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We introduce a natural language interface for building stochastic 7 calculus models of biological
systems. In this language, complex constructs describing biochemical events are built from basic
primitives of association, dissociation and transformation. This language thus allows us to model
biochemical systems modularly by describing their dynamics in a narrative-style language, while
making amendments, refinements and extensions on the models easy. We demonstrate the language
on a model of Fcy receptor phosphorylation during phagocytosis. We provide a tool implementation
of the translation into a stochastic 7 calculus language, Microsoft Research’s SPiM. []_-]E]

1 Introduction

Modelling of biological systems by mathematical and computational techniques is becoming increas-
ingly widespread in research on biological systems. In recent years, pioneered by Regev and Shapiro’s
seminal work [16} [17], there has been a considerable amount of research on applying computer science
technologies to modelling biological systems. Along these lines, various languages with stochastic sim-
ulation capabilities based on, for example, process algebra, term rewriting (see, e.g, 5, [7]) and Petri
nets (see, e.g., [19, 9]) have been proposed. However, expressing biological knowledge in specialised
modelling languages often requires a simultaneous understanding of the biological system and expert
knowledge of the modelling language. Isolating and communicating the biological knowledge to build
models for simulation and analysis is a challenging task both for wet-lab biologists and modellers.

Writing programs in simulation languages requires specialised training, and it is difficult even for the
experts when complex interactions between biochemical species in biological systems are considered:
the representation of different states of a biochemical species with respect to all its interaction capabilities
results in an exponential blow up in the number of states. For example, when a protein with n different
interaction sites is being modelled, this results in 2" states, which needs to be represented in the model.
Enumerating all these states by hand, also without inserting typos is a difficult task.
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To this end, we introduce an intuitive front-end interface language for building process algebra mod-
els of biological systems: process algebras are languages that have originally been designed to formally
describe complex reactive computer systems. Due to the resemblance between these computer systems
and biological systems, process algebra have been recently used to model biological systems. An impor-
tant feature of the process algebra languages is the possibility to describe the components of a system
separately and observe the emergent behaviour from the interactions of the components (see, e.g., [[1,2]).

Our focus here is on 7 calculus [12]], which is a broadly studied process algebra, also because of
its compactness, generality, and flexibility. Because biological systems are typically highly complex
and massively parallel, the & calculus is well suited to describe their dynamics. In particular, it allows
the components of a biological system to be modelled independently, rather than modelling individual
reactions. This allows large models to be constructed by composition of simple components. 7 calculus
also enjoys an expressive power in the setting of biological models that exceeds, e.g., Petri nets [3]].

In the following, we present a language that consists of basic primitives of association, dissociation
and transformation. We impose certain consistency constraints on these primitive expressions, which
are required for the models that describe the dynamics of biochemical processes. We give a translation
algorithm into stochastic 7 calculus. Based on this, we present the implementation of a tool for automated
translation of models into Microsoft Research’s stochastic simulation language SPiM [14}[13]], which can
be used to run stochastic simulations on 7 calculus models. We demonstrate the language on a model of
Fcy receptor phosphorylation during phagocytosis. The implementation of the translation tool as well as
further information is available for download at our website

2 Species, Sites, Sentences and Models

We follow the abstraction of biochemical species as stateful entities with connectivity interfaces to other
species: a species can have a number of sites through which it interacts with other species, and changes
its state as a result of the interactions [6} [L1]]. In Section[d] we use this idea to design a natural language-
like syntax for building models. The models written in this language are then automatically translated
into a SPiM program by a translation algorithm. This is done by mapping the sentences of the lan-
guage into events constructed from the basic primitives, which are then compiled into executable process
expressions in the SPiM language.

There is a countable set of species A,B,C,.... Each species has a number of sites a,b,c,... with
which it can bind to other species or unbind from other species when they are already bound. We write
sentences that describe the ‘behaviour’ of each species with respect to their sites. There are three kinds
of sentences, i.e., associations, dissociations, and transformations. We define the sentences as

(type, (A,a), (B,b), Pos, Neg, r)

where type € {association, dissociation, transformation} is the type of the sentence. The pairs (A,a)
and (B,b) are called the body of the sentence. The sets Pos and Neg are called the conditions of the
sentences. (A,a) and (B,b) are pairs of species and sites, and Pos and Neg are sets of such pairs of
species and sites. If the sentence is an association, it describes the event where the site a on species A
associates to the site b on species B if the sites on species in Pos are already bound and those in Neg are
already unbound. If it is a dissociation sentence, it describes the dissociation of the site a on species A
from the site b on species B. A transformation sentence describes the event of species A transforming into

Shttp://www.doc.ic.ac.uk/~ozank/pim.html
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species B, where B can be empty. In this case, this describes the decay of species A. In transformation
sentences, sites a and b must be empty, since transformations are site independent. r € R* denotes the
rate of the event that the sentence describes. Then a model . is a set of such sentences. In Section
M we give a representation of these sentences in natural-language. For example, a sentence of the form
(association, (A,a), (B,b), {(A,c)},{}, 1.0) is given with the following English sentence.

site a on A associates site b on B with rate 1.0 if site ¢ on A is bound

We denote with species(.#) all the species occurring in the body of the sentences of .#. The func-
tion sites(.#,A) denotes the sites of the species A that occur in the body of all the sentences of ..
sites(Pos,A) denotes the sites of the species A in Pos (similarly for Neg). For any set <7, (/) denotes
the powerset of .o

2.1 Conditions on Sentences
Given a model .#, we impose several conditions on its sentences.

1. Sentences contain relevant species. The species in the condition of each sentence must be a
subset of those in the body of the sentence.

2. Conditions of the sentences are consistent. For every sentence of the form
(type, (A,a), (B,D), Pos, Neg, r), we have that Pos N\ Neg = 0.

3. All the sites in the conditions are declared in the model. For every sentence of the form
(type, (A,a), (B,b), Pos, Neg, r), we have that sites(Pos,A) C sites(.# ,A),
sites(Neg,A) C sites(.# ,A), sites(Pos,B) C sites(.# ,B) and sites(Neg,B) C sites(.# ,B).

4. Association sentences associate unbound species. For every association sentence
(association, (A,a), (B,b), Pos, Neg, r), we have that (A,a), (B,b) € Neg.

5. Dissociation sentences dissociate bound species. For every dissociation sentence
(dissociation, (A,a), (B,b), Pos, Neg, r), we have that (A,a), (B,b) € Pos.

6. Transformation sentences are unbound at all sites. For every transformation sentence
(transformation,A, B, Pos, Neg, r ), we have that Pos = 0@ and Neg = {(A,x) | x € sites(.#,A)}.

When these conditions hold, we can map the sentences of a model to another representation where the
role of the conditions become more explicit. In the following, for a model .#, we describe the states of its
species as subsets of its sites, where bound sites are included in the set describing the state. For example,
for a species A with binding sites sites(.#,A) = {a,b}, the set @(sites(.#,A)) = {{},{a},{b},{a,b}}
is the set of all its states. Then {a} is the state where site a on A is bound and site b on A is unbound. We
map each sentence (type, (A,a), (B,b), Pos, Neg, r) to a sentence of the form

(type, (A,a), (B,b), states(A), states(B), r)
where states(A) and states(B) are obtained as follows.
states(A) = {7 € g(sites(#,A)) | ((A,x) ePos =x€ S )N (x €S = (A,x) ¢ Neg) }

This representation allows us to impose another condition on the sentences:
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7. There are no overlapping conditions in the sentences. For any two sentences of a model .#
of the form (type;,(A,a), (B,b), Posi, Neg,,r) and (type,,(A,a), (B,b), Posy, Neg,, r) where
type, = type,, we obtain states(A); and states(B);, for the first and states(A), and states(B),,
for the second sentence. Then we have that

— if states(A); = states(A), then it must be that states(B); N states(B), = 0;
— if states(B); = states(B), then it must be that states(A); N states(A), = 0;

(B
— if states(A); # states(A), and states(B); # states(B), then it must be that
states(A); N states(A), = 0 and states(B); N states(B), = 0.

Example 1 Consider the models #.
{(C,c), (A,a),(B, 1)}, 1.0),

{ 1A} 1.0),
(transformation,A, B, {}, {}, 1L.0),
(association,(D,d), (E,e), {}, {(D,d), (E,e)},2.0),
(association,(D,d), (E,e), {}, {(D,d), (E,e)},4.0)}

M\ = { (association, (A,a), (B,b),{(B, f)}
dissociation, (A,a), (B,b), {(B,b)

This model does not fulfill any of the conditions above: in the first sentence, (1.) C ¢ {A,B}; (2.)
(B, f) € Pos and (B, f) € Neg; (3.) f ¢ {b}; (4.) (B,b) ¢ {(C,c¢), (A,a),(B, f)}. In the second sentence,
(5.) (A,a) ¢ {(B,b)}. In the third sentence, (6.) {} # {(A,a)}. (7.) In the fourth and fifth sentences,
states(D); = {{}} = states(D); and states(E); = {{}} = states(E),.

Example 2 The model .#, fulfills all the conditions above.

My = { (association,(A,a;), (B,b),{}, {(A,a1),(B,D)}, 1
<associati0n, (Aaaz) ( )a {}7 {(A,Clz) ( )}
(dissociation,(A,a), (B,b), {(A,a1), (A, az) (B
(dissociation, (A,ay), (B,b),{(A,a1), (B,b)}, {

0),
0),
, (B,b)}, {}},2.0),
{(A,a2)}},4.0) }

3 Translation into Stochastic 7 calculus

We use the representation of the states of species as sets of their sites to map models to stochastic &
calculus specifications. For this purpose, we first map each model to a compile map. Let us first recall
some of the definitions of stochastic 7 calculus, implemented in SPiM, as they can be found in [13]].

3.1 Stochastic 7 calculus

Definition 3 Syntax of stochastic &t calculus. Below fn(P) denotes the set of names that are free in P.

E = 0 Empty PQ:= )y Summation
| E,X(m)=P  Definition | X(n) Instance
| fm(P)Cm | P|O Parallel
| newx P Restriction
ru= 0 Null T 2x (i) Input

Ix(71) Output
T, Delay

| m;P+X  Action
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Expressions above are considered equivalent up to the least congruence relation given by the equivalence
relation = defined as follows.

P|O0 = P newx0 = 0
PlQ = Q|P newxnewy P = newynewxP
PI(Q|IR) = (P|Q)IR newx (P|Q) = P|newxQifx¢fn(P)

X(ﬁ) = P{ﬁ/rh} le(ﬁ’l) =P

3.2 Compile Maps

We map models into compile maps, denoted with 4. A compile map is a set of expressions that we
call process descriptions for each species A € species(.#). For a model .#, the process description
of species A € species(.# ), denoted with P(A), is the pair (A, actions(A)). Here, actions(A) is the set
collecting actions(A,.) for every . € @(sites(.#,A)).
actions(A,.¥) = (., assoc(A,.¥),dissoc(A,.7 ), transform(A,.7))
We define assoc(A,.7) as the set of assoc(A,.”,a) for every a € sites(.#,A).
assoc(A,.”,a) = (a,assocPartners(A,.”,a))
where assocPartners(A,.”,a) is the set
{(B,b,states(B),r) |
((association, (A,a), (B,b), Pos, Neg,r) € M N ./ € states(A))
V ((association, (B,b), (A,a), Pos,Neg,r) € # N . € states(A)) }.
We define dissoc(A,.7), similarly, as the set of dissoc(A,., a) for every a € sites(.#Z ,A).
dissoc(A,.,a) = (a,dissocPartners(A, .7, a))
where dissocPartners(A,.7 a) is the set
{(B,b,states(B),r) |
({dissociation, (A,a), (B,b), Pos, Neg,r) € # N . € states(A))
V ({dissociation, (B,b), (A,a), Pos, Neg,r) € # N ¥ € states(A)) }.
If .7 =0, the set transform(A,.”) is defined as
{(B,r) | ({transformation, A, B, Pos, Neg,r) € ./ } .

Otherwise, it is .

Example 4 Consider the model .#, in Example[2] We have that the compile map € for this model is as
follows.

{ (A { ({3 @ A(B,b,{{}},1.0)}), (a2, {(C, e, {{}},1.0)}, {}, {}),
<{a1}7 {(a27{(c7cv{{}}v 1‘0)}7 {(B,b,{{b}},4.0)}, {}>7
({a2}, {(a1,{(8,6,{{}}, 1.O)}, {}, {}),

({a1, a2}, {}, {(B,b,{{}},2.0)}, {}) }),

({1 A®A{A,a1,{{}, {a2}},1.0)}, {}, {}),

({6}, 4}, {(6,{(A,a1,{{a1}},4.0), (A, a1, {{a1, a2}},2.0)}, {}) }),

<{}7 {(alﬂ{(Ava%{{}? {al}}7 1‘0) }7 {}7 {}>7

{eh, B 1)}

(B, {
(€A
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3.3 From Compile Maps to Stochastic 7 calculus

We construct a 7 calculus specification from the compile map ¢ of a model .#. For each species
A € species(. ), we map the process description P(A) to a process specification in stochastic 7 calculus.
Let

P(A) = (A, {actions(A,.#1),...,actions(A,.%,) })

where @(sites(#,A)) ={,...,-%u}, that s, the powerset of set of sites of A. Thus, there are n process
specifications for the species A, some of which may be empty. Each process specification for each state
7 of A is of the following syntactic form.

process declaration “= (" local channel declarations
association specifications
“+”  dissociation specifications
“+”  transformation specifications ‘)’

The idea here is that each set of sites of a species A denotes the state where the sites in the set are
bound. Thus the powerset of the set of sites of a species denotes the set of all its states. Now, let us obtain
the process expression for each state .#; with respect to actions(A,.#;) where 1 <i < n. Let us consider
Si=A{ai,...,ar} of A with

actions(A,.7;) = (.%;,assoc(A,.7;),dissoc(A, .7;), transform(A,.7;)) .

Process declaration

The expression for process declaration is a process name with its list of parameters. It is delivered by
the dissociation sentences in .# and .%; = {ay,...,a;}. For every a j € &4, consider the set

%(A,aj) —
{(aj, (r/2)) | (dissociation, (A,a;),(B,b), Pos, Neg, r) € A } U
{(aj, (r/2)) | (dissociation, (B,b),(A,a;), Pos, Neg,r) € M } U
{(aj, 1.0) | (dissociation, (B,b),(A,a;), Pos, Neg, r) ¢ A N
(dissociation, (A,a;),(B,b), Pos, Neg,r) & M }.
We associate each element of the set #(A,a;) a unique label s € N* and obtain #’'(A,a;). Then if
Z'(A,aj) ={(aj, r,1),...,(aj, re, £) } we write the process declaration for A at state .; = {a, ..., ax}

as follows.
Ai(all,...,alfl, ...... ,akl,...,akﬁk)

Example 5 For the state .5 = {a,} of species A of Example [2] we have the process declaration below,
since we have that #'(A,a) = {(a1,2.0,1),(a1,1.0,2)}.

Az(ail,a2)

Local channel declarations

These expressions are delivered by the dissociation sentences in .# and the assoc(A,.#;). That is, for
every
assoc(A,.%;,a;) = (aj, assocPartners(A, ., a;)) € assoc(A,.”7),
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and for every (B, b,states(B), r) € assocPartners(A,.7;,a;) consider the set

U (A,a;,B,b) =
{(aj, (r/2)) | (dissociation,(A,a;),(B,b), Pos, Neg,r) € M Naj<b} U
{(aj, (r/2)) | (dissociation, (B,b),(A,a;), Pos, Neg,r) € M Naj<b}U
{(aj, 1.0) | (dissociation, (B,b),(A,a;), Pos, Neg, r) & A N\
(dissociation, (A,a;),(B,b), Pos, Neg,r) ¢ M Naj<b}

where < denotes a lexicographic order on sites. We associate each element of the set % (A,a;,B,b) a
unique label s € N* to obtain %’(A,a;,B,b). Then if

%’(A,aj,B,b) ={(aj,r,1),...,(aj,r, 0)}
then we write the channel declarations for assoc(A,.#;,a;) as follows.
new a;l@r; ... mnew a;lQr

Example 6 For the state /5 = {a;} of species A of Example we have the channel declarations below,
since we have that %' (A,ay,B,b) = {(a2,1.0,1)}.

new a»1@1.0

Association specifications

The expression for association specifications for species A at state assoc(A,.7;) is delivered by assoc(A,.7).
For every
(aj, assocPartners(A,.7},a;)) € assoc(A,.7;),

and for every (B, b,states(B), r) € assocPartners(A,.7;,a;) consider the set

%(A,aj,B,b) =
{(ta;b,r) |((B,b), states(B), r) € assocPartners(A,.%},a;) Naj<b} U
{(?baj,r) | ((B,b), states(B), r) € assocPartners(A,.%},a;) N\b<a;}.

We associate each element of the set %(A,a;,B,b) a unique label s € N* and obtain #'(A,a;,B,b).
Association of site a; on A results in the state .y = ./;U{a;}. For each element of (!a;b,ry,s) €
#'(A,aj,B,b) we write the following, composed by +.

tajbs(a;jl,...,a;l);continuation

The association channel names, such as a;bs here, are also declared as global channel declarations,
preceding all the process declarations. The continuation is written for A in .} as for process declarations
above, however we write nil for the channel names for those associations of site a; on A with some
site b’ # b. Here, nil is the nil-dissociation channel with rate 0. We obtain a;1,...,a;¢ from the set
% (A,aj,B,b) as in channel declarations.

Example 7 For the state %> = {a\} of species A of Example 2| we have the following association
specifications.
la2cl(ay);A3(a1l,a12,az)
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Dissociation specifications

The expression for dissociation specifications for species A at state assoc(A,.7;) is delivered by dissoc(A,.7;).
For every

(aj, dissocPartners(A,.7;,a;)) € dissoc(A,.7]),
and for every (B, b,states(B), r) € dissocPartners(A,.#;,a;) consider the set

%(A,aj,B,b) =
{(*aj, r) |((B,b), states(B), r) € dissocPartners(A,.7},a;) Naj<b} U
{(?b, r) | ((B,b), states(B), r) € dissocPartners(A,.”},a;) N\b<a;}.

We associate each element of the set ¢(A,a;,B,b) a unique label s € N* and obtain ¢'(A,a;,B,b).
Dissociation of a; on A results in the state .y = .%;\ {a;}. For each (!aj,rs,s) € 9'(A,a;,B,b) we write
the following, composed by “+”.

lajs;continuation + 7ajs;continuation

The continuation is written for A in .%; as for process declarations above.

Example 8 For the state . = {a,} of species A of Example 2| we have the following dissociation
specifications.

la;l ;Al() + ?all;Al()

Transformation specifications

The expression for transformation specifications for species A is given only if the state . = {}. In that
case, for transfrom(A,{}) = {(B1,r1),..., (Bk, 1)} we write

delay@r;Bi() + ... + delay@ry;By()

4 Syntax of the Language

The syntax of the language is defined in BNF notation, where optional elements are enclosed in braces
as {Optional}. A model (description) consists of sentences of the following form.
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Model = Sentence; ... Sentence,, m>1

Sentence = Association
| Dissociation
| Transformation
| Decay
| Phosphorylation
|

Dephosphorylation

Association ::= Site on Species associates Site on Species
{with rate Float} {if Conditions}

Dissociation ::= Site on Species dissociates Site on Species
{with rate Float} {if Conditions}

Phosphorylation ::=  Site on Species gets phosphorylated
{with rate Float} {if Conditions}
Dephosphorylation ::=  Site on Species gets dephosphorylated
{with rate Float} {if Conditions}
Transformation ::= Species becomes Species {with rate Float}
Decay ::= Species decays {with rate Float}
Conditions ::= Condition

|  Condition and Conditions

Condition ::=  Site on Species is bound
| Site on Species is unbound

Site n=String
Species n=String

In our implementation of the translation algorithm, each sentence of a model given in this syntax is
mapped by a lexer and parser to a data structure of the form given in Section2]in the obvious way. Phos-
phorylation sentences are treated as association sentences where the second species is by default Phosph
with the binding site phosph. The dephosphorylation sentences are mapped similarly to dissociation
sentences. If not given, a default rate (1.0) is assigned to sentences.

4.1 A Model of Fcy Receptor-mediated Phagocytosis

We demonstrate the use of the language on a model of Fcy receptor (FcyR) phosphorylation during
phagocytosis, where the binding of complexed immunoglobulins G (IgG) to FcyR triggers a signalling
cascade that leads to actin-driven particle engulfment [8, [18, |4]. When a small particle is coated (op-
sonised) with IgG, the Fc regions of the IgG molecules can bind to FcyRs in the plasma membrane and
initiate a phagocytic response: a signalling cascade then drives the remodelling of the actin cytoskele-
ton close to the membrane. This results in cup-shaped folds of plasma membrane that extend outwards
around the internalised particle and eventually close into a plasma membrane-derived phagosome.
FcyR contains within its cytoplasmic tail an immunoreceptor tyrosine-based activation motif (ITAM).
The association of FcyR with an IgG induces the phosphorylation of two tyrosine residues within the
ITAM domain by Src-family kinases. The phosphorylated ITAM domain then recruits Syk kinase, which
propagates the signal further to downstream effectors (see Figure [T). In our language, we can describe
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Opsonised 1

particle I9G

Figure 1: A simple model of the phosphorylation of the ITAM domain on the Fcy receptor during phago-
cytosis. Adapted from [8].

the initial phases of this cascade as follows:

site f on FcR associates site i on IgG with rate 2.0
site y on FcR gets phosphorylated if site f on FcR is bound
site z on FcR gets phosphorylated if site f on FcR is bound

The first sentence above describes the binding of FcyR to IgG. The second and third sentences de-
scribe the phosphorylation of the two tyrosine residues on ITAM (association of a Phosph0 () molecule).
This is automatically translated by our tool into the SPiM program given in Appendix A. We can then
run stochastic simulations on the model given by these sentences.

By using this language and our translation tool, we can build models of different size and complexity,
and modify and extend these models with respect to the knowledge in hand on the different sites and
interaction capabilities of the FcyR, as well as other biological systems. For example, the model above
abstracts away from the role played by the Src kinases in the phosphorylation of the FcyR as depicted in
Figure[I] The sentences above can be easily modified and extended to capture this aspect in the model
as follows: here, the shaded part demonstrates the modifications with respect to the model given above.

site f on FcR associates site i on IgG with rate 2.0

site y on FcR gets phosphorylated if site s on FcR is bound

site z on FcR gets phosphorylated if site s on FcR is bound

site s on FcR associates site sr on Src if site f on FcR is bound
site s on FcR dissociates site sr on Src

The SPiM program resulting from automated translation of this model is given in Appendix B. It is
important to note that, because FcR has 4 binding sites in the model above, in the SPiM code resulting
from the translation, there are 16 species for FcR, denoting its different possible states. However, in the
code given in Appendix A, there are 8 species for FcR denoting its states that result from its 3 binding
sites in that model.

5 Discussion

We have introduced a natural language interface for building stochastic 7 calculus models of biological
systems. The k-calculus [5} (6] [7] and the work on Beta-binders in [11]] have been source of inspiration
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for this language.

In [11], Guerriero et al. give a narrative style interface for the process algebra Beta-binders for a
rich biological language. In our language, we build complex events such as phosphorylation and dephos-
phorylation of sites as instances of basic primitives of association, dissociation and transformation. We
give a functional translation algorithm for our translation into stochastic & calculus. The conditions that
we impose on the models are automatically verified in the implementation of our tool. These conditions
should be instrumental for ‘debugging’ purposes while building increasingly large models.

The implicit semantics of our language, which is implemented in the translation algorithm into 7
calculus, can be seen as a translation of a fragment of the k calculus into & calculus. Another approach
similar to the one in this paper is the work by Laneve et al. in [[15], where the authors give an encoding
of nano-x«-calculus in SPiM. In comparison with our algorithm, the encoding in [[15] covers a larger part
of nano-x by using the SPiM language as a programming language for implementing a notion of term
rewriting, where there is an explicit function for matching. The algorithm gives the different states of a
species in the SPiM encoding with respect to the parameters of that species as in k-calculus.

Topics of future work include an exploration of the expressive power of the association, dissociation
and transformation primitives with respect to Kohn diagram representation [[10] of biological models.
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Appendix A

site f on FcR associates site i on IgG with rate 2.0

site y on FcR gets phosphorylated if site f on FcR is bound

site z on FcR gets phosphorylated if site f on FcR is bound

The SPiM code resulting from the automated translation of this model.

directive sample 10.0
directive plot FcR7(); FcR6();
FcR50);
FcR2(); FcR1();

FcRO(); IgGli(); IgGo(Q);
Phosph1 () ; Phosph0()

new
new
new
new

let

and

FcR4(); FcR3();

£i1@1.0:chan(chan)
phosphy2@1.0:chan(chan)
phosphz3@1.0: chan(chan)
nil@0.0:chan

FcROO) =

( new f@1.0:chan
1£i1(£f)*2.0; FcR1(f) )

FcR1(f:chan) =
( do ?phosphy2(y); FcR4(f,y)
or ?phosphz3(z); FcR5(f,z) )

FcR2(y:chan) =
( new f@1.0:chan
1£i1(£)*2.0; FcR4(f,y) )

FcR3(z:chan) =
( new f@1.0:chan
1fil(£f)*2.0; FcR5(f,z) )

FcR4(f:chan,y:chan) =
( ?phosphz3(z); FcR7(f,y,z) )

6 Appendix B

site
site
site
site
site

n un N < H

on
on
on
on
on

and

let

and

let

run
run
run

FcR5(f:chan,z:chan) =
( ?phosphy2(y); FcR7(f,y,z) )

FcR6(y:chan,z:chan) =
( new f@1.0:chan
1£i1(£)*2.0; FcR7(f,y,z) )

FcR7(f:chan,y:chan,z:chan) =
O

IgGo() =
( 7fi1(i); IgG1(i) )

IgGl(i:chan) =
O

Phosph0() =
( new phosph@1.0:chan
do !phosphy2(phosph)*1.0;
Phosph1 (phosph)
or !phosphz3(phosph)*1.0;
Phosphl (phosph) )

Phosphl (phosph:chan) =
O

1000 of FcRO()
1000 of IgGO()
1000 of PhosphO()

FcR associates site i on IgG with rate 2.0

FcR gets phosphorylated if site s on FcR is bound

FcR gets phosphorylated if site s on FcR is bound

FcR associates site sr on Src if site f on FcR is bound

FcR dissociates site sr on Src

The SPiM code resulting from the automated translation of this model.

directive sample 10.0
directive plot FcR15();

FcR14(); FcR13(); FcR12();
FcR11(); FcR10(0);
FcR9(); FcR8(); FcR7();
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FcR6(); FcR5(); ( new £@1.0:chan
FcR4(); FcR3(); FcR2(Q); do !'fil(f)*2.0; FcR12(f,sl,y)
FcR1(); FcROQ); or 7phosphx2(x); FcR14(sl,x,y)
IgG1(O; IgGoO; or !sl; FcR4(y) or 7?sl; FcR4(y) )
Phosph1(); Phosph0();
Src1(); Src0() and FcR10(x:chan,y:chan) =
( new £@1.0:chan
new £i1@1.0:chan(chan) 1£i1(£)*2.0; FcR13(f,x,y) )
new phosphx2@1.0:chan(chan)
new phosphy3@1.0:chan(chan) and FcR11(f:chan,sl:chan,x:chan) =
new ssr4@1.0:chan(chan) ( do ?7phosphy3(y); FcR15(f,sl,x,y)
new nil@0.0:chan or !sl; FcR6(f,x) or ?sl; FcR6(f,x) )

and FcR12(f:chan,sl:chan,y:chan) =
let FcROQO) = ( do ?phosphx2(x); FcR15(f,sl,x,y)
( new f@1.0:chan or !sl; FcR7(f,y) or 7sl; FcR7(f,y) )
1£i1(£)*2.0; FcR1(f) )
and FcR13(f:chan,x:chan,y:chan) =
and FcR1(f:chan) = ( new s1@0.50:chan
( new s1@0.50:chan !ssr4(s1)*1.0; FcR15(f,sl,x,y) )
lssr4(s1)*1.0; FcR5(f,s1) )
and FcR14(sl:chan,x:chan,y:chan) =

and FcR2(sl:chan) = ( new f@1.0:chan
( new f@1.0:chan do !'fi1(£f)*2.0; FcR15(f,sl,x,y)
do !'fil(£f)*2.0; FcR5(f,sl1) or !sl; FcR10(x,y) or 7sl; FcR10(x,y) )
or 7phosphx2(x); FcR8(sl,x)
or ?phosphy3(y); FcRI(sl,y) and FcR15(f:chan,sl:chan,x:chan,y:chan) =
or !sl; FcRO() or ?s1l; FcROQ) ) ( do !'s1; FcR13(f,x,y) or 7sl; FcR13(f,x,y) )

and FcR3(x:chan) =

( new £@1.0:chan let IgGO() =
1£i1(£)*2.0; FcR6(f,x) ) ( 7fi1(i); IgGi(i) )
and FcR4(y:chan) = and IgGl(i:chan) =
( new £f@1.0:chan O

1£i1(£)*2.0; FcR7(f,y) )

and FcR56(f:chan,sl:chan) = let Phosph0() =
( do 7phosphx2(x); FcR11(f,s1,x) ( new phosph@1.0:chan
or ?phosphy3(y); FcR12(f,sl,y) do !phosphx2(phosph)*1.0;
or !sl; FcR1(f) or 7sl; FcR1(f) ) Phosphl1 (phosph)
or !phosphy3(phosph)*1.0;
and FcR6(f:chan,x:chan) = Phosphl (phosph) )
( new s1@0.50:chan
!ssr4(s1)*1.0; FcR11(f,sl,x) ) and Phosphl(phosph:chan) =
O

and FcR7(f:chan,y:chan) =
( new s1@0.50:chan
'ssr4(s1)*1.0; FcR12(f,sl,y) ) let Src0() =
( ?ssr4(srl); Srci(srl) )
and FcR8(sl:chan,x:chan) =
( new f@1.0:chan and Srcil(srl:chan) =
do 'fi1(£f)*2.0; FcR11(f,s1,x) ( do !'sr1l; Src0() or ?srl; SrcO0() )
or 7phosphy3(y); FcR14(sl,x,y)
or !sl; FcR3(x) or ?sl; FcR3(x) )
(* run 1000 of ... *)
and FcR9(sl:chan,y:chan) =



	Introduction
	Species, Sites, Sentences and Models
	Conditions on Sentences

	Translation into Stochastic  calculus
	Stochastic  calculus
	Compile Maps
	From Compile Maps to Stochastic  calculus

	Syntax of the Language
	A Model of Fc Receptor-mediated Phagocytosis

	Discussion
	Appendix B

