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Abstract 

We model chemical and biochemical systems as collectives of interacting stochastic automata, with 

each automaton representing a molecule that undergoes state transitions. In this artificial biochemis-

try, automata interact by the equivalent of the law of mass action. We investigate several simple but 

intriguing automata collectives by stochastic simulation and by ODE analysis. 

 

1  Introduction 

Macromolecules 

Molecular biology investigates the structure and 

function of biochemical systems starting from their 

basic building blocks: macromolecules. A macromole-

cule is a large, complex molecule (a protein or a 

nucleic acid) that usually has inner mutable state 

and external activity. Informal explanations of bio-

chemical events trace individual macromolecules 

through their state changes and their interaction his-

tories: a macromolecule is endowed with an identity 

that is retained through its transformations, even 

through changes in molecular energy and mass. A 

macromolecule, therefore, is qualitatively different 

from the small molecules of inorganic chemistry. Such 

molecules are stateless: in the standard notation for 

chemical reactions they are seemingly created and 

destroyed, and their atomic structure is used mainly 

for the bookkeeping required by the conservation of 

mass. 

Attributing identity and state transitions to mo-

lecules provides more than just a different way of 

looking at a chemical event: it solves a fundamental 

difficulty with chemical-style descriptions. Each ma-

cromolecule can have a huge number of internal 

states, exponentially with respect to its size, and can 

join with other macromolecules to from even larger 

state configurations, corresponding to the product of 

their states. If each molecular state is to be 

represented as a stateless chemical species, trans-

formed by chemical reactions, then we have a huge 

explosion in the number of species and reactions 

with respect to the number of different macromole-

cules that actually, physically, exist. Moreover, ma-

cromolecules can join to each other indefinitely, re-

sulting in situations corresponding to infinite sets of 

chemical reactions among infinite sets of different 

chemical species. In contrast, the description of a 

biochemical system at the level of macromolecular 

states and transitions remains finite: the unbounded 

complexity of the system is implicit in the potential 

molecular interactions, but does not have to be writ-

ten down explicitly. Molecular biology textbooks 

widely adopt this finite description style, at least for 

the purpose of illustration. 

Many proposal now exist that aim to formalize 

the combinatorial complexity of biological systems 

without a corresponding explosion in the notation. 

One of the earliest can be found in [3] (which in-

spired the title of this article), where an artificial 

formal frameworks is used to get insights into natu-

ral systems. More recently, the descriptive paradigm 

in systems biology has become that of programs as 

models [7][11][19]. Macromolecules, in particular, are 

seen as stateful concurrent agents that interact with each 

other through a dynamic interface. While this style of 

descriptions is (like many others) not quite accurate 
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at the atomic level, it forms the basis of a formalized 

and growing body of biological knowledge.  

The complex chemical structure of a macromo-

lecule is thus commonly abstracted into just internal 

states and potential interactions with the environ-

ment. Each macromolecule forms, symmetrically, 

part of the environment for the other macromole-

cules, and can be described without having to de-

scribe the whole environment. Such an open system 

descriptive style allows modelers to extend systems 

by composition, and is fundamental to avoid enu-

merating the whole combinatorial state of the sys-

tem (as one ends up doing in closed systems of chemi-

cal reactions). The programs-as-models approach is 

growing in popularity with the growing modeling 

ambitions in systems biology, and is, incidentally, 

the same approach taken in the organization of 

software systems. The basic problem and the basic 

solution are similar: programs are finite and com-

pact models of potentially unbounded state spaces. 

Molecules as Automata 

At the core, we can therefore regard a macromole-

cule as some kind of automaton, characterized by a 

set of internal states and a set of discrete transitions 

between states driven by external interactions. We 

can thus try to handle molecular automata by some 

branch of automata theory and its outgrowths: cellu-

lar automata, Petri nets, and process algebra. The 

peculiarities of biochemistry, however, are such that 

until recently one could not easily pick a suitable 

piece of automata theory off the shelf. 

Many sophisticated approaches have now been 

developed, and we are particularly fond of stochas-

tic process algebra [18]. In this paper, however, we 

do our outmost to remain within the bounds of a 

much simpler theory. We go back, in a sense, to a 

time before cellular automata, Petri nets and process 

algebra, which all arose from the basic intuition that 

automata should interact with each other. Our main 

criterion is that, as in finite-state automata, we 

should be able to easily and separately draw the in-

dividual automata, both as a visual aid to design 

and analysis, and to emulate the illustration-based 

approach found in molecular biology textbooks. As 

a measure of success, in this paper we draw a large 

number of examples.  

Technically, we place ourselves within a small 

fragment of a well-know process algebra (stochastic 

π-calculus), but the novelty of the application do-

main, namely the “mass action” behavior of large 

numbers of “well-mixed” automata, demands a 

broader outlook. We rely on the work in [1][2] for 

foundations and in-depth analysis. In this paper we 

aim instead to give a self-contained and accessible 

presentation of the framework, and to explore by 

means of examples the richness of emergent and 

unexpected behavior that can be obtained by large 

populations of simple automata. Our automata 

drawings are precise, but the only formalization can 

be found in the corresponding process algebra 

scripts in the Appendix. 

Stochastic Automata Collectives 

With those aims, we investigate stochastic automata 

collectives. By a collective we mean a large set of inte-

racting, finite state automata. This is not quite the sit-

uation we have in classical automata theory, because 

we are interested automata interactions. It is also not 

quite the situation with cellular automata, because 

our automata are interacting, but not necessarily on 

a regular grid. And it is not quite the situation in 

process algebra, because we are interested in the 

behavior of collectives, not of individuals. And in 

contrast to Petri nets, we model separate parts of a 

system separately. Similar frameworks have been 

investigated under the headings of collectives [23], 

sometimes including stochasticity [12]. The broad 

area of computer network analysis is also relevant; 

see [8] for a bridge between that and stochastic au-

tomata. 

By stochastic we mean that automata interactions 

have rates. These rates induce a quantitative seman-

tics for the behavior of collectives, and allow them to 

mimic chemical kinetics. Chemical systems are, 

physically, formed by the stochastic interactions of 

discrete particles. For large number of particles it is 

usually possible to consider them as formed by con-

tinuous quantities that evolve according to determi-

nistic laws, and to analyze them by ordinary diffe-

rential equations (ODEs). However, one should keep 

in mind that continuity is an abstraction, and that 

sometimes it is not even a correct limit approxima-

tion. In biochemistry, the stochastic discrete ap-

proach is particularly appropriate because cells often 

contain very low numbers of molecules of critical 

species: that is a situation where continuous models 

may be misleading. Stochastic automata collectives 

are hence directly inspired by biochemical systems, 

which are sets of interacting macromolecules, whose 

stochastic behavior ultimately derives from molecu-

lar dynamics. Some examples of the mismatch be-

tween discrete and continuous models are discussed 

at the end of Section 3. 
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Paper Outline 

In Section 2 we introduce the notion of stochastic 

interacting automata. In Section 3 we explore a 

number of examples inspired by chemical kinetics, 

leading to the implementation of basic analog and 

digital devices. In Section 4 we describe more so-

phisticated automata, which are more suitable for 

biochemical modeling. In Section 5 we discuss fur-

ther related work, and conclude. The Appendix con-

tains the simulation scripts for the figures. The fig-

ures are in color (the layout and the narrative offer 

color-neutral hints, but we encourage reading the 

digital version of this paper). Auxiliary materials 

(including magnifiable figures and editable simula-

tion scripts) are at <http://LucaCardelli.name>. 

2  Interacting Automata 

2.1  Automata Reactions 

We begin by focusing on the notion of stochastic 

interacting automata and their collective behavior. 

Figure 1 shows a typical situation. We have three 

separate automata species A, B, C, each with three 

possible states (circles) and each with a current state 

(yellow): initially A1, B1, C1, respectively. Transitions 

change the current state of an automaton to one of 

its possible states: they are drawn as thick gray ar-

rows (solid or dashed). Interactions between separate 

automata are drawn as thin red dashed arrows. Col-

lectives consist of populations of automata, e.g. 

100×A, 200×B and 300×C.  

 

Figure 1 Interacting automata 

There are two possible kinds of reactions that can 

cause an automaton to take a transition and change 

its current state; each reaction changes the situation 

depicted on the left of Figure 2 to the situation on 

the right, within some larger context. First, from its 

current state, an automaton can spontaneously ex-

ecute a delay transition (dashed gray arrow) result-

ing in a change of state of that automaton. Second, 

an automaton can jointly execute an interaction (thin 

red dashed arrow) with a separate automaton. In an 

interaction, one automaton executes an input (?), and 

the other an output (!) on a common channel (a). A 

channel is an abstraction (just a name) for any inte-

raction surface or mechanism, and input/output are 

abstraction for any kind of interaction complemen-

tarity. An actual interaction can happen only if both 

automata are in a current state such that the interac-

tion is enabled along complementary transitions 

(solid gray arrows); if the interaction happens, then 

both automata change state simultaneously. The 

system of automata in Figure 1, for example, could 

go through the following state changes: A1,B1,C1 

→(a) A2,B3,C1 →(b) A2,B2,C2 → A2,B2,C1 →(c) A3,B2,C3 

→ A1,B2,C3 → A1,B2,C1 → A1,B1,C1. 

 

Figure 2 Automata reactions 

Each reaction fires at (@) a rate r. In the case of 

interaction, the rate is associated to a channel (i.e., 

interactions have rates, but input/output transitions 

do not have rates of their own).  Reaction rates de-

termine, stochastically, the choice of the next reac-

tion to execute, and also determine the time spent 

between reactions [4][15]. In particular, the probabil-

ity of an enabled reaction with rate r occurring with-

in time t is given by an exponential distribution F(t) 

= 1-e-rt with mean 1/r. A Continuous Time Markov 

Chain (CTMC) can be extracted from an automata 

collective [1]: a state of such a CTMC is a multiset of 

the automata current states for the population, and a 

transition in the CTMC has a rate that is the sum of 

the rates of all the reactions connecting two states. 

2.2  Groupies and Celebrities 

In the rest of this section we explore a little zoo of 

simple but surprising automata collectives, before 
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beginning a more systematic study in Section 3. We 

usually set our reaction rates to 1.0 (and in that case 

omit them in figures) not because rates are unimpor-

tant, but because rich behavior can be obtained al-

ready by changing the automata structure: rate vari-

ation is a further dimension of complexity. The 1.0 

rates still determine the pacing of the system in time. 

The automaton in Figure 3 has two possible 

states, A and B. A single automaton can perform no 

reaction, because all its reactions are interactions 

with other automata. Suppose that we have two 

such automata in state A; they each offer !a and ?a, 

hence they can interact on channel a, so that one 

moves to state B and the other one moves back to 

state A (either one, since there are two possible 

symmetric reactions). If we have two automata in 

state B, one will similarly move to state A. If we 

have one in state A and one in state B, then no inte-

ractions are possible and the system is stable.  

We call such automata celebrities because they 

aim to be different: if one of them “sees” another 

celebrity in the same state, it changes state. How will 

a population of celebrities behave? Starting with 100 

celebrities in state A and 100 in state B, the stochastic 

simulation in Figure 3 (obtained by the techniques in 

[15] and Appendix) shows that a 50/50 noisy equili-

brium is maintained. Moreover, the system is live: 

individual celebrities keep changing state. 

 

Figure 3 Celebrity automata 

The possible interactions between celebrities are 

indicated in Figure 3 by thin-red-dashed interaction 

arrows between transitions on the same automaton. 

Remember, however, that an automaton can never 

interact with itself: this abuse of notation refers un-

ambiguously to interactions between distinct auto-

mata in a collective. The possible interactions should 

more properly be read out from the complementary 

transition labels. The transition labels emphasize the 

open system interactions with all possible environ-

ments, while the interaction arrows emphasize the 

closed system interactions in a given collective. 

Figure 4 shows more explicitly the possible inte-

ractions in a population of 5 celebrity automata, of 

which 3 are in state A and 2 are in state B. Note that 

since there are more “a interactions” than “b interac-

tions”, and their rates are equal, at this point in time 

an “a interaction” between a pair of automata is 

more likely. These considerations about the likelih-

ood of interactions are part of the stochastic simula-

tion algorithm, and also lead to the chemical law of 

mass action for large populations [24].  

Figure 4 Possible interactions 

Let us now consider a different two-state auto-

maton shown in Figure 5. Again, a single automaton 

can do nothing. Two automata in state A are stable 

since they both offer !a and ?b, and no interactions 

are possible. Similarly for two automata in state B. If 

we have one automaton in state A and one in state 

B, then they offer !a and ?a, so they can interact on 

channel a and both move to state A. They also offer 

?b and !b, so they can also interact on channel b and 

both move to state B.  

 

Figure 5 Groupie automata 

We call such automata groupies because they aim 

to be similar: two groupies in different states will 

switch to equal states. How will a population of 

groupies behave? In Figure 5 we start with 100 A 

and 100 B: the system evolves through a bounded 

random walk, and the outcome remains uncertain 

time
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till the very end. Eventually, though, the groupies 

form a single homogeneous population of all A or 

all B, and the system is then dead: no automaton can 

change state any further. Different runs of the simu-

lation may randomly produce all A or all B: the sys-

tem is bistable. 

2.3  Mixed Populations 

Populations of groupies and populations of celebri-

ties have radically different behavior. What will 

happen if we mix them? It is sufficient to mix a small 

number of celebrities (1 is enough) with an arbitrari-

ly large number of groupies, to achieve another rad-

ical change in system behavior. As shown in Figure 

6, the groupies can still occasionally agree to be-

come, e.g., all A. But then a celebrity moves to state 

B to differentiate itself from them, and that breaks 

the deadlock by causing at least one groupie to emu-

late the celebrity and move to state B. Hence, the 

whole system now evolves as a bounded random 

walk with no stable state.  

 

Figure 6 Both together 

An important lesson here is that an arbitrarily 

small, but non-zero, number of celebrities can trans-

form the macroscopic groupie behavior from a system 

that always eventually deadlocks, to a system that 

never deadlocks. We can also replace celebrities 

with simpler doping automata (Figure 7) that have 

the same effect of destabilizing groupie collectives.  

We now change the structure of the groupie au-

tomaton by introducing intermediate states on the 

transitions between A and B, while still keeping all 

reactions rates at 1.0. In Figure 7, each groupie in 

state A must find two groupies (left) or three grou-

pies (right) in state B to be persuaded to change to 

state B. Once started, the transition from A to B is 

irreversible; hence, some hysteresis (history depen-

dence) is introduced. Both systems include doping 

automata (center) to avoid population deadlocks.  

The additional intermediate states produce a 

striking change in behavior with respect to Figure 6: 

from complete randomness to irregular (left) and 

then regular (right) oscillations. The peaks in the 

plots of Figure 7 are stochastic both in height and in 

width, and occasionally one may observe some 

miss-steps, but they clearly alternate. The transfor-

mation in behavior, obtained by changes in the 

structure of individual automata, is certainly re-

markable (and largely independently on rate val-

ues). Moreover, the oscillations depend critically on 

the tiny perturbations introduced by doping: with-

out them, the system typically stops on its first cycle. 

 

Figure 7 Hysteric groupies 

The morale from these examples is that the col-

lective behavior of even the simplest interactive au-

tomata can be rich and surprising. Macroscopic be-

havior “emerges” apparently unpredictably from 

the structure of the components, and even a tiny 

number of components can have macroscopic ef-

fects. The question then arises, how can we relate the 

macroscopic behavior to the microscopic structure? 

In the following section we continue looking at ex-

amples, many of which can be analyzed by conti-

nuous methods. We return to discussing the beha-

vior of groupies at the end of Section 3. 

3  The Chemistry of Automata 

3.1  Concentration 

The first few chapters of a chemical kinetics textbook 

[9] usually include a discussion of the order of a 

chemical reaction. In particular, a reaction of the 
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form A→rC is first-order, and a reaction of the form 

A+B→rC is second-order. The terminology derives 

from the order of the polynomials of the associated 

differential equations. In the first case, the concentra-

tion of A, written [A], follows the exponential decay 

law d[A]/dt = -r[A], where the right-hand side is a 

first-order term with coefficient –r (r being the base 

reaction rate). In the second case, the concentration 

of A follows the mass action law d[A]/dt = -r[A][B], 

where the right-hand side is a second-order term. (In 

the sequel, we use [A]• for d[A]/dt.) 

Our automata collectives should match these 

laws of chemical kinetics, at least in large number 

approximations. But what should be the meaning of 

“a concentration of discrete automata states” that 

would follow such laws? That sounds puzzling, but 

is really the same question as the meaning of “a con-

centration of discrete molecules” in a chemical sys-

tem. One has to first fix a volume of interaction (as-

sumed filled with, e.g., water), and then divide the 

discrete number of molecules by that volume, ob-

taining a concentration that is regarded (improperly) 

as a continuous quantity. Along these lines, a rela-

tionship between automata collectives and differen-

tial equations is studied formally in [1]. 

Under biological conditions, common simplify-

ing assumptions are that the volume of interaction is 

constant, that the volume is filled with a liquid solu-

tion with constant temperature and pressure, and 

that the solution is dilute and well-mixed. The dilution 

requirement is a limit on maximum chemical con-

centrations: there should be enough water that the 

collisions of chemicals with water are more frequent 

than among themselves. The well-mixed require-

ment means that diffusion effects are not important. 

Together, these physical assumptions justify the ba-

sic mathematical assumption: the probability of any 

two non-water molecules colliding (and reacting) in 

the near future is independent of their current posi-

tion, so that we need to track only the number (or 

concentration) of molecules, and not their positions. 

Three-way collisions are too unlikely to matter [4].  

Therefore, we assume that our automata interact 

within a fixed volume V, and we use a scaling factor 

γ = NAV, where NA is, in chemistry, Avogadro’s 

number. For most purposes we can set γ = 1.0, which 

means that we are considering a volume of size 1/NA 

liters. However, keeping γ symbolic helps in per-

forming any scaling of volume (and hence of num-

ber of automata) that may be needed. 

With these basic assumptions, we next analyze 

the reaction orders that are available to our collec-

tives, and the effect of reaction order on kinetics. 

3.2  First Order Reactions 

As we have seen, an automaton in state A can spon-

taneously move to state A’ at a specified rate r, by a 

stochastic delay. In a population of such automata, 

each transition decrements the number of automata 

in state A, and increments the number of automata 

in state A’. This can be written also as a chemical 

reaction A→rA’, with first-order rate law -r[A], 

where [A]t = #At/γ is the concentration of automata 

in state A at time t, and #A0 is the initial number of 

automata in state A. The concentration [A] is a con-

tinuous quantity, and is more properly related to the 

expectation of the discrete number #A having a cer-

tain value [24]. The rate of change for the reaction 

(assuming A’ ≠ A) is then the derivative of [A], writ-

ten [A]• = -r[A]. The profile of the reaction is an ex-

ponential decay at rate r: [A]0e
-rt (see S1 in Figure 9). 

 

Figure 8 First order reactions 

A sequence of exponential decays produces an Er-

lang distribution, as seen in Figure 9 (many biologi-

cal processes, like the sequential transcription and 

translation of DNA, behave similarly). Initially, we 

have C=10000 automata in state S1. The occupation 

of the initial state S1 is an exponential decay, the oc-

cupation of the intermediate states Si is the Erlang 

distribution of shape parameter i, and the occupa-

tion of the final state is the cumulative Erlang distri-

bution of shape parameter 10.  

 

Figure 9 Sequence of delays 

The shape of an exponential distribution is indepen-

dent of the initial quantity (e.g., the half-life is con-

stant). In general, for first order reactions, the time 

course of the reactions is independent of the scaling 

of the initial quantities. For example, if we start with 

10 times as many automata in Figure 9 and we scale 

down the vertical axis by a factor of 10, we obtain 

the same plot, to the original time 20. Meaning that 

the “speed of the systems” is the same as before, and 

since there are 10 times more reactions in the same 

time span, the “execution rate” is 10 times higher. 
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3.3  Second Order Reactions 

As discussed in Section 2, two automata can interact 

to perform a joint transition on a common channel, 

each changing its current state. The interaction is 

synchronous and complementary: one automaton in 

state A performs an input ?a and moves to state A’; 

the other automaton in state B performs an output !a 

and moves to state B’. This interaction can be written 

as a chemical reaction A+B→rγA’+B’ (Figure 10, top), 

where r is the fixed rate assigned to the interaction 

channel, and rγ is the volume scaling for A+B reac-

tions [24] (to scale the volume γ to n⋅γ, we must scale 

#X0 to n⋅#X0 to keep [X]0 the same, and r to r/n to 

keep rates (r/n)n⋅γ the same). The rate law, given by 

the law of mass action, is -rγ[A][B], because each 

automaton in the population of current states [A] 

can interact with each automaton in the population 

of current states [B], and the derivatives (assuming 

A,B,A’,B’ are distinct) are [A]• = [B]• = -rγ[A][B]. 

 

Figure 10 Second order reactions 

A different situation arises, though, if the inte-

raction happens within a homogeneous population, 

e.g., when state A offers both an input ?a to transi-

tion to state A’ and an output !a to transition to state 

A” (Figure 10, bottom). Then, every automaton in 

state A can interact with every other automaton in 

state A in two symmetric ways; hence the rate r must 

be doubled to 2r. The volume scaling for A+A reac-

tions is (2r)γ/2 = rγ [24]. The chemical reaction is then 

A+A→rγA’+A”, whose rate law is −rγ[A]2. The rate of 

change of [A] (assuming A’ ≠ A ≠ A”) is [A]• = 

−2rγ[A]2, since two A are lost each time. 

 

 

Figure 11 All 3 reactions in 1 automaton 

In Figure 11 we show an automaton that exhibits 

a first order reaction and one of each kind of second 

order reactions. Its collective behavior is determined 

by the corresponding chemical reactions. This shows 

that the dynamics of all orders of reactions can be-

come intermingled in a single automaton. 

 

Figure 12 Same behavior 

In order to compare the behavior of different au-

tomata collectives, we must in general go beyond 

the corresponding chemical reactions, and we must 

instead compute the corresponding ODEs (which 

can be obtained from the chemical reactions). For 

example, the automaton in Figure 12 has a different 

pattern of interactions and rates, different chemical 

reactions, but the same ODEs as the one in Figure 

11. In both cases, [A]• = -[B]• = t[B] + rγ[A][B] - sγ[A]2, 

but note that the b rate in Figure 12 is set to s/2 in 

order to obtain the same rate of decrease in A popu-

lation and rate of increase in B population as in Fig-

ure 11, given the differences in the corresponding 

chemical reactions. 

 

Figure 13  Sequence of interactions 

The time course of second-order reactions de-

creases linearly with the scaling up of the initial 

quantities. For example, if we start with 10 times as 

many automata as in Figure 13, and we scale down 

the vertical axis by a factor of 10, and we scale up 

the time axis by a factor of 10, we obtain the same 

plot. Meaning that the “speed of the system” is 10 

times faster than before, and since there are also 10 

times more reactions, the “execution rate” is 100 

times higher. Moreover, the system in Figure 13 is 

about 500 times faster than the one in Figure 9 in 
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reaching 75% of input level in its final state, even 

though it has the same rates and the same number of 

automata. Second order reactions “go faster”. 

3.4  Zero Order Reactions 

As we have just seen, the two basic kinds of automa-

ta interactions, which correspond to the two basic 

kinds of chemical reactions, lead to collective dy-

namics characterized by various kinds of curves. But 

what if we wanted to build a population that spon-

taneously (from fixed initial conditions) increases or 

decreases at a constant rate, as in Figure 14? We can 

consider this as a programming exercise in automata 

collectives: can we make straight lines? This question 

will lead us to implementing a basic analog compo-

nent: a signal comparator. 

First order reactions have a law of the form r[A], 

and second order reactions a law of the form r[A][B]. 

Zero order reactions are those with a law of the form 

r (a constant derivative), meaning that the “execu-

tion rate” is constant, and hence the “speed of the 

system” gets slower when more ingredients are 

added. Zero order reactions are not built into chemi-

stry (except as spontaneous creation reactions 

0→rA), but can be approximated by chemical means. 

The main biochemical methods of obtaining zero 

order reactions is a special case of enzyme kinetics, 

when enzymes are saturated. 

Real enzyme kinetics corresponds to a more so-

phisticated notion of automata: both are treated in 

Section 4. For now, we discuss a close analog of en-

zyme kinetics that exhibits zero-order behavior and 

can be represented within the automata framework 

described so far. We will make precise how this is a 

close analog of enzymes, and in fact, with a few as-

sumptions, it can be used to model enzyme kinetics 

in a simplified way. 

Consider the system of Figure 14. Here E is the 

(pseudo-) enzyme, S is the substrate being trans-

formed with the help of E, and P is the product re-

sulting from the transformation. The state ES 

represents an enzyme that is “temporarily unavaila-

ble” because it has just transformed some S into 

some P, and needs time to recover (ES does not 

represent an E molecule bound to an S molecule: it is 

just a different state of the E molecule alone).  

This system exhibits zero order kinetics (i.e., a 

constant slope), as can be seen from the plot. If we 

start with lots of S and a little E, the rate of produc-

tion of P is constant, independently of the instanta-

neous quantity of S. That happens because E be-

comes maximally busy, and effectively processes S 

sequentially. Adding more enzyme (up to a point) 

will just increase the ES population: to obtain the 

zero-order behavior it is not necessary to have a sin-

gle E, just that most E be normally busy. All our 

rates are 1.0 as usual, but note that E→ES happens 

fast, proportionally to [E][S], while ES→E happens 

slowly, proportionally to [ES]. 

 

Figure 14 Zero order reactions 

To explain the reason for the constant slope, and 

to make the connection to enzyme kinetics precise, 

we now mimic the standard derivation of Michaelis-

Menten kinetics [9]. The reactions for the system in 

Figure 14 are: 
 

E + S →rγ ES + P 

ES →s E 
 

The corresponding ODEs are: 
 

[E]• = s[ES] - rγ[E][S] 

[ES]• = rγ[E][S] - s[ES] 

[S]• = - rγ[E][S] 

[P]• = rγ[E][S] 
 

We call [E0] = [E]+[ES] the total amount of enzyme, 

either free or busy; that is, the concentration of en-

zyme. We now assume that, in normal operation, the 

enzyme is at equilibrium, and in particular [ES]• = 0. 

This implies that [ES] = rγ[E][S]/s. Set: 
 

Km = s/rγ 

Vmax = s[E0] 
 

Hence [ES] = [E][S]/Km, and [ES] = ([E0]-[ES])[S]/Km, 

and from that we obtain [ES] = [E0]([S]/(Km+[S])). 

From the [ES]• = 0 assumption we also have [P]• = 

s[ES], and substituting [ES] yields: 
 

[P]• = Vmax[S]/(Km+[S]). 
 

which describes [P]• just in terms of [S] and two con-

stants. Noticeably, if we have Km << [S], then [P]• ≈ 

Vmax; that is, we are in the zero-order regime, with 

constant growth rate Vmax = s[E0]. For the system of 

Figure 14 at γ = 1 we have Km = 1, [S]0 = 1000, Vmax = 

1, and hence [P]• ≈ 1, as shown in the simulation. 

The chemical reactions for Figure 14 are signifi-

cantly different from the standard enzymatic reac-

tions, where P is produced after the breakup of ES, 

?a

E

S

!a
ES

P

@1.0

@1.0

1000×S, 1×E
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and not before as here. Still, the expressions for Km, 

Vmax, and [P]• turn out to be the same as in Michae-

lis-Menten kinetics (and not just for the zero-order 

case), whenever the dissociation rate of ES back to 

E+S is negligible, that is, for good enzymes. 

3.5  Ultrasensitivity 

Zero-order kinetics can be used, rather paradoxical-

ly, to obtain sudden non-linearity or switching be-

havior. Let us first compare the behavior of directly 

competing enzymes in zero-order and second-order 

kinetics. For conciseness we now depict a pair of 

states E,ES (as in Figure 14) as a single state E with a 

solid/dashed arrow representing the transition 

through the now hidden state ES (Figure 15). 

At the top of Figure 15, in zero-order regime, a 

fixed quantity of F is competing against a linearly 

growing quantity of E. The circuit is essentially 

computing the subtraction [F]-[E] (the rest being se-

questered in the hidden “unavailable” states): the E 

quantity is neutralized until it can neutralize and 

then exceed the F quantity. At the bottom we have 

almost the same system, except in second-order re-

gime: the result of the competition is quite different 

because neither quantity can be sequestered. 

 

Figure 15 Subtraction (top) 

On that basis, we now reproduce the peculiar 

phenomenon of ultrasensitivity in zero-order regime 

[13], confirming that our simplified kinetics, while 

not agreeing with enzyme kinetics at the microscop-

ic level, still manages to reproduce some of its ma-

croscopic effects: the core of the matter is the zero-

order regime of operation. In an ultrasensitivity sit-

uation, a minor switch in relative enzyme quantities 

creates a much amplified and sudden switch in two 

other quantities. In Figure 16, we start with a fixed 

amount (=100) of enzyme F, which is holding the S 

vs. P equilibrium in the S state (at S=1000), and we 

let E grow from zero. As E grows, we do not initially 

observe much free E, but the level of free F decreases 

(as in Figure 15 top), indicating that it is getting 

harder for F to maintain the S equilibrium against E. 

Eventually the level of free F drops to zero, at which 

point we see a sudden switch of the S vs. P equili-

brium, and then we observe the level of free E grow-

ing. Hence, in this case, a switch in the levels of E vs. 

F controls a factor of 10 bigger switch in the levels of 

S vs. P. If P is itself an enzyme, it can then cause an 

even bigger and even more sudden switch of an 

even larger equilibrium.  

 

Figure 16 Ultrasensitivity 

Therefore we have obtained a device that can 

compare the relative levels of two slowly varying 

weak signals (E, F), and produce a strong, quickly-

switching output signal that means E > F. 

3.6  Positive Feedback Transitions 

We now come to another programming exercise in 

automata collectives. None of the curves that we 

have seen so far are symmetric; we can then ask: can 

we make a symmetric bell shape as in Figure 18? This 

question will lead us to building another basic ana-

log component: an oscillator. 

 

Figure 17 Positive feedback transition 

Figure 18 Bell shape 

A theorem of probability theory guarantees that 

we can in fact approximate any shape we want by 

combining exponential distributions, but the result-

ing automata would normally be huge. Here we are 

looking for a compact programming solution. One 
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way to obtain a sharp raising transition (the first half 

of a bell curve) is by positive feedback. In Figure 17, 

the more B’s there are, the faster the A’s are trans-

formed into B’s, so the B’s accumulate faster and 

faster, up to saturation. (Note that at least one B is 

needed to bootstrap the process.) 

 

Figure 19 Oscillator 

By linking two such transitions in series (Figure 

18), we obtain a symmetrical bell shape. We can see 

that after the B’s start accumulating, they are being 

drained faster and faster by the accumulating C’s. 

The fact that the B’s are being drained in a symme-

trical way can be explained by the kinetics of B: [B]• 

= [B]([A]-[C]). (Note that there is a very small chance 

that the B’s will be drained by the C’s before the 

wave can accumulate in B, therefore stalling it.) 

Linking several such transitions in series (not 

shown) produces a soliton-like wave that does not 

dissipate (a delay transition between adjacent states 

is needed to prevent stalling). 

Figure 20 Positive two-stage feedback 

 

Figure 21 Square shape 

Linking three positive feedback transitions in a 

loop produces a stochastic oscillator (Figure 19); 

moreover, the ODEs extracted from the chemical 

reactions describe a deterministic (never stopping) 

oscillator. A sustained stochastic oscillation can be 

obtained by starting with all states non-zero; the os-

cillation can then survive as long as no state A,B,C 

goes to zero; when that happens (usually after a long 

time) there is nothing to pull on the next wave, and 

the oscillation stops.  

 

Figure 22 Hysteric 3-way groupies 

An interesting variation is a two-stage positive 

feedback loop (Figure 20) where the drop of state A 

is delayed and the growth of state B is steeper. Join-

ing two such transitions (Figure 21) produces a 

shape that approximates a rectangular wave as we 

increase the cardinality of A. Linking three such 

transitions in a loop produces again an oscillator 

(Figure 22). However, this time it is critical to add 

doping because each state regularly drops to zero 

and needs to be repopulated to start the next propa-

gation. This oscillator is a 3-states version of the os-

cillators in Figure 7, and is very robust. 

 

3.7  Excitation Cascades 

Beyond signal comparators and oscillators, other 

basic analog devices we may want to build include 

signal amplifiers and dividers. We next imitate some 

amplifiers found in biological systems that are made 

of cascades of simpler stages. As a technical note, the 

modular nature of these staged amplifiers leads us 

to write compact, parametric simulation code that is 

instantiated at each stage. This compactness is not 

reflected in the figures, where we simply redraw 

each stage. But, as a consequence, it is more conve-

nient in the simulation code to plot the counts of 

active outputs, e.g., !a, !b, !c, rather than the counts 

of the states that produce those outputs, e.g. aHi, 

bHi, cHi: this plotting style is adopted from now on. 

We consider cascades where one enzyme acti-

vates another enzyme. A typical situation is shown 

in Figure 23 (again, all rates are 1.0), where a low 

constant level of first-stage aHi results in a maxi-

mum level of third-stage cHi, and where, characte-

ristically, the third stage raises with a sigmoidal 

shape, and faster than the second-stage level of bHi. 

This network can be considered as the skeleton of a 
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MAPK cascade, which similarly functions as an am-

plifier with three stages of activation, but which is 

more complex in structure and detail [10].  

Figure 23 Second-order cascade 

 

Figure 24 Zero-order cascade 

 

Figure 25 Zero-order cascade, 1 stage 

The resulting amplification behavior, however, 

is non-obvious, as can be seen by comparison with 

the zero-order activation cascade in Figure 24; the 

only difference there is in the zero-order kinetics of 

the enzymes obtained by introducing a delay of 1.0 

after each output interaction. Within the same time 

scale as before, the level of cHi raises quickly to the 

(lower) level of aHi, until aHi is all bound. On a 

much longer time scale, cHi then grows linearly to 

maximum. Linear amplification in cascades has been 

attributed to negative feedback [21], but apparently 

can be obtained also by zero-order kinetics. Of 

course, the behavior in Figure 23 is the limit of that 

in Figure 24, as we decrease the zero-order delay. 

A single stage of a second-order cascade works 

like the bHi level shown in Figure 23 (since no bHi is 

actually consumed by the next stage), that is, as an 

amplifier. Surprisingly, a single stage of the zero-

order cascade, works quite differently, as a signal 

replicator. In Figure 25, a given level of aHi (=100 or 

=900), induces an equal level of bHi, as long as it is 

lower than the reservoir of bLo (=1000). (If aHi ex-

ceeds bLo, then bHi:=bLo and aHi:=aHi-bLo.) How-

ever, the two-stage cascade in Figure 24 does not 

work like two signal replicators in series! This seems 

to happen because the bHi are not available for de-

gradation to bLo while bound by interaction with 

the next stage, cLo, and hence can accumulate. 

 

Figure 26 Second-order double cascade 

 

Figure 27 Zero-order double cascade 

Real MAPK cascades are actually based on 

double activation, as shown in Figure 26, where the 

sigmoid output is more pronounced and delayed 

than in Figure 23. And once again, the zero order 

regime brings surprises: the cascade in Figure 27 

works in reverse, as a signal attenuator, where even 

a very high amount of aHi produces a low stable 

level of cHi which is at most 1/3 of maximum cHi. 

This is because one stage of such a cascade is actual-

ly a signal level divider, where if bHi=1000 then 

cHi=333, with the signal being distributed among 

the three states of the stage. 

3.8 Boolean Inverters 

Having seen how to obtain basic analog functions 

(comparators, oscillators, amplifiers, and dividers) it 

is now time to consider digital devices: inverters, 

and other Boolean gates. Automata with distin-

guished “low” and “high” states can be used to 

represent respectively Boolean false and true.  

We begin by investigating automata collectives 

that implement Boolean inverters. The most obvious 

inverter, Inv(a,b) with input ?a and output !b, is 
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shown in Figure 28: its natural state is high because 

of the spontaneous decay from low to high. The high 

state sustains (by a self loop) an output signal (b) 

that can be used as input to further gates. A high 

input signal (a) pulls the high state down to low, 

therefore inverting the input. (Steady state analysis 

of the ODEs shows that [bHi] = max/(1+γ[aHi]), 

where max = [bHi]+[bLo].) 

 

Figure 28 Simple inverter 

We test the behavior of populations of inverters 

according to three quality measures, which are first 

applied to the inverter in Figure 28: 

(1) Restoration. With two inverter populations in 

series (100×Inv(a,b) + 100×Inv(b,c)), a triangular-

ly-shaped input signal (?a) is provided that 

ramps up from 0 to 100 and then back down to 0.   

(2) Alternation. We test a connected sequence 

100×Inv(a,b) + 100×Inv(b,c) + … + 100×Inv(e,f). 

(3) Oscillation. We test a cycle of three populations, 

100×Inv(a,b) + 100×Inv(b,c) + 100×Inv(c,a).  

   

Figure 29 Feedback inverter 

In Figure 28, top plot, we see that the first stage in-

verter is very responsive, quickly switching to low !b 

output and then quickly switching back to high !b 

output when the input is removed, but the second 

stage !c output is neither a faithful reproduction nor 

a Boolean restoration of the ?a input. In the middle 

plot, we see that intermediate signals in the alterna-

tion sequence are neither high nor low: the Boolean 

character is lost. In the bottom plot, we see that three 

gates in a loop fail to sustain a Boolean oscillation. 

Therefore, we conclude that this inverter does not 

have good Boolean characteristics, possibly because 

it reacts too strongly to a very small input level, in-

stead of switching on a substantial signal. 

 

Figure 30 Double-height inverter 

In an attempt to force a Boolean behavior, we 

add a positive feedback to the high state, so that 

(one might think) a higher input level would be re-

quired to force switching, hence improving the Boo-

lean switching characteristics (Figure 29). The result 

is, unexpectedly, a linear signal inverter. (We can 

deduce the linearity from the steady state analysis of 

the ODEs: [bLo] = [aHi][bHi]/([bHi]+1/γ) ≈ [aHi] for 

[bHi]>>1/γ, hence [bHi] = max-[bLo] ≈ max-[aHi]). 

Such a linear inverter can be useful for inverting an 

analog signal, and also has decent Boolean alterna-

tion properties. But it does not oscillate. 

 

Figure 31 Double-height feedback inverter 

A good Boolean inverter can be obtained, in-

stead, by doubling the height of the simple inverter 

(Figure 30). This double height inverter gives perfect 

alternation, and good restoration (transforming a 

triangular input, !a into a nearly rectangular output, 

!c). However, it still fails to oscillate. 

Finally, we combine the two techniques in a 

double-height feedback inverter (Figure 31). This 

has perfect restoration, transforming a triangular 

input into a sharp rectangle. It also has strong and 

quickly achieved alternation, and regular oscillation. 

In conclusion, it is possible to build good Boo-

lean inverters and signal restorers. This is important 

because it lessens the requirements on other circuits: 

if those circuits degrade signals, we can always re-
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store a proper Boolean signal by two inverters in 

series. We examine some Boolean circuits next. 

3.9 Boolean Circuits 

It probably seems obvious that we can build Boolean 

circuits out of populations of automata, and hence 

support general computation. However, it is actually 

surprising, because finite populations of interacting 

automata are not capable of general computation [2], 

and only by using stochasticity one can approximate 

general computation up to an arbitrarily small error 

[22]. Those are recent results, and the relationship 

with the Boolean circuits shown here is not clear; 

likely one needs to use sufficiently large populations 

to reduce computation errors below a certain level. 

We again consider automata with low states and 

high states to represent respectively Boolean false 

and true. In general, to implement Boolean func-

tions, we also need to use intermediate states and 

multiple high and low states. 

 

Figure 32 Or and And 

Figure 32 shows the Boolean gate automata for 

“c = a Or b” and “c = a And b”. The high states spon-

taneously relax to low states, and the low states are 

driven up by other automata providing inputs to the 

gates (not shown). A self-loop on the high states 

provides the output. In the plots, two input signals 

that partially overlap in time are used to test all four 

input combination; their high level is just 1/10 of 

max (where max is the number of gate automata).  

The chemical reactions for the Or gate are 

aHi+cLo→γaHi+cHi, bHi+cLo→γbHi+cHi, cHi→cLo. 

From their ODEs, by setting derivatives to zero, and 

with the automata constraint [cHi]+[cLo] = max, we 

obtain [cHi] = max([aHi]+[bHi])/([aHi]+[bHi]+1/γ). 

That is, if the inputs are zero then [cHi] = 0. If, say, 

[aHi] is non-zero, then [cHi] = max[aHi]/([aHi]+1/γ) 

so that for [aHi] >> 1/γ we have [cHi] ≈ max. 

The And gate can be similarly analyzed. Note 

that And is not perfectly commutative because the 

decay back to cLo on a single input is slightly differ-

ent depending on which input is provided. Howev-

er, as usual, any analog implementation of a digital 

gate must be given enough time to stabilize. 

Figure 33 Imply and Xor 

Figure 33 shows automata for “c = a Imply b” 

and “c = a Xor b”. In these automata we use two 

high states (both producing the same output) to re-

spond to different inputs. The dip in the plot for 

Imply arises when many automata decay from the 

high state cHb to the high state cHa, through cLo, in 

a transition from false Imply true to false Imply false. 

The steady state behavior of Imply is: output = 

[cHa] + [cHb] = max - max[aHi] / ([aHi][bHi] + [aHi] 

+ 1/γ) where max is the size of the collective. If [aHi] 

= 0 we have output = max; if [aHi] ≠ 0 and [bHi] = 0 

we have output ≈ 0; if [aHi] ≈ [bHi] ≈ max, we have 

output ≈ max. 

Although Xor can be constructed from a net-

work of simpler gates, the Xor gate in Figure 33 is 

implemented as a single uniform collective. 

3.10  Bistable Circuits 

We have now assembled a collection of basic analog 

and digital devices that can be used to perform sig-

nal processing and combinatorial computation. For 

completeness, we need to discuss also memory ele-

ments; these can be constructed either as bistable 

digital circuits (flip-flops), using the gates of Sec-

tions 3.8 and 3.9, or as bistable analog devices.  

We have already seen examples of bistable ana-

log devices: the ultrasensitive comparator of Section 

3.5, and the groupies of Section 2.2. The groupies, 

however, are not stable under perturbations: any 

perturbation that moves them away from one of the 

two stable states can easily cause them to wander 
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into the other stable state. Hence, they would not be 

very good as stable memory elements. 

 

Figure 34 Memory Elements 

In Figure 34 we show a modified version of the 

groupies, obtained by adding an intermediate state 

shared by the two state transitions. This automaton 

has very good memory properties. The top-left and 

top-center plots show that it is in fact spontaneously 

bistable. The bottom-left plot shows that it is stable 

in presence of sustained 10% fluctuations produced 

by doping automata. The bottom-center plot shows 

that, although resistant to perturbations, it can be 

switched from one state to another by a signal of the 

same magnitude as the stability level: the switching 

time is comparable to the stabilization time. In addi-

tion, this circuit reaches stability 10 times faster than 

the original groupies: the top-right plot shows the 

convergence times of 30 runs each of the original 

groupies with 2 states, the current automaton with 3 

states, and a similar automaton (not shown) with 4 

states that has two middle states in series. The bot-

tom-right plot is a detailed view of the same data, 

showing that the automaton with 4 states is not sig-

nificantly faster than the one with 3 states. There-

fore, we have a stable and fast memory element. 

3.11  Discrete vs. Continuous Modeling 

We finally get back to the oscillating behavior of the 

hysteric groupies of Figure 7. In the previous sec-

tions we have analyzed many systems both by sto-

chastic simulation and by differential equations, im-

plying that in most cases we have a match between 

the two approaches, and that we can use whatever 

analysis is most useful. However, continuous tech-

niques are not always appropriate [24][1], and there 

are well-known examples of that [25].  

As an illustration of the general issue, in Figure 

35 we compare the stochastic simulation of groupie 

collectives against numerical solutions of their cor-

responding differential equations (found in the Fig-

ure 35 scripts in Appendix). On the left column we 

have the basic groupies from Figure 5, and on the 

middle and right columns we have the groupies 

with one or two intermediate steps from Figure 7; in 

all cases we include a low number of doping auto-

mata, as in Figure 7, to prevent deadlocks. The bot-

tom row has plots of the stochastic simulations, all 

starting with 2000 automata in state A. (Comparable, 

noisier, simulations with 200 automata are found in 

the mentioned figures.) The top row has instead the 

ODE simulations with the same initial conditions 

(including doping), and with the volume of the solu-

tion taken as γ=1.0. 

 

Figure 35 Discrete vs. continuous modeling 

As we can see, in the right column there is an 

excellent match between the stochastic and determi-

nistic simulations; moreover, the match gets better 

when increasing the number of molecules, as ex-

pected. In the middle column, however, after a 

common initial transient, the deterministic simula-

tion produces a dampened oscillation, implying that 

all 4 states are eventually equally occupied. Instead, 

the stochastic simulation produces an irregular but 

not at all dampened oscillation, where the A and B 

states persistently peak at twice the continuous val-

ues (detailed plots reveal that A and its successor 

state peak together, and so do B and its successor). 

Even more strikingly, in the left column, the deter-

ministic simulation produces an equilibrium level, 

which also happens to be stable to perturbations, 

while the stochastic simulation produces a complete-

ly unstable random walk.  

The conclusions one should draw from this situ-

ation is that it is not always appropriate to use a de-

terministic approximation of a stochastic system 

(and it is likely impossible in general to tell when it 

is appropriate). The difference can be particularly 
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troublesome when studying just one run of one copy 

of a stochastic system (e.g. the behavior of one cell), 

as opposed to the average of a number of runs, or 

the average of a number of copies. Unfortunately, to 

understand the behavior of, e.g., cells, one must real-

ly study them one at a time. Stochastic behavior can 

be characterized precisely by other kinds of differen-

tial equations (the Chemical Master Equation), 

which are always consistent with the stochastic si-

mulations, but those are much more difficult to ana-

lyze than the mass action ODEs [5]. 

4  The Biochemistry of Automata 

4.1  Beyond simple automata 

As we have seen, the simple automata of Section 2 

can model typical chemical interactions. Biochem-

stry, however, is based on a richer set of molecular 

interactions, and in this section we explore a corres-

ponding richer notion of interacting automata. 

A characteristic feature of biochemistry, and of 

proteins in particular, is that biological molecules 

can stick to each other to form complexes. They can 

later break up into the original components, with 

each molecule preserving its identity. This behavior 

can be represented by chemical reactions, but only 

by considering a complex as a brand new chemical 

species, thus losing the notion of molecular identity. 

Moreover, polymers are formed by the iterated com-

plexation of identical molecules (monomers): chemi-

cally this can be represented only by an unbounded 

number of chemical species, one for each length of a 

polymer, which is obviously cumbersome and tech-

nically infinite. 

In order to model the complexation features of 

biochemistry directly, we introduce polyautomata, 

which are automata that can form reversible com-

plexes, in addition to interacting as usual. Association 

(&) represents the event of joining two specific au-

tomata together out of a population, and dissociation 

(%) is the event that causes two specific associated 

automata to break free; both events result in state 

changes. Association does not prevent an automaton 

from performing normal interactions or other asso-

ciations, but it prevents it from reassociating on the 

same interface, unless it first dissociates. Association 

and dissociation can be encoded in π-calculus [14] 

(as shown in Appendix: Figure 36), by taking advan-

tage of its most powerful features: fresh channels 

and scope extrusion. That encoding results in flexi-

ble modeling of complexation [19], but does not en-

force constraints on reassociation.  

Here we strive again to remain within the con-

fines of an automata-like framework, including dia-

grammatic descriptions. A formal presentation of 

polyautomata is given in [2], where it is shown that 

they are Turing-complete in conjunction with an 

unbounded supply of a finite number of monomer 

species (and that instead, the automata of Section 2 

can achieve Turing-completeness only with an un-

bounded supply of different species, which means 

infinite-size programs). 

4.2  Polyautomata 

Polyautomata are automata with an association his-

tory, and with additional kinds of interactions that 

modify such history. The main formal difference 

from the automata of Section 2 is that the current 

state now carries with it a set S of current associations.  

 

Figure 36 Polyautomata reactions 

An association is a pair 〈π,k〉 where π is an event la-

bel (?a or !a for the complementary sides of an asso-

ciation), and k is a unique integer identifying an as-

sociation event between two automata. We assume 

that a fresh k can be produced from, e.g., a global 

counter during the evolution of a collective: only 

two automata should have the same k in their asso-

ciations at any given time. This unique k is used to 

guarantee that the same two automata that asso-

ciated in the past will dissociate in the future. 

There can be multiple ways of disassociating 

two automata after a given association; the rates of 

association and of each possible disassociation can 

differ. Therefore, each channel will now be attri-

buted with a list of one or more rates: this is written 

a@r0,...,rn-1 for n ≥ 1. We then say that arity(a)=n. 

If arity(a)=1, then r0 is called the interaction rate, 

because it covers the old case of ordinary interac-
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tions: the old interaction rules from Figure 2 apply 

with r0≡r, with the understanding that the associa-

tion sets are unaffected. If arity(a) ≥ 2, then r0 is the 

association rate, and r1,...,rn-1 are the dissociation rates. 

The association rules from Figure 36 then apply.  

An association (Figure 36 top) on a channel can-

not happen if an automaton has a past association 

event on that channel, as recorded in the current 

state; that is, that particular “surface patch” of the 

automaton is currently occupied and cannot be 

reused. The preconditions ?a∉S (short for 〈?a,k〉∉S 

for any k) and !a∉T, check for such conflicts, where 

S and T are the sets of associations. If a new associa-

tion is possible, then a fresh integer k is chosen and 

stored in the association sets after the transition. The 

transition labels are ?a0 and !a0, indicating an associ-

ation at rate r0 on channel a. In examples we use in-

stead the notation &?a and &!a for these labels, 

where & indicates association, omitting index 0. 

 

Figure 37 Complexation/decomplexation 

Symmetrically, a dissociation (Figure 36 bottom) 

on a channel happens only if the two automata have 

a current association on that channel, as identified 

by the same k in their current states. If a dissociation 

is possible, the corresponding associations are re-

moved from the association sets after the transition 

(+ here is disjoint union), enabling further associa-

tions. The transition labels are ?ai and !ai with i∈1..n-

1, indicating a dissociation at rate ri on channel a. In 

examples we use the notation %?ai and %!ai for these 

labels, where % indicates dissociation; if arity(a)=2 

then we write simply %?a and %!a, omitting index 1. 

4.3  Complexation 

As an example of the association/dissociation nota-

tion, in Figure 37 we consider two automata that 

cyclically associate, moving to bound states Ab, Bb, 

and then dissociate, moving back to free states Af, Bf. 

We also show the association sets under each state, 

although the number k can change at each iteration. 

The yellow cartoon shapes illustrates the mechanics 

of complexation, where complexation channels are 

depicted as complementary surfaces. The plot shows 

that for the chosen rates, the dynamic equilibrium is 

heavily biased towards the bound states. (In this 

section a state Af corresponds to the plot line !A_f.) 

 

Figure 38 Enzymatic reactions 

The use of multiple dissociation rates is exempli-

fied by enzymatic reactions (Figure 38): these are 

now the true enzymatic reactions, not the ones from 

Section 3.4 [19]. From the bound state of enzyme (Eb) 

and substrate (Sb), two dissociations are possible 

with the one at higher rate producing product (P). 

 

Figure 39 Homodimerization 

More subtle forms of complexation exist. Ho-

modimerization (Figure 39) is symmetric complexa-

tion: a monomer offers both an input and an output 

complexation on the same channel, meaning that it 

offers two complementary surfaces, and can stick to 

a copy of itself. Note that a monomer here cannot 

bind to two other monomers over its two comple-

mentary surfaces. That situation leads to polymeri-

zation, as shown next. 

4.4  Polymerization 

A polymer is obtained by the unbounded combina-

tion of monomers out of a finite set of monomer 

shapes. There are many forms of polymerization; 

here we consider just two basic linear ones. 

In linear bidirectional polymerization, each mo-

nomer can join other monomers on one of two com-

plementary surfaces, without further restrictions. 

Therefore, two polymers can also join in the same 
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way, and a single polymer can form a loop (al-

though a single monomer cannot). For simplicity, 

we do not allow these polymers to break apart.  

Figure 40 Bidirectional polymerization 

In Figure 40 we show a monomer automaton 

that can be in one of four states: Af (free), Al (bound 

on the left), Ar bound on the right), and Ab (bound 

on both sides, with two association events). The se-

quence of transitions is from free, to bound on either 

side, to bound on both sides. There are four possible 

input/output associations between two monomers, 

indicated by the red dashed arrows in the figure. 

Number 1 is the association of two free monomers in 

state Af: one becomes bound to the left (Al) and the 

other bound to the right (Ar). Number 2 is the asso-

ciation of a free monomer with the leftmost mono-

mer of a polymer (a monomer bound to the right): 

the free monomer becomes bound to the right and 

the leftmost monomer becomes bound on both sides 

(Ab). Number 3 is the symmetric situation of a free 

monomer binding to the right of a polymer. Number 

4 is the leftmost monomer of a polymer binding to 

the rightmost monomer of another polymer (or pos-

sibly of the same polymer, forming a loop, as long as 

the two monomers are distinct). Figure 41 is a sche-

matic representation of some possible configurations 

of monomers, with thick lines joining their current 

states and representing their current associations. 

 

Figure 41 Automata polymers 

The plot in Figure 40 shows the result of a fairly 

typical simulation run with 1000 monomers. When 

all the monomers are fully associated, we are left 

with a number of circular polymers: the plot is ob-

tained by scanning the circular polymers after they 

stabilize. The horizontal axis is discrete and counts 

the number of such polymers (9 in this case). Each 

vertical step corresponds to the length of one of the 

circular polymers (polymers are picked at random 

for plotting: the vertical steps are not sorted by size). 

It is typical to find one very long polymer in the set 

(~800 in this case), and a small number of total po-

lymers (<10). 

We now consider a different form of polymeri-

zation, inspired by the actin biopolymer, which can 

grow only at one end and shrink only at the other 

end. In Figure 42 we have the same four monomer 

states, but the sequencing of transitions is different. 

Figure 42 Actin-like polymerization 

There are four possible input/output associa-

tions between two monomers, indicated by the red 

dashed arrows in the figure. Number 1 is the associ-

ation of two free monomers in states Af: one be-

comes bound to the left (Al) and the other bound to 

the right (Ar). Number 4 is the breakup of a polymer 

made of just two monomers, one that is bound to the 

left and one that is bound to the right; they both re-

turn free. Number 2 is the association of a free mo-

nomer with the rightmost monomer of a polymer (a 

monomer bound to the left): the free monomer be-

comes bound to the left and the rightmost monomer 

becomes bound on both sides (Ab). Number 3 is the 

dissociation of a monomer bound to the right, from 

the leftmost monomer to its right which is bound on 

both sides; one becomes a free monomer and the 

other remains bound to the right. Loops cannot form 

here, because if we have a monomer bound to the 

left and one bound to the right (which could be the 

two ends of the same polymer), then there is no inte-

raction that can make them bound on both sides.  

The plots in Figure 42 show three views of the 

same simulation run with 1000 monomers, at times 

0.01, 0.25, and 35; all rates are 1.0. During an initial 

quick transient the number of Ab and of Al=Ar tem-

porarily stabilize, each approaching level 333 (with 

average polymer length 3). Ab crosses over at time 

0.02 and then slowly grows until Al=Ar=100 around 

Af

Ab

ArAl

&?a &!a

&!a &?a

1

2

4

3

Af Af Ar Al

Al/f Al/bAb/rAf/r

1

1..4

Monomer 

1000×Af , r0 = 1.0

{}

{〈?a,k〉} {〈!a,k’〉}

{〈?a,k〉,〈!a,k’〉}

Af

Ab

ArAl

&!a &?a

&?a %!a

1

3

4

2

%!a %?a

Monomer 

Af/rAr Al/b

AlAf

Af

Al/f Ar/b

1,2

3,4

1000×Af , r0 = 1.0, r1 = 1.0

{}

{〈!a,k〉} {〈?a,k’〉}

{〈!a,k〉,〈?a,k’〉}



2009-03-30 06:01:44 18 

time 35, meaning that the final number of polymers 

is ~100 with average length ~10. 

Figure 43 shows in detail a typical sequence of 

interactions among three monomers, with two asso-

ciations followed by two dissociations. At each step 

we show the possible interactions by dashed red 

arrows connecting the enabled transitions. The thick 

lines indicate the current associations, which are 

actually encoded in the association sets shown un-

der the current states, by the shared k and j. 

 

Figure 43 Typical monomer interactions 

Note that in state Ab, the association set has the form 

{〈!a,k〉,〈?a,j〉}. This illustrates the need to store !a and 

?a separately in the history: if we recorded only the 

channel, 〈a,k〉, then the second association for 〈a,j〉 

would be prevented because the set would already 

contain the channel a. And if we modified the occur-

rence check to allow storing distinct pairs 〈a,k〉, 〈a,j〉, 

this would allow arbitrary reassociations on the 

same channel. 

In conclusion, polyautomata provide a relatively 

simple graphical notation for representing combina-

torial systems of interacting and complexing mole-

cules. Systems that grow without bounds by com-

plexation can be represented compactly and finitely: 

this would not be possible using the automata of 

Section 2 or, in fact, using chemical reactions. 

5  Conclusions and Related Work 

Despite ongoing conscious efforts, biochemistry is 

still lacking an adequate notation for describing 

large and complex biological models in a composi-

tional, parameterizable, and scalable way [11]. For-

mal notations (such as programming languages and 

process algebras) are fundamental tools for achiev-

ing those goals: they enable engineering and analy-

sis techniques that are orthogonal to the ones availa-

ble by mathematical models (such as set theory, calcu-

lus, and Markov chains). In computing, adequate 

notation is key to the maintainability of large infor-

mation processing systems consisting of millions of 

lines of code, whose complexity is dwarfed only by 

biological systems. Noticeably, information 

processing systems are not written using differential 

equations, nor set theory, because those are not use-

ful tools in that domain. 

Still, it is always important to relate formal nota-

tion to mathematical models. We have used automa-

ta notation for exploring simple but intriguing bio-

chemical systems, aiming to demonstrate how easy 

it is to “play with” the notation to get insights into a 

system. We have shown, by example, how to relate 

the interacting automata notation to stochastic be-

havior and to differential equations. For a full de-

velopment, the process algebra foundations for this 

work are found in [1], which connects the stochastic 

π-calculus approach to modeling biochemistry [19], 

to stochastic and deterministic chemical kinetics 

[24]. Additionally, foundations for Section 4 are 

found in [2]. 

The use of compositional, graphical, formal no-

tation has been long advocated [6], but most graphi-

cal notations in systems biology still lack such fun-

damental properties. Our automata are at least com-

positional, but are neither parameterizable nor scal-

able, unless they are embedded in the richer frame-

work of process algebras, which has all such proper-

ties. Our diagrams are based on previous work on 

the graphical representation of the whole π-calculus 

[16]. Dealing with the full π-calculus however means 

having to graphically represent, in general, bound 

variables. The full π-calculus also seems excessive 

for use in biochemical models, both semantically 

and graphically.  Therefore, while the diagrams in 

Sections 1-3 are essentially a reduced version of the 

ones in [16], the diagrams in Section 4 opt to use op-

erators instead of bound variables to deal with the 

important biochemical operation of complexation, 

and enforce also an invariant against reassociation of 

occupied sites. 

The pragmatics of graphical and formal notation 

for the biochemical domain still requires investiga-

tion. It has taken decades to develop adequate nota-

tions and analysis techniques for large software and 

hardware systems; we are just at the beginning to do 

the same for biochemical systems, where the task 

will certainly be much harder. 
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Appendix: Simulations 

These scripts are for the SPiM Player stochastic π-calculus simula-

tor v1.13 [15], and Matlab 7.4.0 (ode45). The core SPiM syntax 

maps directly to stochastic π-calculus [17][18]. The SPiM scripts 

are complete and executable, and usually are a literal translation 

of the automata in the figures, with some additional code for 

plotting directives and for test signals. Figure 2 and Figure 36 

instead outline the encoding of automata used in the other scripts. 

 

Figure 2: Automata reactions 
SPiM encoding of Delay at rate r from state A to state B, then 

running 100 automata with initial state A: 
 
let A() = delay@r; B()   and B() = ... 

run 100 of A() 
 

Encoding of Interaction: an input ?a from state A1 to A2 and an 

ouput !a from state B1 to B2, over a channel of rate r, between two 

concurrent automata initially in states A1 and B1. 
 
new a@r:chan 

let A1() = ?a; A2()   and A2() = ... 

let B1() = !a; B2()   and B2() = ... 

run (A1() | B1()) 
 

SPiM encoding of multiple transitions (a delay, an input, and an 

output) from the same state A to three different states: 
 

let A() = do delay@r; B1() or ?a; B2() or !b; B3() 
 

Figure 3: Celebrity automata 
 
directive sample 0.1 

directive plot A(); B() 
 
new a@1.0:chan 

new b@1.0:chan 
 
let A() = do !a; A() or ?a; B() 

and B() = do !b; B() or ?b; A() 
 
run 100 of (A() | B()) 
 

Figure 5: Groupie automata 
 
directive sample 2.0 

directive plot A(); B() 
 
new a@1.0:chan 

new b@1.0:chan 
 
let A() = do !a; A() or ?b; B() 

and B() = do !b; B() or ?a; A() 
 
run 100 of (A() | B()) 
 

Figure 6: Both together 
 
directive sample 10.0 

directive plot Ag(); Bg(); Ac(); Bc() 
 
new a@1.0:chan 

new b@1.0:chan 
 
let Ac() = do !a; Ac() or ?a; Bc() 

and Bc() = do !b; Bc() or ?b; Ac() 
 
let Ag() = do !a; Ag() or ?b; Bg() 

and Bg() = do !b; Bg() or ?a; Ag() 
 
run 1 of Ac() 

run 100 of (Ag() | Bg()) 
 

Figure 7: Hysteric groupies 
 
directive sample 10.0 

directive plot A(); B() 
 
new a@1.0:chan 

new b@1.0:chan 
 
let A() = do !a; A() or ?b; ?b; ?b; B() 

and B() = do !b; B() or ?a; ?a; ?a; A() 
 
let Ad() = !a; Ad() 

and Bd() = !b; Bd() 
 
run 100 of (A() | B()) 

run 1 of (Ad() | Bd()) 

 

Figure 9: Sequence of delays 
 
directive sample 20.0  

directive plot S1(); S2(); S3(); S4(); S5(); S6(); 

S7(); S8(); S9(); S10() 
 
let S1() = delay@1.0; S2() and S2() = delay@1.0;S3() 

and S3() = delay@1.0; S4() and S4() = delay@1.0; S5() 

and S5() = delay@1.0; S6() and S6() = delay@1.0; S7() 

and S7() = delay@1.0; S8() and S8() = delay@1.0; S9() 

and S9() = delay@1.0; S10() and S10() = () 
 
run 10000 of S1() 
 

Figure 11: All 3 reactions in 1 automaton 
 
directive sample 0.02 

directive plot A(); B() 
 
new a@1.0:chan 

new b@1.0:chan 
 
let A() = do !a; A() or !b; A() or ?b; B() 

and B() = do delay@1.0; A() or ?a; A() 
 
run 1000 of  B() 
 

Figure 12: Same behavior 
 
directive sample 0.02 

directive plot A(); B() 
 
new a@1.0:chan 

new b@0.5:chan 
 
let A() = do !a; A() or !b; B() or ?b; B() 

and B() = do delay@1.0; A() or ?a; A() 
 
run 1000 of  B() 
 

Figure 13: Sequence of interactions 
 
directive sample 0.02 

directive plot A1(); A2(); A3(); A4(); A5(); A6(); 

A7(); A8(); A9(); A10() 
 
new a1@1.0:chan new a2@1.0:chan new a3@1.0:chan  

new a4@1.0:chan new a5@1.0:chan new a6@1.0:chan  

new a7@1.0:chan new a8@1.0:chan new a9@1.0:chan  
 
let A1() = ?a1; A2() and B1() = !a1; B2() 

and A2() = ?a2; A3() and B2() = !a2; B3() 

and A3() = ?a3; A4() and B3() = !a3; B4() 

and A4() = ?a4; A5() and B4() = !a4; B5() 

and A5() = ?a5; A6() and B5() = !a5; B6() 

and A6() = ?a6; A7() and B6() = !a6; B7() 

and A7() = ?a7; A8() and B7() = !a7; B8() 

and A8() = ?a8; A9() and B8() = !a8; B9() 

and A9() = ?a9; A10() and B9() = !a9; B10() 

and A10() = () and B10() = () 
 
run 5000 of (A1() | B1()) 
 

Figure 14: Zero order reactions 
 
directive sample 1000.0 

directive plot S(); P(); E() 
 
new a@1.0:chan 
 
let E() = !a; delay@1.0; E() 

and S() = ?a; P() 

and P() = () 
 
run (1 of  E() | 1000 of S()) 
 

Figure 15: Subtraction 
 
directive sample 20.0 1000 

directive plot E(); F() 
 
new a@1.0:chan  
 
let E() = ?a; delay@1.0; E() 

and F() = !a; delay@1.0; F() 
 
let raising(p:proc(), t:float) =   

(* Produce one p() every t sec with precision dt *) 

  (val dt= 100.0 run step(p, t, dt, dt)) 

and step(p:proc(), t:float, n:float, dt:float) = 

   if n<=0.0 then (p()|step(p,t,dt,dt))  

   else delay@dt/t; step(p,t,n-1.0,dt) 
 
run 1000 of F() 

run raising(E,0.01) 
 

 

directive sample 20.0 1000 
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directive plot E(); F() 
 
new a@1.0:chan  
 
let E() = ?a; E() 

and F() = !a; F() 
 
let raising(p:proc(), t:float) =  

  ... see code for Figure 15 
 
run 1000 of F() 

run raising(E,0.01) 
 

Figure 16: Ultrasensitivity 
 
directive sample 215.0 

directive plot E();F();S();P();ES();FP() 
 
new a@1.0:chan new b@1.0:chan 
 
let S() = ?a; P() 

and P() = ?b; S() 
 
let E() = !a; ES() 

and ES() = delay@1.0; E() 

and F() = !b; FP() 

and FP() = delay@1.0; F() 
 
run 1000 of S() 
 
let raising(p:proc(), t:float) =  

  ... see code for Figure 15 
 
run 100 of F() 

run raising(E,1.0) 
 

Figure 17: Positive feedback transition 
 
directive sample 0.02 1000 

directive plot B(); A() 
 
val s=1.0 
 
new b@s:chan 

let A() = ?b; B() 

and B() = !b;B() 
 
run (1000 of A() | 1 of B()) 
 

Figure 18: Bell shape 
 
directive sample 0.003 1000 

directive plot B(); A(); C() 
 
new b@1.0:chan new c@1.0:chan 
 
let A() = ?b; B() 

and B() = do !b;B() or ?c; C() 

and C() = !c;C() 
 
run ((10000 of A()) | B() | C()) 
 

Figure 19: Oscillator 
 
directive sample 0.03 1000 

directive plot A(); B(); C() 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 

let A() = do !a;A() or ?b; B() 

and B() = do !b;B() or ?c; C() 

and C() = do !c;C() or ?a; A() 
 
run (900 of A() | 500 of B() | 100 of C()) 
 

Figure 20: Positive two-stage feedback 
 
directive sample 0.1 1000 

directive plot B(); A(); A1() 
 
val s=1.0 
 
new c@s:chan 

let A() = ?c; A1() 

and A1() = ?c; B() 

and B() = !c;B() 
 
run (1000 of A() | 1 of B()) 
 

Figure 21: Square shape 
 
directive sample 0.2 1000 

directive plot B(); A(); A1(); B1(); C() 
 
new b@1.0:chan new c@1.0:chan 
 
let A() = ?b; A1() 

and A1() = ?b; B() 

and B() = do !b;B() or ?c; B1() 

and B1() = ?c; C() 

and C() = !c;C() 

 
run ((1000 of A()) | B() | C()) 
 

Figure 22: Hysteric 3-way groupies 
 
directive sample 0.5 1000 

directive plot A(); B(); C() 
 
new a@1.0:chan 

new b@1.0:chan 

new c@1.0:chan 
 
let A() = do !a; A() or ?c; ?c; C() 

and B() = do !b; B() or ?a; ?a; A() 

and C() = do !c; C() or ?b; ?b; B() 
 
let Ad() = !a; Ad() 

and Bd() = !b; Bd() 

and Cd() = !c; Cd() 
 
run 1000 of A() 

run 1 of (Ad() | Bd() | Cd()) 
 

Figure 23: Second-order cascade 
 
directive sample 0.03 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 
 
let Amp_hi(a:chan, b:chan) =  

  do !b; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b) 

and Amp_lo(a:chan, b:chan) =  

  ?a; Amp_hi(a,b) 
 
run 1000 of (Amp_lo(a,b) | Amp_lo(b,c)) 
 
let A() = !a; A() 

run 100 of A() 
 

Figure 24: Zero-order cascade 
 
directive sample 0.01 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 
 
let Amp_hi(a:chan, b:chan) =  

  do !b; delay@1.0; Amp_hi(a,b)  

  or delay@1.0; Amp_lo(a,b) 

and Amp_lo(a:chan, b:chan) =  

  ?a; Amp_hi(a,b) 
 
run 1000 of (Amp_lo(a,b) | Amp_lo(b,c)) 
 
let A() = !a; delay@1.0; A() 

run 100 of A() 
 

 

directive sample 20.0 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 
 
let Amp_hi(a:chan, b:chan) =  

  do !b; delay@1.0; Amp_hi(a,b)  

  or delay@1.0; Amp_lo(a,b) 

and Amp_lo(a:chan, b:chan) =  

  ?a; Amp_hi(a,b) 
 
run 1000 of (Amp_lo(a,b) | Amp_lo(b,c)) 
 
let A() = !a; delay@1.0; A() 

run 100 of A() 
 

Figure 25: Zero-order transduction 
 
directive sample 10.0 

directive plot !a; !b 
 
new a@1.0:chan new b@1.0:chan 
 
let Amp_hi(a:chan, b:chan) =  

  do !b; delay@1.0; Amp_hi(a,b)  

  or delay@1.0; Amp_lo(a,b) 

and Amp_lo(a:chan, b:chan) =  

  ?a; Amp_hi(a,b) 
 
run 1000 of Amp_lo(a,b) 
 
let A() = !a; delay@1.0; A() 

run 900 of A() 
 

Figure 26: Second-order double cascade 
 
directive sample 0.03 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 
 
let Amp_hi(a:chan, b:chan) =  

  do !b; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b) 
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and Amp_lo(a:chan, b:chan) =  

  ?a; ?a; Amp_hi(a,b) 
 
run 1000 of (Amp_lo(a,b) | Amp_lo(b,c)) 
 
let A() = !a; A() 

run 100 of A() 
 

Figure 27: Zero-order double cascade 
 
directive sample 0.03 

directive plot !a; !b 
 
new a@1.0:chan new b@1.0:chan 
 
let Amp_hi(a:chan, b:chan) =  

  do !b; delay@1.0; Amp_hi(a,b)  

  or delay@1.0; Amp_lo(a,b) 

and Amp_lo(a:chan, b:chan) =  

  ?a; ?a; Amp_hi(a,b) 
 
run 1000 of Amp_lo(a,b) 
 
let A() = !a; delay@1.0; A() 

run 2000 of A() 
 

Figure 28: Simple inverter 
 
directive sample 110.0 1000 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 
 
let Inv_hi(a:chan, b:chan) =  

  do !b; Inv_hi(a,b)  

  or ?a; Inv_lo(a,b) 

and Inv_lo(a:chan, b:chan) =  

  delay@1.0; Inv_hi(a,b) 
 
run 100 of (Inv_hi(a,b) | Inv_lo(b,c)) 
 
let clock(t:float, tick:chan) = 
  (val dt=100.0 run step(tick, t, dt, dt)) 
and step(tick:chan, t:float, n:float, dt:float) =  
  if n<=0.0 then !tick; clock(t,tick)  
  else delay@dt/t; step(tick,t,n-1.0,dt) 
let S1(a:chan, tock:chan) =   
  do !a; S1(a,tock) or ?tock; () 
and SN(n:int, t:float, a:chan, tick:chan, tock:chan) =  
  if n=0 then clock(t, tock)  
  else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock)) 
let raisingfalling(a:chan, n:int, t:float) =  
  (new tick:chan new tock:chan  
   run (clock(t,tick) | SN(n,t,a,tick,tock))) 
 
run raisingfalling(a,100,0.5) 
 

 

directive sample 15.0 1000 

directive plot !a; !b; !c; !d; !e; !f 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 

new d@1.0:chan new e@1.0:chan new f@1.0:chan 
 
let Inv_hi(a:chan, b:chan) =  

  do !b; Inv_hi(a,b)  

  or ?a; Inv_lo(a,b) 

and Inv_lo(a:chan, b:chan) =  

  delay@1.0; Inv_hi(a,b) 
 
run 100 of (Inv_lo(a,b) | Inv_lo(b,c)  

| Inv_lo(c,d) | Inv_lo(d,e) | Inv_lo(e,f)) 
 

 

directive sample 2.0 1000 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 
 
let Inv_hi(a:chan, b:chan) =  

  do !b; Inv_hi(a,b)  

  or ?a; Inv_lo(a,b) 

and Inv_lo(a:chan, b:chan) =  

  delay@1.0; Inv_hi(a,b) 
 
run 100 of (Inv_hi(a,b) | Inv_lo(b,c) | Inv_lo(c,a)) 
 

Figure 29: Feedback inverter 
 
directive sample 110.0 1000 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 
 
let Inv_hi(a:chan, b:chan) =  

  do !b; Inv_hi(a,b) or ?a; Inv_lo(a,b) 

and Inv_lo(a:chan, b:chan) =  

  do delay@1.0; Inv_hi(a,b) 

  or ?b; Inv_hi(a,b) 
 
run 100 of (Inv_hi(a,b) | Inv_lo(b,c)) 
 
let raisingfalling(a:chan, n:int, t:float) =  

  ... see code for Figure 28 
 
run raisingfalling(a,100,0.5) 

 
 

 

directive sample 1.0 1000 

directive plot !a; !b; !c; !d; !e; !f 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 

new d@1.0:chan new e@1.0:chan new f@1.0:chan 
 
let Inv_hi ... and Inv_lo ... 

 ... see code above 
 
run 100 of (Inv_lo(a,b) | Inv_lo(b,c)  

| Inv_lo(c,d) | Inv_lo(d,e) | Inv_lo(e,f)) 
 

 

directive sample 2.0 1000 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 
 
let Inv_hi ... and Inv_lo ... 

 ... see code above 
 
run 100 of (Inv_hi(a,b) | Inv_lo(b,c) | Inv_lo(c,a)) 
 

Figure 30: Double-height inverter 
 
directive sample 110.0 1000 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 
 
let Inv2_hi(a:chan, b:chan) =  

  do !b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b) 

and Inv2_mi(a:chan, b:chan) =  

  do delay@1.0; Inv2_hi(a,b) 

  or ?a; Inv2_lo(a,b) 

and Inv2_lo(a:chan, b:chan) =  

  delay@1.0; Inv2_mi(a,b) 
 
run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c)) 
 
let raisingfalling(a:chan, n:int, t:float) =  

  ... see code for Figure 28 
 
run raisingfalling(a,100,0.5) 
 

 

directive sample 15.0 1000 

directive plot !a; !b; !c; !d; !e; !f 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 

new d@1.0:chan new e@1.0:chan new f@1.0:chan 
 
let Inv2_hi ... and Inv2_lo ... 

 ... see code above 
 
run 100 of (Inv2_lo(a,b) | Inv2_lo(b,c)  

| Inv2_lo(c,d) | Inv2_lo(d,e) | Inv2_lo(e,f)) 
 

 

directive sample 2.0 1000 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 
 
let Inv2_hi ... and Inv2_lo ... 

 ... see code above 
 
run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c) | Inv2_lo(c,a)) 
 

Figure 31: Double-height feedback inverter 
 
directive sample 110.0 1000 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 
 
let Inv2_hi(a:chan, b:chan) =  

  do !b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b) 

and Inv2_mi(a:chan, b:chan) =  

  do delay@1.0; Inv2_hi(a,b) 

  or ?a; Inv2_lo(a,b) 

  or ?b; Inv2_hi(a,b) 

and Inv2_lo(a:chan, b:chan) =  

  do delay@1.0; Inv2_mi(a,b) 

  or ?b; Inv2_mi(a,b) 
 
run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c)) 
 
let raisingfalling(a:chan, n:int, t:float) =  

  ... see code for Figure 28 
 
run raisingfalling(a,100,0.5) 
 

 

directive sample 1.0 1000 

directive plot !a; !b; !c; !d; !e; !f 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 

new d@1.0:chan new e@1.0:chan new f@1.0:chan 
 
let Inv2_hi ... and Inv2_lo ... 

 ... see code above 
 
run 100 of (Inv2_lo(a,b) | Inv2_lo(b,c)  

| Inv2_lo(c,d) | Inv2_lo(d,e) | Inv2_lo(e,f)) 
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directive sample 2.0 1000 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 
 
let Inv2_hi ... and Inv2_lo ... 

 ... see code above 
 
run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c) | Inv2_lo(c,a)) 
 

Figure 32: Or and And 
 
directive sample 10.0 1000 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 

val del = 1.0 
 
let Or_hi(a:chan, b:chan, c:chan) =  

  do !c; Or_hi(a,b,c) or delay@del; Or_lo(a,b,c) 

and Or_lo(a:chan, b:chan, c:chan) =  

  do ?a; Or_hi(a,b,c) or ?b; Or_hi(a,b,c) 
 
run 1000 of Or_lo(a,b,c) 
 
let clock(t:float, tick:chan) = 

  (val dt=100.0 run step(tick, t, dt, dt)) 

and step(tick:chan, t:float, n:float, dt:float) =  

  if n<=0.0 then !tick; clock(t,tick)  

  else delay@dt/t; step(tick,t,n-1.0,dt) 

 

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; () 

let S_b(tick:chan) = ?tick; S_b1(tick) 

and S_b1(tick:chan) =  

  do !b; S_b1(tick) or ?tick; S_b2(tick) 

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; () 
 
let many(n:float, p:proc(float), nt:float) = 

if n<=0.0 then () else (p(nt) | many(n-1.0, p, nt)) 
 
let BoolInputs(n:float, nt:float, m:float, mt:float) = 

(run many(n, Sig_a, nt) run many(m, Sig_b, mt)) 

and Sig_a(nt:float) =  

  (new tick:chan run (clock(nt,tick) | S_a(tick))) 

and Sig_b(mt:float) =  

  (new tick:chan run (clock(mt,tick) | S_b(tick))) 
 
run BoolInputs(100.0, 4.0, 100.0, 2.0) 
 

 

directive sample 10.0 1000 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 

val del = 1.0 
 
let And_hi(a:chan, b:chan, c:chan) =  

  do !c; And_hi(a,b,c) or delay@del; And_lo_a(a,b,c) 

and And_lo_a(a:chan, b:chan, c:chan) =  

  do ?a; And_hi(a,b,c) or delay@del; And_lo_b(a,b,c) 

and And_lo_b(a:chan, b:chan, c:chan) =  

  ?b; And_lo_a(a,b,c) 
 
run 1000 of And_lo_b(a,b,c) 
 
let BoolInputs(n:float, nt:float, m:float, mt:float) = 

  ... see code for Figure 32 
 
run BoolInputs(100.0, 4.0, 100.0, 2.0) 
 

Figure 33: Imply and Xor 
 
directive sample 15.0 1000 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 

val del = 1.0 
 
let Imply_hi_a(a:chan, b:chan, c:chan) =  

  do !c; Imply_hi_a(a,b,c) or ?a; Imply_lo(a,b,c) 

and Imply_hi_b(a:chan, b:chan, c:chan) =  

  do !c; Imply_hi_b(a,b,c)  

  or delay@del; Imply_lo(a,b,c) 

and Imply_lo(a:chan, b:chan, c:chan) =  

  do ?b; Imply_hi_b(a,b,c)  

  or delay@del; Imply_hi_a(a,b,c) 
 
run 1000 of Imply_lo(a,b,c) 
 
let BoolInputs(n:float, nt:float, m:float, mt:float) = 

  ... see code for Figure 32 
 
run BoolInputs(100.0, 4.0, 100.0, 2.0) 
 

 

directive sample 20.0 1000 

directive plot !a; !b; !c 
 
new a@1.0:chan new b@1.0:chan new c@1.0:chan 
 
let Xor_hi_a(a:chan, b:chan, c:chan) =  

  do !c; Xor_hi_a(a,b,c) or ?b; Xor_lo_ab(a,b,c)  

  or delay@1.0; Xor_lo_a(a,b,c)  

and Xor_hi_b(a:chan, b:chan, c:chan) =  

  do !c; Xor_hi_b(a,b,c) or ?a; Xor_lo_ab(a,b,c)  

  or delay@1.0; Xor_lo_b(a,b,c)  

and Xor_lo_a(a:chan, b:chan, c:chan) =  

  do ?a; Xor_hi_a(a,b,c) or ?b; Xor_lo_ab(a,b,c) 

and Xor_lo_b(a:chan, b:chan, c:chan) =  

  do ?b; Xor_hi_b(a,b,c) or ?a; Xor_lo_ab(a,b,c) 

and Xor_lo_ab(a:chan, b:chan, c:chan) =  

  do delay@1.0; Xor_hi_a(a,b,c)  

  or delay@1.0; Xor_hi_b(a,b,c) 
 
run 500 of (Xor_lo_a(a,b,c) | Xor_lo_b(a,b,c)) 
 
let BoolInputs(n:float, nt:float, m:float, mt:float) = 

  ... see code for Figure 32 
 
run BoolInputs(100.0, 8.0, 100.0, 4.0) 
 

Figure 34: Memory Elements 
 
(* Top Left, Top Center *)  

directive sample 0.1 

directive plot A(); B(); C() 
 
new a@1.0:chan 

new b@1.0:chan 
 
let A() = do !a; A() or ?b; C() 

and C() = do ?a; A() or ?b; B() 

and B() = do !b; B() or ?a; C() 
 
run 100 of (A() | B()) 
 

 

(* Bottom Left *) 
directive sample 1.0 

directive plot A(); B(); C() 
 
new a@1.0:chan 

new b@1.0:chan 
 
let A() = do !a; A() or ?b; C() 

and C() = do ?a; A() or ?b; B() 

and B() = do !b; B() or ?a; C() 
 
let Ad() = !a; Ad() 

and Bd() = !b; Bd() 
 
run 100 of (A() | B()) 

run 10 of (Ad() | Bd()) 
 

 

(* Bottom Center *) 

directive sample 0.6 

directive plot A(); B(); C() 
 
new a@1.0:chan 

new b@1.0:chan 
 
let A() = do !a; A() or ?b; C() 

and C() = do ?a; A() or ?b; B() 

and B() = do !b; B() or ?a; C() 
 
let Ad() = !a; Ad() 
 
run 100 of (A() | B()) 

run 100 of delay@10.0; delay@10.0; delay@10.0;  

           delay@10.0; delay@10.0;  Ad() 
 

Figure 35: Discrete vs. Continuous Modeling 
 
(* Top Left *)                 initially 

(A)  dx1/dt = -(x1-x2)         x1 = 2000.0 

(B)  dx2/dt = (x1-x2)          x2 = 0.0 
 

 

(* Top Center *)               initially 
(A)  dx1/dt=x1*x4-x3*x1-x1+x4  x1 = 2000.0 

(A’) dx2/dt=x3*x1-x3*x2+x1-x2  x2 = 0.0 

(B)  dx3/dt=x3*x2-x1*x3-x3+x2  x3 = 0.0 

(B’) dx4/dt=x1*x3-x1*x4+x3-x4  x4 = 0.0 
 

 

(* Top Right *)                initially  

(A)  dx1/dt=x1*x6-x3*x1-x1+x6  x1 = 2000.0 

(A’) dx2/dt=x3*x1-x3*x2+x1-x2  x2 = 0.0 

(A”) dx5/dt=x3*x2-x3*x5+x2-x5  x5 = 0.0 

(B)  dx3/dt=x3*x5-x1*x3-x3+x5  x3 = 0.0 

(B’) dx4/dt=x1*x3-x1*x4+x3-x4  x4 = 0.0 

(B”) dx6/dt=x1*x4-x1*x6+x4-x6  x6 = 0.0 
 

 

(* Bottom Left *) 

directive sample 5.0 1000 

directive plot B(); A() 
 
new a@1.0:chan 

new b@1.0:chan 
 
let A() = do !a; A() or ?b; B() 

and B() = do !b; B() or ?a; A() 
 
let Ad() = !a; Ad() 

and Bd() = !b; Bd() 
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run 2000 of A()  

run 1 of (Ad() | Bd()) 
 

 

(* Bottom Center *) 

Same as Bottom Left, except: 

let A() = do !a; A() or ?b; ?b; B() 

and B() = do !b; B() or ?a; ?a; A() 
 

 

(* Bottom Right *) 

Same as Bottom Left, except: 

let A() = do !a; A() or ?b; ?b; ?b; B() 

and B() = do !b; B() or ?a; ?a; ?a; A() 
 

Figure 36: Polyautomata reactions 
SPiM encoding of Association over channel a@r0,r1  of arity 1, with 

one automaton performing an output from state A to A1 and the 

other automaton performing an input from state B to B1: 
 
new a@r0:chan(chan) 

let A() = (new k1@r1:chan run !a(k1); A1(k1)) 

and B() = ?a(k1); B1(k1) 
 

Encoding of Dissociation through the previously shared k1. 
 
and A1(k1:chan) = !k1; A() 

and B1(k1:chan) = ?k1; B() 
 

More generally, for a@r0,...,rn-1 we declare an (n-1)-ary channel: 
 
new a@r0:chan(chan,...,chan)     (*n-1 times*) 
 

Association then creates n-1 shared dissociation channels: 
 
let A() = (new k1@r1:chan ... new kn-1@rn-1:chan 

    run !a(k1,...,kn); A1(k1,...,kn)) 
 

and then A1 can choose which channel to use for dissociation. 

Note that the constraint about not reassociating before a dissocia-

tion is not automatically enforced by this encoding. 
 
 

Figure 37: Complexation/decomplexation 
 
directive sample 0.005 

directive plot !A_f; !A_b; !B_f; !B_b 

new A_f:chan new A_b:chan new B_f:chan new B_b:chan 
 
val mu = 1.0    val lam = 1.0 

new a@mu:chan(chan) 
 
let Af() = (new k@lam:chan run do !a(k); Ab(k) or !A_f) 

and Ab(k:chan) = do !k; Af() or !A_b 
 
let Bf() = do ?a(k); Bb(k) or !B_f 

and Bb(k:chan) = do ?k; Bf() or !B_b 
 
run (1000 of Af() | 500 of Bf()) 
 

Figure 38: Enzymatic reactions 
 
directive sample 0.05 1000 

directive plot !E_f; !E_b; !S_f; !S_b; !P_ 

new E_f:chan new E_b:chan  

new S_f:chan new S_b:chan new P_:chan 
 
val r0 = 1.0    val r1 = 1.0    val r2 = 100.0 

new a@r0:chan(chan,chan) 
 
let P() = !P_ 
 
let Ef() =  

   (new k1@r1:chan new k2@r2:chan  

    run do !a(k1,k2); Eb(k1,k2) or !E_f) 

and Eb(k1:chan,k2:chan) =  

  do !k1; Ef() or !k2; Ef() or !E_b 
 
let Sf() = do ?a(k1,k2); Sb(k1,k2) or !S_f 

and Sb(k1:chan,k2:chan) =  

  do ?k1; Sf() or ?k2; P() or !S_b 
 
run (1000 of Ef() | 2000 of Sf()) 
 

Figure 39: Homodimerization 
 
directive sample 0.005 10000 

directive plot !A_f; !A_i; !A_o 

new A_f:chan new A_i:chan new A_o:chan 
 
new a@1.0:chan(chan) 
 
let Af() =  

  (new k@1.0:chan  

   run do ?a(k); Ai(k) or !a(k); Ao(k) or !A_f) 
 
and Ai(k:chan) = do ?k; Af() or !A_i 
 

and Ao(k:chan) = do !k; Af() or !A_o 
 
run 1000 of Af()  
 

Figure 40: Bidirectional polymerization 
 
directive sample 1000.0 

directive plot ?count 
 
type Link = chan(chan) 

type Barb = chan 
 
val lam = 1000.0 (* set high for better counting *) 

val mu = 1.0 

new c@mu:chan(Link) 

new enter@lam:chan(Barb) 

new count@lam:Barb 
 
let Af() =  

  (new rht@lam:Link run 

   do !c(rht); Ar(rht) 

   or ?c(lft); Al(lft)) 
 
and Al(lft:Link) =  

  (new rht@lam:Link run 

   !c(rht); Ab(lft,rht)) 
 
and Ar(rht:Link) =  

   ?c(lft); Ab(lft,rht) 
 
and Ab(lft:Link, rht:Link) = 

  do ?enter(barb); (?barb | !rht(barb)) 

  or ?lft(barb); (?barb | !rht(barb)) 

(* each Abound waits for a barb, exhibits it, and 

passes it to the right so we can plot number of Abound 

in a ring *) 
 
let clock(t:float, tick:chan) = 
  (val dt=100.0 run step(tick, t, dt, dt)) 
and step(tick:chan, t:float, n:float, dt:float) =  
  if n<=0.0 then !tick; clock(t,tick) else delay@dt/t; 
step(tick,t,n-1.0,dt) 
 
new tick:chan 

let Scan() = ?tick; !enter(count); Scan() 
 
run 1000 of Af()  

run (clock(100.0, tick) | Scan()) 
 

Figure 42: Actin-like polymerization 
 
directive sample 0.01 (* 0.25, 35.0 *) 1000 

directive plot !A_f; !A_l; !A_r; !A_b 

new A_f:chan new A_l:chan new A_r:chan new A_b:chan 
 
val lam = 1.0 (* dissoc *) 

val mu = 1.0 (* assoc *) 

new c@mu:chan(chan) 
 
let Af() =  

  (new lft@lam:chan run 

   do !c(lft); Al(lft) 

   or ?c(rht); Ar(rht) or !A_f) 
 
and Al(lft:chan) =  

   do !lft; Af() 

   or ?c(rht); Ab(lft,rht) or !A_l 
 
and Ar(rht:chan) =  

   do ?rht; Af() or !A_r 
 
and Ab(lft:chan, rht:chan) = 

   do !lft; Ar(rht) or !A_b 
 
run 1000 of Af()    


