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Abstract
a b
The Ambient Calculus is a process calculus where processes may re- b
side within a hierarchy of locations and modify it. The purpose of the
calculus is to study mobility, which is seen as the change of spatial p
configurations over time. In order to describe properties of mobile
computations we devise a modal logic that can talk about space as In the Ambient Calculus, contiguous locations (or processes)
well as time, and that has the Ambient Calculus as a model. are represented by standard parallel composiBdi®Qj§, and named
locations are represented by ambienf®]) which name a location
1 Introduction n with contents?. This fragment of the Ambient Calculus, together

In the course of our ongoing work on mobility [3,4,5,12], we haveW'th a void procesdj and simple syntactic equivalences, amounts

. . . .10 a textual representation of edge-labeled trees. The example above
often struggled to express precisely certain properties of mobile

computations. Informally, these are properties such as “the agent h%%uld be yvr!tten aa[p[OJ] | b[0], assuming there are no active pro-
cesses within the locations.

one away”, “eventually the agent crosses the firewall”, “ever L .
9 Y y 9 Y Even before considering process execution, we can talk about

agent always carries a suitcase’, “somewhere there is a virus’, gr atial properties and spatial specifications. For example, we have
“there is always at most one agent catidtere”. There are several p prop P P N pie,
the following correspondence between spatial constructs in the Am-

conceivable ways of formalizing these assertions. It is possible ttc))_ . -
. ) g ient Calculus and certain formulas of the logic we develop later:
express some of them in terms of equations [12], but this is some-

times difficult or unnatural. It is easier to express some of them asProcesses

properties of computational traces, but this is very low-level. 0 (void)
Modal I_ogics (particularly, temp_oral logics) have em_erged in n[P] (location)
many d(_)malns as a good compromise _between expressiveness and PIQ (composition)
abstraction. In addition, many modal logics support useful computa-
. — . ; Formulas
tional applications, such as model checking. In our context, it makes 0 there | thina h
sense to talk about properties that hold at particular locations, and it (there !S no '”9 ere)
becomes natural to considepatial modalitiesfor properties that n[<] (there is one thing here)
hold at a certain location, at some location, or at every location. AlB (there are two things here)
Space We have a logical constabthat is satisfied by the procedsepre-

) . . ting void. We have logical propositions of the foftd] (mean-
Interesting spatial structures can be represented conveniently as Ji ) L
gsp P y |nélsthat§7? holds at locatiom) that are satisfied by processes of the

ordered edge-labeled trees, where edge labels correspond to na . - .
of sublocations, and subtrees correspond to sublocations. Such a :(Eorm n[P] (meaning that proces3is located ah) provided thaP

resentation of locations is shared by the Ambient Calculus [3], thagt'frf]'eg' V\c/j?Bhr?VIZ IOQKt:.aI proplosmﬁ_nshof the ffﬁfﬂ (;Bb(mear:_-
Distributed Join Calculus [10], the Seal Calculus [20], and trivially™9 that? and 3 hold contiguously) which are satisfied by contigu-

by the many distributed process calculi with a flat location structur@"'> PrOCeSSes of the foi| Qif P satisfies7 andQ satisfies, or
(e.g.: [2]). vice versa.

The following edge-labeled tree represents two contiguous loTime

cations,a andb, such thab has no sublocations, aacthas a sublo-  gpatia| configurations evolve over time as a consequence of the ac-

cation callecp. The diagram on the right gives a more intuitive butyjyities of processes. For example, our initial tree may go through the

equivalent description of location contiguity and containment: following two steps of evolution, as the result of a process moving
the locatiorp from a to b through the ether in between.
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We can think of processes as sitting at the nodes of edge-labelsttengthening the definition of structural congruence so that it char-

trees, and directing the movement of those nodes through the treesterizes the intended equivalence on spatial configurations.

So, the steps above could be caused by a process executing move- The following table summarizes the syntax of processes. We

ment instructions at the node unger have separated the process constructsipatial andtemporaj this

Mobility is similar to the distinction between static and dynamic constructs in
- ) ) ) ] CCS [17]. This paper focuses on the spatial constructs; the temporal

We regardmobility as the evolution of spatial configurations over ¢onstructs and the dynamic behavior are necessary but secondary for

time. A specification logic for mobility should be able to talk aboutq cyrrent purposes.
the structure of spatial configurations and about their evolutior'Br
through time; that is, it should be a modal logic of space and time, ocesses

A typical specification would say that the configuration looks P,Q,R::= processes
initially like a certain tree, and eventually like some other tree. In 0 void
some cases we may want to be very precise about describing the  p|Q composition spatial
structure of locations, even though this runs against the traditional Ip replication
attitude in logics for process calculi that prevents “counting” the M[P] ambient
numpgr Qf processes (or locations) involved. Our logic can be very M.P capability action
specific, in this sgnse. . . - n).P input action } temporal
Of course, since we are dealing with specifications, we may :
also want to be able to be imprecise, and describe things that happen M) output action
“somewhere” or “sometime”. Rarely, though, we want to be very M ::= messages
precise about particular execution steps, so that the same flavor of name » names
logic of mobility seems applicable to a variety of calculi. In fact, the inM can enter intd/
notlon. qf moplllty as eyolutlon .of location trees is shared by sevgral out M can exit out oM } capabilities
calculi, including Ambients, Join, and Seal, although the mechanism
. . . openM can operM
and properties of mobility steps differ greatly between them.
In this paper, we concentrate on the Ambient Calculus for con- € , null . } paths
creteness, but our main thrust is applicable to any distributed process M.M composite

. . . . L
calculus that includes a hierarchical and dynamic structure of loca-
tions.

The set of free names of a procBsarrittenfn(P), is defined as usu-

al; the only binder is in the input action. We win — M} for the

Paper Outline

substitution of the messadyefor each free occurrence of the name

Spatial modalities have an intensional flavor that distinguishes our in the proces®. Similarly for M{n—M’}. The O process is often

logic from other modal logics for concurrency. Previous work in theomitted in the contexts{0]
area concentrates on properties that are invariant up to strong equiv-

andM.0, yieldingn[] and M.

alences such as bisimulation [15,6], while our properties are invar?-2 Structural Congruence and Reduction

ant only up to simple spatial rearrangements. Some of our tecltructural congruence is

a relation between processes; it is used

niques can be usefully applied to other process calculi, even ong@gavily in the logic, as well as in the reduction semantics. Intuitively,

that do not have locations, such as CCS.

structural congruence equates processes up to simple “rearrange-

‘We start from a computational basis: a process calculus, Sufhent” of parts, without any computational significance. We can
marized in Section 2, that acts as a model for the logic. In Sectionjdentify five groups of rules in the following table: for equivalence,

we introduce logical formulas and a notion of satisfaction. In SectiOIfbr congruence of spatial operators, for composition, for replication,
4, we derive logical inference rules, including rules for time, spaceand for temporal operators and paths.

and satisfiability modalities, and novel rules for locations and proz
s . . : Structural Congruence
cess composition (the rules are summarized in the Appendix). At t

e
end of this section we give a detailed example of logical inference.P =P

In Section 5 we investigate model checking of mobile programs, onP=Q O Q=P

the basis of the satisfaction relation between processes and formula®=Q,Q=R O P=R
Finally, in Section 6, we compare our logic with relevant and linear
logics. P=Q O P|IR=QJ|R
P=Q O 'P=!Q

2 The Ambient Calculus with Public Names P=Q U M[PI=M[Q]

In this paper we consider only ambients having public names; thatisP |[Q=Q|P
we do not deal with name restriction and scope extrusion. Handling(P |Q) [IR=P | Q|R)
of private names in a logic is a very interesting topic, but we leave it p [0o=P
for future work.
(PIQ=!P|Q

2.1 Ambients 10=0

We summarize a modified version of the basic Ambient Calculus of 'P=P|P
[3]. The changes consist in removing name restriction, and in 'P=1P

(Struct Refl)
(Struct Symm)
(Struct Trans)

(Struct Par)
(Struct Repl)
(Struct Amb)

(Struct Par Comm)
(Struct Par Assoc)
(Struct Par Zero)

(Struct Repl Par)

(Struct Repl Zero)
(Struct Repl Copy)
(Struct Repl Repl)



P=Q 0 MP=MQ (Struct Action) here and now an empty location calledTine operaton[%4] repre-

P=Q O (X.P=(X.Q (Struct Input) sents a single step in space, allowing us to talk about the place one
eP=P (Structe) step down inta1. Another operatorg-%2, allows us to talk about an
(M.M').P = MM P (Struct ) arbitrary number of steps in space; this is akin to the temporal even-

| | tuality operatorO4.

Spatial configurationsare ambient configurations consisting
only of spatial operators. For examm@gh[0] | Ic[0] 0] | !0] is a spa-
tial configuration. These configurations have a natural interpretatiof he syntax of logical formulas is summarized below. This is a modal
as edge-labeled finite-depth trees, where replication introduces infRredicate logic with classical negation. As usual, many standard
nite branching. The rules for structural congruence are sound aﬁ@nnectives are interdefinable. The meaning of the formulas will be
complete for equivalence of these trees. We do not elaborate this fgiven shortly in terms of a satisfaction relation. Informally, the first
ther, but it suffices to say that this completeness result motivates tiree formulas (true, negation, disjunction) give propositional logic.
choice of axioms for structural congruence, and particularly the axthe next three (void, location, composition) capture spatial config-

ioms for replication (which are the same as in Engelfriet's work ortrations, as we discussed. Then we have quantification over names,
theecalculus [9]). the two temporal and spatial modalities, and two further operators

that we explain later. Quantified variables range only over names:

3.1 Logical Formulas

IReductlon | these variables may appear in the location and location adjunct con-
nfinm. P [Q] [ mR] — m[n[P [Q] |R] (Red In) structs.
minfoutm. P |Q] | Rl — n[P | Q] | M[R] (Red Out) Logical Formulas
openn.P |n[Q] — P |Q (Red Open) | ) ) |
(N).P | (M) — P{nM} (Red Comm) n is aname or a variable
P—Q O n[P] —n[qQ] (Red Amb) a,B,C =
P—-Q O PIR—QIR (Red Par) T true
P=P,P—-0QQ=Q 0 P —Q (Red=) -4 negation
—* is the reflexive and transitive closure-ef A0DB disjunction
' ! 0 void
The reduction relation describes the dynamic behavior of am- n[] location
bients. In particular, the rules (Red In), (Red Out) and (Red Open) AN B composition
represent mobility, while (Red Comm) represents local communica- VXD universal quantification over names
tion (see [3] for an extended discussion). For example, the process: OF sometime modality
a[p[out a in b. (m)]] | blopen p (x). X]] <A somewhere modality
SA@n location adjunct

represents a packethat travels out of hostand into hosb, where
it is opened, and its contemtsare read and used to create a new am-

bient. The process reduces in four steps (illustrating each of the four ) ] ]
reduction rules) to the residual procefs| b{m[]. The first three The free names of a formufa(%4), are easily defined since there are

states correspond to the tree diagrams in the Introduction. no name binders. The free variables of a formfu(&), are defined
along standard lines: only quantifiers bind variables. A foriiliga

B composition adjunct
|

alplout a in b. (m]] | blopen p (X). X{I] closed iffv(%) = g.

— a[] | plin b. (m)] | blopen p (X). X[]] (Red Out) _ ,

— a[] | blp[¢m}] | open p (). x{] (Red In) 3.2 Satisfaction

—af] | b[{m) | ). x[I] (Red Open) The satisfaction relatioR F $2 means that the proceBsatisfies the
— a[] | b[m[]] (Red Comm) closed formul&4. This relation is defined inductively in the follow-

ing table, wherél is the sort of processes,is the sort of formulas,
3 is the sort of variables, ardis the sort of names. We are very ex-
plicit about quantification and sorting of meta-variables because of

2-1 Facts about Structural Congruence
()P | Q=0iff P=0andQ=0.

(2)n[P] £ 0. subtle scoping issues, particularly in the definitioP &f Vx.4. We
(3) n[P] = Q | Riff eitherQ = n[P] andR= 0, orQ = 0 andR = n[P]. use the same syntax for logical connectives at the meta-level and ob-
(4) m[P] = n[Q] iff m=nandP= Q. ject-level, but this is unambiguous.
G)mP] | Q] = m[P'] | [Q’] iff eitherm=m", n=n", P= P, The meaning of the temporal modality is given by reductions in
Q=Q,orm=n,n=m,P=Q,Q=P". the operational semantics of the Ambient Calculus. For the spatial

O modality, we need the following definition: the relatiBhP’ indi-

cates thaP containsP’ within exactly one level of nesting; that is,
3 The Logic P’ is one step away frof in space, in some downward direction.

. . . PP’ iff 3n,P". P=n[P]|P"
In a modal logic, the truth of a formula is relative to a state (or y I n NP

world). In our case, the truth ofspace-timenodal formula is rela-  Then,P|"P’ is the reflexive and transitive closure of the previous re-
tive to thehere and nowEach formula talks about the current time, lation, indicating thaP contains®’ at some nesting level. Note that
that is, the current state of execution, and the current place, that I, consists of either the top leve| or the entire contents of an en-
the current location. For example, the formuid] is read:ithere is  closed ambient.



Satisfaction AO0B  A2-(B> -9 fusion

IVP:I‘I. PET A0 B &2-&|-D) fusion adjunct
VPN, Z:0. PE-Z & -PEY ' ) . '
VP, 2B, PEIB 2 PEGLOPED ISyntac‘n,c_conventlon5t> ; <&, <, and X’ bind more strong-_

: f o y than‘|"; and they all bind more strongly than the standard logical
VP, PO £ P=0 connectives, which have standard precedences. Quantifiers extend
VP:MM, A\, F:®.  PE N[%] £ IPN.P=nPlOPEXA to the right as far as possible.
vPn,Ase.  PEA|B £ IPPM.P=PIP” Decomposition is the DeMorgan dual of composition. A de-

OPEXAOP EB composition formuld? || B is satisfied if for every parallel decom-
VP:M, x9,42:®d. PEVXZ 2 VmA.PEZx—m} position of the process in question, either one component sa#isfies
VP:M, F:. PEOS A2 JPMN.P-"POPEY or the other satisfié®. Then&” means that in every decomposition
YP:M, F:0. PE 9 A IP.PUPOPEYD either one component satisfi@sor the other satisfies; since the
VPN, T0. PEZ@n 2 nPlEZ latter is impossible, in every possible decomposition one component
N must satisfysZ. For example:r{T]0 n[m[T]])¥ means that every

VPN :P. P E %> VP:MN.PEXAO PIP'E
| AD D 7 ! @ | ambientn that can be found here contains a single subambient

The DeMorgan dual df” is %7, which means that it is possible to
find a decomposition where one component satisfieBor exam-
ple, nfm[T]7]? means that there is at least one amhienere that
contains at least one subambiemnt

Other operators are derived as DeMorgan duals: existential
guantification, and everytime and everywhere modalities. Examples
for these modalities aremn[T] (there is always a location called
here), andt- (n[T]?) (there is now no location calledanywhere).

Fusion$ 0 B, is an operator that arises in relevant logic (when
> is seen as relevant implication). In our contgkf] 3 means that
there is a context satisfying that helps ensuring. The adjunct of
?usion,?l |0 <B, turns out to be very natural in specifications: it
means that in every decomposition, if one part sati$fieen the
other part must satisf.
The following is a fundamental property of the satisfaction re-
n; it states that satisfaction is invariant under structural congru-
ence of processes. In other words, logical formulas can only express
grgperties that are invariant up to structural congruence. The proof
&5 simple induction on the structuresaf

We spell out some of these definitions. A prodesatisfies the
formulan[4] if there exists a proce$® such thaf has the shape
n[P’] with P’ satisfying?4. A proces$ satisfies the formul&@’ | 4"
if there exist processés andP” such thaP has the shape’ | P”
with P’ satisfying’?” andP” satisfying’4". A proces$ satisfies the
formula<$9Z if 2 holds in the future for some residalof P, where
“residual” is defined byP—"P’. A processP satisfies the formula
<A if 4 holds at some sublocati® within P, where “sublocation”
is defined byP{"P’.

The last two connectives, @ andcan be used to express as-
sumption/guarantee specifications [1]; they were inspired by th
wish to express security properties. A reading 6f4@n is thatP
(together with its context) manages to satighgven when placed
into a location called. A reading ofP F S>3 is thatP (together
with its context) manages to sati§B/under any possible attack by latio
an opponent that is bound to sati8fy Moreover,P = (0%49)>(0%9)
can be interpreted as saying tRaitreserves the invaria@t We will
see that these two connectives arise as natural adjuncts to the lo
tion and composition connectives, respectively.

The definition of satisfaction is based heavily on the structuraB-1 Proposition (Satisfaction is up tcs)
congruence relation. This use of structural congruence may appear (PEZ0P=P)0 P'FSA
arbitrary: other equivalence relations could be used in its place. Wg
have tried to motivate the choice of structural congruence by dis-  We end this section with an example of a proof that a certain
cussing in Section 2.2 how structural congruence precisely capturggocess satisfies a certain formula. A proof of even a very simple
the intuition of ambients as spatial configurations. Moreover, strucnegative formula requires techniques for analyzing the derivation of
tural congruence is easily decidable, which is useful in modelstructural congruences. For example, consider proving the following
checking applications (see Section 5). assertion, wherm # n:

The following table lists some derived connectives, illustrating
some properties that can be expressed in the logic. The informal M1 110 F = 3x X[T][X[T]
meanings can be understood better by expanding out the definitions  For a contradiction, suppose tidi | n[] £ 3x. X{T] | [T]. By
from the table above. Some discussion follows. definition, this means there ifPasuch that] | n[] = P and there is
Derived Connectives agwith PE q[T] | q[T]. This implies that there are procesBésand
' ! P” such tham[] | n] = P’ | P” with P’ E [T] andP” E q[T]. In

F 24T false S . Nt

. . turn, P’ E q[T] implies there iQ’ such thaf’ = ']. Similarly,
A0B  2-(-A0-9) conjunction P” EqT] ?er]liesF;here Q" s?ch thaP” = q[Q”?.[IQn]summary)f
A0 B A-F40B implication
AePB 2AQBOBO A logical equivalence mi [ nl = q[Q]14[Q"]
A\|B L2 5 (=F|-DB) decomposition According to the Fact 2-1(5), there are two ways in which this equa-
ol 24||F every component satisfié% tion can have been derived. In either case, it followsnthag and
9P 29T some component satisfigs n =g, and thereforen = n. This yields the desired contradiction, as
IxA A LVYx-F existential quantification we are assuming that# n.
oA £ 50-9 everytime modality
28] L2509 everywhere modality



4 Validity fore, there may be formulations of our logic which identify a set of
In this section, we study valid formulas, valid sequents, and Valiatructural rules, perhaps along the lines of [18]. At the current stage

logical inference rules. All these are based on the satisfaction relgwégzei:?%/aetl%?g;ri‘;r?f our logic, however, it is unclear how to pro-
tion given in the previous section. Once the definition of satisfactioff ’
is fixed, we are basically committed to whatever logic comes out ofy 5 Ryles of the Logic

it. Therefore, it is important to stress that the satisfaction relation ap- ) ) )

pears very natural to us. In particular, the definition®, of], and ' t_he seq_uel, we organize our results into tables Qf Rules_, which are

| B seem inevitable, once we accept that formulas should be aby@lldated in the_model, and into tables of Corollaries, which are de-

to talk about the tree structure of locations, and that they should nB¥ed purely logically from the inference rules.

distinguish processes that are surely indistinguishable &) The

connective$4@n and%>3 have natural security motivations. The

modalitiesC% and<-Atalk about process evolution and structure in The following is a non-standard presentation of the propositional se-

an undetermined way, which is good for mobility specifications. Thejuent calculus [14], based on our single-assumption single-conclu-

rest is classical predicate logic, with the ability to quantify over lo-sion sequents. In this presentation, the rules of propositional logic

cation names. become very symmetrical, and many proofs become more regular,
Through the satisfaction relation, our logic is based on solidiaving to consider only single formulas instead of sequences of for-

computational intuitions. We should now approach the task of digmulas.

covering the rules of the logic without preconceptions. As we shalbropositional Rules

see, what we get has familiar as well as novel aspects. I (AL 20COD)F B O ( ——
4.1 The Meaning of Rules (A-R) A+ (COD)IXB M A+ C(DIB)

A closed formula is valid if it is satisfied by every process. (For the (X-L) AL D O CEE DB
moment, we consider only validity for closed formulas, i.e., propo- X-R)  AFCTB DAFBIC
sitional validity.) We use validity for interpreting logical inference (C-L) -3 DA+ DB
rules, as described in the next definition. We use a linearized nota{C-R) A+ BOB OAF B
tion for inference rules, where the usual horizontal bar separating an{W-L) %+3 0%+ B
tecedents from consequents is writtéhin-line, and ‘;" is used to (W-R) 9+B 09 CHB

4.2.1 Propositions

separate antecedents. (Id) 099
Validity, Sequents, and Rules (Cut) HArCOB; ACH B OAA +BOB
[ 1
vid@) 2 VPN.PEZ Validity for (closed)?# (M AOTHDB OArB
F D+FOB 0D B
A+PB A Vld(gD (B) Sequent (—|-L) T-COB 0D -C-B
A4+B A A+-B 0 BrA Double Sequent (=-R) “C+HB OAF-COB
L |
Ik By i Dt Bn OFAp - By £ Inference Rulerz0) The standard deduction rules of propositional logic, both for the se-
Sk B 0. 0% F Br O Aok Bo quent calculus and for natural deduction (interpreting “[" as the
DiF By Tk By OG- B & Double Conclusion left andO on the right), are derivable from the rules in the table.
DB 0. 0%+ B0 Fo -+ Bo 4.2.2 Composition
- B M- B, & Double Rule The logical rules of composition apply not only to our calculus but
S B O By, O S B, 0% F By also to any calculus that includes a standard process composition op-

! erator, for example, CCS.
We adopt a non-standard formulation of sequents, where eactomposition Rules

sequent has exactly one assumption and one conclé&io®. Our (10 01042

intention in doing so is to avoid pre-judging the interpretation of the

structural operator “,” in standard sequents. In our logic, by tdking (1-0) DAI-0F-0

on the left andlon the right of- as structural operators (i.e., as “,"”), (A1) OABIC) 4= E&ID)IC

all the standard rules of sequent and natural deduction systems wittX |) O |B+-B|L

multiple premises/conclusions can be derived. Instead, by taking | or{ | F) ArB, A+B OA A B |B

the left of+ as a structural operator, all the rules of intuitionistic lin- (| 0) O0@&@IB) |IC-a|1caOB|C

ear logic can be derived. Finally, by taking nestingsafd |[onthe  (|||) 0% |9+ @ |B)0®B |F)0DB |~-B)

left of - as structural “bunches”, we obtain a bunched logic [18]. We (|1>) F|CFB MArFC>-B

discuss this further in Section 6. [ |
Noticeably, we abandon Gentzen's distinction between struc-  The first two rules assert thais part of any process, and that

tural rules and other logical rules, which has been a staple of formgly part is norg so is the whole. The next three rules give associa-

logic since [11]. We do not see this as a fundamental or irrevocabig;ity, commutativity, and congruence of composition.

step. Not all logics fit easily into Gentzen's initial approach, and " The converse of thelJ-distribution rule ( [), namely | C O

many alternative sequent structures have been studied [7]. Ther%w,_ (Z1B) | C, is derivable. So is a-distribution rule, @B)




|CHA|COB |C. However, the converse of that, nam@lyC 0B
| CH (AXB) | C, is not sound. (Tak& =n[m[T]], B =n[p[T]], C =
n[T], andP =n[m]] | n[p[]]; thenPE < |C andPE B |C, but- P

ity of locations with respect tdand. The rule ([] @) states that
d@n andn[¢4] are adjuncts, and the rule (@) states that the loca-
tion adjunct @ is self-dual.

E (40B) | C.) As a consequence, one cannot always “push | inside  Note that Q] ) holds in both directions, and that the inverse
[ on the left-hand side of a sequent. In particular, after an applicadirections of ([] ) and ] 0) are derivable; hence, the location
tion of ( |F) one cannot in general renormalize a sequent to bBring fragment of the logic is particularly simple to handle.

(or*) to the top level. Some Location Corollaries
The decomposition axiom, (| || ), can be used to analyze a com=

positionsd” | 4" with respect to arbitrarily chos& and3". An easy (n F) O n[F]+-F

consequence of it i8(Z | B) - (Z|T) O (T |~B), which means (N 0) 0 n[S203] F n[<A] (2]
that if a process cannot be decomposed into parts that Satisfy nd O O n[&]0n[B] + n[AB]
B, but can be decomposed in such a way that a part sa#isfiesn (@) A+ B OA@N B@N

it can also be decomposed in such a way that a part does not satisf@h[g@n]) O n[@@n] - 42
B. An even simpler consequence is thél | B) - T | =B, which (nN[Z1@n) 09+ n[Z]@n
is one of the few cases in which one can pusttross |. ([~ <)) On-9] - -~n[9]
The rule (| >) states tha® | B and%>B are logical adjuncts ~n[9]) O ~n[<] 4F n[T] 0 n[~<]
This has a large number of interesting consequences, most of thgrﬁ

deriving from the adjunction along standard lines.

Some Composition Corollaries 4.2.4 Time and Space Modalities

' The “somewhere” modality was our starting point in developing our

(E F) Sg ;Z(B(B ;?CBD DD A>D logic. We can now investigate its properties.
Ebll)) 0 EQZD(B; : @>C) - A>C |Time and Space Modality Rules
>-L DA, B-C OD|E>B)FC (©) 0O0AHF-~o-A (%) OLFH-m-9
(1T 049-4|T @©K) Oo@0B)FoA0oB (R K) O=(A0 B) - 140 1P
(IF) OK|FrFF (oT) Oo94r4 (xT) O=xArA
(1D 0@&@mB) |ICFA|COB|C (o4) Oc%4+ oo (2 4) O=XAF xryg
(]I O9|COB|CH@IB)|C (@T) OTkal (=rT)OTERT
(Tr) OTrARA @r) A+B 0O oB (X F) A-BORA- 1B
(F>) OTrF>2 (onfl) On[o9] F on[9] (+nl]) On[+-9] F <+
0D O09BEFEXOP>B. OB (BHC) A-A>BUA>C (©]) OCG OB OEF|B) (* ) OSA|Br+(Z|T)
09> (COB) >3, O (AX)D>BA-A>BOCH>DB
OB D>COB). 0F>BOG>C - D>(B) SaviEh el acd

O@AXPDBFAD>B. OA>BULOCHB (ALC)>B
|

The operator® and<- obey the rules of S4 modalities (the first

It is worth pointing out that some composition rules produce in-e rules in each column); these follow simply from reflexivity and

L . . transitivity of —* and {". These operators, however, are not S5 mo-
teresting interactions between thand | fragments of the logic. For dalities, that isp@ - 0o is not valid (i may happen along some
example, @ | B) 00+ Fis derivable using (| || ) and+40). ’ y happ g

reduction branch, it will not necessarily happen starting from every

reduction point), and neither{s57 + X <-4 (if 7 holds in some sub-

) - o location, it does not necessarily hold in some sublocation of every

The location rules are specific to calculi with tree-structured |°Ca'sub|ocation).

tions, such as the Ambient Calculus. The modalities differ prominently in the way they distribute

Location Rules over compositions and locations, as seen in the subsequent 4 rules.

| I - -
([ -0) 0N[4 - -0 _The last rule shows tha_lt thg twq modalltlgs permute in one di

rection: somewhere sometime implies sometime somewhere. But

4.2.3 Locations

(nd=1) On[&] - ~(=0]-0) the other direction is not sound. (ConsiBer (open nm[p(]]) | n(]-
E“g 3 ? F{; ﬁ%ﬁ%] :;;E% ThenP E ¢<-p[0], butP & <-op[0]).

n| n In| n . .

o0 0 0 n[B] - ] Cn[E] |Some Modality Corollaries

ol @) N - B 19+ B@n (OF) AFB OOAE OB (**F) DB 04 B

(_| @) 0 g@n 4 ﬂ((ﬂg)@n) (I:] D) DD(QD{B) =+~ D%% (I:I D) Dﬁ(QD%) -+ XIQDXI%

(©T) OF+ 0F (*T) O9F $F

The first two rules assert that locations are non-void and are not(@ ¢) OaA+ ¢4 (X ) OxFE 29
decomposable. The next three rules give congruence and distributiv{> K) 0090 OB+ O(AQ B) (- K) 090 B+ <-(A0 B)
(© 4) OOOTAF ©FA (% 4) 0D+ 4D
(© ) OO(FOB) 4F OAOB  (+ 0) O<-(F0B) - +A0-B
(OF) OOFKF (+F) O¢FFF

1 We say that two binary operatatsC are logical adjuncts FZOC

F B MA+F COPB. The main adjunction of logic is given by the
pair 0,00 . Moreover, we say that two unary operator§ are log-
ical adjuncts if0Z + B A+ OB.



(ox) Oorg+ 2o As an example$-Vx.- ([ T]?) is the formula for “somewhere there

(@ nf]) Con[4] + n[o%] are no ambients”. Since there are no infinite spatial gatisP, |
(0 @) 0(@F)@n - Z@n Ps | ..., we can show in the model that this formula is valid. On the
(© @) 0F@nk (0D)@n. 0O(@@n) - (OF)@n other hand, its temporal dual, “sometime there are no ambients”,

OVxA (XTI, is invalid; for instance, it is not satisfied bj.
The following lemma yields a substitution principle for predi-
| cate validity, allowing us to replace logically equivalent formulas in
. larger contexts. LeB{ -} be a formula with a set of formula holes,
4.2.5 Satisfiability indicated by-, and 1et3{ 4} denote the capture-avoiding substitu-
Validity and satisfiability can be reflected into the logic by means ofion of &2 for the holes if3{-}.

(@>) O9>B+ (0A)>DB
(O D) OCD>BEA>B. TOO(A>B) - (CA>(OB)

the 4" operator (here we usé" for -%): 4-1 Lemma (Substitution)
aF 2 gbF s unsatisfiable VId&A = ) 0 VId(B{A} = B{AY)
vidg & g°F Ais valid g
Sat7 & 9T Ais satisfiable 4-2 Corollary (Substitution Principle)
PESF iff VP:M.-P'EZ A A0 B{AY - B{A}
PEVIdD iff VP:M.PEZA 0
Pk Sat¥ iff IPN.PESA

4.2.7 Name Equality
From the definitions of andF, we obtain thaP £ 4" < (VP’:M.
PPEZO PIPEF) « (YP:M. =P ESD). lLe.,PESA iff Zis un-
satisfiable, independently &

One of the main properties & is that? | 4" - F, by ¢ | ). n=p £ n[Tl@u

That is,%Z cannot be both satisfiable and unsatisfiable. In addition w ; -
obtain, from the model, the following rules, from which it is possible%e obtain, for alpefv(n)UMw) - A and allP:n:
to show within the logic thatld andSatobey the rules of S5 modal PEM=We = o) =0
operators:

Itis possible to encode name equality within the logic in terms of lo-
cation adjuncts, by taking:

As an example, the following formula means “any two ambi-

Satisfiability Rules ents here have different names”, which can be read as a no-spoofing

I 1 . )
(>F-) OFvra if 4 is unsatisfiable the@ is false security property:
(->F) OF raF if Zis satisfiable thefd" is not VX VY. XTI IVT]|TO =~ x=y

L

Some Satisfiability Corollaries 4.2.8 Lifting Propositional Validity

' (I>F) DI |F*+F Using equality, we can extend propositional validity to predicate va-
(CFF) Bra 09 -BF lidity in the sense of the proposition proved at the end of this section,
GF>) 0BT+ F>BF Proposition 4-9. This way, we can systematically extend to predicate
(F>F) OT4-FF logic the rules we have derived so far for propositional logic.
(ToF) OF4TF To prove this proposition, we need renaming lemmas for satis-

faction, Lemma 4-6, and for validity, Lemmas 4-7 and 4-8. First, we

F - = -
(->F) OF" 9. O+ state three auxiliary lemmas.

OFFrHF. og 9

| 4-3 Lemma (Fresh renaming preserves)
. Consider any proce$sand namem, m’, withm'’¢ fn(P). For all

4.2.6 Predicates P, if P=P’ thenm’¢fn(P’) andP{m—m’} = P'{m-m’}. More-
So far we have considered only propositional validity; when consid- over, for allQ, if P{m~m’} = Q then there is & withP=P’,
ering quantifiers, we need to extend our notion of validity. If m’¢fn(P’) andQ =P’{m—m’}.
W(A)={x4, ..., ¢ are the free variables 6f andpefv(A) ~Nisa [
substitution of variables for names, we wiiigfor 9{x; — ¢(x1), ...

Xc— 0 (%}, and we define: 4-4 Lem.ma (Fresh renaming preserves») .
Consider any proce$sand namem, m’, with m’'¢fn(P). For all
vid@) £ Voefv(A) A VPN.PED, P, if P=P’ thenm’¢fn(P’) andP{m—m’}—P’{m—m’}. More-

This definition of predicate validity generalizes the previous defini- ov,er, for allQ, if_P{’m<_ m’} ,_>Q then there is & with PP,
tion of vld, which was restricted to the casengfd) = g. It similarly m'¢fn(P’) andQ = P{m«m’}.
generalizes the definitions of sequents and rules. g

We can now introduce quantifiers and their rules: 4-5 Lemma (Fresh renaming preserves)

Quantifier Rules Consider any proce$sand namem, m’, with m’¢fn(P). For all
o ] P’, if P{P’ thenm’¢fn(P’) andP{m—m}{P’{m—m’}. More-
(V-L)  Sxn} B DVXAEB (0 aname or avariable) over, for allQ, if P{m—m’}{Q then there is & with P{P’,

| (V-R) 9A+B OAFVYXB wherex ¢ fv(%) m'¢fn(P’) andQ = P{m.m’}.

d




4-6 Lemma (Fresh renaming preserves)
For all closed formulag?, processeP, and namem, m’, if m'¢
fn(P)Ofn(¥A) thenPE A = P{lmm’} EZ mm’}.

Proof

(O0) AssumeP{m<m’} F (VxQ){m~m’}. Pick any namen. We
are to show tha® F {x « n}. We split the proof into three cases.
First, suppose=m’. Pick a fresh namm” such thatm” ¢fn(P)C
fn(@0{mm’}. By assumption, we have{m-m’} = %{m-m’}

The proof is by induction on the number of symbols in the close({ix‘—m"’}- We can "calculate?i{m@’m’}{ X—m"} = g{f‘—m”}
formula . Note that the number of symbols in a formula is un-{M-m?} since m#m”. Then, sincem’¢fn(P)Ifn(SA{x—m"}), the

changed by substituting a name for a variable or another name. CdRduction hypothesis implig8F “{x—m"}. Again, sincem’¢fn(P)

sider an arbitrary proce§s and any names andm’. If m=m’ the
lemma holds trivially, so we may assume tim&tm’. We show only

and m'¢fn(#x—m”}), the induction hypothesis implieB{m”
«m} ES{x—m”"{ m” - m}. But because of the freshnessaf,

the case for parallel composition and the case for universal quantifitis is P F A{x.—m’}. Therefore, since=m’, we have show

cation.

Case for|: We prove each half of the following separately, where

m’¢fn(P)Ofn(2 | B).

PEA|B = Plmem} F (A|B)f{m-m1.
(O) AssumeP E 7 | B. We are to show that there @& Q” such
thatP{m-m’} =Q’ |Q", Q' E¥{m-m’}, andQ” E B{m-m’}.
By assumption, there aR, P” such thaP =P’ |P”, P’ £ %, and
P’ EB. LetQ =P{m-m}andQ” = P’{m~m’}. By Lemma 4-
3, P =P | P" andm'¢fn(P) imply thatm'¢fn(P’)0fn(P”) and
P{m—m’} = Q' | Q". By induction hypothesisn’¢fn(P’)0fn(4)
andP’ E & imply thatQ’ E {m~m’}, and alsom’¢fn(P”")0fn(B)
andP” E B imply thatQ” E B3{mm’}.
(O) AssumeP{m-m"} E (4 | B){m-m’}. We are to show that
there areP’, P” such thaP = P’ |P", P’ E %, andP” k£ 4. By as-
sumption, there ar®’, Q" such thaP{m-m’} =Q |Q",Q F
Hmem’}, andQ” EB{mm’}. By Lemma 4-3P{mm’} =Q’ |
Q" andm’¢fn(P) imply there iRwithP=R, m'¢fn(R) andQ’ | Q"
=R{m~m’}, and hence that there aPe, P’ such thaR=P’ | P",
m’'¢fn(P’), m'¢fn(P”), Q' =P'{m~m’}, andQ” =P"{m-m’}. By
induction hypothesisn’¢fn(P’)Ofn(%4) andQ’ F {m—m’} imply
thatP’ F &4, and alson’¢ fn(P”)Ofn(B) andQ” F B{m—m’} imply
thatP” E 3.

{X<n}.
Second, takenzm’ but n=m. By assumption,P{m-m’} F
HKmemH xem}. From mEm’, we get@{m—m}{ x—m’} =
K x—m’{ m—m’}. Moreover, we also gen¢fn(P{m-m’}) and
m¢ fn(éH x - m{ m—m’}. Hence, the induction hypothesis implies
PimecmH{{mem F AxemH mem}{ m—m}. Since m'¢
fn(P)Ofn(%), we can calculateP{mm}{ m<m} = P and
A xem} {mem{mm} = x-m} Therefore, we have
shownP E ${x—n}.
Third, supposen#m’ and nzm. By assumption,P{m-m’} E
AKmem} x—n}. Since nZm we have {m-m}H xn} =
A x—n{ mem’}. Sincenzm’, m'¢ fn(P)Ofn(S% x — n}). Hence, the
induction hypothesis impliegB F 9{x —n}.

4-7 Lemma (Fresh renaming preserves validity)
If is closed and valid and’¢fn(%4) thensZ{m— m’} is closed
and valid.

Proof

We can assume thatt'#m. Take anyP and two distinct namasn’ ¢
fn(P)Ofn(@)0{mm’}. Since¥ is valid we have, in particular, that
P{men{m—m} E 4. By Lemma 4-6, sincen’¢fn(P{m-n}
{m’ —m}) Ofn(%), we obtailrP{m—n}{ m -« m{{ mem’} F 4{m—

Case forV: We prove each direction of the following separately, m'}. This is the same a@B{m«n} E ${m~m’}. Again by Lemma

wherem’¢fn(P)Ofn(Vx.%4).
PEVXYE = Pmem’} E (VXQ){m-m}.
(O) AssumeP F Vx4. Pick any namen. We are to show that

P{m~m’} E S m-m}{ x—n}. We split the proof into three cases.

First, suppose that=n. Pick a fresh namm” such tham” ¢ fn(P)O
fn(@)0{mm’}. By assumptionP = % x—m"}. Sincem'¢fn(P)0
fn(¢{ x—m"}), the induction hypothesis implies thBf m—m’} E
K x—m"{ mem}. Recall thatm#m’. Then, sincem¢fn(P{m
~m7}) and m¢fn(H{x—m”"{ m—m’}), we get thatP{m—m’}
{m” «m} E A xm"{ mcm{ m” —m} by a second application
of the induction hypothesis. But because of the freshnes$,afie
have Pim—m{ m” « m} = P{mm’} and @{x-m"{ m-m’}
{m"cm} = AmemY x—m}. Since m=n, we have shown
P{m—m?} E % m-m} x—n}

Second, suppose thagn andm’=n. By assumptior? E ${ x — m}.
In general we know thai’¢ fn(P)0fn(%4) andm#m’. Therefore, we
can apply the induction hypothesis to obffmm’} F S{x m}
{m<m7}. We have’d{x - m{ m—m’} = A m-m'}{ x—m’}. Since
m’=n, we have showR{m—m’} E S m-m'{ xn}.

Third, suppose that#n andm’#n. By assumptionP £ ${x < n}.
We have tha’¢fn(P)0fn(%) and in this case we know thatzn.

4-6, sincemgfn(P{m«n}) Ofn({ m—m’}), we obtain P{m«n}
{nem} E A m-m}{ n—m}. This is the same a&B F H{m-m’}.
Hences{ m—m'}is valid. Since is closed, so i¥{m—m’}.

4-8 Lemma (Injective complete renaming preserves validity)
If Ais closed and valid argkEfn(%4) - A is an injective renaming,
then%, is closed and valid.

Proof

Letp = {my Ny, ...,mc<ny}, where {my, ...,m¢ = fn(%) and all the
n; are distinct. Take freghy, ..., p« € {My, Ny, ..., My, N} By induc-
tion oni ranging from 1 tok, since% is closed and valid and
pi¢ (S my < pe}...{ m.1 < pi.1}), by using Lemma 4-7 at each step,
we obtain tha?' 2 {m; — pa}...{ Mk~ py} is closed and valid. Note
thatfn($?) = {pa, ...,p- Then again, by induction arranging from
1 tok, sinceni¢ fn(AA{ py — ni}...{ pi.1 = Ni-1}), by using Lemma 4-7 at
each step, we obtain tha £ F{p; — ng}...{ px< ny} is closed and
valid. Sincepy, ..., prare freshy?” = 9,

O

4-9 Proposition (Lifting propositional validity)
If “is closed and valid, then for any injective mggfn(44) -9

Therefore, we can apply the induction hypothesis to obtain from names to variables, the formuldfr($2)C )y is valid,

P{m—m} F 9{x—n{ m—m?}. Since n#n we have%{x-n}
{mem} = {m-m x—n}. So we have showP{m-—m?} F
A mem} x—n}.

wheredfn(%4d) is the conjunction of all inequalitiesn=m such
thatn,m are distinct names im(%2).



Proof
Assume tha#7is closed and valid and thaefn($4) — 3 is injective.
By construction, we also have tha#t($9)0 < is closed and valid.
Take anypefv((dfn(&) 0 A)y) - A (with rng(p)=dom(¢)) and con-
siderdo. There are two cases fifis not injective thewlfn(4)g.y is
equivalent td=, and thereforedfn()0 $A)4.y is valid. Otherwise, if
¢ is injective, thenpoy is also injective wittdom(¢o.y) = fn(2) =
fn(dfin($7)0 ). By Lemma 4-8, sincéfn($9)0 A is closed and valid,
we have thatdfn($2)0 4.y is closed and valid. We have shown
that V efv((dfn($2)0 )y) -~ A. VP:M. P E (dfin($2) 0 A)g.y; that is,
vid((dfn(#) 0 LA)y).
O

For example, the valid propositionfT] O -m[T] is trans-
formed into the valid predicatex=y O (X[T] O -y[T]). However,
without the assumptiofx=y, the predicatg[T] O -y[T] is not val-

namedq are locked and immobile, that is, they cannot be moved by
in or out nor dissolved byopen We can prove that ifE,
q:AMB[YST], E'+P: T, thenPE o(q[T]? O oo[T]?). This expresses
that in a well-typed process, once a locked, immobile ambient ap-
pears at the top-level of the process, it will stay there ever after.
Moreover, we can prove thatl p.AmB[S, gAMB[YS], E’' - P :

T, thenP E o(<(p[a[T1F?) O o<-(p[a[T1F]?)). This expresses that

in a well-typed process, once a locked, immobile ambient named
is somewhere a child of a locked ambient namezl/er after there

will somewhere be g child of p.

4.4 An Example

In this example we use the laws®f| , and>, to analyze the con-
sequences of composing two logical specifications.
The specifications describe two subsystemShapperand a

id: for predicate validity one must consider also the substitutions thathief and focus on what happens to the shopper’s wallet. The wallet

mapx andy to the same name.

4.2.9 Case Analysis Principle

is described simply by the formula Wallg}[ leaving the contents
of the wallet unspecified. The absence of a wallet in a given location
is described by the formuMoWallet defined as:(Wallet[T] | T),

When reasoning about equality, it is often convenient to reason djeaning tha_t i_t is not possible to decompose the current location into
cases on whether the equality is true or false. To this end, we intrg-part containing a wallet and some other part.

duce a case analysis principle.

4-10 Definition (Classical Predicates)
Ais classical iftvpefv(A) - A. {P| PE %} € {N, g}.
O
The predicate$, F, andn=p are classical. So is the disjunction
and negation of classical predicates.

4-11 Proposition (Case Analysis Principle)
Let S{-} be a sequent with a set of formula holes, &hbe a
classical predicate. The¥{{T} OS{F} O S{4}.

Proof

Takingd{-} = B{-} F B{-}and B{-} 2 B{-} O B{-}, itis
sufficient to show tha¥ld(B{T}) OVIA(B{F}) O vId(B{A}). As-
sumevld(B{T}) OvId(B{F}). Take anydpefv(B{4}) - A\ andP:.
By assumption we hawer By{ T} and P F By{ F}. SinceZis clas-
sical, we have also thaQ{] Q F 4y} € {I1, g}. Consider the case
where Q] QF %} = M so that for any, PE 4, iff PET. By Lem-
ma 4-1,P E By{Ap} iff PFE By{T}, hence we obtail® F By{As}.
Consider the case wher@{ Q F %} = ¢ so that for any, P E %,
iff PEF. By Lemma 4-1P F By{ Ay} iff PF By{ F}, hence we have
P E By{ Ap}. In both cases, we have shown thate fv(B{}) - A.
VP:M. P E By{ Ay}, that is, vId(B{A}).

O

4.3 Logical Properties of Type Systems

A thief is somebody who, in the direct presence of a wallet, can
make the wallet disappear. lts specification is Walletp
<ONoWallet and its implementation in the Ambient Calculus could
simply be given bypenWallet.

A shopper is, initially, a person with a wallet@okel) who is
later likely to become Buyer A buyer is a person who has pulled
out the wallet, presumably to buy something. When a wallet has
been pulled out, it becomes vulnerable to a nearby thief.

In the following derivation, we show that the interaction of a
shopper with a thief (possibly in some larger context) may result in
aCrimeScengawhich is a situation in which the shopper has no wal-
let, and also there is no wallet to be found nearby.

NoWallet& - (Wallet[T] | T)

Looker 2 Person[Wallef[] | T]

Buyer £ PersonNoWalle} | Wallet[T]
Shoppera Lookerd ¢Buyer

Thief 2 Wallet[T] > GNoWallet
CrimeScene2 PersonNoWallet | NoWallet

We begin with the systeBuyer| Thief, using the rulesx | ) and (|
) we obtain:

Buyer| Thief

= PersonNoWallet | Wallet[T] | (Wallet[T] > ¢NoWalle}

+ PersonNoWallet | ©NoWallet
From the rules®T) 04+ <4, (Id), and (+) we obtain, in general,

In this section we briefly discuss applications of our logic to expres& | (D) - (0A) | (OB). Then, by © | )T (0A) | (OB) - &(A| D)
properties guaranteed by type systems, beyond the standard ste&8d transitivity (derivable from (Cut)) we obtain| (&B) - (4 |
ments of subject reduction. This section assumes knowledge of ty8). Using this fact in our example we obtain, by transitivity:

systems for the Ambient Calculus [5].

Consider the system of locking and mobility types for the Am-

Buyer| Thief- &(PersonNoWallet | NoWalle)
= <OCrimeScene

bient Calculus [5], recast for the calculus of this paper. The assumpsing the rules® ) G+ B OCH + OB, and © 4) OCOA + OF,

tion p:AmB[S ensures that ambients namedre locked, that is,
they cannot be dissolved by apen We can prove that iE,
p:AmB[S], E'+ P : T, thenP E o(<-(p[T]?) O o< (p[T]?)). This ex-

we derive:
<&(Buyer| Thief) F &<&CrimeScene
OOCrimeScene ©CrimeScene

presses that in a well-typed process, once a locked ambient pamegs pefore, we can derive®@) | B + (4 | B); therefore:
somewhere comes into being, ever after there will somewhere be an  (¢Buyej | Thief <(Buyer| Thief)

ambient nameg.
Moreover, the assumptiapAmB[YS’] ensures that ambients

and, by transitivity from above:



(©Buye | Thief- &CrimeScene Next, we define our model checking algorithm, and state its
then, by weakening (W-L): correctness property, Proposition 5-4, together with the main lem-

(Looker| Thief)y O ((®Buye)) | Thief) - GCrimeScene mas used in its proof.
Now let's consider the syste&hoppel Thiet By the distribution of  Checking Whether Proces$ Satisfies Closed Formul&d
| overd (( | O), from section 4.2.2) we have: '

. . CheckP, T)& T
Shoppel Thief= (Lookerd &Buye) | Thief
ppet ( vey | ChecKP, =) & - ChecKP, $2)

+ (Looker| Thief) O ((¢Buyel) | Thief) Z0P) & 3
and finally, by transitivity from above, we obtain: CheckP, 520 : ) £ CheckP, 9) ] CheckP, B)
ChecKP, 0) £ if Norm(P) = [] thenT elseF

Shopper Thief- &CrimeScene CheckP, n[<]) &
) ) if Norm(P) = [n[Q]] for someQ, thenChecKQ, %), elseF
5 A Decidable Sublogic CheckP, 7| B) &
A model checker is an algorithm that determines the truth of an as- let Norm(P) = [y, ..., T]
sertionP E &, given procesP and formuld&4 as input. We describe in31,J.10J=1.k01nJ=g O
a model checker for the case whEris replication-free anéllis i>- ChecKMie; 7§, 9) O ChecKMicy T, B)

free. The model checker depends on putting any replic:ation-free(:hecKP Vx2) &
process into a normal form, given by a finite product of prime pro- let {'ml md= fn(P)Tfn() andmog{my, ..., mJ

cesses: in Vie0.k. CheckP, Z{x—m})
Products, Primes, and Normal Forms

| CheckP, ©%9) &
Mie1kPi 2 Py|...|P«|0 product let [Py, ...,P = ReachabléP) in Jie1l.k. ChecKP;, %)
m:=M[P] [n.P[in M.P]out MP | open MP  prime process ChecKkP, <%) &
[ (n).P] (M) let [Py, ...,P = SubLocation@) in Jie1.k. CheckP;, $9)

Mie1.k T§ normal form ChecKP, &9@n) £ ChecKkn[P], 4)
L

The following recursive algorithm maps any replication-free5-3 Lemmas
process to a list of prime processes representing a normal form stryad) For all replication-free processBsandQ, and all replication-
turally congruent to the original process. We write lists of processes free primest, ..., Tk, P | Q = Mic1 x T if and only if there are sets

in the notationPy, ..., Py]. I andJ such thatdJ= 1.k, InJ=¢g, P=Mj 1, andQ = M3 Ts.
Normal Form for a Replication-Free Process (2) For all replication-free process&s and all replication-free
f Norm(Q) 2 | primesry, ..., Tk, N[P] = Mi<1.« T5 if and only ifk = 1 and there is

Q with g = n[Q] andP = Q.

(3) For all replication-free processBesand>-free closed formulas
Vx4, if {my, ...,m¢ = fn(P)Ofn(%2) andmog¢{my, ...,my}, then: P
F Vx4 if and only ifVie0.k. P FE ${x—m}.

NormP [P’) & [m, ... T Ty, ..., TCx]

if Norm(P) = [rg, ..., 1] andNorm(P’) = [1T, ..., TTk]
Norm(M[P]) 2 [M[P]]
Norm(M.P) £ [M.P]if M e {n,in N, out N,open N

d
Norme.P) £ Norm(P)
Norm((M.N).P) 2 Norm(M.(N.P)) 5-4 Proposition
Norm((n).P) 2 [(n).P] For all replication-free processeand>-free closed formuldg,
VoA vl PE 9 if and only ifCheckP, 2) = T.
Norm({M)) 2 [(M)] - y KP, <)
L

5-1 Lemma Since all the recursive calls are on subformulas of the original
_ _ formula, the algorithm always terminates. When computing
If Norm(P) = [m, ..., Ti] thenP = IT; i . .
mP) = [, ... T felkTq CheckP, & | B) with Norm(P) = [r, ..., Ti] there are 2different

. . subsets of 1, and so Bdifferent choices of the setsndJ. There-
To check the sometime and somewhere modalities, we depe%Lil

i tineReachablandSubLocationshat i & re, in general the time complexity GheckP, %) is at least expo-
on two routinesteachablandsubLocationshat given a proce nential in the size d®. (The practical performance of this algorithm
compute a representation of the sets of proc&3sesh thaP —*

N . ) . L can be greatly improved by special-casing and heuristics.)
QandP " Q, respectively. We omit the straightforward definitions Examples: defin@n n2 n[T]?, andp parents c& p[a[TI7F%,

of these routines. Instead, we state their desired properties, which aje |oip = alplout a in b. (m)]] | blopen p (X). K]], as in Section
proved using techniques developed previously [12]. 2.2. The algorithm returns the following results on various example
5-2 Lemma formulas:

If ReachabléP) =[Py, ...,P] then for allie 1.k, P —* P;, and for

O

all Q, if P —* Q thenQ = P; for someiel.k. CheckP,ang =T Checkp, o<-anm =T
i ) . CheckP,an b =T ChecKP, a parents p=T
If SubLocation&®) = [Py, ...,Pd then for allie1.k, P {* P;, and ch _ ch b _
forall Q, if P {" Q thenQ = P; for someiel.k. eckP, an p =F eckP, b parents p=F
' CheckP, <anp =T CheckP, ©b parents p=T

O
In summary, Proposition 5-4 shows that the model checking
problem for the sublogic withowt and the subcalculus withouis
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decidable. It is not clear in general how to extend this algorithm tdILL cut rule) are interderivable. However, this precise match is
include eithetl or >, because in principle an unbounded number ofobtained by paring down both linear logic and our logic. We can go
processes needs to be considered. For example, checking the truttiother and draw a connection with full intuitionistic linear logic,

P E T4 in principle requires showing for all process&ghatP | both syntactically and semantically.
P’ E 4. Similarly, checking the truth dP E = (% | T) in principle First, syntactically, intuitionistic linear logic (ILL) [13,16,8]
requires showing that neith#® = & nor PXE & for allk = 0. can be embedded in our logic by the mapping:

. . . 0P & 40P . 20
6 Connections with Other Logics T&B £ FOPB L 2 F
In this final section we compare our logic with well known substruc- IUB & 4B T 2T
tural logics. G—oB 2 A>B O 2 F

19 A 00O A

6.1 Relevant Logic

The shape of our definition of the satisfaction relation turns out to b&NiS Mapping is such that the rules of ILL can be derived within our
very similar to Urquhart's semantics of relevant logic [19]. (Thankg 9 S0F1, .., A ki B impliesHy| .| 9y k- B. In particular, we
to Peter O'Hearn and David Pym for pointing this out.) In particula/can derive the “strong” rules ftf that correspond to an interpreta-
9| B is similar tointensional conjunctionand>3 is similar to  1ON of! as a maximal fixpoint [13,16,8]:
relevant implicatiqnin that semanticg. The main difference with (11.1) 0§, 19 1,
standard formulations of relevant logic is that we do not have con- (L2) Ou '9ru 9
Under any reasonable equalence, et (L8 [ w9019

Moreover, we use an equivaleneg,instead of a Kripke-style (R Brulu; B Bru BODB Lo Brw 19
partial order as in Urquhart’s general case. If we were to adopt a paie omit the proof of correctness of the embedding; this is not hard,
tial order (perhaps some asymmetric form of structural congruencedut it requires gradual build-up and some experience with our logic.
then the classical fragment of our logic would have to be replaced by  The semantic connection is made through quantales [8]. We re-
an intuitionistic fragment, in order to maintain the analogue of Propeall that a (commutative) quanta is a structure SSet, <:
osition 3-1. This seems to be the deep reason why we can get by wih- Bool, \/:2(9 - S, 0:F - S, 1:S> such thak and\/ form a com-
classical implication. plete join semilatticd,] and 1 form a commutative monoid, gnd

) VQ = \{pUOqglqge Q}forall pe SandQ O S ltis folklore that

6.2 Bunched Logic quantales are sound and complete models of intuitionistic linear log-
Peter O’Hearn and David Pym stuolynched logic§18], where se-  ic, according to the following interpretati@#], (we omit the sub-
quents have two structural combinators, instead of the standard s#£ript wher? is unambiguous):
T e mrooars’ (7021 2 V(7. 17)
. . ’ ’ ) o [A& B] & V{C[|C<[¥0OC<[B}
instead of lists of formulas. Correspondingly, there are two implica-
) . - - 203 & [210[3]
tions that arise as the adjuncts of the two structural combinators. X

The situation is very similar to our combinators | &hdhich [A—B] 2 V{CICU[A=<[B}
can combine to irreducible bunches of formulas in sequents, and to ('] & X [l & 4 & (XOX)]

our two implicationd] and>. However, we have a classical and a [l £ 1
linear implication, while bunched logics have so far had an intuition- [L ] 2 anyelement o
istic and a linear implication. [Tl 2 VS

Ol £ Vg

6.3 Linear Logic whereuX. A{X} 2 \/{C]C<A{C}

We now relate a fragment of our logic to intuitionistic linear logic. .
Although the connections with some parts of linear logic are inghtIJhe Va!'d'ty of ILL sequents and the soundness and completeness
degenerate, we can make them quite precise. properties are stated as follows:
Fir;t note that, \_Nhen cqnsidering | as a structural (_:onnect_ive, we  vidy (D1, ..o Dol B)g 2
must reject weakening, which enté_jk— 0, and contraction, which [Filo O ... Og [Frlo <o [Blo
entails4 + 7 | % both are unsound in our process model. Therefore, Dy o DL B
we are at least somewhat close in spirit to linear logic. Our sequents
are linear in the sense that we must have the same number of process
components on the left and righttafin other words, space cannot Now, sets of Ambient Calculus processes closed under struc-
be instantaneously created or destroyed. Consequently, the implidaral congruence form a quantale. More precisely, the struBtére
tion > arising as an adjunct of | is a linear implication: note that ir<®, 0, {J, O, 1> is a quantale, where, fafBO I, and forA~ £ {P
the definition ofZ>%3 the attacker that satisfié®is used exactly [3Q € A. P=Q}, we taked £ {AS[ATN}, AOBA{P|Q[PeA
once in the system that satisfi8s 0Q e B}, and 12 {0} =. Our logic is interpreted as followf7] &
Multiplicative intuitionistic linear logic (MILL) can be cap- {Pel | PF $}; note that, by Proposition 3-1] = [4]".
tured falthfully by identifying—oM||_|_ =D, Owi, = |, and1M|LL =0:

=

for all quantale®), vidi_ (41, ... Fn FiLL B)g

6-1 Proposition (Soundness of the ILL interpretation)

the ruleﬁ of M"‘IL and (;he_ sul?lset OI oulr rl;les that involve dqnly :hotshe The syntactically defined ILL constants and operators correspond
connectives (plus a derivable cut rule for | corresponding to the to their quantale definitions i@.
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Proof

We detail the most interesting cases,{or, and!.

Case for(: [2 0 B] =[] O [B].

Pe[A0DB]) =« Pe[A|DB]) = PEA|B) = @AP,P":M.P=
P |P"OPELAOP"EDB) = (Pe{P'|P" [P EATP" FB}7)
= (Pe{P'|P" [P e[ 0P" € [B]}7) = (Pe[AD[2)
Case for—o: [4 — B] =[] — [DB].

LetA=[AlandB=[B]. P € [A] < [B]) = (Pe A—=B) = (Pe
U{CICOAOB}) = (3C.Pe COCOAIB) = (3C.Pe CO
VQ.(AQ'\Q.Q=Q|Q"0Q e CIQ" e Al Qe B) = (VQ".
Q" € AD P| Q" € B). The last step is derived as follows:

1) AssumedC. Pe COVQ.(AQ,Q". Q=Q'| Q" IQ e COQ"
€ A) 0 Qe B. Take anyjRand assumR € A. Instantiate the assump-
tion with P | Rfor Q and takeQ'=P andQ” =R; we obtairP | Re B.
2) Conversely, assum#&R. Re A0 P | Re B. TakeC={P}~, take
anyQ, and assumelQ’,Q". Q =Q' | Q" UQ e {P}=0Q" € A).
Instantiating the assumption wi@’ for R, we obtainP | Q" € B.
Now, Q' = P by assumption, henég| Q" = Q' | Q" = Q. SinceB
is =-closed, we obtai@ € B.

Hence, P e [A] —[B]) = (VQ". Q" e AL P|Q" e B) = (VQ".
QEAODP|QEDB) = (PEAD>B) = (Pe[A>DB]) = (Pe
[42 — B)).

Case for L [!44] = [4].

First we show thatP.0E ¥ -~ PE (OO 9 .

Take anyP; by definition of>, we haveP E (00 9)°F = (VQ. Q
FO0O %4). Then, ¥Q.QE00 4) = (VQ.QE0O QF%) = 0
E 4. The last step is by instantiation @fwith 0, in one direction,
and by Proposition 3-1, in the other direction.

Then we computeP(e [!¥]) = (Pe[00(00 9™ ) - (P=00
PE@OO 9P « (P=000F%).

Now, in a quantaleA =uX. 1 & A & (X0 X), which in® meansX.
{0} n An (X]X).1f0¢ Athen {0}~ n A=g, and!A=g. If instead
Oe A then 0}~ n A={0}~, and!A=uX. {0}~ n (X|X). We have
that {0} = is a fixpoint ofAX. {0} = n (X | X); moreover, ifB = {0}
n (B|B) thenB O {0}, hence 0}~ is the greatest fixpoint, ané
={0}=. In conclusion: if0 ¢ Athen!A =g else if0 € Athen!A=
{0}~ and, by contrapositive, iA # g then0 € A

HenceP e !I[54] O '[9 #¢ O 0e[A] O [A={0= 0O Pe
{0}=; thatisP e ![¢2] O P=000kF%. Conversely, iP=000F
A, then0e [A] O [A]={0} O P e ![4].

In conclusiolP e I[49] = P=000EY - Pe[4].

a

Moreover, in our model the linear notion of validity matches[4]

our notion of validity:
6-2 Proposition
Let Ay, ..., 4, B be formulas in ILL.
vid (A1, ..o Dbl Ble = VIA(HA ... | D+ B)
(Forn=0 this meansild,_ (FiL. B)e < VIAOF B).)
Proof
(VP.PEA ] ... 190 B) = (VP.PEA]|..|% 0 PEB)
= (VP.Pe[%]| ... 1900 Pe[B]) < [“]...19]0[B]
= [0 ..0[%] 0[B]
The last step is as in thécase of Proposition 6-1.

O
The discrepancies with ILL are as follows. We identify.

derived rule). The semantic interpretation‘dfis rather degenerate;
in particular %2 — B does not seem to have an interesting meaning.

Conclusions and Further Work

We have introduced an expressive logic that can describe properties
of spatial configurations and of mobile computation, including secu-
rity properties. Although some attack scenarios can already be de-
scribed, many interesting security properties require the use of name
restriction (which is already present in our full Ambient Calculus):
we intend to study extensions of our logic in that direction. We also
intend to study recursive modal formulas. Finally, we should consid-
er issues of logical completeness: these have not been looked at be-
cause our focus has been on studying properties of the model. The
only sense in which we feel we have a “large enough” set of rules is
that we can logically derive the rules of intuitionistic linear logic.

We have previously developed type systems for mobility; now
we have a model-checking algorithm for a decidable sublogic, and a
more complete logic of mobility. These can be seen as three progres-
sive stages in the screening of mobile code, corresponding to byte-
code verification by type checking, by model checking, and by proof
checking (as in proof-carrying code). In all these cases, it is possible
to express and verify properties of mobile code that allow the code
to move around after verification, safely removing the constraints of
rigid sandboxing policies.
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Ax—n} +B OVxA+DB (nisaname or a variable)
A+-B OA-IXB wherex ¢ fv(%)
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04 |-0F=0

OA@B0) 4 &A1) IC

OA|BrFB|A

A-B; A+B OA A B |B”
0@ |IC-a|1cas|C

OANAFEA |B)YOB 1A)O(=B | =B

AIC-B M AFC>PB
O+
0% -4F

Location Rules
(n[| —|0) Dn[%]l——'O
(n[|—||) Dn[@]l——'(—'0|—|0)

(nl +)
(n O
(n O

(" @)
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Time and Space Modality Rules
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Appendix: Rules of the Ambient Logic

()
(@K)

This appendix collects information already presented in the paper(ao T)

Sequents: A+ DB
Rules: DBy ...; D0 B OA- B (n=0)

Abbreviations:H- means- in both directions{IImeandlin both
directions.

Propositional Rules

(A-L)  “COD) B M (AL)ID+- B
(A-R) A+ (COD)IB M A+ CDIB)
X-L) S“C+B OCHAFDB

X-R) @+COB O0AFBIC

(C-L) AP OA-B

(C-R) A+BIB OA+-DB

(W-L) 9+3B OALCHDB

(W-R) 9+B OA-COB

(Id) 049+9

(Cut) A+-COB; LB UAA +BIB
(M AMF-FB OA-B

(F) A-FOB 043

(=-L) “+-COB OA-CHDB

(=-R) HLC+PB O0A+-COB
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(o4)
@T)
@h)

()

(%K)
(=)
(= 4)
(=)
(=)

(¢ n)
1

(% n)
<1

(*<)

A+ B N[ Fn[B]
O n[&4]On[B] + n[ATB]
O n[A0B] F n[<4] On[B]

N +3 M A+ B@n
0 d@n - = ((-$9)@n)

O CA 4 -o-A
Oo®@ 0 B)FoA0 oB
Oo4+-9

O o9+ oo

OTkrFaT

A+B O0oAroB

O<A4-1-F
OX&#@0 B)FrA0 1B
OxgGr+9

HR=67) 09 =9=47)

OTEFEXT

F+B 0+ 1B

O n[O4A] - On[4]
O QA OB O(A|B)

On[<¢9] - +F
0T |Br <(E|T)

O<-0A OA



