
2008-02-28 13:47:31 1

Simulations

These scripts are for the SPiM Player stochastic -calculus simula-

tor v1.13 [15], and Matlab 7.4.0 (ode45). The core SPiM syntax

maps directly to stochastic -calculus [17,18]. The SPiM scripts are

complete and executable, and usually are a literal translation of

the automata in the figures, with some additional code for plot-

ting directives and for test signals. Figure 2 and Figure 36 instead

outline the encoding of automata used in the other scripts.

Figure 2: Automata reactions
SPiM encoding of Delay at rate r from state A to state B, then

running 100 automata with initial state A:

let A() = delay@r; B() and B() = ...

run 100 of A()

Encoding of Interaction: an input ?a from state A1 to A2 and an

ouput !a from state B1 to B2, over a channel of rate r, between two

concurrent automata initially in states A1 and B1.

new a@r:chan

let A1() = ?a; A2() and A2() = ...

let B1() = !a; B2() and B2() = ...

run (A1() | B1())

SPiM encoding of multiple transitions (a delay, an input, and an

output) from the same state A to three different states:

let A() = do delay@r; B1() or ?a; B2() or !b; B3()

Figure 3: Celebrity automata

directive sample 0.1

directive plot A(); B()

new a@1.0:chan

new b@1.0:chan

let A() = do !a; A() or ?a; B()

and B() = do !b; B() or ?b; A()

run 100 of (A() | B())

Figure 5: Groupie automata

directive sample 2.0

directive plot A(); B()

new a@1.0:chan

new b@1.0:chan

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

run 100 of (A() | B())

Figure 6: Both together

directive sample 10.0

directive plot Ag(); Bg(); Ac(); Bc()

new a@1.0:chan

new b@1.0:chan

let Ac() = do !a; Ac() or ?a; Bc()

and Bc() = do !b; Bc() or ?b; Ac()

let Ag() = do !a; Ag() or ?b; Bg()

and Bg() = do !b; Bg() or ?a; Ag()

run 1 of Ac()

run 100 of (Ag() | Bg())

Figure 7: Hysteric groupies

directive sample 10.0

directive plot A(); B()

new a@1.0:chan

new b@1.0:chan

let A() = do !a; A() or ?b; ?b; ?b; B()

and B() = do !b; B() or ?a; ?a; ?a; A()

let Ad() = !a; Ad()

and Bd() = !b; Bd()

run 100 of (A() | B())

run 1 of (Ad() | Bd())

Figure 9: Sequence of delays

directive sample 20.0

directive plot S1(); S2(); S3(); S4(); S5(); S6();

S7(); S8(); S9(); S10()

let S1() = delay@1.0; S2() and S2() = delay@1.0;S3()

and S3() = delay@1.0; S4() and S4() = delay@1.0; S5()

and S5() = delay@1.0; S6() and S6() = delay@1.0; S7()

and S7() = delay@1.0; S8() and S8() = delay@1.0; S9()

and S9() = delay@1.0; S10() and S10() = ()

run 10000 of S1()

Figure 11: All 3 reactions in 1 automaton

directive sample 0.02

directive plot A(); B()

new a@1.0:chan

new b@1.0:chan

let A() = do !a; A() or !b; A() or ?b; B()

and B() = do delay@1.0; A() or ?a; A()

run 1000 of B()

Figure 12: Same behavior

directive sample 0.02

directive plot A(); B()

new a@1.0:chan

new b@0.5:chan

let A() = do !a; A() or !b; B() or ?b; B()

and B() = do delay@1.0; A() or ?a; A()

run 1000 of B()

Figure 13: Sequence of interactions

directive sample 0.02

directive plot A1(); A2(); A3(); A4(); A5(); A6();

A7(); A8(); A9(); A10()

new a1@1.0:chan new a2@1.0:chan new a3@1.0:chan

new a4@1.0:chan new a5@1.0:chan new a6@1.0:chan

new a7@1.0:chan new a8@1.0:chan new a9@1.0:chan

let A1() = ?a1; A2() and B1() = !a1; B2()

and A2() = ?a2; A3() and B2() = !a2; B3()

and A3() = ?a3; A4() and B3() = !a3; B4()

and A4() = ?a4; A5() and B4() = !a4; B5()

and A5() = ?a5; A6() and B5() = !a5; B6()

and A6() = ?a6; A7() and B6() = !a6; B7()

and A7() = ?a7; A8() and B7() = !a7; B8()

and A8() = ?a8; A9() and B8() = !a8; B9()

and A9() = ?a9; A10() and B9() = !a9; B10()

and A10() = () and B10() = ()

run 5000 of (A1() | B1())

Figure 14: Zero order reactions

directive sample 1000.0

directive plot S(); P(); E()

new a@1.0:chan

let E() = !a; delay@1.0; E()

and S() = ?a; P()

and P() = ()

run (1 of E() | 1000 of S())

Figure 15: Subtraction

directive sample 20.0 1000

directive plot E(); F()

new a@1.0:chan

let E() = ?a; delay@1.0; E()

and F() = !a; delay@1.0; F()

let raising(p:proc(), t:float) =

(* Produce one p() every t sec with precision dt *)

 (val dt= 100.0 run step(p, t, dt, dt))

and step(p:proc(), t:float, n:float, dt:float) =

 if n<=0.0 then (p()|step(p,t,dt,dt))

 else delay@dt/t; step(p,t,n-1.0,dt)

run 1000 of F()

2008-02-28 13:47:31 2

run raising(E,0.01)

directive sample 20.0 1000

directive plot E(); F()

new a@1.0:chan

let E() = ?a; E()

and F() = !a; F()

let raising(p:proc(), t:float) =

 ... see code for Error! Reference source not found.

run 1000 of F()

run raising(E,0.01)

Figure 16: Ultrasensitivity

directive sample 215.0

directive plot E();F();S();P();ES();FP()

new a@1.0:chan new b@1.0:chan

let S() = ?a; P()

and P() = ?b; S()

let E() = !a; ES()

and ES() = delay@1.0; E()

and F() = !b; FP()

and FP() = delay@1.0; F()

run 1000 of S()

let raising(p:proc(), t:float) =

 ... see code for Error! Reference source not found.

run 100 of F()

run raising(E,1.0)

Figure 17: Positive feedback transition

directive sample 0.02 1000

directive plot B(); A()

val s=1.0

new b@s:chan

let A() = ?b; B()

and B() = !b;B()

run (1000 of A() | 1 of B())

Figure 18: Bell shape

directive sample 0.003 1000

directive plot B(); A(); C()

new b@1.0:chan new c@1.0:chan

let A() = ?b; B()

and B() = do !b;B() or ?c; C()

and C() = !c;C()

run ((10000 of A()) | B() | C())

Figure 19: Oscillator

directive sample 0.03 1000

directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let A() = do !a;A() or ?b; B()

and B() = do !b;B() or ?c; C()

and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())

Figure 20: Positive two-stage feedback

directive sample 0.1 1000

directive plot B(); A(); A1()

val s=1.0

new c@s:chan

let A() = ?c; A1()

and A1() = ?c; B()

and B() = !c;B()

run (1000 of A() | 1 of B())

Figure 21: Square shape

directive sample 0.2 1000

directive plot B(); A(); A1(); B1(); C()

new b@1.0:chan new c@1.0:chan

let A() = ?b; A1()

and A1() = ?b; B()

and B() = do !b;B() or ?c; B1()

and B1() = ?c; C()

and C() = !c;C()

run ((1000 of A()) | B() | C())

Figure 22: Hysteric 3-way groupies

directive sample 0.5 1000

directive plot A(); B(); C()

new a@1.0:chan

new b@1.0:chan

new c@1.0:chan

let A() = do !a; A() or ?c; ?c; C()

and B() = do !b; B() or ?a; ?a; A()

and C() = do !c; C() or ?b; ?b; B()

let Ad() = !a; Ad()

and Bd() = !b; Bd()

and Cd() = !c; Cd()

run 1000 of A()

run 1 of (Ad() | Bd() | Cd())

Figure 23: Second-order cascade

directive sample 0.03

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, b:chan) =

 do !b; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =

 ?a; Amp_hi(a,b)

run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let A() = !a; A()

run 100 of A()

Figure 24: Zero-order cascade

directive sample 0.01

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, b:chan) =

 do !b; delay@1.0; Amp_hi(a,b)

 or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =

 ?a; Amp_hi(a,b)

run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let A() = !a; delay@1.0; A()

run 100 of A()

directive sample 20.0

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, b:chan) =

 do !b; delay@1.0; Amp_hi(a,b)

 or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =

 ?a; Amp_hi(a,b)

run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let A() = !a; delay@1.0; A()

run 100 of A()

Figure 25: Zero-order transduction

directive sample 10.0

directive plot !a; !b

new a@1.0:chan new b@1.0:chan

let Amp_hi(a:chan, b:chan) =

 do !b; delay@1.0; Amp_hi(a,b)

 or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =

 ?a; Amp_hi(a,b)

run 1000 of Amp_lo(a,b)

let A() = !a; delay@1.0; A()

run 900 of A()

Figure 26: Second-order double cascade

directive sample 0.03

directive plot !a; !b; !c

2008-02-28 13:47:31 3

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, b:chan) =

 do !b; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =

 ?a; ?a; Amp_hi(a,b)

run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let A() = !a; A()

run 100 of A()

Figure 27: Zero-order double cascade

directive sample 0.03

directive plot !a; !b

new a@1.0:chan new b@1.0:chan

let Amp_hi(a:chan, b:chan) =

 do !b; delay@1.0; Amp_hi(a,b)

 or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =

 ?a; ?a; Amp_hi(a,b)

run 1000 of Amp_lo(a,b)

let A() = !a; delay@1.0; A()

run 2000 of A()

Figure 28: Simple inverter

directive sample 110.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Inv_hi(a:chan, b:chan) =

 do !b; Inv_hi(a,b)

 or ?a; Inv_lo(a,b)

and Inv_lo(a:chan, b:chan) =

 delay@1.0; Inv_hi(a,b)

run 100 of (Inv_hi(a,b) | Inv_lo(b,c))

let clock(t:float, tick:chan) =
 (val dt=100.0 run step(tick, t, dt, dt))
and step(tick:chan, t:float, n:float, dt:float) =
 if n<=0.0 then !tick; clock(t,tick)
 else delay@dt/t; step(tick,t,n-1.0,dt)
let S1(a:chan, tock:chan) =
 do !a; S1(a,tock) or ?tock; ()
and SN(n:int, t:float, a:chan, tick:chan, tock:chan) =
 if n=0 then clock(t, tock)
 else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))
let raisingfalling(a:chan, n:int, t:float) =
 (new tick:chan new tock:chan
 run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

directive sample 15.0 1000

directive plot !a; !b; !c; !d; !e; !f

new a@1.0:chan new b@1.0:chan new c@1.0:chan

new d@1.0:chan new e@1.0:chan new f@1.0:chan

let Inv_hi(a:chan, b:chan) =

 do !b; Inv_hi(a,b)

 or ?a; Inv_lo(a,b)

and Inv_lo(a:chan, b:chan) =

 delay@1.0; Inv_hi(a,b)

run 100 of (Inv_lo(a,b) | Inv_lo(b,c)

| Inv_lo(c,d) | Inv_lo(d,e) | Inv_lo(e,f))

directive sample 2.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Inv_hi(a:chan, b:chan) =

 do !b; Inv_hi(a,b)

 or ?a; Inv_lo(a,b)

and Inv_lo(a:chan, b:chan) =

 delay@1.0; Inv_hi(a,b)

run 100 of (Inv_hi(a,b) | Inv_lo(b,c) | Inv_lo(c,a))

Figure 29: Feedback inverter

directive sample 110.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Inv_hi(a:chan, b:chan) =

 do !b; Inv_hi(a,b) or ?a; Inv_lo(a,b)

and Inv_lo(a:chan, b:chan) =

 do delay@1.0; Inv_hi(a,b)

 or ?b; Inv_hi(a,b)

run 100 of (Inv_hi(a,b) | Inv_lo(b,c))

let raisingfalling(a:chan, n:int, t:float) =

 ... see code for Error! Reference source not found.

run raisingfalling(a,100,0.5)

directive sample 1.0 1000

directive plot !a; !b; !c; !d; !e; !f

new a@1.0:chan new b@1.0:chan new c@1.0:chan

new d@1.0:chan new e@1.0:chan new f@1.0:chan

let Inv_hi ... and Inv_lo ...

 ... see code above

run 100 of (Inv_lo(a,b) | Inv_lo(b,c)

| Inv_lo(c,d) | Inv_lo(d,e) | Inv_lo(e,f))

directive sample 2.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Inv_hi ... and Inv_lo ...

 ... see code above

run 100 of (Inv_hi(a,b) | Inv_lo(b,c) | Inv_lo(c,a))

Figure 30: Double-height inverter

directive sample 110.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Inv2_hi(a:chan, b:chan) =

 do !b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b)

and Inv2_mi(a:chan, b:chan) =

 do delay@1.0; Inv2_hi(a,b)

 or ?a; Inv2_lo(a,b)

and Inv2_lo(a:chan, b:chan) =

 delay@1.0; Inv2_mi(a,b)

run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c))

let raisingfalling(a:chan, n:int, t:float) =

 ... see code for Error! Reference source not found.

run raisingfalling(a,100,0.5)

directive sample 15.0 1000

directive plot !a; !b; !c; !d; !e; !f

new a@1.0:chan new b@1.0:chan new c@1.0:chan

new d@1.0:chan new e@1.0:chan new f@1.0:chan

let Inv2_hi ... and Inv2_lo ...

 ... see code above

run 100 of (Inv2_lo(a,b) | Inv2_lo(b,c)

| Inv2_lo(c,d) | Inv2_lo(d,e) | Inv2_lo(e,f))

directive sample 2.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Inv2_hi ... and Inv2_lo ...

 ... see code above

run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c) | Inv2_lo(c,a))

Figure 31: Double-height feedback inverter

directive sample 110.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Inv2_hi(a:chan, b:chan) =

 do !b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b)

and Inv2_mi(a:chan, b:chan) =

 do delay@1.0; Inv2_hi(a,b)

 or ?a; Inv2_lo(a,b)

 or ?b; Inv2_hi(a,b)

and Inv2_lo(a:chan, b:chan) =

 do delay@1.0; Inv2_mi(a,b)

 or ?b; Inv2_mi(a,b)

run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c))

let raisingfalling(a:chan, n:int, t:float) =

 ... see code for Error! Reference source not found.

run raisingfalling(a,100,0.5)

directive sample 1.0 1000

directive plot !a; !b; !c; !d; !e; !f

new a@1.0:chan new b@1.0:chan new c@1.0:chan

new d@1.0:chan new e@1.0:chan new f@1.0:chan

let Inv2_hi ... and Inv2_lo ...

 ... see code above

2008-02-28 13:47:31 4

run 100 of (Inv2_lo(a,b) | Inv2_lo(b,c)

| Inv2_lo(c,d) | Inv2_lo(d,e) | Inv2_lo(e,f))

directive sample 2.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Inv2_hi ... and Inv2_lo ...

 ... see code above

run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c) | Inv2_lo(c,a))

Figure 32: Or and And

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let Or_hi(a:chan, b:chan, c:chan) =

 do !c; Or_hi(a,b,c) or delay@del; Or_lo(a,b,c)

and Or_lo(a:chan, b:chan, c:chan) =

 do ?a; Or_hi(a,b,c) or ?b; Or_hi(a,b,c)

run 1000 of Or_lo(a,b,c)

let clock(t:float, tick:chan) =

 (val dt=100.0 run step(tick, t, dt, dt))

and step(tick:chan, t:float, n:float, dt:float) =

 if n<=0.0 then !tick; clock(t,tick)

 else delay@dt/t; step(tick,t,n-1.0,dt)

let S_a(tick:chan) = do !a; S_a(tick) or ?tick; ()

let S_b(tick:chan) = ?tick; S_b1(tick)

and S_b1(tick:chan) =

 do !b; S_b1(tick) or ?tick; S_b2(tick)

and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; ()

let many(n:float, p:proc(float), nt:float) =

if n<=0.0 then () else (p(nt) | many(n-1.0, p, nt))

let BoolInputs(n:float, nt:float, m:float, mt:float) =

(run many(n, Sig_a, nt) run many(m, Sig_b, mt))

and Sig_a(nt:float) =

 (new tick:chan run (clock(nt,tick) | S_a(tick)))

and Sig_b(mt:float) =

 (new tick:chan run (clock(mt,tick) | S_b(tick)))

run BoolInputs(100.0, 4.0, 100.0, 2.0)

directive sample 10.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let And_hi(a:chan, b:chan, c:chan) =

 do !c; And_hi(a,b,c) or delay@del; And_lo_a(a,b,c)

and And_lo_a(a:chan, b:chan, c:chan) =

 do ?a; And_hi(a,b,c) or delay@del; And_lo_b(a,b,c)

and And_lo_b(a:chan, b:chan, c:chan) =

 ?b; And_lo_a(a,b,c)

run 1000 of And_lo_b(a,b,c)

let BoolInputs(n:float, nt:float, m:float, mt:float) =

 ... see code for Error! Reference source not found.

run BoolInputs(100.0, 4.0, 100.0, 2.0)

Figure 33: Imply and Xor

directive sample 15.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

val del = 1.0

let Imply_hi_a(a:chan, b:chan, c:chan) =

 do !c; Imply_hi_a(a,b,c) or ?a; Imply_lo(a,b,c)

and Imply_hi_b(a:chan, b:chan, c:chan) =

 do !c; Imply_hi_b(a,b,c)

 or delay@del; Imply_lo(a,b,c)

and Imply_lo(a:chan, b:chan, c:chan) =

 do ?b; Imply_hi_b(a,b,c)

 or delay@del; Imply_hi_a(a,b,c)

run 1000 of Imply_lo(a,b,c)

let BoolInputs(n:float, nt:float, m:float, mt:float) =

 ... see code for Error! Reference source not found.

run BoolInputs(100.0, 4.0, 100.0, 2.0)

directive sample 20.0 1000

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Xor_hi_a(a:chan, b:chan, c:chan) =

 do !c; Xor_hi_a(a,b,c) or ?b; Xor_lo_ab(a,b,c)

 or delay@1.0; Xor_lo_a(a,b,c)

and Xor_hi_b(a:chan, b:chan, c:chan) =

 do !c; Xor_hi_b(a,b,c) or ?a; Xor_lo_ab(a,b,c)

 or delay@1.0; Xor_lo_b(a,b,c)

and Xor_lo_a(a:chan, b:chan, c:chan) =

 do ?a; Xor_hi_a(a,b,c) or ?b; Xor_lo_ab(a,b,c)

and Xor_lo_b(a:chan, b:chan, c:chan) =

 do ?b; Xor_hi_b(a,b,c) or ?a; Xor_lo_ab(a,b,c)

and Xor_lo_ab(a:chan, b:chan, c:chan) =

 do delay@1.0; Xor_hi_a(a,b,c)

 or delay@1.0; Xor_hi_b(a,b,c)

run 500 of (Xor_lo_a(a,b,c) | Xor_lo_b(a,b,c))

let BoolInputs(n:float, nt:float, m:float, mt:float) =

 ... see code for Error! Reference source not found.

run BoolInputs(100.0, 8.0, 100.0, 4.0)

Figure 34: Memory Elements

(* Top Left, Top Center *)

directive sample 0.1

directive plot A(); B(); C()

new a@1.0:chan

new b@1.0:chan

let A() = do !a; A() or ?b; C()

and C() = do ?a; A() or ?b; B()

and B() = do !b; B() or ?a; C()

run 100 of (A() | B())

(* Bottom Left *)

directive sample 1.0

directive plot A(); B(); C()

new a@1.0:chan

new b@1.0:chan

let A() = do !a; A() or ?b; C()

and C() = do ?a; A() or ?b; B()

and B() = do !b; B() or ?a; C()

let Ad() = !a; Ad()

and Bd() = !b; Bd()

run 100 of (A() | B())

run 10 of (Ad() | Bd())

(* Bottom Center *)

directive sample 0.6

directive plot A(); B(); C()

new a@1.0:chan

new b@1.0:chan

let A() = do !a; A() or ?b; C()

and C() = do ?a; A() or ?b; B()

and B() = do !b; B() or ?a; C()

let Ad() = !a; Ad()

run 100 of (A() | B())

run 100 of delay@10.0; delay@10.0; delay@10.0;

 delay@10.0; delay@10.0; Ad()

Figure 35: Discrete vs. Continuous Modeling

(* Top Left *) initially

(A) dx1/dt = -(x1-x2) x1 = 2000.0

(B) dx2/dt = (x1-x2) x2 = 0.0

(* Top Center *) initially

(A) dx1/dt=x1*x4-x3*x1-x1+x4 x1 = 2000.0

(A’) dx2/dt=x3*x1-x3*x2+x1-x2 x2 = 0.0

(B) dx3/dt=x3*x2-x1*x3-x3+x2 x3 = 0.0

(B’) dx4/dt=x1*x3-x1*x4+x3-x4 x4 = 0.0

(* Top Right *) initially

(A) dx1/dt=x1*x6-x3*x1-x1+x6 x1 = 2000.0

(A’) dx2/dt=x3*x1-x3*x2+x1-x2 x2 = 0.0

(A”) dx5/dt=x3*x2-x3*x5+x2-x5 x5 = 0.0

(B) dx3/dt=x3*x5-x1*x3-x3+x5 x3 = 0.0

(B’) dx4/dt=x1*x3-x1*x4+x3-x4 x4 = 0.0

(B”) dx6/dt=x1*x4-x1*x6+x4-x6 x6 = 0.0

(* Bottom Left *)

directive sample 5.0 1000

directive plot B(); A()

new a@1.0:chan

new b@1.0:chan

let A() = do !a; A() or ?b; B()

2008-02-28 13:47:31 5

and B() = do !b; B() or ?a; A()

let Ad() = !a; Ad()

and Bd() = !b; Bd()

run 2000 of A()

run 1 of (Ad() | Bd())

(* Bottom Center *)

Same as Bottom Left, except:

let A() = do !a; A() or ?b; ?b; B()

and B() = do !b; B() or ?a; ?a; A()

(* Bottom Right *)

Same as Bottom Left, except:

let A() = do !a; A() or ?b; ?b; ?b; B()

and B() = do !b; B() or ?a; ?a; ?a; A()

Figure 36: Polyautomata reactions
SPiM encoding of Association over channel a@r0,r1 of arity 1, with

one automaton performing an output from state A to A1 and the

other automaton performing an input from state B to B1:

new a@r0:chan(chan)

let A() = (new k1@r1:chan run !a(k1); A1(k1))

and B() = ?a(k1); B1(k1)

Encoding of Dissociation through the previously shared k1.

and A1(k1:chan) = !k1; A()

and B1(k1:chan) = ?k1; B()

More generally, for a@r0,...,rn-1 we declare an (n-1)-ary channel:

new a@r

0
:chan(chan,...,chan) (*n-1 times*)

Association then creates n-1 shared dissociation channels:

let A() = (new k

1
@r

1
:chan ... new k

n-1
@r

n-1
:chan

 run !a(k
1
,...,k

n
); A1(k

1
,...,k

n
))

and then A1 can choose which channel to use for dissociation.

Note that the constraint about not reassociating before a dissocia-

tion is not automatically enforced by this encoding.

Figure 37: Complexation/decomplexation

directive sample 0.005

directive plot !A_f; !A_b; !B_f; !B_b

new A_f:chan new A_b:chan new B_f:chan new B_b:chan

val mu = 1.0 val lam = 1.0

new a@mu:chan(chan)

let Af() = (new k@lam:chan run do !a(k); Ab(k) or !A_f)

and Ab(k:chan) = do !k; Af() or !A_b

let Bf() = do ?a(k); Bb(k) or !B_f

and Bb(k:chan) = do ?k; Bf() or !B_b

run (1000 of Af() | 500 of Bf())

Figure 38: Enzymatic reactions

directive sample 0.05 1000

directive plot !E_f; !E_b; !S_f; !S_b; !P_

new E_f:chan new E_b:chan

new S_f:chan new S_b:chan new P_:chan

val r0 = 1.0 val r1 = 1.0 val r2 = 100.0

new a@r0:chan(chan,chan)

let P() = !P_

let Ef() =

 (new k1@r1:chan new k2@r2:chan

 run do !a(k1,k2); Eb(k1,k2) or !E_f)

and Eb(k1:chan,k2:chan) =

 do !k1; Ef() or !k2; Ef() or !E_b

let Sf() = do ?a(k1,k2); Sb(k1,k2) or !S_f

and Sb(k1:chan,k2:chan) =

 do ?k1; Sf() or ?k2; P() or !S_b

run (1000 of Ef() | 2000 of Sf())

Figure 39: Homodimerization

directive sample 0.005 10000

directive plot !A_f; !A_i; !A_o

new A_f:chan new A_i:chan new A_o:chan

new a@1.0:chan(chan)

let Af() =

 (new k@1.0:chan

 run do ?a(k); Ai(k) or !a(k); Ao(k) or !A_f)

and Ai(k:chan) = do ?k; Af() or !A_i

and Ao(k:chan) = do !k; Af() or !A_o

run 1000 of Af()

Figure 40: Bidirectional polymerization

directive sample 1000.0

directive plot ?count

type Link = chan(chan)

type Barb = chan

val lam = 1000.0 (* set high for better counting *)

val mu = 1.0

new c@mu:chan(Link)

new enter@lam:chan(Barb)

new count@lam:Barb

let Af() =

 (new rht@lam:Link run

 do !c(rht); Ar(rht)

 or ?c(lft); Al(lft))

and Al(lft:Link) =

 (new rht@lam:Link run

 !c(rht); Ab(lft,rht))

and Ar(rht:Link) =

 ?c(lft); Ab(lft,rht)

and Ab(lft:Link, rht:Link) =

 do ?enter(barb); (?barb | !rht(barb))

 or ?lft(barb); (?barb | !rht(barb))

(* each Abound waits for a barb, exhibits it, and

passes it to the right so we can plot number of Abound

in a ring *)

let clock(t:float, tick:chan) =
 (val dt=100.0 run step(tick, t, dt, dt))
and step(tick:chan, t:float, n:float, dt:float) =
 if n<=0.0 then !tick; clock(t,tick) else delay@dt/t;
step(tick,t,n-1.0,dt)

new tick:chan

let Scan() = ?tick; !enter(count); Scan()

run 1000 of Af()

run (clock(100.0, tick) | Scan())

Figure 42: Actin-like polymerization

directive sample 0.01 (* 0.25, 35.0 *) 1000

directive plot !A_f; !A_l; !A_r; !A_b

new A_f:chan new A_l:chan new A_r:chan new A_b:chan

val lam = 1.0 (* dissoc *)

val mu = 1.0 (* assoc *)

new c@mu:chan(chan)

let Af() =

 (new lft@lam:chan run

 do !c(lft); Al(lft)

 or ?c(rht); Ar(rht) or !A_f)

and Al(lft:chan) =

 do !lft; Af()

 or ?c(rht); Ab(lft,rht) or !A_l

and Ar(rht:chan) =

 do ?rht; Af() or !A_r

and Ab(lft:chan, rht:chan) =

 do !lft; Ar(rht) or !A_b

run 1000 of Af()

