Luca Cardelli, Basic Polymorphic Typechecking, AT&T Bell Laboratories Computing Science Technical Report, 1984.

Also in Polymorphism Newsletters, II.1, Jan 1984.

Basic polymorphic typechecking

Luca Cardelli

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

Polymorphic typechecking has its foundations in a type system devised by Hindley [Hindley
69], and later rediscovered and extended by Milner [Milner 78]. As implemented in ML [Gordon
79, Milner 84], this type system shares with Algol 68 properties of compile-time checking, strong
typing and higher-order functions, but it is more flexible in allowing polymorphism, i.e. the ability
to define functions which work uniformly on arguments of many types.

Milner’s polymorphic typechecking algorithm has proved very successful: it is sound, effi-
cient, and supports a very rich and flexible type system. It can also be used to infer the types of

untyped or partially typed programs.

However, the pragmatics of polymorphic typechecking has so far been restricted to a small
group of people. The only published description of the algorithm is the one in [Milner 78] which is
rather technical, and mostly oriented towards the theoretical background.

In the hope of making the algorithm accessible to a larger group of people, we present an
implementation, in the form of an ML program, which is very close to the one used in LCF, Hope
and ML [Gordon 79, Burstall 80, Milner 84]. Although clarity has sometimes been preferred to
efficiency, this implementation is reasonably efficient and quite usable in practice for typechecking
large programs.

Only the basic cases of typechecking are considered in the program presented below, and
many extensions to common programming language constructs are fairly obvious. The major non-
trivial extensions which are known so far (and not discussed here) concern overloading, abstract
data types, exception handling, updatable data, and labeled records and union types. Many other
extensions are being studied, and there is a diffuse feeling that important discoveries are yet to be
made, both in the theory and the practice of typechecking.

This paper presents two views of typing, as a system of type equations and as a type infer-
ence system, and attempts to relate them informally to the implementation.

2. A simple applicative language

The language considered here is a simple typed lambda calculus with constants, constituting
what can be considered the kernel of the ML language. The evaluation mechanism (call-by-name
or call-by-value) is immaterial for the purpose of typechecking.

The concrete syntax of expressions is given below; the corresponding abstract syntax is given
by the type "Term" in the program at the end of this paper (parsers and printers are not provided).

Term ::=
Identifier |
“if” Term ‘then’ Term ‘else’ Term |
‘fun’ Identifier ‘.’ Term |
Term Term |
‘let’ Declaration ‘in’ Term |

‘(’ Term ‘)9

Declaration ::=
Identifier ‘=’ Term |
Declaration ‘and’ Declaration |
‘rec’ Declaration |
‘(’ Declaration ‘)’

Data types can be introduced into the language simply by having a predefined set of identif-
iers in the initial environment; this way there is no need to change the syntax or, more impor-
tantly, the typechecking program when extending the language.

For example, the following program defines the factorial function and applies it to zero:

let rec factorial n =

if zero n

then succ 0

else (times (pair n (factorial (pred n))))
in factorial 0

3. Types

A type can be either a type variable o, B, etc., standing for an arbitrary type, or a type
operator. Operators like int (integer type) and beol (boolean type) are nullary type operators.
Parametric type operators like - (function type) or x (cartesian product type) take one or more
types as arguments. The most general forms of the above operators are a - B (the type of any
function) and a x B, (the type of any pair of values); @ and B can be replaced by arbitrary types to
give more specialized function and pair types. Types containing type variables are called
polymorphic, while types not containing type variables are monomorphic. All the types found in
conventional programming languages, like Pascal, Algol 68 etc. are monomorphic.

Expressions containing several occurrences of the same type variable, like in o - «, express
contextual dependencies, in this case between the domain and the codomain of a function type.
The typechecking process consists in matching type operators and instantiating type variables.
Whenever an occurrence of a type variable is instantiated, all the other occurrences of the same
variable must be instantiated to the same value: legal instantiations of a - « are int - int, bool -
bool, (B X & - (B X &), etc. This contextual instantiation process is performed by unification,
[Robinson 1] and is at the basis of polymorphic typechecking. Unification fails when trying to
match two different type operators (like int and bool) or when trying to instantiate a variable to a
term containing that variable (like « and « -~ B, where a circular structure would be built). The
latter situation arises in typechecking self-application (e.g. fun x. (x x)), which is therefore con-
sidered illegal.

Here is a trivial example of typechecking. The identity function I = fun x. x has type o ~ a
because it maps any type onto itself. In the expression (I 0) the type of 0 (i.e. int) is matched to the
domain of the type of I, yielding int - int as the specialized type of I in that context. Hence the type
of (I10) is the codomain of the type of I, which is int in this context.

In general, the type of an expression is determined by a set of type combination rules for the
language constructs, and by the types of the primitive operators. The initial type environment
could contain the following primitives for booleans, integers, pairs and lists (where - is the func-
tion type operator, list is the list operator, and x is cartesian product):

true, false : bool
0,1,.. ¢ int
succ, pred : int - int

Zero : int - bool

pair ta =B ~-(aXp)
fst t(a XB)-a

snd taxp)-B

nil :a list

cons ¢ (a X o list) - o Hst
hd o list - a

tl s a list - o list

null : a list - bool

4. The type of ’length’

Before describing the typechecking algorithm, let us discuss the type of a simple recursive
program which computes the length of a list:

let rec length =
fun 1.
if null 1
then 0
else succ(length(tl 1))
in ...

(we write length = fun L ... instead of the equivalent but more elegant length 1 = ... for convenience
in the discussion below).

The type of length is a list - int; this is a polymorphic type as length can work on lists of any
kind. The way we deduce this type can be described in two ways. In principle, typechecking is
done by setting up a system of type constraints, and then solving it with respect to the type vari-
ables. In practice, typechecking is done by a bottom-up inspection of the program, matching and
synthesizing types while proceeding towards the root; the type of an expression is computed from
the type of its subexpressions and the type constraints imposed by the context, while the type of
the predefined identifiers is already known and contained in the initial environment. It is a deep
property of the type system and of the typechecking algorithm that the order in which we examine
programs and carry out the matching does not affect the final result and solves the system of type
constraints.

The system of type constraints for length is:

[1] null : a list - bool
[2] 1l : B list - B list
[31 © : int

[4] succ : int - int

[5] nulll : bool

[61 O Ty

[7]1 succ(length(tl 1)) Y

[8] if null]l then 0
else succ(length(tl 1)) Y

[9] null HE
[10] 1 : 8
[11] null] te
[12] tl HE
[13] 1)
[14] 11 £

[15] length HE
[16] t11 1 0
[17] length(tl]) 2
[18] succ T K -\
[19] length(tl]) HE
[20] succ(length(tl 1)) T A
[21] 1 T

[22] if null] then O
else succ(length(tl 1)) HRY
[23] fun L if null 1 then 0
else suce(length(tl)) :p-v

[24] length 0
[25] fun L if null 1 then 0
else succ(length(tl 1))

=]

Lines [1-4] express the constraints for the predefined global identifiers, which are already
known. The conditional construct imposes [5-8], that the result of a test must be boolean, and the
two branches of the conditional must have the same type vy, which is also the type of the whole
conditional expression. The four function applications in this program determine [9-20]; in each
case the function symbol must have a functional type (e.g. & - e in [9]); its argument must have
the same type as the domain of the function (e.g. 8 in [10]), and the result must have the same
type as the codomain of the function (e.g. € in [11]). The lambda-expression [23] has a type p - v,
given that its parameter has type p [21] and its body has type v [22]. Finally the definition con-
struct imposes that the variable being defined (length [24]) has the same type as its definition [25].

Typechecking length consists in (i) verifying that the above system of constraints is consistent
(e.g. it does not imply int = bool), and (ii) solving the constraints with respect to w. The expected
type of length (m = B list - int) can be inferred as follows:

T=p - by [25, 23]
p=6 = f list by [21, 13, 12, 2]
v =1y =int by [22, 8, 6, 3]

Considerably more work is needed to show that B is completely unconstrained, and that the
whole system is consistent. The typechecking algorithm described in the next section systematically
performs this work, functioning as a simple deterministic theorem prover for systems of type con-
straints.

Here is a bottom-up derivation of the type of length which is closer to what the typechecking
algorithm really does; the consistency of the constraints (i.e. the absence of type errors) is also
checked in the process:

[26] 1) [10]
[27] null] : bool
€ = bool; 8 = « list; [11, 9, 1]
[28] © : int
Yy = int; [6, 3]
[29] t11 : B list
¢ = B list; £ = B list; B = o [26, 27, 12-14, 2]
[30] length(tll) 1L

6 = B list; [15-17, 29]

[31] succ(length(tl 1)) ¢ int
L=k = int; [18-20, 4, 30]
[32] if null I then 0
else succ(length(tl 1)) : int [5-8, 27, 28, 31]
[33] fun L if null] then 0
else succ(length(tl 1)) : B list - int
i = B list; v = int; [21-23, 26, 27, 32]
[34] length : B list - int
w = (3 list - int; 24, 25, 33, 15, 30, 31)

Note that recursion is taken care of: the types of the two instances of length in the program
(the definition and the recursive function call) are compared in [34].

5. Typechecking
The basic algorithm can be described as follows.

1. When a new variable x is introduced by a lambda binder, it is assigned a new type variable «
meaning that its type must be further determined by the context of its occurrences. The pair
<x,a> is stored in an environment (called TypeEnv in the program) which is searched every
time an occurrence of x, is found, yielding a (or any intervening instantiation of it) as the
type of that occurrence.

2. In a conditional, the if component is matched to boel, and the then and else branches are uni-
fied in order to determine a unique type for the whole expression.

3. In an abstraction fun x. e the type of e is inferred in a context where x is associated to a new
type variable.

4. In an application f a, the type of f is unified against a type A - B, where A is the type of a
and B is a new type variable. This implies that the type of f must be a function type whose
domain is unifiable to A; 8 (or any instantiation of it) is returned as the type of the whole
application.

In order to describe the typechecking of let expressions, and of variables introduced by let
binders, we need to introduce the notion of generic type variables. Consider the following expres-
sion:

fun f, pair (f 3) (f true) [Ex1]

In Milner’s type system this expression cannot be typed, and the algorithm described above
will produce a type error. In fact the first occurrence of f determines a type int - g for f, and the
second occurrence determines a type bool - § for f, which cannot be unified with the first one.

Type variables appearing in the type of a lambda-bound identifier like f are called non-
generic because, as in this example, they are shared among all the occurrences of f and their
instantiations may conflict.

One could try to find a typing for Ex1, for example by somehow assigning it (@ - B) ~ (B X
B); this would compute correctly in situations like (Ex1 (fun a. 0)) whose result would be (pair 0 6).
However this typing is unsound in general: for example suce has a type that matches a - B and it
would be accepted as an argument to Ex1 and wrongly applied to true. There are sound extensions
of Milner’s type system which can type Ex1, but they are beyond the scope of this discussion.

Hence there is a basic problem in typing heterogeneous occurrences of lambda-bound identif-
iers. This turns out to be tolerable in practice, because expressions like Ex1 are not extremely use-
ful or necessary, and because a different mechanism is provided. We are going to try and do better
in typing heterogeneous occurrences of let-bound identifiers. Consider:

-6 -

letf=funa. a [Ex2]
in pair (f 3) (f true);

It is essential to be able to type the previous expression, otherwise no polymorphic function
could be applied to distinct types in the same context, making polymorphism quite useless. Here
we are in a better position than Ex1, because we know exacily what £ is, and we can use this infor-
mation to deal separately with its occurrences.

In this case f has type a - a; type variables which, like «, occur in the type of let-bound iden-
tifiers (and that moreover do not occur in the type of enclosing lambda-bound identifiers) are
called generic, and they have the property of being able to assume different values for different
instantiations of the let-bound identifier. This is achieved operationally by making a copy of the
type of f for every distinct occurrence of f.

In making a copy of a type, however, we must be careful not to make a copy of non-generic
variables, which must be shared. The following expression for example is as illegal as Ex1, and g
has a non-generic type which propagates to f:

fung. letf=g {Ex3]
in pair (f 3) (f true)

Again, it would be unsound to accept this expression with a type like (a - B) - (8 X B) (con-
sider applying suce so that it is bound to g).

The definition of generic variables is:

A type variable occurring in the type of an expression e
is generic iff it does not occur in the type of the binder
of any lambda-expression enclosing e.

Note that a type variable which is found to be non-generic while typechecking within a lambda
expression, may become generic outside it. This is the case in Ex2 where a is assigned a non-
generic «, and f is assigned a - a where a is now generic.

To determine when a variable is generic we maintain a list of the non-generic variables at
any point in the program: when a type variable is not in the list it is generic. The list is augmented
when entering a lambda; when leaving the lambda the old list automatically becomes the current
one, so that that type variable becomes generic. In copying a type, we must only copy the generic
variables, while the non-generic variables must be shared. In unifying a non-generic variable to a
term, all the type variables contained in that term become non-generic.

Finally we have to consider recursive declarations:

letrecf=...1...
e £ o

which are treated as if the rec where expanded using a fixpoint operator Y (of type (a - a) - a):

letf=Yfunf. ..f...
in...f...

it is now evident that the instances of (the type variables in the type of) f in the recursive definition
must be non-generic, while the instances following in are generic.

5. Hence, to typecheck a let we typecheck its declaration part, obtaining an environment of
identifiers and types which is used in the typechecking of the body of the let.

6. A declaration is treated by checking all its definitions x, = t,, each of which introduces a pair
<x,,T;> in the environment, where T, is the type of t;. In case of (mutually) recursive

-7 -

declarations x; = t; we first create an environment containing pairs <x,o;> for all the x
being defined, and where the «, are new non-generic type variables (they are inserted in the
list of non-generic variables %or the scope of the declaration). Then all the t's are
typechecked in that environment, and their types T, are again matched against the o, (or their
instantiations).

6. A digression on models, inference systems and algorithms

There are two basic approaches to the formal semantics of types. The most fundamental one
is concerned with devising mathematical models for types, normally by mapping every type expres-
sion into a set of values (the values having that type); the basic difficulty here is in finding a
mathematical meaning for the - operator [Scott 76] [Milner 78] [MacQueen 84].

The other, complementary, approach is to define a formal system of axioms and inference
rules, in which it is possible to prove that an expression has some type. The relationship between
models and formal systems is very strong. A semantic model is often a guide in defining a formal
system, and every formal system should be self-consistent, which is often shown by exhibiting a
model for it.

A good formal system is one in which we can prove nearly everything we "know" is true
(according to intuition, or because it is true in a model). Once a good formal system has been
found, we can "almost" forget the models, and work in the usually simpler, syntactic framework of
the system.

Typechecking is more strictly related to formal systems than to models, because of its syntac-
tic nature. A typechecking algorithm, in some sense, implements a formal system, by providing a
procedure for proving theorems in that system. The formal system is essentially simpler and more
fundamental than any algorithm, so that the simplest presentation of a typechecking algorithm is
the formal system it implements. Also, when looking for a typechecking algorithm, it is better to
first define a formal system for it.

Not all formal type systems admit typechecking algorithms. If a formal system is too power-
ful (i.e. if we can prove many things in it), then it is likely to be undecidable, and no decision pro-
cedure can be found for it. Typechecking is usually restricted to decidable type systems, for which
typechecking algorithms can be found. However in some cases undecidable systems could be
treated by incomplete typechecking heuristics (this has never been done in practice, so far), which
only attempt to prove theorems in that system, but may at some point give up. This could be
acceptable in practice because there are limits to the complexity of a program: its meaning could
get out of hand long before the limits of the typechecking heuristics are reached.

Even for decidable type systems, all the typechecking algorithms could be exponential, again
requiring heuristics to deal with them. This has been successfully attempted in Hope [Burstall 80]
for the treatment of overloading in the presence of polymorphism.

The following section presents an inference system for the kind of polymorphic typechecking
we have described. We have now two distinct views of typechecking: one is "solving a system of
type equations”, as we have seen in the previous sections, and the other is "proving theorems in a
formal system", as we are going to see now. These views are interchangeable, but the latter one
seems to provide more insights because of its connection with type semantics on one side and algo-
rithms on the other.

7. An inference system

In the following inference system, the syntax of types is extended to type quantifiers Va. 7.
In Milner’s type system, all the type variables occurring in a type are intended to be implicitly
quantified at the top level. For example, o = B is really Vo. VB. a = B. However, quantifiers
cannot be nested inside type expressions.

A type is called shallow if it has the form (Va;. - -+ Va,.) where n=0 and no quantifiers
occur in 7. Our inference system allows the construction of non-shallow types: unfortunately we do
not have typechecking algorithms able to cope with them. Hence, we are only interested in

-8-

inferences which involve only shallow types. We have chosen to use type quantifiers in the infer-
ence system because this helps explain the behavior of generic/non-generic type variables, which
correspond exactly to free/quantified type variables. For a slightly different inference system which
avoids non-shallow types, see [Damas 82].

Here is the set of inference rules. [VAR] is an axiom scheme, while the other rules are
proper inferences. The horizontal bar reads "implies”. The notation A + e: v means that given a
set of assumptions A, we can deduce that the expression e has type 7. An assumption is a typing of
a variable which may be free in the expression e. The notation A.x: 7 stands for the union of the
set A with the assumption x:7; and 7[o/a] is the result of substituting o for all the free
occurrences of o in 7.

[VAR] Ax:thx:T

[COND] - e; bI-O((Jt_'lf e t:er: Z”:e‘;se e"‘}):F :": -
SR

[COMB] Albe :: :(: e')ﬁ,’_ e o
A

[REC] A ?—)(crez ;ee)T 0

[GEN] ﬁ‘v% (o not free in 4)
[SPEC] %

As a first example, we can deduce the most general type of the identity function:
(fun x. x): Voa. o = a.

xtolx:a [VAR]
Ffunx. x):a = [ABS]
F(fun x. x):Va. a =« [GEN]

A specialized type for the identity function can be deduced either from the general type:

F(fun x. x): Vo.a »a
F (fun x. x): int = int [SPEC]

or more directly:

x:int b x:int [VAR]
F (fun x. x): int = int [ABS]

-9.

We can extend the above inference to show (fun x.x)(3): int;

x:int, 3:int F x:int [VAR]
3:int b (fun x. x): int — ing [ABS] 3:int b 3:int [VAR]
3:int b (fun x. x)(3): int [COMB]

Here is an example of a forbidden derivation using non-shallow types, which can be used to
give a type to (fun x. x x), which our algorithm is not able to type (here ¢ = Vo. a = a):

x:b Fx:d [VAR]
x:b Fx:b-=d [SPEC] x:b Fx:d [VAR]
xbkFxx:d [COMB]
F (fun x. x x): d=d [ABS]

Note how Va.o—a gets instantiated to (Vo.a—a) = (Va.a—a) by [SPEC], substituting Va.o—a
for a.

We want to show now that (ler f = fun x.x in pair (f 3)(f true)): intXbool. Take A =
{3: int, true: bool, pair: Va. VB. a»B-aXB}and d = Va. a = a.

Afotf:d
Af:bFfinine AS:dF3tin

Af:dkf3im

AfdbFfid
A.f:b F f:bool-»bool A.f:d Fitrue: bool
A.f:d F f true: bool

Af:dFf3:in
A.f b F ftrue: bool
A.f:d Fpair: Vo VB.a=>B-aXB

A.f:d & pair (f 3)(f true):int X bool

Akl fun xx:d A.f:d Fpair (f 3)(f true):int X bool
A F (let f = fun x.x in pair (f 3)(f true)): intX bool

Note that from the assumption f: Va.a—a, we can independently instantiate o to inz and
bool; i.e., f has a generic type. Instead, in (fun f. pair (f 3)(f true))(fun x. x), which is the
function-application version of the above let expression, no shallow type can be deduced for
(fun f. pair (f 3)(f true)).

A variable is generic if it does not appear in the type of the variables of any enclosing
lambda-binder. Those binders must occur in the set of assumptions, so that they can be later dis-
carded by [ABS] to create those enclosing lambdas. Hence a variable is generic if it does not
appear in the set of assumptions. Therefore, if a variable is generic, we can apply [GEN] and
introduce a quantifier. This determines a precise relation between generic variables and quantifiers.

There is a formal way of relating the above inference system to the typechecking algorithm
presented in the previous sections. It can be shown that if the algorithm succeeds in producing a
type for an expression, then that type can be deduced from the inference system (see [Milner 78]
for a result involving a closely related inference system). We are now going to take a different,
informal approach to intuitively justify the typechecking algorithm. We are going the show how an
algorithm can be extracted from an inference system. In this view a typechecking algorithm is a
proof heuristic; i.e. it is a strategy to determine the order in which the inference rules should be
applied. If the proof heuristic succeeds, we have determined that a type can be inferred. If it

-10 -

fails, however, it may still be possible to infer a type. In particular our heuristic will be unable to
cope with expressions which require some non-shallow type manipulation, like in the deduction of
(fun x. x x)(fun x. x): Vo. a—a.

There are two aspecis io the heuristic. The first one is how to determine the sets of assump-
tions, and the second is the order in which to apply the inference rules. If a language requires type
declarations for all identifiers, it is trivial to obtain the sets of assumptions, otherwise we have to
do type inference.

In carrying out type inference, lambda-bound identifiers are initially associated to type vari-
ables, and information is gathered during the typechecking process to determine what the type of
the identifier should have been in the first place. Hence, we start with these initial broad assump-
tions, and we build the proof by applying the inference rules in some order. Some of the rules
require the types of two subexpressions to be equal. This will not usually be the case, so we make
them equal by unifying the respective types. This results in specializing some of the types of the
identifiers. At this point we can imagine repeating the same proof, but starting with the more
refined set of assumptions we have just determined: this time the types of the two subexpressions
mentioned above will come out equal, and we can proceed.

The inference rules should be applied in an order which allows us to build the expression we
are trying to type from left to right and from the bottom up. For example, earlier we wanted to
show that (fun x. x): Va. o = a. Take x: a as our set of assumptions. To deduce the type of
(fun x. x) bottom-up we start with the type of x, which we can obtain by [VAR], and then we
build up (fun x. x) by [ABS].

If we proceed left to right and bottom-up then, with the exception of [GEN] and [SPEC], at
any point only one rule can be applied, depending on the syntactic construct we are trying to
obtain next. Hence the problem reduces to choosing when to use [GEN] and [SPEC]; this is done
in conjunction with the [LET] rule.

Before applying [LET], we derive A Fe”: ¢” (refer to the [LET] rule) and then we apply all
the possible [GEN] rules, obtaining A F e : o, where o can be a quantified type. Now we can
start deriving A.x: o Fe: 7, and every time we need to use [VAR] for x and o is quantified, we
immediately use [SPEC] to strip all the quantifiers, replacing the quantifier variable by a fresh type
variable. These new variables are then subject to instantiation, as discussed above, which deter-
mines more refined ways of using [SPEC].

As an exercise, one could try to apply the above heuristic to infer the type of length, and
observe how this corresponds to what the typechecking algorithm does in that case. Note how the
list of non-generic variables corresponds to the set of assumptions and the application of [GEN]
and [SPEC] rules.

8. The program

The following ML program implements the polymorphic typechecking algorithm, and also
illustrates how polymorphism is used in ML. ML syntax and semantics are described in [Milner
84]. Here are some comments on the program and the ML language; they refer to the program
code.

Keywords are in boldface, identifiers in roman, and data constructors in italic. Data construc-
tors are used in expressions to create data, and in pattern matching to analyze and select data com-
ponents. Type variables are roman identifiers starting with a quote: ‘“a’ is a type variable and is
normally pronounced "alpha".

® The program begins with standard list manipulation routines, defined by pattern matching;
note that no types are declared here.

® Pointers, in the sense of assignable references to values, are not predefined in ML. They
can be built by ‘ref’ (built-in updatable references) and ‘Option’. A pointer is an updatable refer-
ence to an optional value; if the value is missing (‘none’) we have a null pointer, otherwise we
have a non-null pointer (‘some’). ‘Void’ creates a new null pointer, ‘Access’ dereferences a

s Piw

pointer, and ‘Assign’ updates a pointer. The type ‘“a Pointer’ is parametric, but it will only be used
here as a ‘Type Pointer’.

® Time stamps are used to uniquely identify variables. This is an abstract type (so that time
stamps cannot be faked) with an own variable ‘Counter’ which is incremented every time a new
time stamp is needed.

® The types ‘Ide’, “Term’ and ‘Decl’ form the abstract syntax of our language. A type expres-
sions ‘“Type’ can be a type variable or a type operator. A type variable, identified by a unique time
stamp, is uninstantiated when its type pointer is null, or instantiated otherwise. An instantiated
type variable behaves like its instantiation. A type operator (like ‘bool’ or ‘~’) has a name and a
list of type arguments (none for ‘bool’, two for ‘=’).

® The function ‘Prune’ is used whenever a type expression has to be inspected: it will always
return a type expression which is either an uninstantiated type variable or a type operator; i.e. it
will skip instantiated variables, and will actually prune them from expressions to remove long
chains of instantiated variables.

® The function ‘OccursInType’ checks whether a type variable occurs in a type expression.

® The type ‘NGVars’ is the type of lists of non-generic variables. ‘FreshType’ makes a copy
of a type expression, duplicating the generic variables and sharing the non-generic ones.

® Type unification is now easily defined. Remember that when unifying a non-generic vari-
able to a term, all the variables in that term become non-generic. This is handled automatically by
the lists of non-generic variables, and no special code is needed in the unification routine.

® Type environments are then defined. Note that ‘RetrieveTypeEnv’ always creates fresh
types; some of this copying is unnecessary and could be eliminated.

® Finally we have the typechecking routine, which maintains a type environment and a list of
non-generic variables. Recursive declarations are handled in two passes. The first pass
‘AnalyzeRecDeclBind’ simply creates a new set of non-generic type variables and associates them
with identifiers. The second pass ‘AnalyzeRecDecl’ analyzes the declarations and makes calls to
‘UnifyType’ to ensure the recursive type constraints.

-12-

val rec
map { nil = nil |
map f (head :: tail) = (f head) . (map f tail);

val rec
fold f nil x = x|
fold £ (head :: tail) x = f (head, fold f tail x);

val rec
exists p nil = false |
exists p (head . tail) = if p head then true else exists p tail;

type “a Pointer = data pointer of “a Option ref;
val Void() = pointer (ref none);

val Access(pointer(ref(some V))) = V;

val Assign(pointer P, V) = P := some V;

abstype Stamp = data stamp of int;
with local Counter = ref 0
in val NewStamp() = (Counter := !Counter+/; stamp (Counter));
val SameStamp(stamp S, stamp S°) = (S = §°)
end
end;

=15 -

type rec Term = data
ide of Ide |
cond of Term * Term * Term |
lamb of Ide * Term |
appl of Term #* Term |
block of Decl * Term

and Decl = data
defDecl of Ide * Term |
andDecl of Decl * Decl |
recDecl of Decl;

type rec Type = data
var of Stamp * Type Pointer |
oper of Ide * Type list;

val NewTypeVar() = var(NewStamp(),Void());
val NewTypeOper(Name,Args) = oper(Name,Args);

val SameVar (var(Stamp,_),var(Stamp’,_)) =
SameStamp(Stamp,Stamp”);

val rec Prune (Type: Type): Type =
case Type of
var (_,Instance) =>
(case Instance of
pointer (ref none). Type |
pointer(_).
let val Pruned = Prune(Access Instance)
in (Assign(Instance,Pruned); Pruned) end

) |
oper(_) => Type;

val rec OccursInType(TypeVar: Type, Type: Type): bool =
let val Type = Prune Type
in case Type of
var(_) => SameVar(TypeVar, Type) |
oper (Name,Args) =>
fold (fun Arg,Accum => OccursInType(TypeVar,Arg) orelse Accum) Args false
end;

val OccursInTypeList(TypeVar: Type, TypeList: Type list): bool =
exists (fun Type => OccursInType(TypeVar,Type)) TypeList;

-14 -

type NGVars = data nonGenericVars of Type list;
val EmptyNGVars = nonGenericVars [];

val ExtendNGVars(Type: Type, nonGenericVars NGVars): NGVars =
nonGenericVars(Type :: NGVars);

val Generic(TypeVar: Type, nonGenericVars NGVars): bool =
not(OccursInTypeList(TypeVar, NG Vars));

type CopyEnv = (Type * Type) list;

val FreshType (Type: Type, NGVars: NGVars): Type =
let val rec Fresh (Type: Type, Env: CopyEnv ref): Type =
let val Type = Prune Type
in case Type of
var(_) =>
if Generic(Type,NGVars) then FreshVar(Type,!Env,Env) else Type |
oper(Name,Args) =>
NewTypeOper(Name, map (fun Arg => Fresh(Arg,Env)) Args)
end
and FreshVar (Var: Type, Scan: CopyEnv, Env: CopyEnv ref): Type =
if null Scan
then let val NewVar = NewTypeVar()
in (Env := (Var,NewVar).:(!Env); NewVar) end
else let val (OldVar,NewVar).::Rest = Scan
in if SameVar(Var,OldVar) then NewVar else FreshVar(Var,Rest,Env) end
in Fresh(Type,ref []) end;

val BoolType =
NewTypeOper(symbol "bool",[]);

val FunType (From: Type, Into: Type): Type =
NewTypeOper(symbol "fun",[From;Into]);

-15-

val rec UnifyType (Type: Type, Type”: Type): unit =
let val Type = Prune Type and Type” = Prune Type’
in case Type of
var (Stamp,Instance) =>
if OccursInType(Type, Type”)
then case Type” of var(_) => () | oper(_) => escape "Unify"
else Assign(Instance,Type”)
oper (Name,Args) =>
case Type” of
var(_) => UnifyType(Type",Type) |
oper(Name’,Args’) =>
if Name=Name’ then UnifyArgs(Args,Args’) else escape "Unify"

end

and UnifyArgs ([}, [) = () |
UnifyArgs (Hd::Tl, Hd":'Tl") = (UnifyType(Hd, Hd"); UnifyArgs(Tl, T1)) |
UnifyArgs (_) = escape "Unify";

type TypeEnv = data typeEnv of (Ide * Type) list;
val EmptyTypeEnv = rypeEnv [];

val ExtendTypeEnv (Bind: Ide, Type: Type, typeEnv TypeEnv): TypeEnv =
typeEnv((Bind, Type).. TypeEnv);

val RetrieveTypeEnv (Ide: Ide, typeEnv TypeEnv, NGVars: NGVars): Type =
let val rec
Retrieve ([]: (Ide * Type) list): Type = escape "Undefined identifier" |
Retrieve ((Bind, Type).:Rest: (Ide * Type) list): Type =
if Ide=Bind then FreshType(Type,NGVars) else Retrieve Rest
in Retrieve TypeEnv end;

-16 -

val rec
AnalyzeTerm (ide Ide, TypeEnv, NGVars): Type =
RetrieveTypeEnv(ide, TypeEnv,NGVars) |
AnalyzeTerm (cond(if, Then,Else), TypeEnv, NGVars): Type =
let val () = UnifyType(AnalyzeTerm(If, TypeEnv,NGVars),Bool Type);
val TypeOfthen = AnalyzeTerm(Then, TypeEnv,NGVars);
val TypeUtEise = AnalyzeTerm(Else, TypeEnv,NGVars)
in (Unify Type(TypeOfThen, TypeOfElse); TypeOfThen) end |
AnalyzeTerm (lamb(Bind,Body), TypeEnv, NGVars): Type =
let val TypeOfBind = NewTypeVar();
val BodyTypeEnv = ExtendTypeEnv(Bind, TypeOfBind, TypeEnv);
val BodyNGVars = ExtendNGVars(TypeOfBind,NGVars);
val TypeOfBody = AnalyzeTerm(Body,BodyTypeEnv,BodyNGVars)
in FunType(TypeOfBind, TypeOfBody) end |
AnalyzeTerm (appl(Fun,Arg), TypeEnv, NGVars): Type =
let val TypeOfFun = AnalyzeTerm(Fun,TypeEnv,NGVars);
val TypeOfArg = AnalyzeTerm(Arg, TypeEnv,NGVars);
val TypeOfRes = NewTypeVar()
in (Unify Type(TypeOfFun,FunType(TypeOfArg, TypeOfRes)); TypeOfRes) end |
AnalyzeTerm (block(Decl,Scope), TypeEnv, NGVars): Type =
let val DeclEnv = AnalyzeDecl(Decl, TypeEnv,NGVars)
in AnalyzeTerm(Scope,DeclEnv,NGVars) end

and AnalyzeDecl (defDecl(Bind, Term), TypeEnv, NGVars): TypeEnv =
ExtendTypeEnv(Bind, AnalyzeTerm(Term, TypeEnv,NGVars), TypeEnv) |
AnalyzeDecl (andDecl(Left,Right), TypeEnv, NGVars): TypeEnv =
AnalyzeDecl(Right, AnalyzeDecl(Left, TypeEnv,NGVars),NGVars) |
AnalyzeDecl (recDecl Rec, TypeEnv, NGVars): TypeEnv =
let val TypeEnv,NGVars = AnalyzeRecDeclBind(Rec, TypeEnv,NGVars)
in AnalyzeRecDecl(Rec, TypeEnv,NGVars) end

and AnalyzeRecDeclBind (defDec!(Bind, Term), TypeEnv, NGVars) : TypeEnv * NGVars =

let val Var = NewTypeVar()
in ExtendTypeEnv(Bind,Var, TypeEnv), ExtendNGVars(Var, NGVars) end |

AnalyzeRecDeclBind (andDecl(Left,Right), TypeEnv, NGVars) : TypeEnv % NGVars =
let val TypeEnv,NGVars = AnalyzeRecDeclBind(Left, TypeEnv,NGVars)
in AnalyzeRecDeclBind(Right, TypeEnv,NGVars) end |

AnalyzeRecDeclBind (recDecl Rec, TypeEnv, NGVars) : TypeEnv * NGVars =
AnalyzeRecDeclBind(Rec, TypeEnv,NGVars)

and AnalyzeRecDecl (defDecl(Bind, Term), TypeEnv, NGVars): TypeEnv =
(UnifyType(RetrieveTypeEnv(Bind, TypeEnv,NGVars),
AnalyzeTerm(Term, TypeEnv,NGVars));

TypeEnv) |

AnalyzeRecDecl (andDecl (Left,Right), TypeEnv, NGVars): TypeEnv =
AnalyzeRecDecl(Right, AnalyzeRecDecl(Left, TypeEnv,NGVars),NGVars) |

AnalyzeRecDecl (recDecl Rec, TypeEnv, NGVars): TypeEnv =
AnalyzeRecDecl(Rec, TypeEnv,NGVars);

-17-

9. Conclusions and acknowledgements

This paper presented some of the pragmatic knowledge about polymorphic typechecking, try-
ing to relate it informally to the theoretical background. These ideas have been developed by a
number of people over a number of years, and have been transmitted to me by discussions with
Luis Damas, Mike Gordon, Dave MacQueen, Robin Milner and Ravi Sethi.

References

[Burstall 80] R.Burstall, D.MacQueen, D.Sannella: "Hope: an Experimental Applicative
Language"”, Conference Record of the 1980 LISP Conference, Stanford, August 1980, pp. 136-143.

[Damas 82] L.Damas, R.Milner: "Principal type-schemes for functional programs”, Proc. POPL 82,
pp.207-212.

[Gordon 79] M.J.Gordon, R.Milner, C.P.Wadsworth: "Edinburgh LCF", Lecture Notes in Com-
puter Science, No. 78, Springer-Verlag, 1979.

[Hindley 69] R.Hindley: "The principal type scheme of an object in combinatory logic”, Transac-
tions of the American Mathematical Society, Vol. 146, Dec 1969, pp. 29-60.

[MacQueen 84] D.B.MacQueen, R.Sethi, G.D.Plotkin: "An ideal model for recursive polymorphic
types”, Proc. Popl 84.

[Milner 78] R.Milner: "A theory of type polymorphism in programming"”, Journal of Computer and
System Sciences, No. 17, 1978.

[Milner 84] R.Milner: "A proposal for Standard ML", Proc. of the 1984 ACM Symposium on Lisp
and Functional Programming, Aug 1984.

[Robinson 65] J.A.Robinson: "A machine-oriented logic based on the resolution principle”, Journal
of the ACM, Vol 12, No. 1, Jan 1965, pp. 23-49.

[Scott 76] D.S.Scott: "Data types as lattices”, SIAM Journal of Computing, 4, 1976.

