf@o
that processes will become witnesses for the provable flaen@These encodings of classical logic
into rr-calculus are attained by using the intuition of the calsuly which gives a computational
meaning tak (a first version of this calculus was proposed.in [45/47, #&];implicative fragment
of X was studied in[10]).

X enjoys the Curry-Howard isomorphism fiok, which it achieves by inhabiting the inference
rules with term information, constructing witnesses forivible sequents. Terms itf have mul-
tiple named inputs and multiple named outputs, that arecilely calledconnectors Reduction
in X is expressed via a set of rewrite rules that represent&moral tocut-elimination inLK; re-
ducing a term using these rules eventually leads to renaaiiognnectors and gives computational
meaning to classical (sequent) proof reduction. It is wethkn thatcut-elimination inLK is not
confluent, and, sinc&’ is Curry-Howard for.k and its reduction respectsit-elimination, neither
is reduction inX’.

These two features —non-confluence and reduction as coomeaxftterms via the exchange
of names— inspired us to consider thecalculus as an alternative computational model dot-
elimination and proofs ink. The relation between process calculi and classical Iagyamiinter-
esting and very promising area of research (similar attemgre made in the context of natural
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2 VAN BAKEL, CARDELLI & VIGLIOTTI

deduction|[[33] and linear logi¢ [5, 15, 119,/18]). Our aim isatimlen further the path to practical ap-
plication of classical logic in computation by providingpegssive interpretations of classical logic
into process algebra, that fully exploit the non-detersrmiof bothLk and.

The aim of this paper is to linkk ands via X'; the main achievements are:

e encodings oft’ into rr are defined that preserve the operational semantics; onegeects
head-reduction, and the other two that respect reductidullir- to achieve these results,
reduction inst is generalised by adding pairing [2];

e we define a non-standard notion of type assignmentif@types do not contain channel
information) that encompasses implication;

e the encoding preserves assignable types, effectively igigatlvat all proofs inLk have a
representation inr;

e in addition to [10], we treat the connectiveas well.

Classical sequents.Thesequent calculusk, introduced by Gentzen in[24], is a logical system in
which the rules only introduce connectives (but on eithde sif a sequent), in contrast batural
deduction(also introduced in_[24]) which uses rules that introduceloninate connectives in the
logical formulae. Natural deduction normally derives ata¢nts with a single conclusion, whereas
LK allows for multiple conclusions, deriving sequents of tef A4,..., A, F By, ..., B;;, where
Aq,...,A,istobeunderstood a&; A ... ANA, andBy, ..., B, isto be understood &V ... VB,,.
The versionGs [34], with implicit weakening and contraction, of Implioa LK has four rules:
axiom left introductionof the arrowyright introduction andcut

I'=AA T,BEA

AX) : =L):

(A%) = T a1 4, =0 T,A=BF A

(=R) T,AF B,A (cut) THFAA T,AFA
"T+ A=B,A ' TFA

SinceLK has only introduction rules, the only way to eliminate a amtive is to eliminate the
whole formula in which it appears via an application of {let)-rule. Gentzen defined a procedure
that eliminates all applications of teut)-rule from a proof of a sequent using an innermost strat-
egy, generating a proof inormal formof the same sequerite., without acut. This procedure is
defined via local reductions of the proof-tree, which hasthwwbme discrepancies— the flavour of
term rewriting [35%] or the evaluation of explicit substitits [17,/1]. Indeed, the typing rule of an
explicit substitution, say iix [16], is nothing but a variant of thecut)-rule, and a lot of work has
been done to better understand the connection betweewgiegplbstitutions and localut-reduction
procedures.

The principle of X. The calculusXY achieves a Curry-Howard isomorphism, first discovered for
Combinatory Logic[[28], for the proofs ibk by constructingvitnessegor derivable sequents. In
establishing the isomorphism fdr, similar to calculi likeAy [38] and Auji [22], Roman names
are attached to formulae in the left context, and Greek ndargbose on the right, and syntactic
structure is associated to the rules. Names on the left capdieas inputs to the term, and names
to the right as outputs; since multiple formulae can appeanath sides, this implies that a term
can not only have more than one input, but also more than otpuuThere are two kinds of
names (connectors) ift': socketqinputs, with Roman names, that correspond to valuesyphrgs
(outputs, with Greek names, that correspond to continus}jathat correspond teariablesand
co-variables respectively, in[[48], or, alternatively, to Parigofsandu-variables (see also [22]).
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In the construction of the witness, when in applying a ruleenpse or conclusion disappears
from the sequent, the corresponding name gets bound in timetkat is constructed, and when
a premise or conclusion gets created, a different free r(otbeit not necessarily, new) name is
associated to it. For example, in the creation of the termid@it-introduction of the arrow

P -T,x:AkFy a:B,A
xPa-B .- Tky B:A—B,A

the inputx and the outpuk are bound, ang is free. This case is interesting in that it highlights a
special feature oft’, not found in other calculi. In (applicative) calculi reddtto natural deduction,
like the A-calculus, only inputs are named, and the linking to a terat ill be inserted is done
via A-abstraction and application. The outpug(result) on the other hand is anonymous; where a
term ‘moves to’ carries a name via a variable that acts asrdgydio the positions where the term
is to be inserted, but where it comes from is not mentioned,laft implicit. Since inX’ a termP

can have many inputs and outputs, it is unsound to considgiunctionper se however, fixingone
input x andoneoutputa, we can sed as a function ‘fromx to «’. We make this limited view of

P available via the outpyt, therebyexportingvia § that ‘P can be used as a function franto «’.

The types given to the connectors confirm this view.

Gentzen’s proof reductions lgut-elimination become the fundamental principle of computa-
tion in X'. Cutsin proofs are witnessed ha T xQ (called thecut of P andQ via « andx), and
the reduction rules specify how to remove them: a term is mmab form if and only if it has no
sub-term of this shape. The intuition behind reduction & dut Pa 1 xQ expresses the intention
to connect allks in P andxs in Q, and reduction will realise this by either connectingaadito all
xs (if x does not exist i), P will disappear), or allkxs to allas (if « does not exist irP, Q will
disappear). Sinceut-elimination inLK is not confluent, neither is reduction i; for example, as
suggested above, whéhdoes not containr andQ does not contair, reducingPa 1 XQ can lead
to both P andQ, two different terms.

Reduction inX boils down torenaming since the calculus is substitution-free, during re-
duction terms are re-organised, creating terms that anéasirbut with different connector names
inside.

Capturing X in 7r. A’s notion of multiple inputs and outputs is also foundsin and was the
original inspiration for our research. The aim of this wasko find a simple and intuitive encoding
of LK-proofs in7t, and to devise a notion of type assignment foiso that the types it are
preserved int. In this precise sense we view processes @&s giving an alternative computational
meaning to proofs in classical logic. To achieve this go& made full use of the view ot’-terms
sketched above. Clearly this implies that we had to defindiamof type assignment that uses the
type constructor— for 7r; we managed this without having to linearise the calculudgoag in [33],
and this is one of the contributions of this paper.

Although the calculiX and r are, of course, essentially different, the similaritieshgyond
the correspondence of inputs and output between ternds and processes in. Like X, 7 is
application free, and substitution only takes placelannel namesimilar to the renaming feature
of X, socut-elimination is similar to synchronisation.

As discussed above, when creating a witness(fo1R) (the termxPa- B, called anexpor,
the exported interface @ is the functionality of ‘receiving orx, sending om’, which is made
available on8. When encoding this behaviour in, we are faced with a problem. It is clearly not
sufficient to limit communication to the exchange of singbemes, since then we would have to
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separately send and«, breaking perhaps the exported functionality, and cedxtaiisabling the
possibility of assigning arrow types. We overcome this fobby sending out a pair of names, as
ina{(v, 6)). Similarly, when interpreting a witness f6&-L ) (the termPx [x] 7Q, called anmport),
the term that is to be connectedxas ideally a function whose input will be connectedviaand its
output toy. This means that we need to receive a pair of namesxws inx((v, 8)). P.

A cut Pa 1xQ in X expresses two terms that need to be connected wiad x. If we model
P andQ in 7r, then we obtain one process sendingagrand one receiving om, and we need to
link these viax(w).x(w). Since each output anin P takes place only once, ad might want to
receive in more than ong we need to replicate the sending; likewise, since each inpuQ takes
place only once, an@ might have more than one send operationtp) needs to be replicated.

Related work. The relation betweelogic andcomputationhinges around the Curry-Howard iso-
morphism (sometimes also attributed to de Bruijn), whicpregses the fact that, for certain calculi
with a notion of types, there exists a corresponding logithsthat it becomes possible to asso-
ciate terms with proofs, linking the term’s type to the prsition shown by the proof, and proof
contractions become term reductions (or computationsis firenomenon was first discovered for
Combinatory Logicl[23], and played an important part in deiprs Automatif.

Before Herbelin’s PhD [29] and Urban’s PhD [45], the studyta relation between computa-
tion, programming languages and logic has concentratedlynain natural deduction systen{sf
course, exceptions exist [25,126]). In fact, these carrypiteelicate hatural deservedly; in com-
parison with, for examplesequent style systeymsatural deduction systems are easy to understand
and reason about. This holds most strongly in the conterbofclassicalogics; for example, the
Curry-Howard relation betwedntuitionistic Logicand theLambda Calculusvith types — of which
the basic system is formulated by

ILx:AkFy M:B 'y M:A—B THy N:A

AX): T A w4 —1): —E):
(Ax) FxAbyx:A (=0 Ty Ax.M:A—B (=B 'y MN:B

— is well studied and understood, and has resulted in a vdsivalt-investigated area of research,
resulting in, amongst others, functional programming legges and much further to systénfi27]
and the Calculus of Constructions [21]. Abramsky [4, 5] hadiged correspondence between multi-
plicative linear logic and processes, and later moved tadnéext of game semanticd [6]. In fact, all
the calculi areapplicativein that abstraction and application (corresponding tovatirdroduction
and elimination) are the main constructors in the syntax.

The link between Classical Logic and continuations androbmtas first established for the
Ac-Calculus [28] (whereC stands for Felleisen’€ operator). Not much later, Parigot presented
his Au-calculus [[38], an approach for representing classicabfgreia a natural deduction system
in which there is one main conclusion that is being manigdatnd possibly several alternative
ones; the corresponding logic is one wititus The Ap-calculus is presented as an extension of
the A-calculus, by extending the syntax with two new construgét &ct as witness to the rules that
deal withconflict (L):

[y M:iA |aA A Ty M:L | a:A A
rl_)\y [a]M: L |a:A A rl_)\y e M:A | A

Inttp: 77 www. wi n. t ue. ni / aut onat h
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It uses two disjoint sets of variables (Roman letters anckletters). The sequents typing terms
are of the fornT' = A | A, marking the conclusior asactive

The introduction-elimination approach is easy to undestand convenient to use, but is also
rather restrictive: for example, the handling of negat®onat as nicely balanced, as is the treatment
of contradiction (for a detailed discussion, see [42]). sTimbalance can be observed in the-
calculus: addingL as pseudo-type (only negation, Ar L, is expressedj. — A is not a type), the
Au-calculus corresponds tainimal classical logid7].

Herbelin has studied the calculdgfi as a non-applicative extensionbfi, which gives a fine-
grained account of manipulation of sequents [29,22, 30F fEfation between call-by-name and
call-by-value in the fragment afk with negation and conjunction is studied in the Dual Calsulu
[48]; as in calculi likeAu andeﬂ, that calculus considers a logic wittttive formulae, so these
calculi do not achieve a direct Curry-Howard isomorphisnthwik . The relation betweei&” and
Auji has been investigated inl [9,110]; there it was shown thasitr&ghtforward to mapuji-terms
into X whilst preserving reduction, but that it is not possible t¢atlde converse.

Them-calculus is equipped with a rich type thedry[[41]: from tlaesio type system for counting
the arity of channels [39] to sophisticated linear type&&i]which studies a relation between Call-
by-ValueAu and a lineart-calculus. Linearisation is used to be able to achieve gs®sethat are
functions, by allowing output over one channel name only.rédwer, the encoding presented in
[33] is type dependent, in that, for each term, there arewdifitt-processes assigned, depending
on the original type; this makes the encoding quite cumimeesdBy contrast, our encoding is very
simple and intuitive by interpreting theut operationally as a communication. The idea of giving a
computational interpretation of tteit as a communication primitive is also used(inh [5] and [15]. In
both these papers, only a small fragment of Linear Logic wasidered, and the encoding between
proofs andr-calculus was left rather impilicit.

The type system presented in this paper differs quite dedistifrom the standard type system
presented in[41] in that our types contain no channel infdrom: here input and output channels
essentially have the type of the data they are sending oiviegeand are separated by the type
system by putting all inputs with their types on the left af #equent, and the outputs on the right.
In our paper, types give a logical view to thecalculus rather than an abstract specification on how
channels should behave.

A result similar to ours has appeared |as [20], but for thetfzaitthere a relation is established
between the\pji-calculus and ther-calculus;Aufi has a Curry-Howard relation with a version of
LK with activated formulagas in Parigot's\y,, so does not directly represark. The interpretation
as defined in [20] strongly depends on recursion, is not caitipoal, and preserves only outermost
reduction, not the (larger) notion of head-reduction weoeieawith[[-1; it does follow the reduction
in Auji closely, though. Also, since in that approach all commuivcatakes place via channels
named\, p andji, it is not immediately clear that a natural notion of typeigissient exists forr
so that also type assignment is preserved.

Overview of this paper. In Sectiori 1, we briefly repeat the definitions of (implica)iv’, followed
by the notion of type assignment which establishes the @daward isomorphism. In Sectidn 2,
we show how to rewrite theX-terms, and show the relation wittx’s cut-elimination. Ther-
calculus with pairing is presented in Sectidn 3. Sedtionfihds the notion of head-reduction 4v,
which is encoded intar via [-1; in Section we will modify this encoding to full represets
reduction, via the encodings! and[-T.
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In Sectior 6, we define a notion of type assignment for/thealculus. Then, in Sectidd 7 we
look at how to represent the other connectiveg’inand study the relation between these represen-
tations and reduction. We conclude by extending the syntasames int to elegantly represent
the other connectives directly .

In [8], we first presented our results on the encoding’eferms in to ther-calculus; that paper
also presented the notion of type assignment as defineddsenell as a proof that type assignment
is preserved by the encoding. We repeat these results hithealivdetails of the proofs; however,
here we define a notion of head-reductien,;’ for X', and show that the encodirgl. respects
—y; we also add the encodings] and[ -1, and show that these are faithful with respecéts full
reduction.

1. THE CALCULUS X

In this section and the next we will give the definition of thiecalculus which has been proven
to be a fine-grained implementation model for various waliwn calculi [9], like theA-calculus
[14], Au, and Auji. As discussed in the introduction, the calcullisis inspired by the sequent
calculus; the system we will consider in this section hay émblication, no structural rules and
a changed axiom; we will consider the other connectives tti@e[4. X features two separate
categories of ‘connectorsplugsandsocketsthat act as input and output channels, and is defined
without any notion of substitution or application.

Definition 1.1 (Syntax) The terms of theX'-calculus are defined by the following syntax, where
the Roman charactens y range over the infinite set sbcketsand the Greek charactersp over
the infinite set oplugs
P,Q == (xu) capsule
| §PB-a export
| Pa[x]yQ  import
| PatyQ cut

We can represent these terms via the following diagrameiigivst as a visual aid).
Y (zopple  X(PA[]LQ PaY Q

As an aid to intuition, ignoring the explicitly named outputve can see these terms with the
view of theA-calculus: thecapsule(x-«) can then be seen as the variablehe exportXPx - as
the abstraction\x.P, theimport P« [x] 7Q as the termxPQ; - - - Q, (WhereQ is seen as a context,
acting as a stack of tern@@,, ..., Q,), and thecut Pa 1 XQ as the substitutio® (x := P).

The* symbolises that the socket or plug underneath is bound itethe The notion of bound
and free connector is defined as usual, and we will identifymsethat only differ in the names of
bound connectors, as usual.

Definition 1.2. Thefree socketsindfree plugsin a net are defined by:

fs({x-a)) = {x} fp({x-a)) = {a}

fs(xPa-p) = fs(P)\{x} fp(xPa-g) = (fp(P)\{a})U{B}
fs(Paly]xQ) = fs(P)U{y}U(fs(Q)\{x}) fp(Paly]xQ) = (fp(P)\{a})Ufp(Q)
fs(PatxQ) = fs(P)U(fs(Q)\{x}) fp(Pa tXQ) (fo(P)\{a}) UTp(Q)
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A socketx or pluga occurring inP which is not free is calletbound written x € bs(P) and
a € bp(P). We will write x & fs(P, Q) for x ¢ fs(P) & x ¢ fs(Q).
The set offree connectorsf P is defined byfc(P) = fs(P) U fp(P).

We accept Barendregt's convention on names, which statésithname can occur both free
and bound in a contexty-conversion is supposed to take place silently, wheneveessary. We
will consider also, for example; bound inP[y/x] andP :- T, x:A Fy A.

We first define types and contexts.

Definition 1.3 (Types and Contexts) (1) The set of types is defined by the grammar:
AB = ¢| A—>B

whereg is a basic type of which there are infinitely mny

(2) A context of socketE is a mapping from sockets to types, denoted as a finite saatd-
mentsx: A, such that thesubjectof the statementsx] are distinct. We writd?, I, for the
compatibleunion ofI[; andI’ (if I7 containsx: A1 andI; containsx: A, thenA; = Aj), and
write T, x:A for T, {x: A}. So, when writing a context d5 x: A, this implies thatc:A € T,
or I is not defined orx.

(3) Contexts oplugsA, and the notiong\;, A, anda:A, A are defined in a similar way.

The notion of type assignment oli that we present in this section is the basic implicative
system for Classical Logic (Gentzen's syster) as described above. The Curry-Howard property
is easily achieved by erasing all term-information. Wheitding witnesses for proofs, propositions
receive names; those that appear in the left part of a sequemamed with Roman characters like
x,Y,z, etc, and those that appear in the right part of a sequentaamech with Greek characters
like a, B, v, etc. When in applying a rule a formula disappears from tiogiset, the corresponding
connector will get bound in the term that is constructed, whén a formula gets created, a new
connector will be associated to it.

Definition 1.4 (Typing for X). (1) Typejudgementsre expressed via aternary relation- T' -
A, wherel is a context obocketsandA is a context oplugs andP is a term. We say that
P is thewitnessof this judgement.
(2) Type assignment fot’ is defined by the following rules:
P -TFwAA Q:-T,x:AFA
PatxQ :-THA
P.-T,x:AF a:B,A . P. . TFaAA Q:.-T,x:BFA
(exp) : ——— ) (imp) : —— =
xPa-B .- Tk B:A—B,A Paly]xQ ;- T,y:A—BFA

We write P ;- T ¢ A if there exists a derivation using these rules that has tlliggment
in the bottom line, and writ® :: P :- T' ky A if we want to name that derivation.

(cap) : (ya) - T, A a:A A (cut) :

As in Aufi, the term that inhabits left-introduction of the arro@@ [z] R, can be seen as a
context with a hole (which in our case carries the naper as a list withQ at the head an® at
the taif.

Notice thatl’ andA carry the types of the free connectorsAnas unordered sets. There is no
notion of type forP itself, instead the derivable statement shows Hiois connectable.

2These types are normally known simple(or Curry) types.
3In Aujfi, (=L) is inhabited byo - e, with v a term, and: a context, and, in factlv-el A Mol & [x] ?Wejy, where
Wﬂ is the interpretation (ﬁyﬁ terms intoX'; for details, see [10].
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Example 1.5(A proof of Peirce’s Law) The following is a proof for Peirce’s Law oK :

— (Ax)
A+ A,B
—— (=R) —— (Ax)
FA=B,A AFA
(=L)

(A=B)=AF A
=R)
F((A=B)=A)=A

Inhabiting this proof int’ gives the derivation:

: —— (cap)
(y-6) - y:A Fy 0:A, 1B
TO e Py wASBEA TP ) wA ey A P
(F(-0)7-0) [2] 9(0-0) - 2:(A—B) A Fy 6:A (;’:’3)
(007 0)& [2] 0(00)57 - bx 1i((AB)A) A

2. REDUCTION ON X

The reduction rules for the calculJs are directly inspired by theut-elimination rules in.k.
For example, since

> / D |/
I' Ak B,A T'Hek A A I' B¢ A
— (>R L)
I'kk A—B,A I'A—BhHx A
(cut)
| B AY
contracts to both
d
TheAd D] o Lo LB,
I'kk A,B,A I' Ak« B,A \ / \ D ] T,Ak« B,A T,A,BH
LK LK cu Ds ) LK LK (cut)
I'Hk B,A I',Bhk A T'hHe A A I Ak A
(cut) (cut)
r'_LK r I_LK

the witness for the first proofgPB-a)a t ¥(Q7 [x] ZR)
(G
reduces to botlQ7 t y(PBTER) and (Q?T?P)BTER, being the witnesses for the two resulting

proofs:
(028 (P w)) ana (2T 1) &2«

This behaviour is reflected in ruleexp-imp), as presented in Definitidn 2.2. We can see ¢he
(yPw-v)7 t X(Q% [x] ZR) as a functioryPa -y (with body P, that takes input ow and outputs on

)




CLASSICAL CUT-ELIMINATION IN THE 7T-CALCULUS 9

«) interacting with a contexD [x] ZR (consisting of the function’s argume@, x as the hole that
the function should occupy, and the context of this functipplicationRﬁ. The contraction of the
cut expresses (in the left-hand diagram) that the body of thetimm (which represents the result
of the function, but with the substitution of the argumeiilt pending) interacts with the context
before using the argument; the other contraction first dseatgument, before interacting with the
context, which corresponds to the standardﬁlvay

The calculus, defined by the reduction rules below, explaimetail howcutsare propagated
through terms to be eventually evaluated at the levaeapfsuleswhere renaming takes place. Re-
duction is defined by specifying both the interaction betweell-connected basic syntactic struc-
tures, and how to deal with propagating active nodes to painthe term where they can interact.

It is important to know when a connector is introducid, is connectablei,e. is exposed and
unique; this will play an important role in the reductionesl Informally, a termP introduces a
socketx if P is constructed from sub-terms which do not contaiss free socket, so only occurs
at the “top level.” This means thdt is either animport with a middle connectofx| or a capsule
with left partx. Similarly, a term introduces a plugif it is an exportthat “creates’s or acapsule
with right parta.

Definition 2.1 (Introduction) P introduces x: Either P = QP [x] 7R with x ¢ fs(Q, R), or P =
(x-a).
Pintroducesa: EitherP = xQp-a anda € fp(Q), or P = (x-a).

The principal reduction rules specify how to reduce a terat ¢btssub-terms which introduce
connectors. These rules are naturally divided in four categ: when acapsuleis cut with a
capsulean exportwith a capsule a capsulewith animport or anexportwith animport. There is
no other pattern in which a plug is introduced on the left gfand a socket is introduced on the
right.

Definition 2.2 (Logical rules) Let « and x be introduced in, respectively, the left and right-hand
side of the maircutsbelow.

(cap) (y)@ 1 2(xp) — (1)
(exp):  (GPPw)ETR(x7) — FPy
(imp):  (y-a)a t 2(QB[ZR) — QB[ER
o Q71 7(PBT2R)
(exprimp) - (§PB-)a 1 QY ZR) — ¢ LD

The first three logical rules above specify a renaming prodvhereas the last rule specifies
the basic computational step: it links theportof a function, available on the plug to an adjacent
import via the socketx. The effect of the reduction will be that the exported fumetis placed
in-between the two sub-terms of tiieport, acting as interface. Notice that tvenitsare created in
the result, that can be grouped in two ways; these alteesatio not necessarily share all normal
forms (reduction is non-confluent, so normal forms are najue).

We now define how to reduceaut when one of its sub-terms doast introduce a connector
mentioned in thecut. This will involve moving thecut inwards, towards a position where the
connectoris introduced, with the direction taken indicated by thertdtiof the dagger. In case both

4This view is confirmed by\uji, where [Pa 1 QY = (ua.PIY | ix.MQIY); in @ command(v|e), v is aterm
ande is acontext
SIn fact, in Aufi only the second alternative is represented.
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connectors are not introduced, this search can start ieredinection, giving another source of
non-confluence.
Definition 2.3 (Active cutsg. The syntax is extended with twitaggedor active cuts
P:u=...| Pa /XP, | PLaXXxP,
Terms constructed without these flaggrdsare calledpure
We define twocut-activation rules.

(a#): PatxQ — Pa /xQ if P does not introduce

(xa): PatxQ — PaXxxQ if Qdoes notintroduce
Notice that both side-conditions can hold simultaneously.

Similarly to the reasoning above, also the rules dealingp \aittivatedcuts are inspired by
Gentzen’'scut-elimination rules. Since

e
LARCASBBA

%
I'Hx A—B,A I'A—BhHk A
r I_LK A

(cut)

(notice the contraction toward$— B in the left-hand sub-derivation, so the plug associatediiso t
formula would not be introduced in the witness for « A— B, A) contracts to

\ Dy / \ D, /

I'A kg A—=B,B,A IA—=Bhx A

(cut)

A B,
(—R)
T'kx A—B,A RA%BhKA( )
cu
'k A

Notice that now in the conclusion of the left-hand sub-dsion the formulaA— B is not con-
tracted: in the witness for this proof, this corresponds rioirdroduced plug; in fact, the wit-
ness for the first proof, the terr@QB-a)&/‘a?P, reduces to the witness for the second proof
(7(Q®& #ZP)B-v)7 t P where nowy is introduced, as reflected in ru{@xp-outs’) below. So
the diagram

[i.QJZ."‘ X, x Pj

with « free inQ, reduces to

E?(Q 7 % pm]liip
<<
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Also, since
\ D /\ D /
\ D1 / I' A—=Bh« A, A T,A—B,Bh« A (=L)
=
I'kk A—B,A I'A—BhHk A (cut)
cu
r '_LK A

(again, notice the contraction) reduces to

[T e > /D
'k A=B,A T,A—=-Bh« AA 'k A=B,A T,A—B,Bhx A
(cut) (cut)
FheAA LBhed
=
I'kk A—B,A ILA=BhFx A (cut)
cu
F '_LK A

the termPa& X ¥(Qp [x] JR) reduces tPa 1 Z((P& X\ Q) [z] 7(P&

e GaED)

(wherex occurs free i or R) reduces to

XXR)), or

_Z.[P@?Qﬁ[]—y—P&?

as reflected in ruléximp-outs).
The next rules define how to move an activated dagger inwards.

Definition 2.4 (Propagation rules)Left propagation:

(dF) : (y-a)& /XP — (y-a)& TXP

(capr) : (y-p)a/xP — (y-p) p#u
(exp-outs’) : (yQ,B a)a fxP — (y(Qu fx P)Aﬁ Y)Y 7 fresh
(exp-ins*) :  (FQB-7)& #XP — §(Q& #XP)B-7y v F

(imp/) : (QB [z]yR)& #XP — (Q& /XP)p [z] j(R& /XP)

(cutf) (QﬁTyR)&/‘:?P — (Qa/fp)ﬁm( a /XP)

Right propagation:

(xd) : PRX %(x-B) — P&t x(x-)
(\cap) : Paxx(y-p) — (yB) R y#x
(X\exp) : Paxx(yQp-v)  — y(PaXXQ)B-v
(\imp-outs) : PaXX(Qp [x]yR) — Patz((Paxx 2Q)B [z] (P& X ZR)), zfresh
(\imp-ins) : Pax\x(Qp[z] jR) — (P&\J?Q),B[ ] (PR X XR) z#x
(xcut) : PaX%(QB1JR) — (PAxZQ)B1t7(PAXXR)

Notice that, in rulegd ) and(Xd), the activatedcut gets deactivated: although the connector
mentioned in theapsulas certainly introduced, we cannot guarantee that the atbremector is not,
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so it might be possible that now a logical rule is applicalilthe other connector is not introduced,
the cut gets activated again, but now in the opposite direction.

Definition 2.5. (1) We write — y for the reduction relation defined as the smallest pre-order
(i.e. reflexive and transitive relation) that includes the logigeiopagation and activation
rules, extended with the contextual rles

XPa-p —
Pa[x]yR —
P—-Q = (Rax]yP — Ra[x]yQ
PatyR — QuiyR
RatyP — RatyQ
The reduction— y is not confluent; this comes in fact from the critical pairtthetivates acut
Pa 1 xQ in two ways. Confluent sub-reduction systems are defineddh [1

2QR-p
Qu [x]yR

Summarising reduction brings allcuts down to logical cuts where both connectors are single
and introduced, or to the elimination @lits that are cutting towards aapsulethat does not
contain the relevant connector. Cuts towards connectarsriong in capsuledead to renaming
PaXx(x-B) —x P[B/a] and(z-a)x *XP — x P[z/x], and towards non-occurring connectors
leads to eliminationRa X x(z-8) — x (z-B) and(z-B)& *XP — x (z-B)).

We remark that it is possible to defimet-elimination in many ways, and that the above rules
are not cast in iron, but form a very elegant, natural and mahiset. We could, for example,
replace the deactivation rulds//) and (Xd) by (z-a)a /XP — P[z/x] and PaX X(x-B) —
P[B/«], respectively; this yieldst’, a variant of X’ with implicit substitution as defined in [43].
The activateccutswere introduced by Urban with the main purpose of giving gocontrol over
cut-elimination to prove strong normalisation, without séicimg expressivity. The idea is that,
once activated, aut has to run to completion, and cannot be “crossed” with amathe

The soundness result of simple type assignment with respeetiuction is stated as usual:

Theorem 2.6(Witness reduction [10])If P ;- T'= A, andP — y Q,thenQ ;- '+ A.

In [10,[11] some basic properties are shown, which essgnshbw that the calculus is well
behaved, as well as the relation betweBrand a number of other calculi. These results motivate
the formulation of admissible rules:

Lemma 2.7(Garbage Collection and Renaming[11])
(#gc) : Pa/xQ —y P ifa ¢ fp(P) (reni): (z-a)R TXP —y P[z/x]
(xgc) : PaxxQ —x Q ifx &fs(Q) (renR) : Pé1zZ(z-a) —x Pla/d]
Example 2.8. To illustrate reduction int’, we will reduce the term
(ZP3-)7 T i((u-p)p 1 §(QT [y] R))
whereP = (z-6), Q = (v-T) andR = (w-0), soy € fp(P) andu, y € fs(Q, R). Notice that, since
u not introduced in the right-hand term, this is not a logicat. We show two reduction paths; in

6Since reduction inY is defined via rewriting rules, the contextual rules are ralyrieft implicit; we mention them
here because we will define a restriction of reduction thed Ainits the contextual rules.
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the first reduction, we contract first the innermost (logicalt:
(ZP3-7)7 T a((u-p)p 1 §(QT[y] @R)) — (imp)
(zP6-7)7 1 #(QT [u] ©R) — (exp-imp)
QTTZ(PétwR)
We could run this further, but for our purposes this is enough
In the second, we first activate the outer-mast

(2P6-7)7 t @((u-p)p t F(QT[y] R)) — (\axcut)
((PS-y)7Nit(u-p))p t §((ZPS- )TN A(QT[y]@R))  — (xd, exp \imp-ins)
(2P8-B)B 1 (((ZP6-7) T\ 0Q)T [y] @((ZPS-7) T\ @R)) — (\cap)

(ZP5-B)p 1 7(QT [y] WR) — (exp-imp)

QT 12(PétWR)

For another example, lé&t = (z-6), Q' = (u-t) andR = (w-c¢) (notice the difference iQ,
sou is no longer introduced iQ'7T [u] @WR).

(2P6-7)7 1 #(Q'T [u] @R) — (Ra)

(ZP5-7) 7\ i(Q'T [u] @R) ) — (ximp-outs)
(2P6-7)7 1 7(((ZP6-7) 7N #Q)T [y] @((ZPS-7)F X iIR)) — (d,*cap)
(ZP6-7)7 1 §(((2P3-7)7 12Q')T [y] @R) — (exp), =«
(¥(x-0)p-7)7 1 §((ZPS-T)T [y] WR) — (exp-imp)
(zPd-7)T 1 X({x-0)0 { WR) — (Ra)
(ZP5-T)TXX((x-p)p T @R) — (xcut)
((ZP6-T)TX\Z(z-1))p T @((ZPS-T)TX ZR) — (xd, exp,xcap)
(ZP5-p)p t WR — (exp)

Example 2.9. We show how to reduce @t containing the witness for Peirce’s law in a context that
offers identity as a first argument:

(Y (y-0)i7-0)& [z] 0(v-0))0-7)7 1 0((X(x-0)T-T)T [v] W(w-p)) — (exp-imp)
(X(x-0)0-7T)T 1 2(((F(y-0) - a)@ [z] D(0-0))d 1 @(w-p)) — (renR)
(X(x-0)0-7T)T 1 2((H(y-p)77-a)@ [2] D(v-p)) — (exp-imp)
(H(y-0)T-a)a T X({x-0)T 1 7(v-p)) — (cap)
(H(y-p)71-a)a T X(x-p) — (exp)
yye)ie

Notice that we cannot type these terms: as shown in Exdmipjéhk type used far in the subterm
(7(y-6)i-a)@ [z] ©(v-d) is (A—B)— A, and we cannot assign that typettn X(x-c) 0T, since
that term is only a witness of judgements of the shapec)c-7 ;- T Fy 7:C—C, and we cannot
solve(A—B)—A = C—C. And in fact, to type the final term(y-p) - p, the connectop must
haveboththe typesC andC— D, which we cannot express.
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3. THE ASYNCHRONOUST-CALCULUS WITH PAIRING

The notion of asynchronous-calculus that we consider in this paper is different frorneot
systems studied in the literature [31], and can be seen ascabpase of the polyadia-calculus
[37]; the reason for this deviation is made clear in SedtloBde reason for this change lies directly
in the calculus that is going to be interpreted, in which a term can be constructed binditvgp
names simultaneouslwe will model this via the sending and receiving pairs of earas interfaces
for functions, so, inspired by [2], add pairing. We take thewthat processes communicate by
sending data over channels, so not just names, but alsogbaiesnes.

We will define an encoding ok’ into this rt-calculus with pairing. Almost as usual, we cannot
model full cut-elimination through our first encoding &f -terms via[- 1. into the 7r-calculus; this
is directly caused by the nature of the reduction relationhaenr-calculus, which does not permit
reduction under ainput. This was also the case with the interpretations ofAkealculus defined
by, for example, Milner[[36], Sangiorgi [41], Hondz al. [33], Thielecke [44], and two of the
authors of this paper [13], where reduction in the origiretalus had to be restricted in order to
get a completeness result. However, we will be able to oveecthat shortcoming, and define two
encodings thatlo representt’’s reduction in full.

To ease the definition of the interpretation function of terim. X’ to processes in the-cal-
culus, we deviate slightly from the normal practice, andievaither Greek charactess g, v, . ..
or Roman characters y, z, . . . for channel names; we usefor either a Greek or a Roman name.
To successfully preserve assignable types, we also inteodistructure over names, such that not
only names but also pairs of names can be sent (but not a ppairs). We also introduce the
let-construct to deal with inputs of pairs of names that getitisted over the continuation.

Definition 3.1 (Asynchronoust-calculus) (1) Channel names and data are defined by:
a,b,c,d == x|« names
p == al(ab) data

Notice that pairing isiot recursive.
(2) Processes are defined by:

P,Q == 0 nil |
| P|Q composition | f(x“’ input
| P replication | a(p) (asynchronous) output

| (va)P restriction | let(x,y)=zinP letconstruct

(3) We abbreviater(x).let(y,z) = xin P by a(y,z).P, and (vm) (vn) P by (vmn)P, and
write a(c, d) rather thari((c, d)).

(4) A (process) context is simply a term with a h¢le

(5) We consider bound in(vn) P, and calln free in P if it occurs in P and is not bound; we
write fn(P) for the set of free names i®, and writefn(P, Q) for fn(P) ufn(P).

Definition 3.2 (Congruence) Thestructural congruencé the smallest equivalence relation closed
under contexts defined by the following rules:

Plo=P 'P=P|lP P=!P[IP P|Q

(vm) (vn) P = (vn)(vm)P (vn) (P[Q)
(P|Q)|R = P|(Q|R) letx,y)=(a,byin R

Qlp (vn)0=0

| (vn)Q if n¢fn(P)
[a/x,b/y]

~
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Because of ruldP | Q) |R = P|(Q]|R), we will normally not write brackets in a parallel
composition of more than two processes.

Definition 3.3 (Reduction) (1) Thereduction relationover the processes of the-calculus is
defined by following (elementary) rules:

(synchronisatioh : a(by|a(x).Q —x Q[b/x]
(binding) : P—,P = (vn)P —z (vn)P’
(compositior) : P—P = P|Q—P|Q

(congruencg: P=Q & Q—,Q & Q' =P = P— P

(2) We write — for the transitive closure of+,, and —% for the reflexive and transitive
closure of— .

Notice thata(b,c) |a(x,y).Q = a(b,c)|a(z).let(x,y)=2zinQ.
—x let(x,y)=(b,c)in Q
= Q[b/x,c/y]

Definition 3.4. (1) We write P | n (P outputs omr) if P = (vby...by) (n(p) | Q) for some
Q, wheren # by ...by,.

(2) We writeP || n (P will output onn) if there existsQ such thatP —; Q andQ | n.
(3) We writeP C Q (and callC. the contextual orderinyif, for all contextsC|-], and for all
n, if C[P] | nthenC[Q] | n.

(4) We writeP ~¢ Q (and callP and Q contextually equivaleptif and only if P C. Q and
QL. P.

Definition 3.5. (1) Strong equivalences the largest relatiof such that? ~ Q implies:
e for each namer, P | nifand only if Q | n;

e forall P/, if P —, P’, then for some&)’, Q —, Q" andP’ ~, Q’.
e forall Q', if C[Q] —x Q, then for som&’, P —, P andQ’ ~ P'.

(2) Strong bisimilarityis the largest relation- such that” ~ Q if for all processeR, P | R ~
Q|R.

Theorem 3.6([40]). (1) ~ is a congruence relation.
(2) ~ implies~c.

The following lemma was shown in [41] using, and states some basic properties on processes

that are relevant to our results; especially the second laindi, that state distribution rules, are
important.

Lemma 3.7(cf. [41]). (1) (@) (vx)(!P) ~c!(vx)(!P).
(0) (vx)(tQ[!P) ~c !(vx)(Q[!P)
(2) LetQ, R be processes that ugeonly for output, and® hasa only as input. Then:
@ (va)(QIR|!P) ~c (va)(Q[!P)[(va) (R[!P)
(0) (va) (V) (QIR)[!1P) ~c (vy)((vB) ((va) (Q[!P)) | R[y/a] [ P[y/a])

(3) LetQ, R be processes that ugeonly for input, andP hasx only as output. Then:

@ (vx)(QIR|!'P) ~c (vx)(Q[!P)|(vx)(R[!P)
() (vx) ((vy) (QIR)['P) ~c (vz) ((vy) ((vx) (Q['P))[R[z/x] [ P[z/x])
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4. A SIMPLE ENCODING FORX INTO 7T

In this section we will present an encodingAfinto 7t which closely follows the structure and
intuition of X'. Our encoding is based on the intuition formulated abovecth P«x 1 XQ expresses
the intention to connect adls in P andxs in Q. Translated intor, this results in seeing as trying
to send at least as many times oweasQ is willing to receive overr, andQ trying to receive at
least as many times overasP is ready to send ove.

Since some sub-terms will be placed unatgut, a full representation of reduction &i cannot
be achieved, because it is not possible to reduce the (ieter}) terms that appear underiapurt;
prohibiting reduction undeinput is necessary for the expansion leminal [41]. In view of thedite
ture that exists on encodings into thecalculus, this is unfortunate but normal: this limitatieas
already evident in [36], which manages only to show a predienv result folazyreduction [3] for
the A-calculus, and is also present(in [13] where only the notiospine reduction gets represented.
To accommodate for this shortcoming, to achieve a simulat&sult using this first encoding, we
restrict the notion of reduction of’ to that ofheadreduction. As can be seen in Definitionldirn;
putis only used for the encoding @hport, so the restriction will consist of removing the rules that
reduce undeimport, also, since no congruence rules exist that deal imjtlut terms, propagation
into animport cannot be modelled.

Although departing from¥Y’ it is natural to use Greek names for outputs and Roman names fo
inputs, by the very nature of the communication of thealculus (it is only possible to communi-
cate using thesamechannel for in and output), in the implementation we areddrto use Greek
names also for inputs, and Roman names for outputs; in fachiegd to explicitly convern out-
put sent onx is to be received as input ori via ‘a(w).x(w)’ (called aforwarderin [32]), sow is
now also an input, and also an output channel, which for convenience is abbrayiate «— x.

Definition 4.1 (Simple interpretation ofC in 71). Thesimpleinterpretation of terms is defined by:
[(x-a)l = x(w).a(w)
[7QB-al = (vyp) ({[QLI(y, B))
[Pa[x] QL = x(s,d).((va) ({[PL[ta—s)| (vy) (td—y|![QL))
[PatzQl = (vax)(![PL[!a—x[![QL) = [Pa #2Q1 = [Pax Q]|

The approach df-1L is to see thémport P& [x] §Q as a delayed communication, that is waiting
for a mediator to arrive ir. Notice that the tern® outputs o, andQ inputs ony, and that these
are bound locally in the construction of timport, as correctly expressed Bya) (! [P1|!a—s),
wheres is the name of an input channel that needs to be receivedyand! d—y | ! [Q1), whered
needs to be received; in fastandd are received together in a pair vigout Since we here follow
quite closely the structure of terms ik, it is this aspect that gives the moniker ‘simple’ to this
encoding. Notice that we redirect the outpui s, which is the input channel of the mediator, and
that [ P gets replicated since it might be needed more than once imtediator. We place these
two processes in parallel under the inputxd$, d), creating

x(s,d). ((vae) (L[PL]ta—s) | (vy) (td—y [ QD).
Since now sub-terms are placed unflgrut, we cannot encod&’’s reduction in full.

As mentioned in the introduction, we added pairing toAhealculus in order to be able to deal
with arrow types. Notice that using the polyadiecalculus instead would not be sufficient: since
we would like the interpretation to respect reduction, imtipalar we need to be able to reduce
the interpretation of ¥Pa-B)p 1 Z(z-7) to that ofXP&-+ (whenp not free inP). So, choosing to
encode theexport of x anda over B asB(x, «) would force the interpretation gk-7) to always
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receive a pair of names. But requiring forcapsuleto always deal with pairs of names is too
restrictive, since it is desirable to alloeapsulesto deal with single names as well. So, rather
than moving towards the polyadic-calculus, we opt for letting communication send a singenit
which is either a name or a pair of names. This implies thatoggss sending a pair can also
successfully communicate with a process not explicitly deding to receive a pair.

Notice that the interpretation of non-activatedts is the same as that of activatedts this
implies that we are, in fact, also interpreting a varianftbfvithout activatedcuts modelling arbi-
trary movement otutsover cuts but with the same set of rewrite rules. This is very diffeérfeom
Gentzen’s original definition — he in fact does not defineu&overcut step, and uses innermost
reduction for hisHauptsataesult — and different from Urban’s definition: allowing grdctivated
cutsto propagate is crucial for his Strong Normalisation reddtiwever, this rewriting is still sound
with respect to typeability, in the sense that assignalmexts are preserved under reduction. Here
we can abstract from these aspects, since we only aim to areweulationresult for X', not full
abstraction, for which the simple encoding will be showncdde.

The following is straightforward:

Lemma 4.2(Free name preservation}, x & fc(P), if and only ifa, x & fn([ P1).
Proof. By easy induction on the structure af-terms. L]

There is a couple of important aspects to our result that teebd pointed out:

(1) One of the main goals we aimed for with our interpretatias, of course, the preservation
of reduction: ifP — » Q, then[Pl —. [QT; we quickly understood that this was too
ambitious. Take the reductiofy-a)a  X(x-v) — x (y-v), then

[y-a)at 20y & (vax) (y@). &) | a—x | x@w). 7w)
[yl & y(w).7(w)

but we cannot show thdvax) ('y(w).@(w) |'a—x | ! x(w).7 (w)) reduces ta/(w).7 w).
However, it is easy to show that these processesa@rtextually equivalent

So, can we then show : B — » Q, then[ Pl ~. [Ql? Alas, given the reduction rules
in 7T, this cannot be achieved in full: since,in we cannot reduce under an input, we can
only simulate head-reduction.

(2) Moreover, the reduction i’ is non-confluent, so, in particular, a tetPhcan have more

than one normal form. When interpreting a term through itssaormal forms vial- Inr,
it is easy to show that, iP — v Q, thenTQinr € TPing; SO picking one reduction fro
can then exclude the reachability of some of the other nofonads, and the set of reachable
normal forms decreases during reduction.

Something similar also holds for our encoding into thealculus: ifP — » Q, then
[PT has more behaviour thdQ, expressed vidPl .3 [QN.

We now define our notion of head-reduction &n

(1> 1]

Definition 4.3. We define the notion dfeadreduction—, as in Definitio 2.5, by blocking reduc-
tions in and towardmport, via theeliminationof the propagation rules that move into amport.

(imp/) : (QB[z] R)& /P — (Q& /ZP)B [z] 7(R& / XP)
(\imp-outs) : PaXX(Qp [x]FR) — PatZ((PRxXQ)B [z] J(PAX XR))
(\imp-ins) :  PRX%(QB[z] TR) — (PAXZQ)B [z] J(PRXZR), z#x
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as well as the contextual rules:

Pa [x] yR — Qua [x] ¥R
P=Q = {Rﬁ[x]y\P%RZZ[x]y\Q

The choice for the terminologgeadreduction can be motivated as follows. The only remain-
ing reduction rules that deal witmportsare:

~

(imp) - (y-a)atx(QB[x]ZR) — QB[y]ZR

s Q71 y(PB1ZR)
exp-imp) : (YyPB-a)a T x x|zR) — NN
Take the logicatut (yPx-y)7 t X(Q% [x] ZR); as mentioned above, this expresses a function

yPa-+y interacting with a contexQ% [x] ZR, whereQ is the function’s parameter, aril is the
context of this function application (we can compare thimtewith discrepancies, t())\y.P)QE-,
SoR is the contex{ |R;). We can see the contraction of thist as a substitutidfy where we insert
P into the holex in the context. The restriction we put on the rewriting sysia head-reduction
implies that this only will happen if the left-hand term miened in thecut is a value,i.e. either
a capsuleor anexportyyPa -~ with « introduced. In particular, under head-reduction, in thente
Ta t ¥(Q7 [x] ZR) (which we can see asQR; (x:=T), i.e. asTQR;) all reduction takes place
exclusivelyinside T (so in the head of the term), and tleet mentioned explicitly will only be
contracted after that reduction produces a term that intresh, either in acapsuleor in anexport
So this substitution is postponed (for an introducedf x is not introduced, it will always be
blocked, since propagation into @mport is no longer allowed) until the term to be inserted has
become a value; notice that reductions inside this valualfoeed.

We now come to the correctness result for the encoding, wésskentially states that we can
mimic X’'s head-reduction int: if P — Q, the image of theY’-term P under the encoding in
reduces to somea-process that contains the behaviour®fbut might have some extra behaviour
that could be disregarded. As is evident from the proofsvadiais is in part due to the presence of
replicated processes in the translation of ¢bé

The precise formulation of the correctness result now besom

Theorem 4.4.1f P — Q, then[P1 .3 [QT.

Proof. Logical rules:

(cap): (y-a)a 1 x(x-y) = (y7).
[(y-ay@ i 2yl & (vax)([{y-a)L|ta—x|![{x-7)T]) =
(vax) (ty(w).a@) |ta—x|!x@w). 7(w))
(vax) (yw). ®w) |a—»x|[x@w).7@w))  ~c (& x)
y(w). ¥ (w) = [y
(exp): (yPB-a)atx(x-y) — yPB-7.
[(GPB- )& X ()l & (vax) (! [FPB-al|ta—x|![(x:7)]) O
(vax) ([gPB-al |a—x | [(x-7)T) 4
(vax) ((vyB) ({[PL]@(y, B)) |a—x | x(w). 7 (w)) =7 (a,x)
(vyB) (!IPL |7 (v, B)) 2 [yPp-+1

/In fact, it corresponds to @-reduction inAuji, defined by the rulev|jix.c) — c[v/x], which performs the
substitution.
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(imp): (y-a)@t%(QP [x]2P) — QB [y] 2P

[y-a)@ t2(QB [x]ZP)L 2 (vax) ({[(y-a) |t a—x[t[QB[x]ZPL) 2

(vax) ([(y-e) L] a—x | [QB [x] 2PT) 2

(vax) (y(w). & (w) | a—x| x(s,d). (vB) ({[QL[ ! p=s) | (v2) (td=z[![PL))) ~c (%)

y(s,d).((vB) (LIQLI!B—s) | (vz) (td—z|![PL)) 2 [QBy)zPL
(exp-imp): (§PB-a)At2(QF[x]2R) = QT (PP 1ZR).

[(7PB-w)& T (QTX]ZR)L 2 (vax) ({[yPB-all[!a—x|![QF [x]ZR) I

(vax) ([§PB-all |a—x |[Q7 [x]ZRT) 2

(vax) ((vyB) (L[PL | &(y, B)) | a—x|

x(s,d). ((vy) (LIQL[ty—s) | (vz) (td—z[[RL))) —F (w x)

(vyByz) (LIPLIHIQL [ty —~y [1 B~z [R) =

(vyy) LIQL[ ty—y | (vBz) ({[PL|! B~z | ![R])) ~c (BI(3)

(vyy) CLQL[ty—y [t (vBz) ([PL|! B>z [1[RT)) 2 [Q71y(PB1ZR)L

For (JPB-a)& T X(Q7 [x] ZR) — (Q7 1 ¥P)B 1 ZR the proof is similar:
(vyByz) (LIPLI QL[ ty—~y |t B~z |1 [RT) =, ~c

(vBz) (t (vyy) CLQL [ y—=y [1[PL) |1 p=z|H[RL) 2 [(QF17P)B 12R],
Activation rules: Trivial.
Left propagation:
(t#): (y-a)a /XP — (y-a)a T XP. Trivial.
(cap/): (y-B)a /XP — (y-), p # a.
[(y-g)a 7 xPL & (vax) (ly(w).Bw) |!a—x|![PL) = (B # «)
).pw) £ [{y-p)l
1) = (vax) (la—x) |[PL;itis

ly(@). Blw) | (vax) (ta—sx |1 [PT) I y@
Notice that, in cas® does not contain, (vax) (!a—x | [P
this what forces the theorem itself to be stated uging

(exp-outs’): (§QB-a)& /XP — (7(Q& #XP)B-v)7 1 xP, v fresh

[(FQB-a)a #XPT £ (vax) (! (vyp) ({[QL|&(y, B)) |l a—x[1[PL) ~c BI(D))
Hvax) ((vyB) (L[QL [=(y, B)) [ta—x | ! [PL) ~c (3.2(20))
vyx) ((vyB) ((vax) (L[QL [T a—x [L[PL) [7(y, B)) [ !y —x[![PL) ~c BI[AD))
(vyx) (t(vyB) ((vax) (L[QL [ ta—x [ L[PL) |7 (y, B)) [ !y x| [PL) ~c BI[S))
(vyx) (1 (vyp) (! (vax) (LLQL[ ta—x [1[PL) [7(y, B)) |t y—»x 1 [PL) £
[(7(QR / %P)B-7)7 1 3P
(exp-ins*): (YQB- )oc/‘xP—> (Qﬂé/xp)ﬁ’)/')/#tx
[(7QB- )& #ZPL £ (vax) (! (vyB) (([QLIF(y, B)) |l a—x[1[PL) ~c @BATD)
tvax) ((vyp) (CLLQLI7(y, B)) [ Ta—x[![PL) =
vyB) ((vax) (L[QL] Ta—x [1[PL) [7(y, B)) 2
(vyB) ((vax) (1[QL [ ta—x [ [PL) |7(y, B)) ~c BA[I)
(vyp) (! (vax) (! [QHI'IHXI [PL) |7(y. B)) £
[(Qa #xP)B-v
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(imp/): Excluded from—.
(cut/): (QBtYR)& /ZP — (Q& #XP)B 1 7(Ra / ZP).
(t(v

[(QBt7R)E #ZPL & (vax) (! (vpy) ((IQLI!A-y |H[RL)|ta—x[![PL) ~c @A)
! (vax) ((vBy) (H[QL[ ! By [{[RY) |!a—sx [ [PT) ~c BA(@8)
L (vBy) ((vax) (L[QL[ ta—sx [ {[PL) |1 B—y | (vax) ({[RL[ta—x [I[PL))  ~c BI(S)

(vBy) (! (vax) ([QL[ tamx [ [RL) [1 By | ! (vax) (L [RL[ tax |1 [PL)) £
[(Q& #%P)B t §(R& #xP)1
Right propagation:
(Xt): PaXxx(x-B) — Patx(x-B), a notintroduced inP. Trivial.
(\cap): ThenPa\x(y-,B> = (y-B),y # x. ~
[PRxE(y-B)L & (vax) ([PL]lasx|ly(@).Blw) = (y#x
(vax) (L [PL[ ta—x) [ y(w). Bw) 2 y@w).plw) 2 [{yp)l
Note again the use Q2.
(xexp): ThenPa\x(yQE-'y) — J(PRXXQ)B-7-
[Paxx(FQR- 1L 2 (vax)({[PL[ta—x|! (vyp) ([QLIT(Y.B))) ~c BI(D))
Hvax) (H[PL | x| (vyB) ([QL[ (v, B))) =
Hvyp) ((vax) ([PL[ta—x [ 1[QD) [ 7(y, B)) ~c (BA(D)
(vyB) (! (vax) ([PL ] ta—x [ [QL) [7(y, B)) 2 [p(PaxzQ)B-7]
(Ximp-outs), (\imp-ins): Excluded from—.
(xcut): ThenPaX Z(QBTJR) — x (PAXXQ)B 1 J(PA X ZR).

[Pax2(QBTFR)L 2 (vax)(![PL|!a—x|! (vBy) ([QL[!B-y[![RL)) ~c BA(E))
vax) (L[PL [ ta—x | (vBy) ({[QL ! By [ {[RT)) ~c [B2(B)
L(vBy) ((vax) (L[PL] ta—x [1[QL) [t By | (vax) ({[PL[ta—x |1[R])) ~c @B2(TD))

(vBy) (! (vax) ({[PL[ ta—x [1[QL) [ B—y |! (vax) (L[PL]ta—x[1[R])) £
[(Pax%Q)p | F(PEXZR)]

Contextual rules:

P— Q= xPua-f— xQu-B:
[#P&-pL £ (vxa) ([PLIBlx,a)) oI (IH) (vxa) ({IQLIBlx,a) £ [%Qa-pL

P— Q= PatyR — QuatyR, RatyP — RatyQ: By induction.

P — Q= Pa[x]yR — Qu [x] YR, Ra [x] yP — R [x] yQ: Excluded from—.

P— Q& Q — R= P — R: Byinduction.

P — Q= RatyP — RatyQ: By induction. L]

Notice that, in the proof above, the only place where redunqtiays a role is in the logical rules;
all other steps are dealt with by the congruence rules, gtrgkequivalence and/or induction.

Observe that the image d&f in 7, being built without using ‘choice’, has no notion @fasure
of processes; theut Pa 1 XQ, with « not in P andx not in Q, in X" runs via erasure to eithét or
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Q, and reducing it decreases the set of reachable normal fbuhs

[PatxQL 2 (vax)(1[PL|!a—x|![QL)
= ![PL] (vax) (ta—x) [t [QL = I[PL|![Q]L
which, evidently, has more behaviour than bpfl and[Q'l. So for anyX-term P, [ Pl essentially
‘contains’ all normal forms of in parallel; restricting to either (confluent) call-by-namr call-by-
value reductions, this feature will disappear.
The result presented in [33] is stronger, but only achieveall-by-ValueAy, and at the price
of a very intricate translation that depends on types; sinces confluent, normal forms are unique.

The result as presented [n [20] is achieved for outermaktation inAuji; it strongly depends on
recursion, and is not compositional.

Example 4.5. The encoding of Z((7(y-6)ij-a)@ [z] 5(v-6))é-71, i.e. the witness of Peirce’s law,
becomes:

(v20) (2(s,d). ((va) ! ((vyn) (ty(w).0w) | &ly, m)) [tas) |
(vo) (td=ov[!o(w).6@w))) [7(2,9))
That this process is a withess(¢fA—B)— A)— A is a straightforward application of Theoréml6.7.

Notice that the second reduction in Exaripl€ 2.8 propagatesihimport so by head reduction
is limited to:

(ZP3-7)7 t #((u-B)p 1 §(QT [y DR)) — (\axcut)
((EPS-7) 7X@ (u-B))p 1 J((EP3-7)FX#(QT [y] @R)) — (d,exp)
(2P3-)B 1 J((2PS-7)7X B(QT [y] @R)) - (\a)
(£P3-B)BX §((2PS-7)7X A(QT[y] @R))

where the last term is in head-normal form. Since the firsaicgdn in Examplé 218 is also a head
reduction, this shows that head reduction is not confluent.
This reduction is modelled i by:

[(zP5-7)7 t @((u-B)B t §(QT [y] DR))1, =
(vyu) (1[ZPS AL | ty—»u | [{u-B)B t H(QT [y] ®R)L) 4
(vyu) (H[EPS-AL| Ly —»u |t (vBy) (tu@w). B@w) |! B—y | [QT [y] DRT)) ~c, 2 3D
(vBy) (! (vyu) (Y (vz8) (LIPL 7 (2, 8)) | Ly—u ! (u-B)) | ! B~y

(v W)('[zPé YLt y—u [[QT [y]@RT)) ~c (7,u)
(vBy) (! (v20) (1P| B(z,6)) |1 p—y | (vyu) ({[ZP5-oL| 1y —»u| QT [y] @RL)) %

[(zPS-B)p 1 §((2PS-7) 7 X #(QT [y] @R))
[(zP3-B)BX§((zP5-7)F X #(QT [y] @R))

Consider now the third reduction 2P3-v)7 t #(Q7 [u] WR), whereP = (z-6), Q= (u1)
andR = (w-0) (notice that, in Example—2.8) = (v-7)), sou is not introduced irQ7 [u] WR.
Then the head reduction on this term runs only as follows:

(ZP6-7)7 1 @(QT[u] WR) — (\a) (2PS-7)7\@(QT [u] WR)

Since activate@utsare interpreted in the same way as inactiués this reduction is modelled

in the t-calculus by equality.
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Notice that, since
(vBy) ({[2P5-BL|! p—y | ! (vyu) ([ZPS- 4L |ty —»u [ [QT[y] @RY)) &
(vBy) (! (vzd) ({[PL| B(z,0)) |1 B=y | ! (vyu) ({[ZPo-y L[ty —u |
ty(s,d). ((vt) (L[QL [ T=s) | (vao) (td—w ][ ![R1))))
there is still a communication possible oveandy and therefore the interpretation of
(2P5-B)BXF((ZPS-7) 7\ #(QT [y] @R))
as appears abowanreduce:
[(P8-B)BX §((P8-1)7 X #(QF [y] R))]
(vBy) (1[zPo-BL|! By | ! (vyu) ({[ZPo-A L[ty —u | [QT [y @RL))
(vBy) (1 (vz8) ({[PL| B(z,0)) [ By | ! (vyu) (L[ZPO AL |1y —u |
Ly(s,d). (ve) (([QLI! T—s) | (vw) (td—w [ [RT)))) ¢
(vBy) ((vz6) ({[PL| B(z,8)) | By | (vyu) ([ZPS-yL| Ly —»u]
y(s,d). (vo) ([QLI!T=s) [ (vawo) (td—w [ [RL)))) == (B,y)
(vz0) (L[PL] (vyu) (H[EPo AL | y—u]
(vt) (H[QL[tt~2) | (vw) (16w [[RL)))
which removes thénput (and allows computation insid® and R to be modelled, if any were
present); this implies that the simple encoding capturesentitan just head reduction. This is
essentially caused by the fact that we encodeatsin the same way, thereby modeling, in the

interpretation, that activateclitspropagate over activatamlits as activated propagate over unacti-
vated.

> 1>

I

5. EMBEDDING X’ S REDUCTION IN FULL

In this section, we define an encoding from termstironto processes in that fully respects
reduction inX, as a variant of the encoding presented above. In the agpuafdc!, the import
P& [x] 7Q gets expressed usinga) (! [PL|!a—s) and (vy) (d—y|![QN). However, the vari-
abless andd appearonly in the redirections, not ifiPL or [Q1, so these two processes appear
unnecessarily undenput in the encoding - I. This is what the new encodirfg! fixes: we build
what we call azcommunication celin x(s,d). (!a—s | !d—y), which deals with the redirections of
the received mediator’s interface, which we put in parailih the (replicated) encodings 6P
and[QT, creating the process

IPY | x(s,d). (tass | td-y) 1 [Q]
We only need to express that the nameandy are not visible from outside this process; notice
that, by constructiom occurs only in[ P, and and; only in [QT.
So we define:
Definition 5.1 (Full interpretation ofY into 7).

[(ea)l = x(w).a(w)

[7QB-al = (vyp) (1[Q1 | a(y, B))
[P& [x]7QT = (vay) ([P1|x(v,d).(ta—>v|td-y)|![QL)
[Pa+%Q1 = (vax)(![PT|la—x|![Q]) = [Pa /%Q1 = [Pax zQl
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Notice that (as in Def._4]1) altutsare interpreted the same way.

Example 5.2. The encoding of Z((7(y-6)ij-a)@ [z] 5(v-6))é-1, i.e. the witness of Peirce’s law,
becomes:

(vz6) (! (vaw) (! (vyn) (ty(@).ow) [&(y, 1)) | z(v,d). (ta—v | ld—v) [to(w).0(w)) | 7(z,6))
That this process is a witness bf :((A—B)—A)— A is a straightforward application of The-
orem(6.7.

As above, we will show a preservation result for this encgdimodulo contextually equiva-
lence

Theorem 5.3.1f P — » Q, then[P1 .3 [QT.

Proof. Since the only difference betwegR and[ Pl is the interpretation ainports we only need
to check the rules involvingnports some of these were not considered in the proof of Theéreim 4.4

since omitted from—,.

(imp): (y-a)at%(QP [x]ZP) — QB [y]ZP
[{y-a)@ t 2(QB [x]ZP)T 2 (vax)(! [<y o)l ta—x[1[QB[x]ZP]) I
(vax) ([(y-a) | a—x | [QB [x] ZPT) 2
(vax) (y(w).w(w) | a—x | (vBz) (1 [QL] x(v,d). (! p—~v [ td—z) [{[P)) ~c (a,x)
(vBz) (' [QL | y(v,d). (! p~v]|!d—z) | [P]) 2 [QB[y)zP!

(exp-imp): (7PB-0)@17(Q7 [x]2R) ~ QF { F(PB12R).
[(FPB-a)a + %(Q¥ [x]ZR)L & (vax) ({[FPB-all|ta—x[![Q7F [x]ZR]) <2
(vax) ([gPB-al |a—x|[Q7 [x]ZRT)
(vax) ((vyp) (1 [PL|a(y, B)) | a—x|

(vyz) (1[QL | x(0,d). (1y—v[td—z) [1[R])) =7 (a,x)

(vyByz) (L[PLI[QL[ty—y !B~z |![R]) =

(vyy) (LIQLI ! y—y | (vBz) (1[PL]t B~z [![R])) ~c B1[19)

(vyy) (LIQL[ty—y | (vBz) (L[PT[!p—z[![RT)) 2 [Qy1y(PB1ZR)]
As for[[ 1, for (JPB-a)@ 1 X(Q7 [x] ZR) — (Q7 1 JP)B 1ZR the proof is similar.

(imp#): (QB [z] FR)& #XP — (Q& /XP)B [z] §(R& / XP).
[(QB[z)7R)@ / PT £
(vax) (! (vBy) (1 [QL[2(0,d). (! o [td—y) [{[R]) [ta—sx[![P]) ~c (B2(H))

Hvax) ((vBy) ([Q1]2(0,d). (! o [ td=y) [{[R]) [ta—x[![P]) ~c (B2(23)

! (vBy) ((vax) ([QL | tax [1[PY) | 2(v,d). (1 p+v | Ld—y)
(vax) ({[R1] ta—x | 1[P])) &3
(vBy) ((vax) ([QL] ta—x | 1[PL) |2(0,d). (! fv ] td=y)|
(vax) ([RY|ta=x[![P) = @2@)

(vBy) (1 (vax) (1[QL | ta-ox |1[RY) |2(0,d) (10| 1dy)|
{(vox) ({[RY [famx [ 1[PL)) A

~— —
~—

[[(Q&/‘xP)B[ | 7(Ra #xP)1
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(\imp-outs): ThenP&X %(QB [x] JR) — » P&t Z((PRX *Q)B [z] T(PAX ZR)).
[Pax2(QB [x]7R)] =
(vax) ({[PL [t |t (vBy) ({[QT | x(v,d). (! B | !d—y) [ [R]))  ~c BZ(ED)
! (vax) ({[PL|La—x| (vBy) ({QL | x(v,d). (! B~ | !d—y) [{[R]))  ~c B(E)

) |

Hvaz) ({[PL] a—z | (vBy) ((vax) ([P ta—x|[QL)]

z(v,d). (1 p—o|td—y)| (vax) ({[PL]ta—x |[![R]))) ~c B2(D))
(vaz) ({[PT[ta—z| ! (vBy) ((vax) ({[P1]ta—x]|![QT) |

z(v,d).(1p—v|td—y) | (vax) ({[PL]tasx |[![R]))) ~c BI(@S))
(vax) ({[PL [tz | ! (vBy) (! (vax) ({[PT [ ta—x| ! [QT) |

z(v,d). (1 p=v|ld—y) [t (vax) ([PL]1a—x[1[R]))) £
[P& 1 2((PRX\ZQ)P [2] F(PEX ZR))]

(Ximp-ins): ThenP&X 2(QPB [z] TR) — x (PEX Q)P |z] F(PEX\ XR),z # x.
[Pax2(QB [x]FR)] A
(vax) (L[PL[ta—x |1 (vBy) (L[QL | x(v,d). (! o[ td—y) [ [R]))  ~c BA(D))
vax) ([P ta—x | (vBy) ([QL | z(v,d). (1 o | td—y) [1[R]))  ~c BI(E3))
t(vBy) ((vax) (1[PT [ ta—x|![Q1)]
z(v,d). (! B[ ld—y) | (vax) ({[PL]!a—x|![R])) I
(vBy) ((vax) ([P [ ta—x[t]QT) |
z(v,d). (! B |td—y) | (vax) ([PL[ta—x|![R])) ~c @B.2(1S))
(vBy) (! (vax) ({[PL[ta—x[![Q])]
 z(od).(1p=o|tdy) [ (vax) ([PL]ta—x|1[R]) £
[(PaXx%Q)B |z] F(PaX ZR)1

P — Q= Pa[x]yR — Qu [x] YR, Ra [x] yP — Ra [x] Q: By induction. O

Example 5.4. Using this full encoding, we can now represent the last rédinof Exampld 2.8,
i.e.that of

(!
(!
(

(ZP6-7)7 1 #(QT [u] DR)
in 7t, whereP = (z-6), Q = (u-t) andR = (w-0).

[(zPs-)7 1 @(Q7 [u] DR)]

(vyu) (H[ZPS-v L ty—u | [QT [u] WR])
(

(

(1> 1>

vyu)(![2p§-711|!wuyz(ww (1Q|u(v,d). (! T—»v|!d—w)|!R))
vyy) ([EPo-A L[ ty—y |
vtw) (f(vyu) (H[ZPS L[ Ly—u ! [Q“F) ly(v,d). (tT—o[ld>w)|
L (vyu) (H[EZPS-AL[1y—u[![R]))) 3 (=)
(vry) CIR(ep)p-7 | Ly—y | (vew) (! (vyu) (H[ZPS- A L[ty —u |
tu@w).T(w)) |y(o,d). ({0 [td>w) [{[R])) =7 (7, u)
(vyy) (= (xp)p-r L =y |
(vTw) (1[ZP
[(2(x-0)p-7)7 1 §((2P3-7)T [y] ®R)

g

(X))

Po-tl|y(v,d). (1t—v[ld-w)|![R])) £
R)1
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(vyy) ((vxp) (tx(w).pw) [7(x,0)) [ 7y |

(vtw) (1 [ZPs-T AF! y(v,d).(tt=o[td-w) [[RD) == (7,y)
(vyy) ((vxp) ('x(w).p@) | (vrw) (1[ZP-y LI T—x |l p-w [![R]))) =
(vtx) (! [2P5 7| tT—x | ! (vow) (! x(w).p@w) | L p—w]| ! [R])) 2
[EPo-T)T 1 2((x-p)p t@R)] ~c (B3
(vow) (! (vrx) (! (vzd) (!P!?<2/5>)|!T4>x|!x(w)'ﬁ<@)|!{)ﬂ>w|

[(vtz) (M[zPS Tl |1 t—z|![R])) O

(vow) (! (vrx) (t (vz8) ({[PL]7(z,6)) ! T=x|lx(w).p@)) ['p—w][![R]) ~c (T,x)
(vow) (! (vzd) ({[PL]p(z,0)) [!p—w|![RT) o=
(vow) ((vzé) (1 [PL]p(z,6)) | p—»w][R]) —r (0, w)
(vzé) ({[PL|o(z,4))

We will now define the encodinfy 1, as a variant of -1; the main idea of this third encoding is
to see terms as infinite resources rather than using reiphicet model substitution, so use inherent
replication for all synchronisation. This is achieved bgligating all communicationi.e. all input
andoutputactions. This replicated encoding is easier to understauidjiffers from the other two
in that it does not model reduction via reduction, but viategtual equality, whereas the other two
truly usert’s reduction in the proofs.

Definition 5.5 (Replicative encoding fo&” in 7).
[(xa)] = 1x(w).Tw)
[7QB-al, = (vyp) (IQLI'=(y, B))
[Pa[x]gQL = (vay) ([PL|!x(s,d).(ta—s|ld—y) |[QL)
[Pat2Ql = (vax) ([PL|ta—x|[Ql)  =[Pa/xQl =[PaxzQl
Notice that (as in Def._4]1 and 5.1) allitsare interpreted the same way.

This new approach will be as expressive as the full encodiegensidered above, but has as
advantage that it is more abstract and gives a better sergantihat the main proof follows more
easily.

For this encoding, we can show that replication is impliciténcoded terms:

Lemma5.6. [PT ~¢ !PT .

Proof. By induction on the structure of terms.
P (ca): [(ea)l & tx(w).ww) = Mx(

). @(w) 2 (el
=3Qa-p: [*Q&-pl 2 (vxa) ([QL|!B(x,

[{x-
(x, ) = (IH) (vaa) (1[QT 1! B(x, )
~c BA@D) ! (vxe) ([QL[ 1B (x,a)) & 1[xQ&-B,
P=Qa[y]xR: [Q&[y]xR] £ (vax) (IQL[!y(s,d). (ta—s|td—x)|[R]) = (IH)
(vm) (tIQL [ty (v, d). (ta—o|td—x)![R]) ~c @A)
Hvax) ([[Qﬂ [ ty(s,d). (ta—s|td—x) |[R]) £ ! [Q& [y] ¥R,
P=QatxR: [QatxR] 2 (vax) ([QN[!a—x|[R]) = (H) (vxa) ([QL[!ta—x![R])
~c BA[3)) ! (vax) ([QL |!a—x|[R]) £ 1[QatXR],
Since by this lemma replication is implicitly used everywene no longer relate two terms
via reduction: it is clear thatva) ('a(x).P |!a(b)) is equivalent td P[b/x], but via a reduction
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we can at most show:
(va) (ta(x).P|!a(by)
(va) (ta(x).P|ta(b)|a(x).P|a(b)) —x
(va)(a(x).P|!a(b))|P[b/x] # | P[b/x]
We use this lemma in the next result, when we apply Lefnia 8igtsbution rules.
Theorem 5.7.1f P — » Q, then[PT, .3 [QT.

Proof. Logical rules:

(cap): (y-a)a fx(x- 7> = {y7)-
[(y-a)@t x(x-m)T 2 (vax) ([(y-a) b | ta—x| [(x)T) 4
(vax) (Ty(w).w(w) |ta—x|x(w).7w)) =
ly(w).a(w) | (vax) (ta—x|!xw). 7w) ~c
Ly (w). 7 w) 2 [y-nT
(exp): (yPB-a)a t X{x-y) — gPB-7.
[GPB-a)at Z(xy)T, £ (vax) ([FPB-all|ta—x|[(x-7)]) £
(vax) ((vyB) ([P '@ (y, B)) |t a—x | ! x(w). 7 (w)) ~e (%)
(vyB) ([P |77 (y, B)) N [yPp-1,
(imp): (y DWT{(QB[ x]ZP) — QB [y ZP ~
[(y-a)a 1 2(QB[x]ZP)] & (vax) ([{y- a>“ [ta—x|[Qp [x]ZPT,) =
(vax) (ly@w).a(w) [ta—x | (vpz) ([QL |1 x(s,d). (1 p—s[td—~z) [[PL)) ~c (a,%)
(vBz) ([QL ['y(s,d). (! B—>s|!d—z) | [P]) 2 [QBy]zP]
(exp-imp): (7PB-a)& t (QF[x]ZR) — Q7 F(PBTZR).
[(FPB-w)a t %(QF [x]ZR)} & (vax) ([yPB-all|!a—x|[QF[x]ZR]) £
(vax) ((vyB) ([P |1 (y, B)) [ ! a—x]|
(vyz) ([QL [t x(s,d). (1 y—s|td—z) [[R])) ~c (&%)

(vyByz) ([PLIIQL [ y—y [!B—z|[R])
(vyy) ([QL [ ty—y | (vBz) ([P [ ! p—z|[R])) ~
(vyy) ([QL[!y—~y|[PB1ZR]) 2 [Q7 1 7(PBtZR)T,

For (7PB-a)@ t £(Q7 [x] ZR) — (Q7 17P)B
(vyByz) ([PL[[QL ! y—y|!B—z|[R1) =
(vBz) ((vyy) ([QL ' y—y [[PL) |1 p—z|[R]) £
(vBz) ([QY tyPL | !B~z |[RT) 4

Activation rules:

(a/): PatxQ — Pa /xQ, if P does not introduce. Since both are interpreted via
(vax) ([PT|ta—x|[QN), this is immediate.

(Ra): PatxQ — PaxxQ,if Q does not introduce. Similar.
Left propagation:
(d/): (y-a)a XP — (y-a)a  XP. Similar.

[ 11l

TZR the proof is similar:

[(Q717P)B 1ZR],
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(cap’): {y-

B)a fXP = (y-B), B # «.
[(y-p)arzP 2

(vax) ([{y-p) L ta—x [[PL) = (B # «)
[y-p) L] (vax) (ta—sx |[PL) 2 [{y-B)]
(exp—ouisf) (JQB-a)& /XP — (J(Q& /XP)B-v)7 t XP, v fresh

[(¥QB-a)a /x “R 2 (vax) ((vyp) ([QL ' (y, B)) [ta—x|[PL) ~c B7(2H)

(vyx) ((vyB) ((vax) ([QL [ta—x [ [PT) [ 17 (y, B)) [t y—x | [PL) iy
[(7(Qa #xP)B-7)7 t xPY,

(exp-ins/): (FQB-7)& /TP — §(QW / TP)B-7, 7 # .
[(7QB-v)aszPL 2 (vax) ((vyB) ([QLI!7(y, B)) [ ta—x|[PT)
(vyp) ((vax) ([QL [ta—x | [PT) [t (y, B))

(imp/): (QB 2] 7R )oc/xP — (Q& #%P)B [2] J(R& / P).
z FX

(v #a)
[7(Qa #xP)B-71,

Il 11l

[(QB[z]gR)R =
(mx) ((vBy) ([[Qﬂ | 'Z(s,d)' (!B=s|td—y) |[RL)]!a—x|[PT) ~c [BA(29)
(vBy) ((vax) ([QL]'a—x[[PT)|
'z(v,d). (! —v|td—y) | (vax) ([RT, [ta—x|[P1)) £
(vBy) ([Qa txPL[1z(s,d). (! B—s|td—y) | [Ra 1 XP]) 2
[(QarzP )ﬁ[] y(Ra /xP)],
(cut’): (QBTyR)& #XP — (Q& /XP)B t 7(R& / xP).

[(QBWR) /fPﬂ A (vax) ((vBy) ([QL[! gy |[RL) ['a—x|[PL) ~c BA(23))
(vBy) ((vax) ([QL [ ta—x | [RL) [ p-y | (vax) (IRL[ta—x|[PL)) 2
[(Qa #%P)B i J(R /=P)],
Right propagation:
(Xd): PaXx(x-B) — PatXx(x-B),« notintroduced inP. As above.
(\cap): PaxX(y-B) = (y-B),y # x.
[Paxx(y-p)l & (vax) ([P [!a—x|[{y-B)L) = (
(vax) ([P [ta—x) [[{y-B) L 2 [{y-B)k

(xexp): PARXX(JQB-7) — J(PRXXQ)B-7.
A

y(P
[Paxx(HFQB- 1L & (vax) ([P | a—x]| (vyp) (IQL|!7{y, B))) =
(vyp) ((vax) ([P [ta—x [[QL) |17 (y, B)) £ ~
(vyp) ([PRXZQL |17 (y, B)) 2 [g(PaxzQ)B-N
B 2] 7R)

vy
vy
(ximp-outs): PRX%(QPB [x]JR) — » Pa1Z((PEX Q)P [z] 7(PEX XR)).
[Pax%(QB[x] 7R, A
(vax) ([PL [ ta—x]| (vBy) ([QL]!x(s, d). (! B+s [td—y) | [R])) ~c (8.12(38)&(3D))
(vaz) ([P 'wz | (vBy) ((vax) ([PL|ta—x|[QL) |
d).(!p—v|td—y) | (vax) ([PT|!a—x|[R])) £

(v
(v
z] (P& X xXR))T,

[Patz((Pax xQ)
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(Ximp-ins): P&X ®(QP [z] R) — » (PEX Q)P [z] F(PEX XR), z # x.
[Pax2(QB[z]JR)].
(vax) ([PL [ta—x | (vBy) ([QL[!z(s,d). (! B—s|td—y) [[R])) ~c (B2(39))
(vBy) ((vax) ([PL[ta—x | [QL) [1z(s,d). (! s |td—y) | (vax) ([PL|!a—x|[R])) £
[(sz\xQ),B[ | 7(PRXXR)T,

(xcut): PAXX(QBTUR) = x (PARXXQ)B t (PAX ZR).

(>

[PaX®(QBTHR)L & (vax) ([P [ta—x|(vBy) (IQL[!p—-y|[RL)) ~c BIA(ES)
(vBy) ((vax) ([PL|1a—x [[QL) [ B—y | (vax) ([P [ ta—x |[RT)) s
[(PRXXQ)B t (PRXXR)T,

The contextual rules follow by induction. L]

Notice that part({1) of Lemnia 3.7 is not needed in this prood, that.J is only needed in part
(cap/) and(Xcap).

This concludes our simulation results. We have shown thasioople interpretation respects
X'’s head-reduction, albeit via a contextual equivalence @ertiaps leaving some additional pro-

cesses running in parallel, and that fMreduction is respected by the full and replicative encod-
ings.

Example 5.8. Simulating the third reduction of Examgle P.8 using the faterpretation runs as
follows:

[(zP5-7)7 1 #(QT [u] @R)1 A
(vyu) ({[2P8- 41| ty—u |1 [QT [u] @RT) 2
(vyu) ([ZP&- A1 | ty—u|! (vtw) (1 Q| u(v,d). (! T—»v | d—w) | R)) ~¢ (31)

(vyy) ({[EPS-A1 |1y —y |
Lvtw) (! (vyu) (H[EZPS ALty —u ! [[Q“)Iy(v d). (! t—o|ld-w) |
U (vyu) (H[ZPS- L[ ty—u|1[R]))) D (=4)

(vyy) ([R(x-p)p-A L[ ty—y | (vTw) (! (vyu) (H[EPS- 7L |1y —u]

V(). T(w )!y(v d).(!t—v|td-w) [ [RL)) =z (7,u)
(vyy) ([2(ep)p-y Lt y—y [t (vrw) (H[ZPo T y(v,d). (T2 | 1d—w) [ [R])) £
[(Z(x-p)0-7)7 1 7((ZPé-T)T [y] @R)1 -
(vry) ((vxp) (Yx(w).p@) [7(x,0)) [ 7Y |

) ((vxp) (Mx(w).pw) )
(vrx) ({[2PS Tl [t T | ! (vow)

?
p~]
S

|
)( [ZP5 ! !y(v d) ('Hvl'dMU) [HIRD)) =r (7,y)
s

(!

[(ZP5-T)T+ 2((x-p)p T @R)] ~c (B.7)
(vow) (! (vrx) (! (vz6) (1 P|T(z,8)) [t T—x [l x(w).ow)) | p—w |

l(vtz) (1[ZP6 71 |1 T—z|![R])) 2
(vow) (! (vrx) (1 (vz8) ({[PL]7(2,6)) |! T—=x |l x(w).p@)) | p—w]|![R]) ~c (T, x)
(vow) (! (vzé) (1[PL]p(z,6)) ! p—w[![RT) o
(vow) ((vzé) (1 [PL]p(z,6)) | p—»w][R]) —r(p,w)
(vz8) ({[P1]7(z,0))
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6. TYPE ASSIGNMENT

In this section, we introduce a notion of type assignmenfpfocesses int as presented in
[8] that describes theriput-output interfaceof a process. We will show that, iP is a witness
to a judgement (irr-y), then its interpretations vig 1, [-1 and[- are as well (int; ). Together
with the preservation results we have shown above, thisémghat we can encode proofslr to
typeable processes, and have modetietdelimination - which transforms a proof into a proof. For
the simple encoding, the notion ofit-elimination that has been modelled is that of head-redaocti
but for the other two encodingsut-elimination has been modelled in full.

Our notion is different in that it assigns to channels thestgpthe input or output that is sent
over the channel; in that it differs from normal notions,ttvauld state:

a(b) :T,b:A b a:ch(A), A or a(b) :T,b:A F a:[A], A
In order to be able to encod, types in our system need not be decorated with channehirafor
tion.

Definition 6.1 (Type assignment_[8])The types and contexts we consider for thealculus are
defined like those of Definition 1.3, generalised to names,ablawing both Roman and Greek
names orbothsides.

Type assignment forr-calculus is defined by the following sequent system:

P:T,a:A b a:A,A

©): 0Tk A W) P T kA
P:T,x:A b x:AA
out) : = o A bFa) in) : d iRt
(OUY * Zb) . T,b:A b @A, b:A, A (in) 20).P LaA b B
(|)‘Pi:F|—7TA (ien) 1) P:ThH A
Py|---[Py:T bk A YUPiT H A

. ) a,cg¢l;b&A
(pair-ou : a(b,c) :T,b:A b a:A—B,c:B, A @ce #4)
P:T,y:B b x:A A

let) : Fyzd A
( ) let(x,y)=zinP:T,z2:A—B h_[A(xg v,z ¢ A)

As usual, we write? : T k5 A if there exists a derivation using these rules that has {pses-
sion in the conclusion, and wri@ :: P : T’ ; A if we want to name that derivation.

Notice that the input-output interface of ar-process property is nicely preserved by all the
rules; it also explains how the handling of pairs is restddby the type system in to the rulgiet)
and(pair-oud.

Example 6.2. We can derive

\ /

P:T,y:B b x:AA
let(x,y)=zinP:T,z2A—=B K A
a(z).let(x,y)=zinP:T,a:A—B b A

(let)
(i)

so the following rule is derivable:

P:T,y:B b x:AA

ag A x¢T
(pairin) D TaAsB o a WS TED




30 VAN BAKEL, CARDELLI & VIGLIOTTI

Notice that the rule pair-ou? does not directly correspond to the logical rgte-R), as that
(pair-in) does not directly correspond fe=L); however, in view of the intended property - preser-
vation of context assignment - this is not problematic, sime will not map rules to rules, but
proofs to type derivations. This apparent discrepancylisesidoy Theorem 6]7.

This notion is a true type assignment system which does matcfty) relate back tak. For
example, ruleg|) and(!) do not change the contexts, so do not correspond to any rtlte ilogic,
not even to a\u-style [38] activation step. Moreover, rule) just removes a formula, and rule
(pair-oud is clearly not an instance of an axiom k. We leave the exploration of the logical
contents of this system for future work.

The following result is standard.

Lemma 6.3(Weakening and Thinning)The following rules are admissible:

P:Th A CPiT B A = {mAeT | nef(P)},
(W) 7]):1_‘, . N (I D>T,A D A) (T) 41):1_‘, o A A/:{n:AGA‘HEfn(P)})
Proof. Directly from Definition[6.1. O

This result allows us to be a little less precise when we coostderivations, and allow us
to freely switch to multiplicative style where rules joinrtdexts whenever convenient. In fact, we
could have defined context assignment using another agproaing the alternative rules:

P:ThH A
, — Lo s = ! /
(0)-0;@|—n@ (Wea@'P N, CT,AcCA)
P1:F1 F;-[Al Pnll—‘nb-[An
out) : =\ . 4 o (b#Fa) :
(0UY = Z(b) < it b a:, b () Pl |Py:Ty,.., Ty b Aq,., Ay
: . a,cgI;bg A
(pair-oud : alb,c) :b:A a:A—)B,C:B( 7 #4)

We have a soundness (witness reduction) result, for whicfirsteneed to prove a substitution
lemma and a congruence lemma.

Lemma 6.4(Substitution) If P: T, x:A b x:A,AthenalsoP[b/x] :T,b:A 5 b:A,A.
Proof. Straightforward. ]

Notice that the caseB: T" I n:A,AandP :T,n:A k5 A can be generalised by weakening
to fit the lemma.

Lemma 6.5(Witness congruencelf P: T ; AandP = Q,thenQ: T K A.

Proof. By easy induction on the congruence relation. L]
We now come to the main soundness result for our notion of &gséggnment forr.

Theorem 6.6(Witness reduction)If P: T k5 AandP —, Q,thenQ: T H A.

Proof. By induction on the reduction relation.
a(b) |a(x).Q —x Q[b/x]: Then the derivation is shaped like:

\ /

Q:T,x:A & x:AA
a(b) :T,b:A b a:A,b:A, A a(x).Q:T,a:A b A
ab) |a(x).Q:T,a:A,b:A b a:A,b:A, A
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By Lemmd6.4, we hav®[b/x| : T,b:A b b:A,A.
a(b,c)|a(x,y).Q —x Q[b/x,c/y]: Similar.
The other cases follow by induction.

The following theorem shows that the encodind preserves assignable types.
Theorem 6.7(Type preservation for simple encodindj P ;- T Fy A, then[PL: T 5 A.

Proof. By induction on the structure of terms iti.
(x-a): Then[[(x-a)l = x(w).®(w), and theX-derivation is shaped like:

(x-a) : T, x:A b a:A, A

Notice that

w(w) : T, w:A b A, w:A, A
x(w).&@{w) : T, x:A b wA,A

XPw-B: Then theX-derivation is shaped like:
\ /
P:T,x:A b a:B,A
XPR-B:T b B:A—B,A

Then, by induction[ P : T, x:A k; a:B, A, and we can construct:

\ /

[PL:T,x:A b a:B,A
[[PL:T,x:A b w:B,A  B(x,a):T,x:A b a:B,:A—B,A
'[PL|B{x,a) : T, x:A b5 a:B,B:A—B, A
(va) ('[P | B(x,a)) : T, x:A b5 B:A—B,A
(vxa) ('[PL|B(x,a)) : T b B:A—B,A

P [y] xQ: Then theX'-derivation is shaped like:
[ S W
P:T b a:A A Q:T,x:BHK A
Paly]xQ:T,y:A—B K A

31
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Then, by induction, we have derivations foPL: T H; a:A,A and[QL:T,x:B b A,
and we can construct:

S(w) :T,w:A b s:A,w:A,A T(w):T,w:A b x:AwA, A
[PL:T b a:A A a—s: T, A b s:A, A [QL:T,x:B b A
IPL:T b wA,A la—ss:T,a:A b s:A,A NQL:T,x:B b A
P ta—s: T, a:A b5 a:A,s:A, A ld—x |!'[QL:T,d:B,x:B b x:A,A
(va) ('[PL|ta—s) : T b s:A,A

(vx)("d—x|![QL): T,d:B b5 A
(va) (1[PL | ta—s) | (vx) (1d—x |![QL) : T,d:B b5 s:A,A

y(s,d). ((va) ({[PL]ta—s) | (vx) (td—x | [QL)) : T,y:A—=B b A
Pa 1 xQ: Then theX-derivation is shaped like:

d-x:T,d:B b x:A,A
'd-»x:T,d:B b x:A,A

(.

P:T b a:AA

Q:T,x:A bk A
PatxQ:T k A

By induction, we have derivations for bofPl: T ; a:A,A and[QL:T,x:A k A.
Then we can construct:

X(w) : T, w:A b x:A,w:A,A

[PL:T b a:A,A
I[PL:T b a:A, A

\ /

a—x:T,0:A b x:A A [QL:T,x:A b A
la—x: T, A b x:A A MOL:T,x:A B A
HIPL | 'a—x |'[QL: T, A, x:A b a:A, x:A,A

(vx) (V[PL ] ta—x | 1[QL): T, a:A b5 w:A, A
(vax) (1[PL | Ta—x [T[QL) : T 5 A O
We can also show that the encodihd preserves assignable types.

Theorem 6.8(Type preservation for full encoding)f P :- T Fy A, then[Pl: T F; A.

Proof. Since[-1 and[-1 differ only in the interpretation ainport, we only need to check that case
P [y] xQ: Then theX'-derivation is shaped like:

[

P:T b5 a:AA

Q:T,x:B b A
Paly|xQ:T,y:A—B K A
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Then, by induction, we have derivations foPl: T H; a:A, A and[Q: T, x:B b A,
and we can construct:

7(w) :T,w:A b v:A,w:A,A  *T{w):T,w:B b5 x:B,w:B, A

a—v: T, 0:A b v:A A d-x:T,d:B b x:B,A
y 7 la—v:T,0:A b v:A A 'd—»x:T,d:B b x:B,A
[PL:T b a:A,A la—v|ld—x:T,0:A,d:B b5 x:B,v:A, A [QL:T,x:B 5 A
HIPL:T b a:A A y(v,d).(la—v|ld-x): T, 0:A, y:A—=B b x:B,A 'QL:T,x:B H A

P y(v,d). (la—ov|td—x) | [QL: T, x:B,a:A, y:A—B b5 x:B,a:A, A
(vx) '[PV y(v,d). ta—o|!d—x) [ [QL) : T,a:A, y:A—=B b a:A,A
(vax) ({[PL]y(v,d). (ta—ov|!d—x) |1[QN) : T,y:A—=B K A

Notice that(vax) ('[Pl |y(v,d).(!a—o0|!d—x) | [Ql) = [Pa[y] xQT. ]
We can show this result for the replicative encoding as well.
Theorem 6.9(Type preservation for replicative encodind) P :- T -y A, then[P1 : T ; A.

Proof. By induction on the structure of terms ii. Since[-1, differs from[-1 only in the use of
replication, and the rul¢!) does not change contexts, the proof is much the same as therone
Theoreni 6.7. L]

7. EXPRESSINGNEGATION
In this section we will look at the logical connectiveand how to encode it in the-calculus.

Definition 7.1. The sequent rules that correspond to negation are as follows

IAFA I'AA
(CR): S (L)

TH—A,A "T,-AFA

To extend the Curry-Howard isomorphism &f also to these connectors, we follow the same
approach as used for the arrow: a disappearing formula imi@xiocorresponds to a connector that
gets bound, and a formula that appears in a context corrdsgora connector that is introduced.

Definition 7.2. We extendX’’s syntax with the following constructs:

P:=...| x-Pa left inversion
| XP-w right inversion

Definition 7.3. We extend the set of types by

AB = - | DA
(as usual;- binds stronger thar+) and add the type assignment rules:
P:-T,x:Ably A P: ThyaAA

(inv-r) : (inv-l) :

XP-a - Thy a:0AA x-Pu - T,x:mAbky A
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For example, we can show

(ya) - yAby aA
Jly-a)y - by ymAwA
X (y(y-a)-7)7y 3'xﬁﬁAbcvé-A
X(x- (Y(y-a)-7)7)a-p i by promA—A

The notion of reduction is extended naturally by adding tidving reduction rules.
Definition 7.4. The logical rule for negation is:
(yP-B)B T X (x-QR) — QRTFP
We extend the notion of introduced connector by saying tlsatR = x-Qa with x & fs(Q) intro-
ducesx, andP = XQ-a with a ¢ fp(Q) introducesx. We add the propagation rules:

(y-QP)&/XP — y-(Q& /XP)B

(yQ-B)& /P — §(Q&/XP)-p x#PB
(JQ-2)& /XP — (y(Q& /XP)-B)p 1 xP
PaXX(y-QB) — y-(PAXZQ)p x#y
Pax%(x-QB) — Paxy(y-(PaX\xQ)p)

Paxx(yQ-p) — y(PaxxQ)-p
Notice that now we haveutsthat do not contract, as
(7Q7-a)a t % (x-PP)
wherea ¢ fp(Q), andx ¢ fs(P), since none of the rules are applicable; howetygreablecutsdo

contract.
We will now extend the three encodings so that we deal wittatided connective as well.

Definition 7.5 (Negation) Negation gets represented in thecalculus via the simple encoding as:
[x-P&L = x(2).((va) ({[PL|ta—2))
via the full encoding as:
[x-Pal = (va)(!
[xP-al = (vx)(!
and via the replicative encoding as:
[x-P&T = (va) ([P |'x(z).('a—z))
[zP-al, = (vx) ([PT,]!a(x))
This encoding of inversion explains the role of negationédtad. If P is outputting ony, but no
connection tax is available, input is needed from a procé€yshat will send one of its input names
z. Once receivedP can output orx which gets connected tg soQ will provide a means foP to

continue, and is therefore aptly calle@@ntinuation
The full encoding of the witness fot—A— A now becomes:

[% (x- (F{y-a) 1) 7)a-BL B =
(vxa) (! (vy) ( (vy) (Ly (@) . &) [7(y)) [ x(2). (Lr—2)) | B(x, @))]

The following consistency result is now easy to prove.

2 R
—~
=
~
~—
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Lemma7.6. [ (yP-B)B T %

( x(x-Qu)l 3 [QutyPl,if B, x introduced.
Proof. [(7P-B)B 1 % (x-Qr)1
|
(

fx
(vpx) (t (vy) (L[PL]B(y)) ! B~x| ! (va) ({[QN ] x(2). (ta—2))) <
(vBx) ((vy) (L [PL] B(y)) | B=x | (ve) ([QL[x(2). (te=2)) =2 (B,)
(vay) ({[QT[ta—y [1[PT)

2 [QatyPl
The correctness for the other two encodings follows in alamway, and that of the propagation
rules follows as above in Theorém 5.3

|=2

I

We add the following type assignment rules for negation
Definition 7.7 (Type assignment rules ik, for —)

(inv-r) :

P:T b aAA
- (XZA)  (iny-)) - it
(x) T x:A b aim A, A (imv-1) x(a).P:T,x:mA b A e
We can now check that the extended encoding preserves askgypes as well
Theorem 7.8.1f P ;- T y A, then[P1:T I A

Proof. By induction on the structure of of terms iif; we only show the two added cases to the
proof of Theorenh 6]7.

x-Pa: Then the last rule applied in th¥-derivation is(—L)

P Thy A A
x-Pa ;- T,x:mAbty A

and, by induction[P1: T ; a:A, A, and we can construct

- (oup
z(w) : T,w:A b z2A,w:A
)\ ] a—z:T,0:A b5 A, A (!()m)
[PL:T b a:A, A n la—z:T,0:A b z:A, A (i)
I[PL:T b a:A A x(z). (la—z) : T, A, x:mA B A
HIPL | x(2). (ta—z) : T, w:A, x:mA b A, A

()
(var

)([PL|x(2). (ta—z)) : T, x:mA b; L

XP-a: Then the last rule applied in th¥-derivation is(—R)

P T,xAbly A
XP-w

Ty aimA A
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and, by induction[P1: T, x:A k; A, and we can construct:

v\

[PT:T,x:A b A .
" - (inv-r)
'[PL:T,x:A b A a(x):T,x:A b w—A A "
'[P |&(x) : T, x:A b a:mAA (
(02) (IPL[Z) T b o ps )

so our extended encoding respects the classical sequéntuides.

CONCLUSIONS

In this paper we have bridged the gap between the compushtimmtent ofcut-elimination
and the semantics of concurrent calculi, by presentingdings of Gentzen’s classical sequent cal-
culusLk to therr-calculus that preserveut-elimination. This was achieved through an embedding
of the calculusY into the r-calculus that implements @ut as communicationX’’s terms directly
represent proofs ink, by haming assumptions with Roman characters, and conokigiith Greek
characters, and seeing theseirgsut and output respectively, but terms iR can also not corre-
spond to proofsX” introduces a simple concept of input and output that n#ifuteanslates into
the input and output primitives of the-calculus.

The main operative oft’, the cut, gets represented B T XQ, and we interpret this term in
the rt-calculus as a communication: we gé@s a process that outputs owvgrandQ as a process
that inputs overr, and communication between these terms usedathvearder a(w).x(w). To
make sure that the correct communication takes place we oskef the mobility feature of the
rt—calculusi.e. private names are sent to the communicating party and usttéocommunication
as channel names.

We presented three different encodings, each with spenifcdsting properties. We first pre-
sented the simple encoding, and showed that it presefi@fiead-reduction; in this encoding we
cannot represent fultut-elimination because we place some interpreted terms undat, in par-
ticular when encoding the witness fér+L). This seems to be a natural consequence, and is a
feature also in the encoding of thecalculus [36] 41/, 13]; while this initial result is intetewy, the
important question to answer is whether full-cut elimioatcan encoded.

In fact, we have shown in this paper that the limitationimgut can easily be avoided. To
that purpose, we introduced the conceptsghchronisation celland managed to show that, by
slightly modifying our encoding, we could represents fiit-elimination. The third encoding is
more abstract, and interprets terms as infinite resourcahwshmplifies the proofs.

By our result, we have shown that tlwecalculus is a fully expressive model of computation,
whereby we extend the results of Milner’'s seminal paper {8&] others (seé [41]); using our new
approach, we are capable of not just encoding lazy redufdiaie A-calculus (as in those papers)
or spine reduction as in_[13], but can treat reduction in. fllind, in fact, this approach can be
extended to tha-calculus as well, as well as fouji [12]. Through this result, we have shown that
the rt-calculus is fully expressive in that it is not only possitdeepresent the functional paradigm,
but can also represents batbntext calland parameter call(as expressed iR’ via, respectively,
left and right propagation) in full via representing proafed proof contractions ink.

The variant of ther-calculus we considered uses a pairing facility which eesbite definition
of a notion of implicative type assignment on processesndJttiis notion, we proved that proofs in
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LK have a representation im; our cut-elimination results then show that not only do we correctly
represent reduction on the calculd but also can model proofs itk in all detail in such a
way that cut-elimination is preserved by contextual equivalence. Vé® akpresented negation
in X by extending the syntax and reduction rules, and extendecmrodings to deal with the
added constructs; we have shown that all representatiafigesil hold; since we have successfully
represented both implication and negation, this implieg this can then easily be extended to
conjunction and disjunction.
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