
Ambient Groups and Mobility TypesLuca Cardelli, Giorgio Ghelli, and Andrew D. GordonAbstract. We add name groups and group creation to the typed ambi-ent calculus. Group creation is surprisingly interesting: it has the e�ectof statically preventing certain communications, and can thus block theaccidental or malicious escape of capabilities that is a major concern inpractical systems. Moreover, ambient groups allow us to re�ne our earlierwork on type systems for ambient mobility. We present type systems inwhich groups identify the set of ambients that a process may cross oropen.1 IntroductionThe Ambient Calculus is a process calculus based on local communication andon process mobility. The basic, untyped, calculus can be decorated with staticinformation to restrict either local communication, or mobility, or both.Exchange control systems can be used to restrict communication. In [CG99]we have investigated exchange types, which subsume standard type systems forprocesses and functions, but do not impose restrictions on mobility.Mobility control systems can be used to restrict mobility. In [CGG99] we in-vestigate immobility and locking annotations, which are simple predicates aboutmobility.The goal of this paper is to re�ne our previous work on mobility control,by including in the type of a process static descriptions of the set of ambientsit may cross, and the set of ambients it may open. To do so, we adopt a newconstruction of independent interest. Among the types, we introduce collectionsof names that we call groups ; names belong to groups in the same sense thatvalues belong to types.To understand how name groups arise, consider a typical static property wemay want to express in a type system for the ambient calculus, informally:The ambient named n can enter the ambient named m.This could be expressed as a typing n : CanEnter(m) stating that n is a mem-ber of the collection CanEnter (m) of names that can enter m. However, thiswould bring us straight into the domain of dependent types, since the typeCanEnter(m) depends on the name m. Instead, we introduce type-level groupsof names, G, H , and restate our property as:The name n belongs to group G; the name m belongs to group H . Anyambient of group G can enter any ambient of group H .Cardelli and Gordon are at Microsoft Research. Ghelli is at Pisa University.

This idea leads to typing judgments of the form:process P may cross ambients of group Gprocess P may open ambients of group GThe former reduces to immobility assertions when a process can cross no groups;the latter reduces to locking assertions, when members of a group can be openedby no process [CGG99].Among the processes, we then introduce an operation, (�G)P , for creatingnew groups. Within P we can introduce new names of group G. The bindersfor new groups, (�G), extrude in much the same way as binders for new names,(�n:G). Because of extrusion, group binders do not impede the mobility of am-bients that are enclosed in the initial scope of fresh groups. However, simplescoping restrictions prevent names of a fresh group from ever being receivedoutside the initial scope of the group.Therefore, we obtain a exible way of protecting the propagation of names.This is to be contrasted with the situation in the untyped �-calculus and am-bient calculus, where names can (intentionally, accidentally, or maliciously) beextruded arbitrarily far, by the automatic and unrestricted application of extru-sion rules.We organise the paper as follows. In the remainder of this opening section wereview the basic untyped ambient calculus. Section 2 describes the typed ambientcalculus with groups|obtained by enriching our exchange type system [CG99]with groups. Section 3 enriches the system of Section 2 to control ambient open-ing. In Section 4, we de�ne a system in which the type of a process records boththe groups it may open and the groups it may cross. Section 5 formalizes safetyproperties guaranteed by typing. Section 6 concludes and discusses related work.A technical report contains proofs omitted from this paper [CGG00].1.1 The Untyped Ambient Calculus (Review)An ambient is a named boundary whose interior contains a collection of run-ning processes, possibly including nested subambients. We explain the untypedambient calculus elsewhere [CG98] in detail, but here we introduce its centralfeatures via a standard example: a[p[out a:in b:hci]] j b[open p:(x):x[]].Intuitively, this example represents a packet named p being sent from a ma-chine a to a machine b. The example consists of the parallel composition (indi-cated by the j operator) of two ambients, named a and b. The brackets [: : :] rep-resent ambients' boundaries. The process p[out a:in b:hci] represents the packet,a subambient of ambient a. The name of the packet ambient is p, and its interioris the process out a:in b:hci. This process consists of three sequential actions: ex-ercise the capability out a, exercise the capability in b, and then output the namec. The e�ect of the two capabilities on the enclosing ambient p is to move p outof a and into b, to reach the state: a[] j b[p[hci] j open p:(x):x[]]. The interior of ais now empty. The interior of b consists of two running processes, the subambi-ent p[hci] and the process open p:(x):x[]. The latter is attempting to exercise the2

open p capability. Previously it was blocked. Now that the p ambient is present,the e�ect of open p is to dissolve the ambient's boundary. Hence, the interior ofb becomes the process hci j (x):x[]. This is a composition of an output hci withan input (x):x[]. The input consumes the output, leaving c[] as the interior of b.Hence, the �nal state of the whole example is a[] j b[c[]].The 0 process represents inactivity; the notation a[] for an empty ambientnamed a, used above, is actually short for a[0]. There are also replication andrestriction constructs. A replication !P behaves the same as an unlimited numberof parallel copies of P . A restriction (�n)P creates a new name n with scope P .2 The Typed Ambient Calculus with GroupsWe start with the typed ambient calculus of [CG99] and we add a new processconstruct, (�G)P , to create a new group G with scope P . Correspondingly weadd a new type construct, G[T], for the type of names of group G that nameambients that contain T exchanges.The constructG[T] is actually a re�nement of the constructAmb[T] of [CG99],where Amb can now be seen as the group of all names. It is conceivable to intro-duce a subtype ordering on groups, with Amb as the maximal element. However,subtyping may help capabilities escape, particularly in the presence of a maximalelement; we do not consider these extensions in this paper.We can now write, for example, the following typed process:(�Ch)(�Msg)(�c:Ch [Msg [Shh]])(�m:Msg [Shh])c[hmi j (x:Msg [Shh]):x[]]This creates two groups Ch and Msg and two names c and m belongingto those groups. The types ensure that only messages, that is, names of typeMsg [Shh], can be exchanged inside an ambient named c, as happens in the restof the process. (The type Shh prohibits exchanges; names of type Msg [Shh] arein group Msg , and name ambients in which exchanges are prohibited.)The types of the ambient calculus with groups are the same as in [CG99],except that G[T] replaces Amb[T]. We have typesW for messages. Messages canbe either names of type G[T], or capabilities of type Cap [T]. We also have typesfor processes, T , that classify processes according to the type of message tuplesthey exchange (if any).Types:W ::= message typeG[T] ambient name in group G with T exchangesCap[T] capability unleashing T exchangesS; T ::= exchange typeShh no exchangeW1 � � � � �Wk tuple exchange (1 is the null product)3

Expressions (messages) and processes are also the same as in [CG99], exceptthat we add processes (�G)P and include the objective moves of [CGG99].The movement primitives of the untyped calculus, illustrated by the processp[out a:in b:hci] from Section 1.1, are called subjective moves ; the capabilitiesout a and in b move the ambient p from the inside. In the typed calculus, we alsotake objective moves as primitive. In an objective move goN:M [P], the capabilityN moves an ambientM [P] from the outside by following the path encoded by N ,and once there starts the ambient M [P]. In the untyped calculus, we can de�nean objective move go N:M [P] to be short for the process (�k)k[N:M [out k:P]]where k is not free in P . As we found in our previous work [CGG99], a primitivetyping rule for objective moves allows more re�ned typings than are possiblewith only subjective moves.Expressions and processes:M;N ::= expression P;Q;R ::= processn name (�G)P group creationin M can enter M (�n:W)P restrictionout M can exit M 0 inactivityopen M can open M P j Q composition� null !P replicationM:M 0 path M [P] ambientM:P action(x1:W1; : : : ; xk:Wk):P inputhM1; : : : ;Mki outputgo N:M [P] objective moveThis grammar allows the formation of certain nonsensical processes, wherea capability is used in place of a name, as in (in n)[0], or vice versa, as in(�n:W)n:0. Such garbled processes are not typable in any of our type systems.In the processes (�G)P and (�n:W)P , the group G and the name n, respec-tively, are bound, with scope P . In the process (x1:W1; : : : ; xk:Wk):P , the namesx1, . . . , xk are bound, with scope P . We identify processes up to consistent re-naming of bound names and bound groups. We write fn(P) for the set of namesfree in process P , and we write fg(P), fg(W), and fg(T) for the sets of groupsfree in process P , message type W , and exchange type T , respectively.The following tables describe the structural congruence rules and the reduc-tion rules. The bottom four rules of structural congruence describe the extrusionbehavior of the (�G) binders. Side conditions on these rules prevent violationof lexical scoping. The notation Pfx1 M1; : : : ; xk Mkg used below in the re-duction rule for I/O denotes the outcome of a capture-avoiding simultaneoussubstitution, for each i 2 1::k, of the expression Mi for each free occurrence ofthe corresponding name xi in the process P .Structural Congruence:P � Q) (�n:W)P � (�n:W)Q P � P4

P � Q) (�G)P � (�G)Q Q � P) P � QP � Q) P j R � Q j R P � Q;Q � R) P � RP � Q) !P � !QP � Q)M [P] �M [Q] P j Q � Q j PP � Q)M:P �M:Q (P j Q) j R � P j (Q j R)P � Q) go N:M [P] � go N:M [Q]P � Q) (x1:W1; : : : ; xk:Wk):P � (x1:W1; : : : ; xk :Wk):Qn1 6= n2) (�n1:W1)(�n2:W2)P � (�n2:W2)(�n1:W1)Pn =2 fn(P)) (�n:W)(P j Q) � P j (�n:W)Qn 6= m) (�n:W)m[P] � m[(�n:W)P]P j 0 � P !P � P j !P(�n:W)0 � 0 �:P � P(�G)0 � 0 (M:M 0):P �M:M 0:P!0 � 0 go �:M [P] �M [P](�G1)(�G2)P � (�G2)(�G1)PG =2 fg(W)) (�G)(�n:W)P � (�n:W)(�G)PG =2 fg(P)) (�G)(P j Q) � P j (�G)Q(�G)m[P] � m[(�G)P]Reduction:n[in m:P j Q] j m[R]! m[n[P j Q] j R] P ! Q) (�G)P ! (�G)Qm[n[out m:P j Q] j R]! n[P j Q] j m[R] P ! Q) (�n:W)P ! (�n:W)Qopen n:P j n[Q]! P j Q P ! Q) P j R! Q j RhM1; : : : ;Mki j (x1:W1; : : : ; xk:Wk):P P ! Q) n[P]! n[Q]! Pfx1 M1; : : : ; xk Mkg P 0 � P; P ! Q;Q � Q0) P 0 ! Q0go (in m:N):n[P] j m[Q]! m[go N:n[P] j Q]m[go (out m:N):n[P] j Q]! go N:n[P] j m[Q]Next, we introduce the �ve basic judgments and the typing rules. Apart fromminor adaptations, the main novelty with respect to [CG99] is the rule withconclusion E ` (�G)P : T . The assumptions of this rule are that E;G ` P : Tand G =2 fg(T). The latter assumption prevents G from going out of scope inthe conclusion. Typing environments, E, are given by the grammar E ::= ? jE;G j E; n:W . For each E, we inductively de�ne dom(E) by the equationsdom(?) = ?, dom(E;G) = dom(E)[fGg, and dom(E; n:W) = dom(E)[fng.Judgments:E ` � good environmentE `W good message type WE ` T good exchange type TE `M :W good expression M of message type WE ` P : T good process P with exchange type T5

Typing Rules:? ` � E `W n =2 dom(E)E; n:W ` � E ` � G =2 dom(E)E;G ` �G 2 dom(E) E ` TE ` G[T] E ` TE ` Cap[T] E ` �E ` Shh E `W1 � � � E `WkE `W1 � � � � �WkE0; n:W;E00 ` �E0; n:W;E00 ` n :W E ` Cap [T]E ` � : Cap[T] E `M : Cap [T] E `M 0 : Cap [T]E `M:M 0 : Cap [T]E ` n : G[S] E ` TE ` in n : Cap[T] E ` n : G[S] E ` TE ` out n : Cap [T] E ` n : G[T]E ` open n : Cap [T]E `M : Cap [T] E ` P : TE `M:P : T E `M : G[S] E ` P : S E ` TE `M [P] : TE; n:G[S] ` P : TE ` (�n:G[S])P : T E;G ` P : T G =2 fg(T)E ` (�G)P : T E ` TE ` 0 : T E ` P : TE ` !P : TE ` P : T E ` Q : TE ` P j Q : T E; n1:W1; : : : ; nk:Wk ` P : W1 � � � � �WkE ` (n1:W1; : : : ; nk:Wk):P :W1 � � � � �WkE `M1 :W1 � � � E `Mk :WkE ` hM1; : : : ;Mki :W1 � � � � �WkE ` N : Cap[S0] E `M : G[S] E ` P : S E ` TE ` go N:M [P] : TWe obtain a standard subject reduction result. A subtle point, though, is theneed to account for the appearance of new groups (G1, . . . , Gk, below) duringreduction. This is because reduction is de�ned up to structural congruence, andstructural congruence does not preserve the set of free groups of a process. Theculprit is the rule (�n:W)0 � 0, in which groups free in W are not free in 0.Theorem 1. If E ` P : T and either P � Q or P ! Q then there are G1, . . . ,Gk such that G1; : : : ; Gk; E ` Q : T .3 Opening ControlIn this section, to control usage of the open capability, we add attributes tothe ambient types, G[T], and the capability types, Cap[T], of the previous typesystem. (In the next section, to control usage of the in and out capabilities, weadd further attributes.)To control the opening of ambients, we formalize the constraint that thename of any ambient opened by a process is in one of the groups G1, . . . , Gk,6

but in no others. To do so, we add an attribute �fG1; : : : ; Gkg to ambient types,which now take the form G[�fG1; : : : ; Gkg; T]. A name of this type is in group G,and names ambients within which processes may exchange messages of type Tand may only open ambients in the groups G1, . . . , Gk. We need to add the sameattribute to capability types, which now take the form Cap [�fG1; : : : ; Gkg; T].Exercising a capability of this type may unleash exchanges of type T and open-ings of ambients in groups G1, . . . , Gk. The typing judgment for processes ac-quires the form E ` P : �fG1; : : : ; Gkg; T . The pair �fG1; : : : ; Gkg; T constrainsboth the opening e�ects (what ambients the process opens) and the exchangee�ects (what messages the process exchanges). We call such a pair an e�ect, andintroduce the metavariable F to range over e�ects. It is also convenient to intro-duce metavariables G, H to range over �nite sets of name groups. The followingtable summarizes these metavariable conventions and our enhanced syntax fortypes:Group Sets and Types:G;H ::= fG1; : : : ; Gkg �nite set of name groupsW ::= message typeG[F] ambient name in group G (contains processeswith F e�ects)Cap[F] capability (unleashes F e�ects)F ::= e�ect�H; T may open H, may exchange TS; T ::= exchange typeShh no exchangeW1 � � � � �Wk tuple exchangeThe following tables de�ne the type system in detail. There are �ve basicjudgments as before. They have the same format except that the judgment E `F , meaning that the e�ect F is good given environment E, replaces the previousjudgment E ` T . We omit the three rules for deriving good environments; theyare exactly as in the previous section. There are two main di�erences betweenthe other rules below and the rules of the previous section. First, e�ects, F ,replace exchange types, T , throughout. Second, in the rule ascribing a type toopen n, the condition G 2 H constrains the opening e�ect H of the capabilityopen n to include the group G, the group of the name n.Judgments:E ` � good environmentE `W good message type WE ` F good e�ect FE `M :W good expression M of message type WE ` P : F good process P with F e�ects7

Typing Rules:G 2 dom(E) E ` FE ` G[F] E ` FE ` Cap[F] H � dom(E) E ` �E ` �H;ShhH � dom(E) E `W1 � � � E `WkE ` �H;W1 � � � � �Wk E0; n:W;E00 ` �E0; n:W;E00 ` n :WE ` Cap [F]E ` � : Cap [F] E `M : Cap [F] E `M 0 : Cap[F]E `M:M 0 : Cap [F]E ` n : G[F] E ` �H; TE ` in n : Cap [�H; T] E ` n : G[F] E ` �H; TE ` out n : Cap[�H; T]E ` n : G[�H; T] G 2 HE ` open n : Cap[�H; T] E `M : Cap [F] E ` P : FE `M:P : FE `M : G[F] E ` P : F E ` F 0E `M [P] : F 0 E; n:G[F] ` P : F 0E ` (�n:G[F])P : F 0E;G ` P : F G =2 fg(F)E ` (�G)P : F E ` FE ` 0 : F E ` P : FE ` !P : FE ` P : F E ` Q : FE ` P j Q : F E; n1:W1; : : : ; nk:Wk ` P : �H;W1 � � � � �WkE ` (n1:W1; : : : ; nk:Wk):P : �H;W1 � � � � �WkE `M1 : W1 � � � E `Mk :Wk H � dom(E)E ` hM1; : : : ;Mki : �H;W1 � � � � �WkE ` N : Cap[�H; T] E `M : G[F] E ` P : F E ` F 0E ` go N:M [P] : F 0Theorem 2. If E ` P : F and either P � Q or P ! Q then there are G1, . . . ,Gk such that G1; : : : ; Gk; E ` Q : F .Here is a simple example of a typing derivable in this system:G;n:G[�fGg;Shh] ` n[0] j open n:0 : �fGg;ShhThis asserts that the whole process n[0] j open n:0 is well-typed and opens onlyambients in the group G.On the other hand, one might expect the following variant to be derivable,but it is not: G;n:G[�?;Shh] 6` n[0] j open n:0 : �fGg;ShhThis is because the typing rule for open n requires the e�ect unleashed by theopen n capability to be the same as the e�ect contained within the ambient n.8

But the opening e�ect �? speci�ed by the type G[�?;Shh] of n cannot be thesame as the e�ect unleashed by open n, because the rule also requires the latterto at least include the group G of n.We have not found this feature to be problematic, and indeed it has a positiveside-e�ect: the type G[�G; T] of an ambient name n not only tells which openinge�ects may happen inside the ambient, but also tells whether n may be openedfrom outside: it is openable only if G 2 G, since this is the only case whenopen n:0 j n[P] can be well typed. Hence, the presence of G in the set G mayeither mean that n is meant to be an ambient within which other ambients ingroup G may be opened, or that it is meant to be an openable ambient.4 Crossing ControlThis section presents the third and �nal type system of the paper, obtained byenriching the type system of Section 3 with attributes to control mobility.Movement operators enable an ambient n to cross the boundary of anotherambient m either by entering it via an in m capability or by exiting it viaan out m capability. In the type system of this section, the type of n liststhose groups that may be crossed; the ambient n may only cross the boundaryof another ambient m if the group of m is included in this list. In our typedcalculus, there are two kinds of movement, subjective moves and objective moves.Therefore, we separately list those groups that may be crossed by objective movesand those groups that may be crossed by subjective moves.We add new attributes to the syntax of ambient types, e�ects, and capabilitytypes. An ambient type acquires the form GyG0[yG;�H; T]. An ambient of thistype is in group G, may cross ambients in groups G0 by objective moves, maycross ambients in groups G by subjective moves, may open ambients in groupsH, and may contain exchanges of type T . An e�ect, F , of a process is now of theform yG;�H; T . It asserts that the process may exercise in and out capabilitiesto accomplish subjective moves across ambients in groups G, that the processmay open ambients in groups H, and that the process may exchange messagesof type T . Finally, a capability type retains the form Cap[F], but with the newinterpretation of F . Exercising a capability of this type may unleash F e�ects.Types:W ::= message typeGyG[F] ambient name in group G, crosses G objec-tively, contains processes with F e�ectsCap[F] capability (unleashes F e�ects)F ::= e�ectyG;�H; T crosses G, opens H, exchanges TS; T ::= exchange typeShh no exchangeW1 � � � � �Wk tuple exchange9

The format of the �ve judgments making up the system is the same as inSection 3. We omit the three rules de�ning good environments; they are as inSection 2. There are two main changes to the previous system to control mobility.First, the rules for typing in n and out n change to assign a type Cap [yG;�H; T]to the capabilities in n and out n only if G 2 G where G is the group ofn. Second, the rule for objective moves changes to allow an objective move ofan ambient of type GyG0[F] by a capability of type Cap[yG;�H; T] only ifG = G0.Typing Rules:G 2 dom(E) G � dom(E) E ` FE ` GyG[F] E ` FE ` Cap [F]G � dom(E) H � dom(E) E ` �E ` yG;�H;ShhG � dom(E) H � dom(E) E `W1 � � � E `WkE ` yG;�H;W1 � � � � �WkE0; n:W;E00 ` �E0; n:W;E00 ` n :W E ` Cap [F]E ` � : Cap[F] E `M : Cap [F] E `M 0 : Cap[F]E `M:M 0 : Cap [F]E ` n : GyG0[F] E ` yG;�H; T G 2 GE ` in n : Cap [yG;�H; T]E ` n : GyG0[F] E ` yG;�H; T G 2 GE ` out n : Cap [yG;�H; T]E ` n : GyG0[yG;�H; T] G 2 HE ` open n : Cap [yG;�H; T] E `M : Cap[F] E ` P : FE `M:P : FE `M : GyG[F] E ` P : F E ` F 0E `M [P] : F 0 E; n:GyG[F] ` P : F 0E ` (�n:GyG[F])P : F 0E;G ` P : F G =2 fg(F)E ` (�G)P : F E ` FE ` 0 : F E ` P : FE ` !P : FE ` P : F E ` Q : FE ` P j Q : F E; n1:W1; : : : ; nk:Wk ` P : yG;�H;W1 � � � � �WkE ` (n1:W1; : : : ; nk:Wk):P : yG;�H;W1 � � � � �WkE `M1 : W1 � � � E `Mk :Wk G � dom(E) H � dom(E)E ` hM1; : : : ;Mki : yG;�H;W1 � � � � �WkE ` N : Cap[yG;�H; T] E `M : GyG[F] E ` P : F E ` F 0E ` go N:M [P] : F 010

Theorem 3. If E ` P : F and either P � Q or P ! Q then there are G1, . . . ,Gk such that G1; : : : ; Gk; E ` Q : F .Recall the untyped example from Section 1.1. Consider two groups G and H .Let W = Gy?[y?;�?;Shh] and set P to be the example process:P = a[p[out a:in b:hci]] j b[open p:(x:W):x[]]Let E = G;H; a:W; b:Gy?[yfGg;�fHg;W]; c:W; p:H y?[yfGg;�fHg;W].Then we can derive the typings:E ` out a:in b:hci : yfGg;�fHg;WE ` open p:(x:W):x[] : yfGg;�fHg;WE ` P : y?;�?;ShhFrom the typings a; c : Gy?[y?;�?;Shh], we can tell that ambients a andc are immobile ambients in which nothing is exchanged and that cannot beopened. From the typings p:H y?[yfGg;�fHg;W]; b:Gy?[yfGg;�fHg;W], wecan tell that the ambients b and p cross only G ambients, open only H ambients,and contain W exchanges; the typing of p also tells us it can be opened. Thisis good, but is not fully satisfactory, since, if b were meant to be immobile, wewould like to express this immobility invariant in its type. However, since b opensa subjectively mobile ambient, then b must be typed as if it were subjectivelymobile itself (by the rule for open).As already observed in [CGG99], this problem can be solved by replacing thesubjective moves by objective moves. Let W = Gy?[y?;�?;Shh], again, andset Q to be the example process with objective instead of subjective moves:Q = a[go (out a:in b):p[hci]] j b[open p:(x:W):x[]]Let E = G;H; a:W; b:Gy?[y?;�fHg;W]; c:W; p:H yfGg[y?;�fHg;W], andwe can derive: E ` out a:in b : Cap[yfGg;�?;Shh]E ` go (out a:in b):p[hci] : y?;�?;ShhE ` open p:(x:W):x[] : y?;�fHg;WE ` Q : y?;�?;ShhThe typings of a and c are unchanged, but the new typings of p and b are moreinformative. We can tell from the typing p:H yfGg[y?;�fHg;W] that movementof p is now due to objective rather than subjective moves. We can now tell fromthe typing b:Gy?[y?;�fHg;W] that the ambient b is immobile.This example suggests that in some situations objective moves lead to moreinformative typings than subjective moves. Still, subjective moves are essentialfor moving ambients containing running processes. We need such ambients tomodel mobile agents, for example. 11

5 Upper Bounds on Capabilities Imposed by E�ectsLike most other type systems for concurrent calculi, ours does not guaranteeliveness, for example, the absence of deadlocks. Still, we may regard the e�ectassigned to a process as a safety property: an upper bound on the capabilitiesthat may be exercised by the process, and hence on its behavior. We formalizethis idea in the setting of our third type system, and explain some consequences.A similar analysis can be applied to the simpler type system of Section 3.We say that a process P exercises a capability M , one of in n or out n oropen n, just if P #M may be derived by the following rules:Exercising a capability: P #M where M 2 fin n; out n; open ngP �M:QP #M P #MP j Q #M Q #MP j Q #M P #M n =2 fn(M)(�n:W)P #M P #M(�G)P #MWe begin by de�ning a fragment of a labelled transition system for the am-bient calculus [GC99]. We say that a process P exercises a capability M , oneof in n or out n or open n, to leave residue P 0 just if the M -labelled transitionP M�! P 0 may be derived by the following rules:Labelled Transitions: P M�! P 0 where M 2 fin n; out n; open ngP �M:QP M�! Q P M�! P 0 m =2 fn(M)(�m:W)P M�! (�m:W)P 0 P M�! P 0(�G)P M�! (�G)P 0P M�! P 0P j Q M�! P 0 j Q Q M�! Q0P j Q M�! P j Q0The following asserts that the group of the name contained in any capabilityexercised by a well-typed process is bounded by the e�ect assigned to the process.It is a corollary of Theorem 3.Theorem 4 (E�ect Safety). Suppose that E ` P : yG;�H; T .(1) If P # in n then E ` n : GyG0[F] for some type GyG0[F] with G 2 G.(2) If P # out n then E ` n : GyG0[F] for some type GyG0[F] with G 2 G.(3) If P # open n then E ` n : GyG0[F] for some type GyG0[F] with G 2 H.To explain the operational signi�cance of this theorem, consider a namem : H yH0[yG;�H; T] and a well-typed ambient m[P]. Suppose that m[P] isa subprocess of some well-typed process Q. We can show, by adapting standardtechniques [GC99], two connections between the M -labelled transitions of theprocess P and the reductions immediately derivable from the whole process Q.First, within Q, the ambientm[P] can cross the boundary of another ambientnamed n of some group G only if either P in n�! P 0 or P out n�! P 0 for some P 0.The typing rule for ambients implies that P must have e�ectyG;�H; T . Part (1)12

or (2) of the theorem implies that the set G contains G. Second, suppose thatP includes a top-level ambient named n. The boundary of n can be dissolvedonly if P open n�! P 0 for some P 0. Since P has e�ect yG;�H; T , part (3) of thetheorem implies that the set H contains G. So the set G includes the groups ofall ambients that can be crossed by m[P], and the set H includes the groups ofall ambients that can be opened within m[P].A corollary of Theorem 3 is that these bounds on ambient behavior apply notjust to ambients contained within Q, but to ambients contained in any processreachable by a series of reductions from Q.6 ConclusionsOur contribution is a new type system for tracking the behavior of mobile com-putations. We introduced the idea of a name group. A name group represents acollection of ambient names; ambient names belong to name groups in the samesense that values belong to types. We studied the properties of a new processoperator (�G)P that lexically scopes groups. Using groups, our type system canimpose behavioral constraints like \this ambient crosses only ambients in one setof groups, and only dissolves ambients in another set of groups". Our previoustype system for mobility [CGG99] cannot express such constraints.In the extended version of this paper [CGG00], we revisit an encoding of adistributed programming language that we �rst reported in the technical reportversion of our earlier work [CGG99]. In the encoding, ambients model both net-work nodes and the threads that may migrate between the nodes. The encodingcan be typed in all three of the systems presented in this paper. The encodingillustrates how ambient groups can be used to partition the set of ambient namesaccording to their intended usage, and how opening and crossing control allowsthe programmer to state some of those programming invariants which are themost interesting when programming mobile computation. For example, the typ-ing allows threads to cross node boundaries, but not mistakenly the other wayround, and guarantees that neither threads nor nodes may be opened. We use(�G) to make fresh groups for certain synchronization ambients in the encoding.The bene�t of (�G) is that we can be statically assured that these synchroniza-tion ambients are known only to the processes we intend to synchronize, andpropagate no further.Our groups are similar to the sorts used as static classi�cations of names inthe �-calculus [Mil99]. Our basic system of Section 2 is comparable to Milner'ssort system for �, except that a new sort operator does not seem to have beenconsidered in the �-calculus literature. Another di�erence is that sorts in the�-calculus are mutually recursive; we would have to add a recursion operatorto achieve a similar e�ect. Our systems of Sections 3 and 4 depend on groupsto constrain the opening and crossing behavior of processes. We are not awareof any uses of Milner's sorts to control process behavior beyond controlling thesorts of communicated names. 13

Apart from Milner's sorts, other static classi�cations of names occur inderivatives of the �-calculus. We mention two examples. In the type systemof Abadi [Aba97] for the spi calculus, names are classi�ed by three static se-curity levels|Public, Secret, and Any|to prevent insecure information ows.In the ow analysis of Bodei, Degano, Nielson, and Nielson [BDNN98] for the�-calculus, names are classi�ed by static channels and binders, again with thepurpose of establishing security properties. (A similar ow analysis now existsfor the ambient calculus [NNHJ99].) Although there is a similarity between thesenotions and groups, and indeed to sorts, nothing akin to our (�G) operator ap-pears to have been studied.There is a connection between name groups and the region variables in thework of Tofte and Talpin [TT97] on region-based implementation of the �-calculus. The store is split into a set of stack-allocated regions, and the typeof each stored value is labelled with the region in which the value is stored. Thescoping construct letregion � in e allocates a fresh region, binds it to the regionvariable �, evaluates e, and on completion, deallocates the region bound to �.The constructs letregion � in e and (�G)P are similar in that they confer staticscopes on the region variable � and the group G, respectively. One di�erence isthat in our operational semantics (�G)P is simply a scoping construct; it allo-cates no storage. Another is that scope extrusion laws do not seem to have beenexplicitly investigated for letregion . Still, we can interpret letregion in terms of(�G), and intend to report this in a future paper.Levi and Sangiorgi's type system for a generalization of the ambient calcu-lus [LS00] can guarantee immobility and single-threadedness. It would be inter-esting to consider extensions of their type system with groups.Acknowledgements Silvano Dal Zilio commented on a draft of this paper. Ghelliacknowledges the support of Microsoft Research during the writing of this paper.The same author has also been partially supported by grants from the E.U.,workgroups PASTEL and APPSEM, and by \Ministero dell'Universit�a e dellaRicerca Scienti�ca e Tecnologica", project INTERDATA.References[Aba97] M. Abadi. Secrecy by typing in security protocols. In Proceedings TACS'97,LNCS 1281, pages 611{638. Springer, 1997.[BDNN98] C. Bodei, P. Degano, F. Nielson, and H. Nielson. Control ow analysisfor the �-calculus. In Proceedings Concur'98, LNCS 1466, pages 84{98.Springer, 1998.[CG98] L. Cardelli and A. D. Gordon. Mobile ambients. In Proceedings FoSSaCS'98,LNCS 1378, pages 140{155. Springer, 1998. Accepted for publication inTheoretical Computer Science.[CG99] L. Cardelli and A. D. Gordon. Types for mobile ambients. In ProceedingsPOPL'99, pages 79{92. ACM, 1999.[CGG99] L. Cardelli, G. Ghelli, and A. D. Gordon. Mobility types for mobile am-bients. In Proceedings ICALP'99, LNCS 1644, pages 230{239. Springer,1999. 14

[CGG00] L. Cardelli, G. Ghelli, and A. D. Gordon. Types for the ambient calculus.Microsoft Research Technical Report, to appear.[GC99] A. D. Gordon and L. Cardelli. Equational properties of mobile ambients.In Proceedings FoSSaCS'99, LNCS 1578, pages 212{226. Springer, 1999.[LS00] F. Levi and D. Sangiorgi. Controlling interference in ambients. In Proceed-ings POPL'00, pages 352{364. ACM, 2000.[Mil99] R. Milner. Communicating and Mobile Systems: the �-Calculus. CUP, 1999.[NNHJ99] F. Nielson, H.R. Nielson, R.R. Hansen, and J.G. Jensen. Validating �rewallsin mobile ambients. In Proceedings Concur'99, LNCS 1664, pages 463{477.Springer, 1999.[TT97] M. Tofte and J.-P. Talpin. Region-based memory management. Informationand Computation, 132(2):109{176, 1997. Preliminary version in ProceedingsPOPL'94.

15

