ANALOG PROCESSES

Luca Cardelli

Department of Camputer Science
Universit;} of Edinburgh ‘
J.C.M.B., The King's Buildings
Edinburgh EH9 3JZ

Introduction

We intend to study systems of communicating processes in which processes
interact with each other in a continuous asynchronous fashion, as do planets around
a star. Such processes camnot be considered "camputing agents" as they just
behave instant by instant according to laws which are not "computations" in any
mechanical sense. Their interactions are not instantaneous synchronous communica=
tions, but rather a continuous flow of information which does not fit in the
message passing paradigm. These systems develop in continuous time and their
interactions are often expressed in terms of continuous values. More importantly,
their behaviour cannot be fully understood by forcing them into a discrete

environment, as a whole range of interesting phenomena is then lost.

Asynchronous electronic circuits will bé used as a source of interesting
examples, and we shall be able to model and analyse puzzling behaviours like
asynchronous feedbacks, metastable states, arbitration and indeterminacy. All
these phenamena will be explained in terms of a single principle, which simply
forbids the existence of null-delay. feedback loops. This also shows that these
camplex real-world behaviours can be described by just assuming
concurrency in continuous time, and do not necessarely depend on other features
of the physical universe, like relativistic or quantum mechanic effects.

Analog Processes

A signal is a value varying in continuous time, and an analog process is a
transformation of signals, for example:

Rignal Sa Analog Process P clgmEL, &

The signals above can be expressed as functions of time:

Su(t) = sin t SB(t) = 1

and the process P transforming SO‘ into S, can be described by a single transition

B

Ta 8 which could be in this case;
TotB(S) (t) = s(t) -~ sint + 1
In fact, applying Ta 8 to Sa we get S 8t
TaB(Sa) = \t. Sa(t) - sin t + 1
= At.sint =sin t + 1
= At. 1
= S

B

In general a process will consist of several transitions, and systems will

camprise several connected processes.

An algebra of analog processes)
A process is described by a collection of transitions M - g, where the term

M is the signal produced by the transition, and 8 is the output port of the
transition. The signal ¥ is an expression of some of the <nput ports of the
process. Here is an example of the syntax we shall use to talk about processes:

(o > B) + ((a@ v vy) > §)

For clarity we shall sametimes prefix processes with their input ports, although
this is not strictly necessary as the input ports of a process will always
coincide with the free variables of the signal parts of the transitions:

ay:a—+B + ady>S$ (1)

this is a process with input ports o,y and output ports 8,8 (parenthesis have
been amitted).

The intended behaviour of processes will be explained by algebraic laws.
We will only be concerned with the most interesting laws and we shall not try to
present a camplete set of equations. The followingf three laws express the fact
that processes are unordered collections of transitions:

(++] (T +T") +7T" = T+ (T'+1"
[+] T+T!" = T!'+7T
[NIL] T+ NIL = T

where NIL is the empty transition and 7,7’ and 7" range over transitions.

The intended meaning of expfession (1) is a process which at any instant of
time produces on the output port g the current value of the input port o, and on
the output port § the current value of the join (v) of a with y. The join

operation represent(the simultaneous presence of two signals on the same "line",
and its exact meaning is left unspecified, except that the join operation must
exist for every pair of signals (of the same type) and it must satisfy:

[vu] MwvN) wP = My (Vv P)

(vl My N = NuyM
For example, for boolean-valued signals sj,s, we might define sius, to be at any
instant of time a boolean or, i.e.: (sibsy) (t) = s1(t) or s, (t).

The existence of a constant -~ (nosignal) is also assumed; it relates to

join as follows:

In the previous boolean example we can define nosignal as the signal constantly
false, i.e.: =(t) = false. The join operation is also used in the following
law, which accounts for the presence of repeated output ports:

e+] M>B + N>B = Mo N~>8
Now we will define some basic operaticns on processes, together with their

algebraic laws,

COMPOSITION. The camposition of two processes P and @ is written P|Q.
The output ports of P are linked to the hamonymous input ports of @, and the
output ports of ¢ are linked to the homonymous input ports of P; the idea being
that signals flow through these connections fram one process to the other.
We have the following rules for campositions

(@l R =Pl @I R
C11 Pl = Q1P

O e 70 1 Uy T = Dpen e
where I and J are disjoint sets of indexes

An example of the law [|+] is:

(as a > B)|(B: B+Y) = aB:ta>B + B>y

Note that camposition may introduce loops of signals

(B being both an input and an output port) and indeed such
loops may be present in the first place. We will came later to the exact
semantics of such situations; for the moment it will be intended that a looping
signal overwrites itself by a join operation.

RESTRICTION. The restriction P\a of P cancels a from the input and output
ports of P, making cammmnication via o impossible. We haves

[\J P\a = P if o ¢ ports(P)
[N\\T P\a\g = P\B\a

N1 (P @\a = Pl | Q\a
if not ((a e input-ports(P) and o € output-ports(Q)) or
(o e output-ports(P) and o € input-ports(qQ)))

Now we need a law to distribute \ over +, gnd at first sight this could be:

Qger To)\e Lier(Tp\e)
M > a)\o = NIL
(-oc Q ..."B)\OL = ...L...+B

Unfortunately this does not work well in the case:
(az M>a + a->B)\a = =>8

In fact we want to interpret \ as a hiding operator, which should not change
the inner behaviour of the process. The result we want to get is, at least:

Mo + a~>B)\a = M~>38

But even this is not enought in the case that M is an expression M{a] of o itself,
e.g. when we have a loop over the restriction variable whose result is exported
through another output port (in this case B). To solve this problem we need to
introduce recursively defined signals (pa. M):

[ul Ho. M
[pupl upoe M

uB. ML(BR/al
Mlua. M/ol

Then the law for restriction is:

= ’
D\ Qg T\e ZjeJ U
where J = {ZeIl: TL.=M7;—>0L1. and ai#a}
and T'j = Tj[p(x. N/al
with ¥ = the join of all the Mi such that Ti=Mi->a,L.

is in). _ 7. and a,=a (and ¥= = if no such M, exists)
el "7 7 7

Examples:
(az a>B)\a = (po. =) >B = =>8
(@ Bz a>B + B>y)\B = at o>y
(@ Bs a>B + B>a)\B = ot a->a
(as a > a)\a = NIL
(as a>»a + o= B)\a = (po. o) > B

The important point in this definition is that looping situations are samehow
hidden or preserved, but never "unfolded" by \a.

RELABELLING. The relabelling P<oi1/B1j eee & an/6n> is the process obtained

fram P simulataneously substituting the (input and/or output) ports oj «.. a,

by B ... B, A relabelling <R> = <“7£/Bi> is a bijection R:L »+ L over

the ports L of P, i.e. B. are all and only the ports of P, and o, are
distinct port names. Dummy substitutions will be amitted, so that <> = <ai/ai>'

[<>] P<> = P
[<><>] P<R><S> = P<S o R>
[<>\1 (P\a)<R> = (P<R; B/0>)\B
if o € ports(P) and B ¢ range(R)
[<>]1 (PIQ)<R> = (P<R'>)]|(Q<R">)

where R' = R restricted to ports (P)
and R" = R restricted to ports ()

To distribute <R> over + we actually perform a (metasyntactical) substitution:

Lol Qg T <os/8> = 1; g (Tylas/8.)

(0 Bt o > B + B~ a)<a/B; B/a> = Ba: B+o + o> B

The algebraic laws we haye so far presented form what we will call an
analog algebra. These laws can be grouped into two categories: external laws
(relating |, \ae and <R>: L[], [11, [\T, [\\1, [\I], [<>], [<><>], [<>\]
and [<>|]) concerning the syntesis of processes fram simplér processes, and
internal laws (all the others) concerning the inner structure of processes.
The external laws hold for Milner's flow algebras [Milner 79]. Flow algebras
are extended in [Milner 78] by a set of internal laws for communicating
processes, and are then called behaviour algebras. Our internal laws are
quite different fram Milner's ones, but they seem to fit very well in the general
framework of flow algebras, even if the meaning of |, \e and <R> is
radically different. |

A denotational model

In the rest of this paper we will study a particular analog algebra, built
within the denotational semantics framework. This will allow us to study the exact
meaning of processes just by camputing their semantics and observing their
input=output behaviour. The denotational semantics will also prove useful in
discussing same tricky situations like feedbacks and recursive signals.
Unfortunately we do not have space for full details and we shall only try to

sketch the main ideas.

Processes are collections of transitions; in particular a process with n
inputs is an association of labels (the output ports) to transitions with n inputss

P = L-»T
n n

where Pn, L and Tn are semantic domains (complete partial orders): L is the
flat domain of port labels, Tn is the domain of transitions with »n inputs, and
Pn is the damain of processes with # inputs. The domain P will also denote
(the disjoint union of) the domains P, for any n.

A transition with » inputs is a function taking » input signals (each
labelled with its input ports) and producing an output signal:

_ R
Tn = SL~>S

71

I is some damain of unordered labelled n~tuples of signals.

where S

Signals are functions from time to a domain of values. We can have several
types of signals, like boolean signals, real signals etc. ‘

S = K->V

where K is the flat domain of i)ositive real numbers, and V 1is some data
damain admitting a constant ¢ € V and an (infix) operation vz VxV + V
such that the properties (ww], [8] and [=] hold by defining:

=(t) = ¢ s1(t) vey(t) = (81 v s,)(})
for all teK and s;,s5¢S.

We need same notation for elements in these domains; M-notation will be

used for signals seS=K»V. Elements of Sz will be denoted by expressions like:

3813 ees :8 al 0] eee O L ks
lar:zsy; iagis] with a; , € Lr 81 s, ¢S

which are meant to be unordered tuples of labelled signals ai:si with the
additional property:

[eee a28f; 028" eee] = [oo a:8’88” oo]

and operations:

[a.i:si]\a = [ajzsj] with 7¢I, jeJ and J = {ZeI] ai#a}
[ai:si].a = e{skl ak=ot} (where v{} = =)

. L — ° . |
[ai'si] v [a 78 j] [a.i.si, a .J..s'j]

Elements of T, = Sg + S of the form:
AXe oas Xe@] aee Xe® eee (0] eew a € L)
will be abbreviated (with a change of font) as:
)\[al ces an]- eeo dj cow an ey
where [a; ... an] is an unordered tuple of variables. Notice that this notation
allows for unordered application by label names, as in:

(Alay apl. a; * ap)lay:3; ay35] = 5%*3

Finally, processes p € Pn =L~ Tn .of the form:
AXe (3=a1) => t1 § eve (x-—-an) = ¢, ; (A[l. =)
will be abbreviated as:
{tg > 058 «es t, an}

There are three semantic evaluation functions:

T : temms x vars > T for term expressions
S : signals x ports » S far signal expressions
P : processes x ports » P for process expressions

with two kinds of environments: vars = Ide ~ V; ports =L » S.

We shall first discuss the semantics of process expressions, then the
semantics of signal expressions, giving the syntax at the same time. We shall
not treat the semantics of terms, as term expressions will always have an evident
meaning. ’

The following is the semantics of a very simple process, consisting of
a single transition:

P[[a,b-: S - glo =
Yy AP. {A[ai]. Sﬂsﬂo[ai Y P(B)[ui:ai]/ui] - B}

The fixpoint and the join operation are needed just in case B is equal to one of
the o L i.e. when there is a feedback. Otheywise the previcus expression
reduces simply to:

{A[ai]. SﬂS]o[ai/ai]}

In case of a feedback, say u3¥8, the input o a3 1is a3z (the input to processor
P) joined to what cames out of R, which is P(R) [ﬁui:ai]. In fact P(B) is the
transition associated with B, which receives as input the same input of the
process: [ai:ai].

The same idea is used in giving the semantics of composition, in which the
camponent processes may feed each other in complex ways:

rlg = letp
and q

s, ,
{$+Yi}

{r. > §.} in
dJ J
let s .= A[a,]. M.
7 h 7
and r .= A[bk]. V. in
J J
Y AR. {)‘[ahbk]" p(Yi)[ah:ah e R(ah) [ah:)i Bk:bk]] - Yi}
Y {A[ahbk]. Q(dj)[Bk:bk Y R(Bk)[ah:ah; Bk:bk]] > (SJ.}
This composition is commutative ([]7 holds); to prove associativity ([|]]) we
had to assume absorption of v, i.e. s b s = s (which also implies P|P = P).

The other laws of analog algebras are easily verified, if we camplete the
definition of P by the following equations:

PITy + «ee +7 30 = PIzylo | ... | PIT, Jo
PlP\alo = AB. Ax. B=a => = ; (P[Plo) (B) (x & [a:2])
P[IP<B7:/°L.L'>EG = let p = P[Plo
in Ay.)\[bi]. Y=B1 => p(ul)[ai:b,i] P see §
y=B, => pla)la b1 ; =
We pass now to consider signals; a simple way to specify them is to describe
their value at any instant of time, using a sort of A-notation:

Siet.vle = ra. TIVIela/t] (e is the empty environment)

for example @t. 3*sin t. We have the equivalences — = @t. ¢ and
augb=0@t. a(t) v b(t). The notation VYV will be used as an abbreviation of
@t. V, when t is not a free variable in V, like in "3 = @t. 3.

Signals can also be defined by recursion:
Slus. Sloe = vy ra. Slslola/s]

like in ‘ps. @t. t<1 =>¢ ; s(t-1) = = . Two other useful abbreviations are

m

conditional signals and delays:

S => 8" ; 8" = @t. S(t) => 8'(t) ; S"(t)
S A 8" = @t. t<S"(t) => ¢ ; ST (t=5"(v))

A simple example of delay is S A "3 which is the signal S constantly delayed
by 3 units of time, yielding ¢ during the first three units of time. This
notation also allows us to express variable delays.

Notice that the @-notation has too big an expressive power, being able for
example to define a signal in terms of the "future" of another signal, (or even

of itself), but we might impose syntactic restriction to avoid that, leaving A
as a primitive.

Unfeasibility

Great care has been put into the definition of the algebraic laws and of the
denotational semantics, in order to be able to treat circularities; so let us see
how it works. The simplest example of a feedback can be found in the following
fast loop process:

s o > a

This process has an input port o,
whose input is mixed to the output coming from the output port a. The tricky
point is that this process has no internal delay, and the output at any instant

t depends on the input at the same instant t, which depends again on the output
at time +t. Computing the semantics: (

Pla: o » alo
y AP. {ilal. Slalofa v P(a)[azal/al + a}
Y AP. {A[al. a v P(a)[a:al >~ a}

=def p

It is not immediatly clear what p does, but we can try to understand its

behaviour by applying same input. We first extract the transition we are

interested in (there is only one in this case) applying the output port a:
p(a) = Alal. a v p(a)lazal d

then we apply an input signal to see what is the response of the transition; we
choose to apply nosignal:

pla)la:=] = =y p(a)la=] = pla)la:=] = 1
the result is 1: it happens that the output of the fast loop is 1 for any input, I‘
if we assume Y to be strict in both its arguments. ‘

Here we have a first example of a clearly "unfeasible" process, which is
semantically mapped to undefined. We can also.see that a slow loop is not
mapped to L and is perfectly well-defined:

Pla: a A *1 > alo

= vy AP. {A[al. At. t<1 => ¢ ; (@ v P(a)la:zal) (t=1) - a}
pla)fa:=] = xt. t<1 => ¢ ; (p(a)la:=]) (t-1) = =.

“de it p

e

There are also processes whose output signals are only partially undefined; an

example is the zeno loop: k

a: a A (@Qt., t<1 => 1-t ; 0) > a

this is a feedback loop which increases its speed, and at a finite point in time 4
reaches an infinite speed (i.e. a zero delay). The output of the zeno loop for
a nosignal input is At. t<1 => ¢ ; L.

As a general principle, the output of a feedback loop is defined as long as
the delay in the loop is greater than zero. This may look trivial, but feedback L
loops appear in almost any interesting process, and this simple fact has several
intriguing consequences. We are going now to look at some of these.

Unexpressibility

We have seen that we can express several physically unfeasible processes.
This suggests that our formalism has too big an expressive power, and we might
try to impose some constraints in order to exclude unwanted processes.

However it would be wrong to think that we can express anything we like.

In particular there are several processes which cannot be exactly expressed, and
yet admit approximations up to an arbitrary degree of accuracy. We shall call
such unexpressible processes perfect, and imperfect their expressible
approximations.

Consider for example the following (naive) memory cell.
a B: agB A "1 »> B

To work properly as a (write once) memory cell, this process must receive a set
impulse of length 1 on a. Then this impulse gets into the loop and is
"remembered". This memory cell presents two main defects: it will not work
properly (i) if the set impulse is longer than 1, or (ii) if the set impulse is
shorter than 1. We can solve the first problem by the following (Zmproved)

memory cell:
a B: (== =>a ;3 B) A "1 >R

This process will cut off its o line after having received a signal different
from = for 1 unit of time. But the second problem still remains; if the o
signal differs from = for less then one unit of time, the output B8 is not
constant. The same problem occurs when the set impulse changes its value
during the setting time. Then a varying signal is recorded into the feedback
loop, and the output of the memory cell oscillates: we get a (quench free)
metastable state.

In effect what we really want is a perfect memory cell which stores constantly
the value of an instantaneous setting spike, so that there can be no indeterminacy
due to fluctuations of the input signal. Notice that starting from our improved
memory cell we can get better and better approximations to a perfect cell, simply
by reducing the delay in the feedback loop. Unfortunatly if we reduce the delay
to zero, we do not get a perfect storage device, but only an undefined output.
Hence (conjecture) there is no expression denoting a perfect memory cell (which yet
exists 1inside our semantic domains) because there seems to be no way to define
a storing device without the use of feedbacks.

Therefore, expressible memory cells are.imperfect. It is important to
notice that many useful processes have memory cells (or their equivalent) as basic
building blocks, and such processes must take into account this imperfection and
are likely td be themselves imperfect. In general an imperfect process works
"correctly" under some classes of input signals, but in certain critical

circumstances there is no way to guarantee its intended operation.

Indeterminacy *;

Consider the problem of designing a process which determines the time of
occurrence of an event, or which measures the value of a signal when scme
event (e.g. "measure it now") occurs. First we must agree on a definition of _
determining Or measuring, and a sensible one seems to be storing constantly i
for an unilimited amount of time. We will not go into the details of such design J
because it is very similar to the problem of producing a perfect memory cell.
Infactit is not difficult to see that perfect determination is impossible, just
because perfect storage devices are unfeasible.

A well known case of indeterminacy is arbitration, where a device attempts
to determine which of two events arrives first. A simple way of implementing an
arbiter is to use a decider and a memory cell. The decider tells at any instant
whether the first, the second or both signals are arriving, and the memory cell v
tries to remember the first decision of the decider. But memory cells are
imperfect and so are arbiters based on memory cells. If the two signals arrive E
too close, the decider changes its decision while the cell is storing it, and the]
output of the cell is unstable. An alternative way of building an arbiter is
by using two detectors to determine the time of occurrence of two events, and then
compare these times. But it can be shown that detectors are imperfect, and
SO are arbiters built in this way.

In general the order or coincidence in time of two events cannot be
determined. The order cannot be determined when the signals are too close, and
the coincidence cannot be determined when the simultaneous signals are too short.

Flip-flops
In this last section we analyse a particular analog process, showing how its
detailed behaviour can be derived from its semantics:

R

false

X

S

This is an SR flip-flop. 1In its steady state condition we have the following
values on the ports:

R = S = 8 = false; r = trye

Starting from this condition and applying a set pulse to the port S we get

s = true and r = false, Another set pulse has no effect.

Then applying a reset pulse to the port Rk we change the output back to s = false
and r = true. Another reset pulse has no effect. Applying both a set
and a reset signal, the output signals oscillate between true and false, and

this is called a metastable state. The actual behaviour of a real flip-flop

in a metastable state can be rather different from the one described above.

We believe it can be modelled by introducing some "quench", but here we shall not
undertake this analysis.

The SR can be synthetized from smaller components:

OR = 2nl inZ: (inl or in2) A ~d' - out
NOT = <n: (not <m) A ~d" + out

OR1 = OR<R/inl;r/in2;wl/out>

OR2 = OR<S/inl;s/in2;wl/out>

NOT1 = NOT<wl/in;s/out>

NOT2 = NOT<wl/ingr/out>

SR = (ORI | NOTI | OR2 | NOT2)\wl\w2

It is an easy exercise to show that this is equivalent to:
SR = SRsr:nt(Rorr) A d>s + not(Sors) A “d-rr

where d=d'+d". Unfortunatly if we try to switch on the flip-flop without
supplying any signal (i.e. supplying false on all inputs) we immediatly get a
metastable state. This happens because starting with false on all the inputs,
we are not in the steady state condition. To enforce a well defined start,
we supply true to r for the first d seconds. At that time the signal fram
S reaches r and the system is ready to work. Hence we redefine:

SR = S R s r:
not(R or ») A "d +»s +
(not (S or s) A *d) v (@Gt. t<d) » r

Computing the semantics:

Pisrle
Y ASR. {A[S R s r]. At. t<d => false ;
' not (R(t-d) or r(t-d) or SR(r)[S:S;R:R;s:s;r:r](t-d))+>s;
AS R s rl. At. t<d => true ;
not(S(t-d) or s(t-=d) or SR(s)[S:S;R:R;sss;r:r](t-d))-r}

SR

and extracting the output transitions:

5o st b

s o G

SR(s) Y AT. A[S R s r]. At. t<d => false ;
not (R(t-d) or r(t-d) or
(t<2d => true ;
not (S(t-2d) or s(t-2d) or
T[S:S;R:R;s:s;r:r](t=2d)))
SR(r)

We look at the output signals in absence of input:

SR(s) [S:=;R:~;s:>;r:>] = Yy AS. \t. t<2d => false ; S(t=~2d)
= \t. false
SR(r)[S:=;R:—;s:=;r:>~] = At. true

This means that for S="false, R="false we obtain s="false, r="true; we are in the

steady state condition. Now we supply a pulse (At. t<m) of an unspecified length :
SR(s) [S: (At. t<m);R:;s:>;r:=] =
Y AS. At. t<2d => false ; t<2d+m => true ; S(t-2d)
There are two cases: (i) the length of the set pulse is m22d; then the flip-flop
is properly set (the expression above reduces to At. t<2d => false ; true) or

(ii) the length of the set pulse is w<2d; then the flip-flop is in a metastable
state. and the output signal oscillates between true and false.

Acknowledgements

Milner's papers on concurrent behaviours have been of inspiration and guide
to this work. Robin Milner and Gordon Plotkin also contributed with discussion
to the clarification and refinement of several points. I had encouraging
talks with Matthew Hennessy at the very beginning of this research, which has

been carried out under a scholarship from the Italian National Research Council.

References
[MacQueen 79] D. B. MacQueen, "Models for Distributed Computing”,
Report 351, IRIA-Laboria, April 1979.

[Milner 78] R. Milner, "Synthesis of Communicating Behaviour",
" 7th Symposium on Mathematical Foundations of
Computer Science, Zakopane, Poland, 1978.

[Milner 79] R. Milner, "Flowgraphs and Flow Algebras",
J.ACM, vol 26, n 4, Oct 1979, pp. 794-818.

