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Abstract

Chemical and biochemical systems are presented as collectives of interacting stochastic automata:

each automaton represents a molecule that undergoes state transitions. This framework constitutes

an artificial biochemistry, where automata interact by the equivalent of the law of mass action. We

analyze several example systems and networks, both by stochastic simulation and by ordinary dif-

ferential equations.

1 Stochastic Automata Collectives

This paper is an empirical investigation of an artifi-
cial biochemistry obtained by the interactions of sto-
chastic automata. The study of such artificial frame-
works has been advocated before [2]; we explore a
modern version based on a theory of concurrent
processes that obeys the equivalent of the law of
mass action. Foundations for this work have been
investigated elsewhere [1]; here we aim to give a
self-contained and accessible presentation of the
framework, and to explore by means of examples
the richness of “emergent” and unexpected behavior
that can be represented by combinations of simple
building blocks.

By a collective we mean a large set of interacting,
finite state automata. This is not quite the situation
we have in classical automata theory, because we
are interested in the behavior of a large set of auto-
mata acting together. It is also not quite the situation
with cellular automata, because our automata are
interacting, but not necessarily on a regular grid. It
is also not quite the situation in process algebra, be-
cause again we are interested in the behavior of col-
lectives, not of individuals. Similar frameworks have
been investigated under the headings of collectives
[12], sometimes including stochasticity [6].

By stochastic we mean that automata interactions
have rates. Stochastic rates induce a quantitative
semantics for the behavior of collectives. Collective
behavior cannot be considered quite discrete, be-
cause it can be the result of hundreds or thousands
individual contributions. But it is not quite continu-
ous either, because of the possibility of non-trivial
stochastic effects. And it is also not hybrid: there is
no switching between discrete and continuous re-
gimes.

===P Delay Current States
=== Transition --> Interaction

Figure1 Interacting automata

Stochastic collectives are inspired by biochemi-
cal systems, which are large sets of interacting mole-
cules/proteins, whose stochasticity ultimately de-
rives from Brownian motion. An underlying as-
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sumption, here, is that proteins can be regarded as
finite state components that are subject to automata-
like transitions between well-defined states. While
certainly not accurate at the atomic level, this as-
sumption is corroborated by the fact that much of
the knowledge being accumulated in Systems Biol-
ogy is described as state transition diagrams [5].

2 Interacting Automata

Therefore, we focus on the notion of stochastic inter-
acting automata and their collective behavior. Figure
1 shows a typical situation. We have three separate
automata species A, B, C (enclosed in yellow dotted
envelopes), each with three possible states (circles)
and with a current state: A;, By, C;, respectively.
Thick gray arrows (solid or dashed) denote transi-
tions between states of the same automaton; thin red
dashed arrows denote interactions between separate
automata. In general, systems consist of populations
of automata, e.g. 100xA, 200xB and 300xC. Each
automaton in a population, e.g. A, can have current
state A;, A,, or Aj at any given time.

Dela
© T 0
@r ? @r
o)

Current States

Interaction

?a|< o la ?a la
@r

Figure 2 Automata reactions

There are two possible kinds of reactions that
cause automata to change state (Figure 2). From the
current state, an automaton can spontaneously exe-
cute a delay (dashed gray arrow). Or, it can jointly
execute an interaction with another automaton (solid
gray arrow). In an interaction, each of the two auto-
mata executes in a complementary way either an
input (?) or an output (!) on a common channel (a
channel is an abstract way to represent an interac-
tion surface or mechanism). An actual interaction
happens only if both automata are in a current state
such that the interaction is enabled, and then both
automata change state simultaneously.

Each reaction fires at (@) a rate r; these rates de-
termines (stochastically) the probability of selecting

one out of many possible reactions, and also the time
spent between successive reactions.

The system of three automata in Figure 1, for
example, could go through the following state
changes: A;,B;,C; — ApB;,C; — AyBy),C, = Ay By, Gy
= A3B,,C5 = A,By,C3 = A1,B,,C; — AyBLC.

2.1 Groupies and Celebrities

In the rest of this section we explore a little zoo of
simple but surprising automata collectives, before
beginning a more systematic study in Section 3. We
set all our reaction rates to 1.0, since we are more
interested in the effects of automata structure on
behavior, than the effects of rate changes.

The automaton in Figure 3 has two possible
states, A and B. A single automaton can perform no
reaction, because all its reactions are interactions
with other automata. Suppose that we have two
such automata in state A; they each offer !a and ?a,
hence they can interact on channel a, so that one
moves to state B and the other one moves back to
state A (either one, since there are two possible reac-
tions A+A—>A+B and A+A—B+A). If we have two
automata in state B, one will similarly move to state
A. If we have one in state A an one in state B, then
no interactions are possible and the system is stable.

We call such automata celebrities because they
aim to different from each other. How will a random
population of celebrities behave? The stochastic
simulation in Figure 3 [9] shows that a 50/50 equilib-
rium is reached and maintained. Moreover, the sys-
tem is live: individual automata keep changing state.
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Figure 3 Celebrity automata

The interactions between celebrities are (mis-
leadingly) indicated in Figure 3 by a thin red dashed
line on the same automaton; remember that an
automaton can never interact with itself, hence this
notation always refers to interactions between dis-
tinct automata in a population of similar automata.
In any case, the thin red dashed lines are just redun-
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dant graphics: all the possible interactions can be
read out from the !a/?a labels on transitions.

Let us now consider a different two-state
automaton shown in Figure 4. Again, a single
automaton can do nothing. Two automata in state A
are stable since they both offer !a and ?b, and no in-
teractions are possible. Similarly for two automata in
state B. If we have one automaton in state A and one
in state B, then they offer !a and ?a, so they can in-
teract on channel a and both move to state A. They
also offer ?b and !b, so they can (nondeterministi-
cally) interact on channel b and both move to state B.
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Figure 4 Groupie automata

We call such automata groupies because they aim
to be similar. How will a random population of
groupies behave? In Figure 4 we start with 50% A
and 50% B: the systems evolves through a bounded
random walk, and the outcome is uncertain till the
very end. Eventually, though, the groupies end up
forming a single homogeneous group of all A or all
B, and the system is then dead: no automaton can
change state any further.
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Figure5 Both together

Populations of groupies and populations of ce-
lebrities have radically different behavior. What will

happen if we mix them? It is sufficient to mix a small
number of celebrities (1 is enough) with an arbitrar-
ily large number of groupies, to achieve another
radical change in system behavior. As shown in
Figure 5, the groupies can still occasionally agree to
become, e.g., all A. But then a celebrity moves to
state B to differentiate itself from them, and that
breaks the deadlock by causing at least one groupie
to emulate the celebrity and move to state B. Hence,
the whole system now evolves as a bounded ran-
dom walk with no stable state. An infinitesimal
number of celebrities has transformed the groupie
behavior form a system that always eventually
deadlocks, to a system that never deadlocks. We can
replace celebrities with simpler doping automata
(Figure 6) that have the same effect of destabilizing
groupie collectives.
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Figure 6 Hysteric groupies

We now change the structure of the groupie
automaton by introducing intermediate states on the
transitions between A and B (Figure 6), while still
keeping all reactions rates at 1.0. Now, each groupie
in state A must find three groupies in state B to be
persuaded to change to state B. Once started the
transition from A to B is irreversible; hence, some
hysteresis (history-dependence) is introduced in the
transition. The intermediate states produce a strik-
ing change in behavior: from complete randomness
to regular oscillations. (Using one intermediate state
instead of two yields a less regular oscillation.)

The oscillations are stochastic both in height and
in width, and occasionally one may observe some
miss-steps. But the transformation in behavior, ob-
tained by changes in the structure of individual
automata, is certainly remarkable (and largely inde-
pendently on rate values). Moreover, this oscillator
is critically dependent on an infinitesimal amount of
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doping (i.e. and infinitesimal amount of stochastic
noise); without it, it typically stops on its first cycle.

The morale from these examples is that the col-
lective behavior of even the simplest interactive
automata can be rich and surprising. Macroscopic
behavior “emerges” from the structure of the com-
ponents, and even an infinitesimal number of com-
ponents can have macroscopic effects. The question
then arises, how can we relate the macroscopic be-
havior to the microscopic structure?

3 The Chemistry of Automata

3.1 First Order Reactions

As we have seen, an automaton in state A can spon-
taneously move to state A’ at a specified rate r, by a
stochastic delay. In a population of such automata,
each transition decrements the number of automata
in state A, and increments the number of automata
in state A’. This can be written also as a chemical
reaction A—TA’, with first-order rate law -r[A],
where [A] is the number of automata in state A as a
function of time. The rate of change in the number of
A (assuming A’#A) is the derivative of [A], written
[A]* = -rf[A]. The speed of the transition is thus an
exponential decay at rate r, Exp(r)(t) = re™.

Figure 7 First order reactions

A sequence of exponential decays Exp(r) produces
an Erlang distribution Erl(r,k), as seen in Figure 8.
Initially, we have N=10000 automata in state S;. The
occupation of the initial state S; is an exponential
decay N-Exp(r) = N-Erl(r,1); the occupation of the
intermediate states S; is N-Erl(r,i); and the occupa-
tion of the final state is the cumulative distribution
of Erl(r,10).

Figure 8 Sequence of delays

The shape of an exponential distribution is inde-
pendent of the initial quantity (e.g., the half-life is
constant). In general, for first order reactions, the
time course of the reactions is independent of the
scaling of the initial quantities. For example, if we

start with 10 times as many automata in Figure 8,
and we scale down the vertical axis by a factor of 10,
we obtain the same plot up to time 20. Meaning that
the “speed of the systems” is the same as before, and
since there are 10 time more reactions in the same
time, the “execution rate” is 10 times higher.

3.2 Second Order Reactions

Two automata can interact to perform a joint transi-
tion on a common channel, each changing its current
state. The interaction is synchronous and comple-
mentary: one automaton in current state A performs
an input ?a; and moves to state A’; the other
automaton in state B performs an output !a;) and
moves to state B'.

A+B T A’+B’

A+A 2 AHA”

Figure9 Second order reactions

This interaction can be written as a chemical re-
action A+B—'A’+B’, where r is the fixed rate as-
signed to the interaction channel. The rate law, given
by the law of mass action, is -r[A][B], and the rates
(assuming A,B,A’,B’ all distinct states) are [A]" = [B]*
= -1[A][B], because each automaton in the population
of current states [A] can interact with each automa-
ton in the population of current states [B].

Bt A
A+B 7 A+A
A+A 5% é+B

7 1000xB, r—s-15"

Figure 10 All 3 reactions in 1 automaton

A different situation arises, though, if the inter-
action happens within a single population, e.g.,
when state A offers both an input ?a to transition to
state A’ and an output !a to transition to state A”.
Then, every automaton in state A can interact with
every other automaton in state A in two symmetric
ways; hence, the product interactions are between
[A] and [A]-1 automata, and the rate r must be dou-
bled. The chemical reaction is A+A—2"A’+A”, whose
rate law, based on the number of possible symmetric
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collisions between particles at base rate 2r, is
—-(2r)[A]([A]-1)/2 = —r[A]([A]-1). The rate for [A] (as-
suming A'#A#A") is [A]° = -2r[A]([A]-1), since 2 A
are lost each time.

In Figure 10 we show an automaton that exhibits
a first order reaction and one of each kind of second
order reactions. Its collective behavior is determined
by the corresponding chemical reactions.
Bt A
A+B -7 A+A
A+A —°B+B

o
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Figure 11 Same behavior

To compare automata behavior we must in gen-
eral go beyond the chemical reactions, and compute
the ODEs (in the standard chemical way) to compare
the rates of state occupations. For example, the
automaton in Figure 11 has a different pattern of
interactions and rates, different chemical reactions,
but the same ODEs as the one in Figure 10. In both
cases, [A]® = -[B]" = t[B] + r[A][B] - s[A]([A]-1), but
note that the b rate in Figure 11 set to s/2.
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Figure 12 Sequence of interactions

The time course of second-order reactions de-
creases linearly with the scaling up of the initial
quantities. For example, if we start with 10 times as
many automata as in Figure 12, and we scale down
the vertical axis by a factor of 10, and we scale up
the time axis by a factor of 10, we obtain the same
plot up to time 0.002. Meaning that the “speed of the
system” is 10 times faster than before, and since
there are also 10 times more reactions, the “execu-
tion rate” is 100 times higher. Moreover, the system
in Figure 12, judging by the final output level, is
about 1000 times faster than the one in Figure 8, in
reaching 50% of input level (100 times faster in
reaching 90% of input level), even though it has the
same base rates and the same number of automata.

3.3 Zero Order Reactions

First order reactions have a law of the form r[A], and
second order reactions a law of the form r[A][B].
Zero order reactions are those with a law of the form
r, meaning that the “execution rate” is constant, and
hence the “speed of a system” gets slower when
more ingredients are added. Zero order reactions are
not built into chemistry, but can be implemented (up
to an approximation) by chemical means. The main
biochemical methods of obtaining zero order reac-
tions is a special case of enzyme kinetics, when en-
zymes are saturated.

Dealing with enzyme kinetics would bring us
outside of the realm of simple automata (see Section
4). Instead, here we discuss a close analog of enzyme
kinetics that exhibits zero-order behavior and can be
represented within the automata framework de-
scribed so far. We will make precise how this is a
close analog of enzymes, and in fact, with a few as-
sumptions, it can be used to model enzyme kinetics
in a simpler way.

Consider the system of Figure 13. Here E is the
(pseudo-) enzyme, S is the substrate being trans-
formed with the help of the enzyme, and P is the
product resulting from the transformation. The state
ES represents an enzyme that is “not available” be-
cause it is busy transforming some S into some P.
This system exhibits zero order kinetics, as can be
seen from the plot. If we start with lots of S and a
little E, the rate of production of P is constant (inde-
pendent of the instantaneous quantity of S). That
happens, of course, because E becomes maximally
busy, and effectively processes S sequentially. Even
if we add more enzyme (up to a point) it will nor-
mally be found in the ES state: to obtain the zero-
order behavior it is not necessary to have a single E,
just that most E be normally busy. All our rates are
1.0 as usual, but note that E5ES happens fast, pro-
portionally to [E][S], while ES—>E happens slowly,
proportionally to [ES].

1000xS, 1xE

Figure 13 Zero order reactions

To make the connection to enzyme kinetics pre-
cise, we now mimic the standard derivation of
Michaelis-Menten kinetics from chemical reactions.
The reactions for the system in Figure 13 are:
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E+S—>"ES+P
ES >°E

The corresponding ODEs are:

[E]* = s[ES] - r[E][S]
[ES]" = r[E][S] - s[ES]
[SI* =-x[E][S]

[

P = r[E][S]

We call [Eo] = [E]+[ES] the total amount of enzyme,
either free or busy; that is, the number of enzyme
automata. We now assume that, in normal opera-
tion, the enzyme is in equilibrium, and in particular
[ES]*=0. This implies that [ES] = r[E][S]/s. Set:

K, =s/r
Vmax = S[EO]
Hence [ES] = [E][S]/Ky, and [ES] = ([Eo]-[ES][S]/Km,

and from that we obtain [ES] = [E]([S]/(Kn,*[S])).
From the [ES]*=0 assumption we also have [P]* =
s[ES], and substituting [ES] yields:

Vinax[ S/ (K #[S]).

Noticeably, if we have K, << [S], then [P]* = V .y
that is, we are in the zero-order regime, with con-
stant growth rate V., = s[Eo]. For the system of
Figure 13 we have K, = 1, [S]p = 1000, and V., = 1,
and hence [P]® = 1, as shown in the simulation.

The chemical reactions from Figure 13 are sig-
nificantly different from the standard enzymatic re-
actions. Still, the expressions for K;,, Vyax and [P]°
turn out to be the same as in Michaelis-Menten ki-
netics (and not just for the zero-order case), when-

[P]*=

ever the dissociation rate is negligible, that is, for
good enzymes.

3.4 Ultrasensitivity

Zero-order kinetics can be used, rather paradoxi-
cally, to obtain sudden non-linearity or switching
behavior. Let us first compare the result of directly
competing enzymes in zero-order and second-order
kinetics. We now depict a pair of states E,ES (as in
Figure 13) as a single state E with a solid/dashed
arrow representing the transition through the hid-
den state ES (Figure 14).

At the top of Figure 14, in zero-order regime, an
initial quantity of F is competing against a linearly
growing quantity of E. The circuit is essentially
computing [F]-[E], so the E quantity is neutralized
until it exceeds the F quantity. (The plots Eb and Fb
are for the bound states of E and F.) At the bottom,
in second-order regime, with no bound states, the
result of the competition is quite different.
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1000xF, 0..2000xE

Figure 14 Subtraction (top)

On that basis, we now reproduce the peculiar
phenomenon of hypersensitivity in zero-order re-
gime [7], confirming that our simplified kinetics re-
produces effects of enzyme kinetics. In a hypersensi-
tivity situation, a minor switch in relative enzyme
quantities, creates a much amplified and sudden
switch in two other quantities.

e e @10 E+S — ES+P
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Figure 15 Ultrasensitivity

In Figure 15, we start with a fixed amount (=100) of
enzyme F, which is holding the S-P equilibrium in
the S state (=1000), and we let E grow from zero. As
E grows, we do not initially observe much free E,
but the level of free F decreases, indicating it is get-
ting “harder” for F to maintain the S equilibrium
against E. Eventually the level of free F drops to
zero, at which point we see a sudden switch of the S-
P equilibrium, and then we observe the level of free
E growing. Hence, in this case, a switch in the levels
of E vs. F controls a factor of 10 bigger switch in the
levels of S vs. P. If P is itself an enzyme, it can then
cause an even bigger and even more sudden switch
of an even larger equilibrium.

3.5 Positive Feedback Transitions

Another way to obtain sharp transitions is by posi-
tive feedback with second-order reactions. In Figure
16, the more B’s there are, the faster the A’s are
transformed into B’s. Note that at least one B is
needed to bootstrap the process.
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Figure 16 Positive feedback transition

When linking two such transitions, in Figure 17, we
obtain a symmetrical bell shape with kinetics [B]* =
[BI([A]-[C]). We provide 1000xA, 1xB and 1xC; note
that there is a very small chance that the B’s be
drained by the C’s before the wave can accumulate
in B, therefore stalling it.

A+B - B+B
B+C - C+C

" 10000xA, 1xB, 1xC

Figure 17 Bell shape

Linking several such transitions produces a soliton-
like wave; but again this requires that each stage be
able to bootstrap itself. This can be difficult to ar-
range because each stage is being pulled and emp-
tied by the next one. One solution is to add a delay
from each stage to the next, so that an incoming
wave leaks into the next stage and starts the boot-
strap (which is equivalent to doping the transition,
as in Section 2). This works rather well, stochasti-
cally, but corresponds deterministically to a slightly
dampened propagation due to the leaking.

1200}

ab

Figure 18 Oscillator

Linking three positive feedback transitions in a
loop produces a stochastic oscillator (Figure 18); the
oscillatory behavior can be verified also by extract-
ing the ODEs form the chemical reactions. A sus-
tained oscillation can be obtained by starting with all
states non-zero; the oscillation can then survive as
long as no state A,B,C goes to zero, and this can be
arranged with very high probability. If any state
touches zero, there is nothing to pull on the next
wave, and the oscillation stops. Adding delays from
each state into the next one, to prevent that possibil-

ity, produces a slightly dampened oscillator which
stochastically goes through instabilities.

An interesting variation is a two-stage positive
feedback loop, Figure 19, where the drop of state A
is delayed and the growth of state B is steeper. Join-
ing two such transitions (Figure 20) produces a
shapes that approximates a rectangular wave as we
increase the cardinality of A.

o

A+B > A’+B /h
A’+B —>B+B ./

K 1000xA, 1xB %

Figure 19 Positive two-stage feedback

i i
! 1000xA, 1xB, 1xC

Figure 20 Square shape

Linking three such transitions in a loop produces
again an oscillator. However, this time it is critical to
add doping because each state regularly drops to
zero and needs to be repopulated to start the next
propagation.

Figure 21 Hysteric 3-way groupies

3.6 Excitation Cascades

We now consider cascades where one enzyme acti-
vates another enzyme. A typical situation is shown
in Figure 22 (again, all rates are 1.0), where a low
constant level of first-stage aHi results in a maxi-
mum level of third-stage cHi, and where, character-
istically, the third stage raises with a sigmoidal
shape, and faster than the second-stage level of bHi.
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100xaHi, 1000xbLo, 1000xcLo, rates—1.0

Figure 22 Second-order cascade

This network can be considered as the skeleton of
MAPK cascades, which similarly function as ampli-
fiers with three stages of activation, but are more
complex in structure and detail [4].

[

o E]
100xaHi, 1000xbLo, 1000xcLo, rates=1.0

Figure 23 Zero-order cascade

The resulting amplification behavior, however,
is non-obvious, as can be seen by comparison with
the zero-order activation cascade in Figure 23; the
only difference is in the zero-order kinetics of the
enzymes obtained by introducing a delay of 1.0 after
each output interaction. Within the same time scale
as before, the level of cHi raises quickly to the
(lower) level of aHi, until aHi is all bound. On a
much longer time scale, cHi then grows linearly to
maximum. Linear amplification in cascades has been
attributed to negative feedback [11], but apparently
can be obtained also by zero-order kinetics. Of
course, the behavior in Figure 22 is the limit of that
in Figure 23, as we decrease the zero-order delay.

[ S ———
] E]
500xaHi, 1000xbLo, rates=1.0

Figure 24 Zero-order transduction

A single stage of a second-order cascade works
like the bHi level shown in Figure 22 (since no bHi is
actually consumed by the next stage), that is, as an
amplifier. A single stage of the zero-order cascade,
however, work quite differently, as a signal replica-

tor. In Figure 24, a given level of aHi (=500), as long
as it is lower than the reservoir of bLo (=1000), is
transformed into an equal level of bHi (=500). (If aHi
exceeds bLo, then bHi:=bLo and aHi:=aHi-bLo.)
However, the two-stage cascade in Figure 23 does
not work like two signal replicators in series! This
seems to happen because the bHi are not available
for degradation to bLo while bound by interaction
with the next stage, cLo, and hence can accumulate.

Real MAPK cascades are actually based on dou-
ble activation, as shown in Figure 25, where the sig-
moid output is more pronounced and delayed than
in Figure 22.

o/
—
2

4 [
100xaHi, 1000xbLo, 1000xcLo, rates=1.0

Figure 25 Second-order double cascade

And once again, the zero order regime brings sur-
prises: the cascade in Figure 26 works in reverse, as
a signal attenuator, where a high level of aHi pro-
duces a low stable level of cHi. This is because each
stage of such a cascade is actually a signal level di-
vider, with the signal being distributed among the
three states of the stage.

o —
(] T}
2000xaHi, 1000xbLo, 1000xcLo, rates=1.0

Figure 26 Zero-order double cascade

3.7 Boolean Inverters

Automata with distinguished “low” states and
“high” states can be used to represent respectively
Boolean false and frue. We begin by investigating
automata collectives that implement Boolean invert-
ers. The most obvious inverter, Inv(a,b) with input
?a and output !b, is shown in Figure 27: its natural
state is high because of the spontaneous decay from
low to high. The high state sustains (by a self loop)
an output signal (b) that can be used as input to fur-
ther gates. A high input signal (a) pulls the high
state down to low, therefore inverting the input.
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Figure 27 Simple inverter

Populations of such automata are tested in three
ways:

(1) Rectification. With populations 100xInv(a,b) +
100xInv(b,c), a triangularly-shaped test signal
(?a) is provided that ramps up from 0 to 100 and
then back down to 0. We can see that the inverter
is very responsive, quickly switching to low !'b
output and then quickly switching back to high
'b output when the input is removed. But the !c
output is neither a faithful reproduction nor a
Boolean rectification of the ?a input.

(2) Alternation. A chain 100xInv(a,b) + 100xInv(b,c) +

. + 100xInv(e,f), leads to intermediate signals
that are neither high nor low.

(3) Oscillation. A loop 100xInv(a,b) + 100xInv(b,c) +
100xInv(c,a) fails to sustain a Boolean oscillation.

Therefore, we conclude that this inverter does not

have good Boolean characteristics, possibly because

it reacts strongly to a very small input levels, instead
of switching on a substantial signal.

b’ ““NRectifiggign (linga)

aHi"{L.lOO..O, 100xbHi, 100xcLo, ' Yates=1.0

"I/ Alternation (poor)
w|
=
A A
100><bLO 100xcLo, ..., 100xfLo, rates= 1.0
) Oscillation (bad)’

100bu| 100xcLo, 100xaLo, rates= 10

Figure 28 Feedback inverter

In an attempt to force a Boolean behavior, we
add a positive feedback to the high state, so that
(one might think) a higher input level would be re-
quired to force switching, hence improving the Boo-
lean switching characteristics. The result is unex-
pected, but still interesting: a linear signal inverter.
(We can deduce the linearity from the ODEs derived
from the chemistry of this automaton: at steady state
we have [bLo] = [aHi][bHi]/([bHi]+1) ~ [aHi], hence
[bHi] = max-[bLo] » max-[aHi]). Such a linear in-

verter can be useful for inverting an analog signal,
and also has decent Boolean alternation properties.
But it does not oscillate.

A good Boolean inverter can be obtained, in-
stead, by doubling the height of the simple inverter.
This double height inverter gives perfect alternation,
and good rectification (transforming a triangular
input into a nearly rectangular output). However, it
still fails to oscillate.

b, NEPZAN e
)
\
P _,/' \-.__ W
“\\ Vi -
Y aHI:U 10[7 0, 1UUbu1 100><CLO rates 1.0
\ 0y
? 0 7| A«lfematwn (good)
\\ - | 4
1 EI
! J
v V-

100xbLo, 100xcLo, .., 100xfLo, raies=1.0
0] "
-, Oscillation (bad)

&
o
'''' P =,

J) I s~

100xbHi, 100xcLo, 100xaLo, rates=1.0

Figure 29 Double-height inverter

Finally, we combine the two techniques in a
double-height feedback inverter. This has perfect
rectification, transforming a triangular input into a
sharp rectangle. It also has strong and quickly
achieved alternation, and very regular oscillation.

b,

: x{ectyi@tiqn (btfer)
. :

- \ :

b

) FA S -~
al—hx .100. D 10(]bu| 100xcL¢

Altematlon (better)

., 100xfLo, rates 1.0

100xbL0 100xcLo, -
. Osqmatmn ('gdod)
[ |1 |
11t

I | ! f i

lOObui, 100xcLo, 100xaLo, rates=1.0

Figure 30 Double-height feedback inverter

In conclusion, it is possible to build good Boo-
lean inverters and rectifiers. This is important be-
cause it lessens the requirements on other Boolean
circuits: even if those circuits degrade signals, we
can always use a rectifier to restore a proper Boolean
signal. We examine some Boolean circuits next.

3.8 Boolean Circuits

We consider automata with low states and high
states to represent respectively Boolean true and
false. In general, to implement Boolean functions, we
also need to use intermediate states and multiple
high and low states.
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Tt ft ff Tt ft ff
1000xcLo, rates=1.0 1000xcLo, rates=1.0

Figure 31 Or and And

Figure 31 shows the Boolean gate automata for
“c=aOrb” and “c=a And b” The high states spon-
taneously relax to low states, and the low states are
driven up by other automata providing inputs to the
gates (not shown). A self-loop on the high states
provides the output. In the plots, two input signals
that partially overlap in time are used to test all four
input combination; their high level is just 1/10 of
max (where max is the number of gate automata).

c=almplyb

0oy — .

[ Ve
o ~
s | b

. } 4 -\a'.,rI
Tttt
500xcLa, 500xcLb, rates=1.0

e

Ut ft ff ft ff
1000xcLo, rates=1.0

Figure 32 Imply and Xor

The chemical reactions for the Or gate are
aHi+cLo—aHi+cHi, bHi+cLo—bHi+cHi, cHi—cLo.
From those, we can derive the ODEs and set the de-
rivatives to zero to analyze the steady state. With the
automata constraint [cHi]+[cLo] = max, we obtain
[cHi] = max([aHi]+[bHi])/([aHi]+[bHi]+1). That is, if
the inputs are zero then [cHi] = 0. If instead, say,
[aHi] is non-zero, then [cHi] = max[aHi]/([aHi]+1) so
that for large [aHi] we have [cHi] ~ max.

Figure 32 shows automata for “c = a Imply b”
and “c = a Xor b”. In these automata we use two
high states (both producing the same output) to re-
spond to different inputs. The dip in the plot for Im-

ply arises when many automata decay from the high
state cHa to the high state cHb, through cLo, in a
transition from false Imply true to false Imply false.

Analyzing the steady state behavior of Imply we
obtain: output = [cHa] + [cHb] = max - max[aHi] /
([aHi][bHi] + [aHi] + 1) where max is the size of the
collective. Hence, if [aHi]=0 we have output=max; if
[aHi]#0 and [bHi]=0 we have output~0; otherwise
assume [aHi]~[bHi]~max, in which case we have
output~max.

Although Xor can be constructed from a net-
work of simpler gates, Figure 32 shows an Xor gate
implemented as a single uniform collective.

4 The Biochemistry of Automata

4.1 Beyond simple automata

A characteristic feature of biochemistry, and of pro-
teins in particular, is that biological molecules can
stick to each other (forming complexes) while pre-
serving their identity, and can later separate. This
behavior can be represented by chemical reactions,
but only by considering a complex as a brand new
chemical species, thus losing the notion of molecular
identity. Moreover, polymers are formed by the iter-
ated complexation of similar molecules (monomers).
Chemically this can be represented only by an un-
bounded number of different chemical species, one
for each length of a polymer, which is obviously
cumbersome.

In order to model the complexation features of
biochemistry accurately and conveniently, we must
move from individual automata to automata that
form reversible complexes. Thus, we now consider
polyautomata: automata that can associate, in addition
to interacting as usual. Association represents the
event of joining two specific automata together out
of a population, and dissociation is the event that
causes two specific associated automata to break
free; both events result in state changes. Association
does not prevent an automaton from performing
normal interactions or other associations, but it pre-
vents it from reassociating on the same interface,
unless if first dissociates.

Association and dissociation can be encoded in
n-calculus [8], by taking advantage of one of its most
powerful features, resulting in flexible modeling of
complexation and polymerization [10]. However,
here we strive to remain within the confines of an
automata-like framework, including diagrammatic
descriptions.
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4.2 Polyautomata

Polyautomata are automata with an association his-
tory, and with additional kinds of interactions that
modify such history. The main formal difference
from the automata of Section 2 is that the current
state now carries with it a set S of past associations.
An association is a pair (r,k) where 7 is an input ac-
tion ?a or output action !a responsible for an associa-
tion event, and k is a unique integer identifying an
association event between two automata. We as-
sume that a fresh k can be produced from, e.g., a
global counter during the evolution of a collective;
only two automata should have the same k in their
associations at any given time. This unique k is used
to guarantee that the same two automata that associ-
ated in the past will dissociate in the future.

There can be many ways of disassociating two
automata after a given association, and association
and disassociation events can have their own rates.
Therefore, each channel is now attributed with a list
of one or more rates: this is written a@ry,...,r,,; for
n>1. We then say that arity(a)=n.

Association (n22) aar,,..r, ,
S T
?agS, lagT
k fresh
?a, | <700 ! ? !
?a, &G, la, ? ?a, la,
0
S+H(?a k) T+{(!ak)}

Current States

Dissociation (n>2) a@r,...1r,

S+H(?ak)} - T+{(!a k)}

iel.n-1

L-m--- !

?a. . ?a. la.
?a, %ar, la, ?a, la,

@r,

i

s T
Figure 33 Rules of association

If arity(a)=1, then r, is called the interaction rate,
and the old interaction rules from Figure 2 apply
with rg=r, with the understanding that the associa-
tion sets are unaffected. If arity(a)>2, then 1, is the
association rate, and ry,...,ry.; are the dissociation rates.
The association rules from Figure 33 then apply.

An association (Figure 33 top) on a channel can-
not happen if an automaton has a similar past asso-
ciation on that channel, as recorded in the current
state; that is, that particular “surface patch” of the
automaton is currently occupied and cannot be re-
used. The tests ?ae¢S (short for (?a,k)¢S for any k)
and !agT, check for such conditions, where S and T
are the sets of associations. If a new association is

possible, then a fresh integer k is chosen and stored
in the association sets after the transition. The transi-
tion labels are ?a; and !ay, indicating an association
at rate ry on channel a. For emphasis, in examples we
use the notation &?a and &!a for these labels, where
& indicates association, omitting index 0.

Symmetrically, a dissociation (Figure 33 bottom)
on a channel happens only if the two automata have
a past association on that channel, as identified by
the same k in their current states. If a dissociation is
possible, the corresponding associations are re-
moved from the association sets after the transition
(+ here is disjoint union), enabling further associa-
tions. The transition labels are ?a; and !a; with iel..n-
1, indicating a dissociation at rate r; on channel a.
For emphasis, in examples we use the notation %?a;
and %!a; for these labels, where % indicates dissocia-
tion; if arity(a)=2 then we write simply %?a and %!a,
omitting index 1.

4.3 Complexation

As an example of the association/dissociation nota-
tion, in Figure 34 we consider two automata that
cyclically associate, moving to bound states Ay, By,
and then dissociate, moving back to free states Ay, By.
We also show the association sets under each state,
although the number k can change at each iteration.
The cartoon illustrates the mechanics of complexa-
tion, where complexation channels are depicted as
complementary surfaces. Finally, the plot shows that
for the chosen rates, the equilibrium is heavily bi-
ased towards the bound states.

dissociation

%?ag”/“‘%:@_ﬂ;l—-\\\ %!a
OO ONO
{} T\{<?a,1<)} {talo} ™ {}

&ra o &0 T gla
association

e 1000xA;, 500xB, 1 = 1.0, 1= 1.0

[T

Figure 34 Complexation/decomplexation

The use of multiple dissociation rates is exempli-
fied by enzymatic reactions, in Figure 35. From the
bound state of enzyme (E,) and substrate (S,), two
dissociations are possible at different rates, one of
them producing product (P).
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Figure 35 Enzymatic reactions

Homodimerization (Figure 36) is symmetric
complexation: a monomer offers both an input and
an output complexation on the same channel, mean-
ing that it offers two complementary surfaces.

-

0/0@1'] s .

%!la

] s

%?a 1000xA,, 1= 1.0, 1,= 1.0

Figure 36 Homodimerization

The sequencing of states in this automaton guaran-
tees that a complexation must be followed by a de-
complexation, and that, for example, a monomer
cannot bind to two other monomers over its two
complementary surfaces. That situation leads to po-
lymerization, as shown in the next section.

4.4 Polymerization

A polymer is obtained by the unbounded combina-
tion of monomers out of a finite set of monomer
shapes. There are many forms of polymerization;
here we consider just two basic ones.

Moo B > >
wDE SR

0

o0
0
50
50

K] 000

Figure 37 Bidirectional polymerization

In linear bidirectional polymerization, each
monomer can join other monomers on one of two
complementary surfaces, without further restric-
tions. Therefore, two polymers can also join in the
same way, and a single polymer can form a loop

(although a single monomer cannot). For simplicity,
we do not allow these polymers to break apart.

In Figure 37 we show a monomer automata for this
situation: it can be in one of four states: A (free), A,
(bound on the left), A, bound on the right), and A,
(bound on both sides). The sequence of transitions is
obviously from free, to bound on either side, to
bound on both sides. There are four possible in-
put/output associations between two monomers,
indicated by the red dashed arrows in the figure.
Number 1 is the association of two free monomers in
state Ap: one becomes bound to the left (A)) and the
other bound to the right (A,). Number 2 is the asso-
ciation of a free monomer with the leftmost mono-
mer of a polymer (a monomer bound to the right):
the free monomer becomes bound to the right and
the leftmost monomer becomes bound on both sides
(Ap). Number 3 is the symmetric situation of a free
monomer binding to the right of a polymer. Number
4 is the leftmost monomer of a polymer binding to
the rightmost monomer of another polymer (or pos-
sibly of the same polymer, forming a loop, as long as
the two monomers are distinct).

Figure 38 Automata polymers

The plot in Figure 37 shows the result of a fairly
typical simulation run with 1000 monomers. When
all the monomers are fully associated, we are left
with a number of circular polymers: the plot is ob-
tained by scanning the circular polymers after they
stabilize. The horizontal axis is discrete and counts
the number of such polymers (9 in this case). Each
vertical step corresponds to the length of one of the
circular polymers (polymers are picked at random
for plotting: the vertical steps are not sorted by size).
It is typical to find one very long polymer in the set
(~800 in this case), and a small number of total poly-
mers (<10).

We now consider a more constrained form of
polymerization, inspired by the actin biopolymer,
which can grow only at one end and shrink only at
the other end. We have the same states as before, but
the sequencing of transitions is now different.
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Figure 39 Actin-like polymerization

There are four possible input/output associations
between two monomers, indicated by the red
dashed arrows in the figure. Number 1 is the asso-
ciation of two free monomers in states Ay one be-
comes bound to the left (A;) and the other bound to
the right (A,). Number 4 is the breakup of a polymer
made of just two monomers, one that is bound to the
left and one that is bound to the right; they both re-
turn free. Number 2 is the association of a free
monomer with the rightmost monomer of a polymer
(a monomer bound to the left): the free monomer
becomes bound to the left and the rightmost mono-
mer becomes bound on both sides (Ay). Number 3 is
the dissociation of a monomer bound to the right,
from the leftmost monomer to its right which is
bound on both sides; one becomes a free monomer
and the other remains bound to the right. Note that
loops cannot form here, because if we have a mono-
mer bound to the left and one bound to the right
(which could be the two ends of the same polymer),
then there is no interaction that can make them
bound on both sides.

The plots in Figure 39 show three views of the
same simulation run with 1000 monomers, at times
0.01, 0.25, and 35 counterclockwise; all rates are 1.0.
During an initial quick transient the number of A,
and of A=A, temporarily stabilize, each approaching
level 333 (with average polymer length 3). A}, crosses
over at time 0.02 and then slowly grows until
A=A~100 around time 35, meaning that the final
number of polymers is ~100 with average length ~10.

Figure 40 shows a typical sequence of interac-
tions among three monomers, with two associations
followed by two dissociations. At each step we show
the possible interactions by dashed red arrows con-
necting the enabled transitions. The triple lines indi-
cate the complexation state, which is actually en-
coded in the association sets shown under the cur-
rent states, by the shared k and j.

Figure 40 Typical monomer interactions

Note that in state Ay, the association set has the
form {{!a,k),(?a,j)}. This illustrates the need to store !a
and ?a separately in the history: if we recorded only
the channel, {(ak), then the second association for
(a,j) would be prevented because the set would al-
ready contain the channel a. And if we modified the
occurrence check to allow storing distinct pairs (a k),
(a,j), this would allow arbitrary reassociations on the
same channel.

5 Conclusions

Despite ongoing conscious efforts, biochemistry is
still lacking an adequate notation for describing
large and complex biological models in a composi-
tional, parameterizable, and scalable way [5]. In that
respect, the role of mathematical notation (such as
programming languages and process algebra) is fun-
damental in computing: it enables engineering and
analysis techniques that are orthogonal to the ones
available in mathematical models (such as set theory,
calculus, and Markov chains). It is fair to say that
adequate notation alone allows the maintainability
of very large information processing systems, con-
sisting of millions of lines of code, whose complexity
is dwarfed only by biological systems. Operating
systems are not written in differential equations, nor
in set theory.

Still, it is always important to relate mathemati-
cal notation to mathematical models. We have used
automata notation for exploring simple but intrigu-
ing biochemical systems, also aiming to demonstrate
how easy it is to “play with” the notation to get in-
sights into the systems. We have shown, by exam-
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ple, how to relate the notation to stochastic behavior
and to differential equations.

As a graphical notation, automata are composi-
tional, but are neither parameterizable nor scalable
[3]. However, they can be embedded in the richer
framework of process algebras, which have such
properties (although we have carefully avoided go-
ing down that path here). The pragmatics of the no-
tation still needs to be worked out for the domain at
hand. It has taken decades to develop adequate no-
tations and analysis techniques for large software
and hardware systems; we are just at the beginning
of doing the same for biochemical systems, where
the task will certainly be much harder.
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Appendix: Simulation SCI’iptS Figure 10: All 3 reactions in 1 automaton

directive sample 0.02
directive plot AQ; BQO

i new a@1.0:chan()
n-calculus simulator [9]. new b@1.0:chan()

The simulation are carried out in the SPiM stochastic

let AQ do 'a; AQ or !'b; AQ or ?b; BQO
and BQO do delay@1.0; AQ or ?a; AQ

run 1000 of BQ)

Figure 3: Celebrity Automata

directive sample 0.1
directive plot AQ; BQ

new a@1.0:chan() Figure 11: Same behavior

new bgl.0:chanQ directive sample 0.002 10000

let AQ = do 'a; AQ or ?a; BQ directive plot AQ; BQ

and B() = do !'b; BQ) or ?b; AQ new a@1.0:chan()

run 100 of (AQ | BQ) new b@0.5:chan()
let AQQ = do 'a; AQ or !'b; BQ or ?b; BQO
and B() = do delay@1.0; AQ or ?a; AQ

Figure 4: Groupie Automata

N - run 10000 of BQ)
directive sample 2.0

directive plot AQ; BQO

new a@l.0:chan() Figure 12: Sequence of interactions
new b@1.0:chan() _ _
directive sample 0.1
let AQQ = do l'a; AQ or ?b; BQO directive plot A1Q; A2(Q):; A3Q:; A4Q:; A50:;
and BQ) = do !b; BQ or ?a; AQ A7Q; ABQ; A9(Q; A10Q
run 100 of (AQ | BO) new al@l.0:chan new a2@1.0:chan new a3@1.0:chan
new a4@1.0:chan new a5@1.0:chan new a6@1.0:chan
new a7@1.0:chan new a8@1.0:chan new a9@1.0:chan
Figure 5: Both together let ALQ = 2al: A20
directive sample 10.0 and B1() f !alz B2Q
directive plot AgQ; BgQ: AcQ: BcQ 223 228 Z ?:g '228
new a@1.0:chan() and A3() = ?a3; A4Q
new b@1.0:chan() and B3() = !a3; B4()
and A4() = ?a4; A5Q
let Ac() = do !a; Ac(Q) or ?a; BcQ and B4() = 'a4; B5Q
and Bc() = do !b; Bc(Q) or ?b; AcQ and A5() = ?a5; A6Q
and B5() = !a5; B6Q)
let Ag() = do 'a; AgQ) or ?b; BgQ and A6Q) = ?a6; A7TQ
and Bg() = do !'b; Bg() or ?a; AgQ and B6Q) = 1a6; B7Q
run 1 of AcQ and A7Q) = ?a75 ABQ
Fin 160 of 490 1800 ond 8700 = Jari 280
and B8() = 'a8; B9
. . . d A9 = ?a9; Al10
Figure 6: Hysteric groupies 22d 398 = !:9; 3108
directive sample 10.0 223 2188 z 8

directive plot AQ; BQ

new a@l.0:chan() run 1000 of (A1Q | B1Q)

new b@1.0:chan()

let AQ = do 'a; AQ) or ?b; ?b; ?b; BQ Figure 13: Zero order reactions
and B() = do !'b; B(Q) or ?a; ?a; ?a; AQ B ;
directive sample 1000.0
let AdQ = !a; AdQ directive plot SQ; PQ; EQ
and BdQ) = !b; BdQ
new a@l.0:chan()
run 200 of GO 1802 let EQQ) = !a; delay@1.0; EQ
run 1 of (AdQ | BdQ) and SO = '>a PO -0;
and PO = O
Figure 8: Sequence of delays run (1 of EQ) | 1000 of SO)
d!rective sample 20.0
g;gftg\éﬁ);plsgto ;315(1)0’0 520: S80: S40: S50: S60: Figure 14: Subtraction
let S1() = delay@1.0; S2(Q) directive sample 20.0 1000
and S2() = delay@1.0;S3Q) directive plot EQ; FQ; EbQ; FbQO
and S3() = delay@1.0; sS40 ;
and S40) = delay@l.o: S50 new a@1.0:chan()
and S5() = delay@1.0; S6Q let EQ = ?a; EbQ
and S6() = delay@1.0; S7Q and Eb() = delay@l.0; EQ
and S7() = delay@1.0; S8Q and FQ = 'a; FbQ
and S8() = delay@1.0; S9O and Fb() = delay@l.0; FQ
and S9() = delay@1.0; S10Q)
and S100Q = O let clock(t:float, tick:chan) =
(* sends a tick every t time *)
run 10000 of S1Q) (val ti = t/100.0 val d = 1.0/ti

(* by 100-step erlang timers *)
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let step(n:int) = if n<=0 directive sample 0.07 1000

then Itick; clock(t,tick) directive plot BQ; AQ; ALQ
else delay@d; step(n-1)
run step(100)) val s=1.0
let Sig(p:proc(), tick:chan) = N
(PO | 2tick; Sig(p, tick)) flew cgs:chan

let AQ = ?c; A1Q
and A1) = ?c; BQO
and BQ = !c;BQO

run (1000 of AQ) | 1 of BQ)

let raising(p:proc(), t:float) =
(new tick:chan run (clock(t,tick) |
Sig(p,tick)))

run 1000 of FQ
run raising(E,0.01)

Figure 20: Square shape

g:::g::x: ;?22'E(§9'2(;000 directive sample 0.2 1000
’ directive plot BQ; AQ; ALQ; B1Q; CO

new a@1.0:chan() new b@1.0:chan new c@1.0:chan

fet EQ) = %a; EQ let AQ = ?b; ALQ
and FQ = ta: FO and AT = 7b; BO
let raising(p:proc(), t:float) = and B() = do !'b;B(Q) or ?c; B1LQ
... see code for Figure 14 and B1() = ?c; CO
and CQ = Ic;CQO
run 1000 of FQ
run raising(E,0.01) run (1000 of AQQ) | BO | CO)
Figure 15: Ultrasensitivity Figure 21: Hysteric 3-way groupies
directive sample 215.0 directive sample 0.5 1000
directive plot SQ;PQ;:EQ;:ESQ;:FQ;:FPQO directive plot AQ; BQ; CO
new a@l.0:chan() new b@l.0:chan() new a@l.0:chan()
new b@1.0:chan()
let SO = ?a; PQ new c@1.0:chan()
and PQ = ?b; SO
let AQQ = do 'a; AQ or ?c; ?c; CQO
let EQ) = !a; delay@1.0; EQ and BQ) = do !b; BQ) or ?a; ?a; AQ
and FQ) = !b; delay@1.0; FQ and C() = do !c; CQ or ?b; ?b; BQ
run 1000 of SO let AAQ = 'a; AdQ
o and Bd() = !b: BAQ
let raising(p:proc(), t:float) = and cdQ) = tc: cdO

. see code for Figure 14
run 1000 of AQ

run 100 of FQ run 1 of (AdQ | BdAQ | ¢cdQ)

run raising(E,1.0)

Figure 16: Positive feedback transition Figure 22: Second-order cascade

directive sample 0.03

directive sample 0.02 1000 directive plot !a; !b; Ic

directive plot BQ; AQ
new a@l.0:chan new b@l.0:chan new c@1.0:chan

val s=1.0

A let Amp_hi(a:chan, b:chan) =
new b@s.chan_ do 'b; Amp_hi(a,b) or delay@l.0; Amp_lo(a,b)
let AQ) = ?b; BO and Amp_lo(a:chan, b:chan) =
and BQ = 'b;BQ ?a; Amp_hi(a,b)
run (1000 of AQ | 1 of BO) run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let AQ = 'a; AQ

Figure 17: Bell shape run 100 of AQ
direct!ve sample 0.003 1000
directive plot BQ; AQ; CO Figure 23: Zero-order cascade
new b@l.0:chan new c@1.0:chan directive sample 0.01
let AQ) = ?b; BQO directive plot !a; !b; !Ic
and B() = do !b;B() or ?c; CO new a@l.0:chan new b@1.0:chan new c@1.0:chan
and CQ) = !c;CO

let Amp_hi(a:chan, b:chan) =
run ((10000 of AQ) | BO | CO) do !b; delay@1.0; Amp_hi(a,b)

or delay@1.0; Amp_lo(a,b)
and Amp_lo(a:chan, b:chan) =

Figure 18: Bell shape ?a; Amp_hi(a,b)
directive sample 0.03 1000 run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))
directive plot AQ; BQ; CO
let AQQ = 'a; delay@1.0; AQ
new a@l.0:chan new b@l.0:chan new c@1.0:chan run 100 of AQ
let AQQ = do !'a;AQ) or ?b; BQO
and B() = do !'b;B(Q) or ?c; CQO
and C() = do !c;CQ or ?a; AQ directive sample 20.0
directive plot !'a; !b; !Ic

run (900 of AQ) | 500 of B() | 100 of CQ)
new a@l.0:chan new b@1.0:chan new c@l1.0:chan

let Amp_hi(a:chan, b:chan) =

Figure 19: Positive two-stage feedback do 1b7 delay@1.0: Amp hica.b)
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or delay@1.0; Amp_lo(a,b)
and Amp_lo(a:chan, b:chan) =
?a; Amp_hi(a,b)
run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let AQQ = la; delay@1.0; AQ
run 100 of AQ

Figure 24: Zero-order transduction

directive sample 20.0

directive plot !a; !b

new a@l.0:chan new b@1.0:chan

let Amp_hi(a:chan, b:chan) =
do !'b; delay@l1.0; Amp_hi(a,b)
or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =
?a; Amp_hi(a,b)

run 1000 of Amp_lo(a,b)

let AQ = !a; delay@l.0; AQ
run 500 of AQ

Figure 25: Second-order double cascade

directive sample 0.03
directive plot !a; !b; Ic

new a@l.0:chan new b@1l.0:chan new c@1.0:chan

let Amp_hi(a:chan, b:chan) =

do 'b; Amp_hi(a,b) or delay@l.0; Amp_lo(a,b)
and Amp_lo(a:chan, b:chan) =

?a; ?a; Amp_hi(a,b)

run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let AQ = !a; AQ
run 100 of AQ

Figure 26: Zero-order double cascade
directive sample 0.03
directive plot !a; !b
new a@l.0:chan new b@1.0:chan
let Amp_hi(a:chan, b:chan) =
do !'b; delay@1.0; Amp_hi(a,b)
or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =
?a; ?a; Amp_hi(a,b)

run 1000 of Amp_lo(a,b)

let AQ = !a; delay@l.0; AQ
run 2000 of AQ

Figure 27: Simple inverter
directive sample 110.0 1000
directive plot !a; !b; Ic
new a@l.0:chan new b@1.0:chan new c@l1.0:chan
let Inv_hi(a:chan, b:chan) =
do !'b; Inv_hi(a,b)
or ?a; Inv_lo(a,b)

and Inv_lo(a:chan, b:chan) =
delay@1.0; Inv_hi(a,b)

run 100 of (Inv_hi(a,b) | Inv_lo(b,c))

let clock(t:float, tick:chan) =
(* sends a tick every t time *)
(val ti = t/100.0 val d = 1.0/ti
(* by 100-step erlang timers *)
let step(n:int) = if n<=0
then !tick; clock(t,tick)
else delay@d; step(n-1)
run step(100))
let Sl(a:chan, tock:chan) =
do l'a; Si(a,tock) or ?tock; O

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) =

if n=0 then clock(t, tock)

else ?tick; (Sl1(a,tock) | SN(n-1,t,a,tick,tock))

let raisingfalling(a:chan, n:int, t:float) =
(new tick:chan new tock:chan
run (clock(t,tick) | SN(n,t,a,tick,tock)))

run raisingfalling(a,100,0.5)

directive sample 15.0 1000
directive plot 'a; !b; !c; !d; le; If

new a@l.0:chan new b@1.0:chan new c@l1.0:chan
new d@1.0:chan new e@1.0:chan new f@1.0:chan

let Inv_hi(a:chan, b:chan) =
do !b; Inv_hi(a,b)
or ?a; Inv_lo(a,b)

and Inv_lo(a:chan, b:chan) =
delay@1.0; Inv_hi(a,b)

run 100 of (Inv_lo(a,b) | Inv_lo(b,c)
| Inv_lo(c,d) | Inv_lo(d,e) | Inv_lo(e,f))

directive sample 2.0 1000
directive plot !a; !b; Ic

new a@l.0:chan new b@l1.0:chan new c@1.0:chan

let Inv_hi(a:chan, b:chan) =
do !b; Inv_hi(a,b)
or ?a; Inv_lo(a,b)

and Inv_lo(a:chan, b:chan) =
delay@1.0; Inv_hi(a,b)

run 100 of (Inv_hi(a,b) | Inv_lo(b,c) | Inv_lo(c,a))

Figure 28: Feedback inverter

directive sample 110.0 1000
directive plot !a; !b; Ic
new a@l.0:chan new b@l.0:chan new c@1.0:chan
let Inv_hi(a:chan, b:chan) =
do !b; Inv_hi(a,b) or ?a; Inv_lo(a,b)
and Inv_lo(a:chan, b:chan) =

do delay@1.0; Inv_hi(a,b)
or ?b; Inv_hi(a,b)

run 100 of (Inv_hi(a,b) | Inv_lo(b,c))

let raisingfalling(a:chan, n:int, t:float) =
.. see code for Figure 27

run raisingfalling(a,100,0.5)

directive sample 1.0 1000
directive plot !a; !b; !c; !d; le; If

new a@l.0:chan new b@1.0:chan new c@l1.0:chan
new d@1.0:chan new e@l1.0:chan new f@1.0:chan

let Inv_hi(a:chan, b:chan) =

do !b; Inv_hi(a,b) or ?a; Inv_lo(a,b)
and Inv_lo(a:chan, b:chan) =

do delay@1.0; Inv_hi(a,b)

or ?b; Inv_hi(a,b)

run 100 of (Inv_lo(a,b) | Inv_lo(b,c)
| Inv_lo(c,d) | Inv_lo(d,e) | Inv_lo(e,f))

directive sample 2.0 1000
directive plot !a; !b; !Ic

new a@l.0:chan new b@1.0:chan new c@l1.0:chan

let Inv_hi(a:chan, b:chan) =

do !b; Inv_hi(a,b) or ?a; Inv_lo(a,b)
and Inv_lo(a:chan, b:chan) =

do delay@1.0; Inv_hi(a,b)

or ?b; Inv_hi(a,b)

run 100 of (Inv_hi(a,b) | Inv_lo(b,c) | Inv_lo(c,a))

Figure 29: Double-height inverter

directive sample 110.0 1000
directive plot !a; !b; Ic

new a@l.0:chan new b@1.0:chan new c@l1.0:chan
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let Inv2_hi(a:chan, b:chan) =

do !'b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b)
and Inv2_mi(a:chan, b:chan) =

do delay@1.0; Inv2_hi(a,b)

directive sample 2.0 1000
directive plot !'a; !b; !Ic

or ?a; Inv2_lo(a,b) new a@l.0:chan new b@1.0:chan new c@l1.0:chan
and Inv2_lo(a:chan, b:chan) = B

delay@1.0; Inv2_mi(a,b) let Inv2_hi(a:chan, b:chan) =

do !b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b)
run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c)) and Inv2_mi(a:chan, b:chan) =
oL ~ ~ do delay@1.0; Inv2_hi(a,b)

let raisingfalling(a:chan, n:int, t:float) = or ?a; Inv2_lo(a,b)

... see code for Figure 27 or ?b; Inv2_hi(a,b)

and Inv2_lo(a:chan, b:chan) =

run raisingfalling(a,100,0.5) do delay@l.0; Inv2 mi(a,b)

or ?b; Inv2_mi(a,b)

directive sample 15.0 1000 run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c) | Inv2_lo(c,a))
directive plot !a; !b; Ic; 'd; le; If
new a@l.0:chan new b@1.0:chan new c@l1.0:chan .
new d@1.0:chan new e@1.0:chan new f@1.0:chan Flgure 31: Or and And
let Inv2_hi(a:chan, b:chan) = direct!ve sample 10.0 1000
do !b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b) directive plot !a; !b; Ic

and Inv2_mi(a:chan, b:chan) =
do delgy@g.o; Inv2_hi(a,%) new a@l.?:chan new b@1.0:chan new c@1.0:chan

or ?a; Inv2_lo(a,b) val del = 1.0
and 1nv2_fo(a:chan, b:chan) = let Or_hi(a:chan, b:chan, c:chan) =
defayg.0: Inv2mi(a.b) do Ic; Or_hi(a,b,c) or delay@del; Or_lo(a,b,c)

d Or_lo(a:chan, b:chan, c:chan) =
run 100 of (Inv2_lo(a,b) | Inv2_lo(b,c) an _t n : _
| Inv2_lo(c,d) | Inv2_lo(d,e) | Inv2_lo(e,f)) do ?a; Or_hi(a,b,c) or ?b; Or_hi(a,b,c)
run 1000 of Or_lo(a,b,c)

directive sample 2.0 1000 let clock(t:float, tick:chan) =
directive plot !a; !b; !c (* sends a tick every t time *)

A ) ) (val ti = t/200.0 val d = 1.0/ti
new a@l.0:chan new b@1.0:chan new c@l1.0:chan let step(n:int) = if n<=0

let Inv2_hi(a:chan, b:chan) = then !tick; ?IOCk(t’ tick)
do 'b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b) else delay@d; step(n-1)

and Inv2_mi(a:chan, b:chan) = run step(200))
do delay@1.0; Inv2_hi(a,b)
or ?a; Inv2_lo(a,b)

and Inv2_lo(a:chan, b:chan) =
delay@1.0; Inv2_mi(a,b)

let S_a(tick:chan) = do 'a; S_a(tick) or ?tick; O
let S_b(tick:chan) = ?tick; S_bil(tick)
and S_bil(tick:chan) =
do !b; S bl(tick) or ?tick; S_b2(tick)
run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c) | Inv2_lo(c,a)) and S_b2(tick:chan) = do !b; S_b2(tick) or ?tick; O

let many(n:float, p:proc()) =

Figure 30: Double-height feedback inverter IT n<=0.0 then O else (PO | many(n-1.0. p))

directive sample 110.0 1000 Iezlggog:gpgti(g:float, nt:float, m:float, mt:float) =
di ti lot !a; Ib; ! — - R _

trective plo a ¢ (new tick:chan run (clock(nt,tick) | S_a(tick)))
new a@1.0:chan new b@1.0:chan new c@1.0:chan let Sig_bQ) =

(new tick:chan run (clock(mt,tick) | S_b(tick)))

let Inv2_hi(a:chan, b:chan) = run many(n, Sig_a)

do !'b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b) run many(m, Sig_b))
and Inv2_mi(a:chan, b:chan) = -

do delay@1.0; Inv2_hi(a,b) run Bool Inputs(100.0, 4.0, 100.0, 2.0)

or ?a; Inv2_lo(a,b)

or ?b; Inv2_hi(a,b)
and Inv2_lo(a:chan, b:chan) = directive sample 10.0 1000
do delay@1.0; Inv2_mi(a,b) directive plot !a; !b; Ic
or ?b; Inv2_mi(a,b)
new a@l.0:chan new b@l.0:chan new c@1.0:chan

run 100 of (Inv2_hi(a,b) | Inv2_lo(b,c)) val del = 1.0
let raisingfalling(a:chan, n:int, t:float) = let And_hi(a:chan, b:chan, c:chan) =
... see code for Figure 27 do !c; And_hi(a,b,c) or delay@del; And_lo_a(a,b,c)

and And_lo_a(a:chan, b:chan, c:chan) =

run raisingfalling(a,100.0.5) do ?a; And_hi(a,b,c) or delay@del; And_lo_b(a,b,c)

and And_lo_b(a:chan, b:chan, c:chan) =

oh -
directive sample 1.0 1000 ?b: And_lo_a(a.b.c)
directive plot !a; !b; Ic; 'd; le; If run 1000 of And_lo_b(a,b,c)

new a@l.0:chan new b@1.0:chan new c@l1.0:chan

1 Booll :fl - Fl i | -fl =
new d@1.0:chan new e@1.0:chan new f@1.0:chan et Boollnputs(n oat, nt oat, m oat, mt oat)

.. see code for Figure 31
let Inv2_hi(a:chan, b:chan) =

do 'b; Inv2_hi(a,b) or ?a; Inv2_mi(a,b) run Bool Inputs(100.0, 4.0, 100.0, 2.0)
and Inv2_mi(a:chan, b:chan) =

do delay@1.0; Inv2_hi(a,b)

or ?a; Inv2_lo(a,b) Figure 32: Imply and Xor
or ?b; Inv2_hi(a,b) B ;

and Inv2_lo(a:chan, b:chan) = directive sample 15.0 1000
do delay@1.0; Inv2_mi(a,b) directive plot !a; !b; Ic
or ?b; Inv2_mi(a,b)

new a@l.0:chan new b@1.0:chan new c@l1.0:chan

run 100 of (Inv2_lo(a,b) | Inv2_lo(b,c) val del = 1.0
| Inv2_lo(c,d) | Inv2_lo(d,e) | Inv2_lo(e,f))
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let Imply_hi_a(a:chan, b:chan, c:chan) =

do !c; Imply_hi_a(a,b,c) or ?a; Imply_lo(a,b,c)
and Imply_hi_b(a:chan, b:chan, c:chan) =

do !c; Imply_hi_b(a,b,c)

or delay@del; Imply_lo(a,b,c)
and Imply_lo(a:chan, b:chan, c:chan) =

do ?b; Imply_hi_b(a,b,c)

or delay@del; Imply_hi_a(a,b,c)

run 1000 of Imply_lo(a,b,c)

let BoolInputs(n:float, nt:float, m:float, mt:float) =

. see code for Figure 31

run BoolInputs(100.0, 4.0, 100.0, 2.0)

directive sample 20.0 1000
directive plot !a; !b; Ic

new a@l.0:chan new b@1.0:chan new c@l1.0:chan

let Xor_hi_a(a:chan, b:chan, c:chan) =
do !c; Xor_hi_a(a,b,c) or ?b; Xor_lo_ab(a,b,c)
or delay@1.0; Xor_lo_a(a,b,c)
and Xor_hi_b(a:chan, b:chan, c:chan) =
do !c; Xor_hi_b(a,b,c) or ?a; Xor_lo_ab(a,b,c)
or delay@1.0; Xor_lo_b(a,b,c)
and Xor_lo_a(a:chan, b:chan, c:chan) =
do ?a; Xor_hi_a(a,b,c) or ?b; Xor_lo_ab(a,b,c)
and Xor_lo_b(a:chan, b:chan, c:chan) =
do ?b; Xor_hi_b(a,b,c) or ?a; Xor_lo_ab(a,b,c)
and Xor_lo_ab(a:chan, b:chan, c:chan) =
do delay@1.0; Xor_hi_a(a,b,c)
or delay@1.0; Xor_hi_b(a,b,c)

run 500 of (Xor_lo_a(a,b,c) | Xor_lo_b(a,b,c))

let BoolInputs(n:float, nt:float, m:float, mt:float) =

. see code for Figure 31

run Boollnputs(100.0, 8.0, 100.0, 4.0)

Figure 34: Complexation/decomplexation

directive sample 0.005
directive plot AfQ); AbQ; BFf(Q:; BbQO

val mu = 1.0 val lam = 1.0
new a@mu:chan(chan)

let Af(Q) = (new n@lam:chan run 'a(n); Ab(n))
and Ab(n:chan) = In; AFQ

let BfFQ) = ?a(n); Bb(n)
and Bb(n:chan) = ?n; BfQ

run (1000 of Af() | 500 of Bf())

Figure 35: Enzymatic reactions

directive sample 0.05 1000
directive plot EfQ); EbQ; SFQ; SbQ; PO

val k1 = 1.0 val kml = 1.0 val k2 = 100.0
new a@kl:chan(chan,chan)

let PO = O

let EFQ =
(new n@kml:chan new m@k2:chan
run 'a(n,m); Eb(n,m))

and Eb(n:chan,m:chan) =

do 'n; EFQ) or Im; EFQ
let SFQ) = ?a(n,m); Sb(n,m)
and Sb(n:chan,m:chan) =

do ?n; SFQ or ?m; PO

run (1000 of EFf() | 2000 of SFfQ)

Figure 36: Homodimerization

directive sample 0.005 10000
directive plot AFQ; AiQ

new a@l.0:chan(chan)

let AFQ =
(new n@1.0:chan
run do ?a(m); Ai(m) or la(n); Ao(n))

and Ai(n:chan) = ?n; AFQ
and Ao(n:chan) = In; AFQ
run 1000 of AFfQ)

Figure 37: Bidirectional polymerization

directive sample 1000.0
directive plot ?count
(* directive plot ATQ); AIQ; ArQQ; AbQ ™)

type Link = chan(chan)
type Barb = chan

val lam = 1000.0 (* set high for better counting *)
val mu = 1.0

new c@mu:chan(Link)

new enter@lam:chan(Barb)

new count@lam:Barb

let AFQ =
(new rht@lam:Link run
do 'c(rht); Ar(rht)
or ?c(Ift); AI(Ift))

and Al(Ift:Link) =
(new rht@lam:Link run
Ic(rht); Ab(Ift,rht))

and Ar(rht:Link) =
?c(Ift); Ab(Ift,rht)

and Ab(Ift:Link, rht:Link) =
do ?enter(barb); (?barb | !rht(barb))
or ?Ift(barb); (?barb | !rht(barb))
(* each Abound waits for a barb, exhibits it,

and

passes it to the right so we can plot number of Abound

in a ring *)
let clock(t:float, tick:chan) =
(* sends a tick every t time *)
(val ti = t/1000.0 val d = 1.0/ti
let step(n:int) = if n<=0
then !tick; clock(t,tick)
else delay@d; step(n-1)
run step(1000))

new tick:chan
let Scan() = ?tick; !enter(count); Scan()

run 1000 of AFQ)
run (clock(100.0, tick) | Scan(Q))

Figure 39: Actin-like polymerization

directive sample 1000.0
directive plot AFQ; AIQ; ArQ:; AbQ

val lam = 1.0 (* dissoc *)
val mu = 1.0 (* assoc *)
new c@mu:chan(chan)

let AfQ =
(new Ift@lam:chan run
do lc(Ift); AI(IFfL) or ?c(rht); Ar(rht))

and Al(Ift:chan) =
do 11ft; AFQ or ?c(rht); Ab(Ift,rht)

and Ar(rht:chan) = ?rht; AFQ
and Ab(Ift:chan, rht:chan) = 'Ift; Ar(rht)
run 1000 of AFQ
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