166

AMBIENT DECOR (ABSTRACT)

LUCA CARDELLI AND ANDREW D. GORDON

Microsoft Research
St. George House, 1 Guildhall Street
Cambridge, CB2 8NH, UK
E-mail: luca@luca.demon.ac.uk

Java has demonstrated the utility of type systems for mobile code, and
in particular their use and implications for security. Security properties rest
on the fact that a well- typed Java program (or the corresponding verified
bytecode) cannot cause certain kinds of damage.

In this paper we provide a type system for mobile computation; that is, for
computation that is continuously active before and after movement. We show
that a well-typed mobile computation cannot cause certain kinds of run-time
fault. It excludes the communication of values of the wrong kind, anywhere
in a mobile system.

In our paper ! we introduced the (untyped) ambient calculus, a process
calculus for mobile computation and mobile devices. The untyped ambient
calculus is able to express, via encodings, standard computational construc-
tions such as channel-based communication, functions, and agents.

The type system presented here is able to provide typings for those encod-
ings, recovering familiar type systems for processes and functions. In addition,
we obtain a type system for mobile agents and other mobile computations.
The type system is obtained by decorating the untyped calculus with type
information, preserving the untyped reduction semantics.

An ambient is a place where other ambients can enter and exit, and where
processes can exchange messages. The first aspect, mobility, is regulated by
run-time capabilities and will not be restricted by our type system. The
second aspect, communication, is what we concentrate on.

Within an ambient, multiple processes can freely execute input and out-
put actions. Since the messages are undirected, it is easily possible for a
process to utter a message that is not appropriate for some receiver. The
main idea of our type system is to keep track of the topic of conversation
that is permitted within a given ambient, so that talkers and listeners can be
certain of exchanging appropriate messages.

The range of topics is described by message types, W, and exchange types,
T. The message types are Amb[T'], the type of names of ambients that allow
exchanges of type T, and Cap[T], the type of capabilities that when used may
cause the unleashing of 7" exchanges (as a consequence of opening ambients



167

that exchange T'). The exchange types are Shh, the absence of exchanges,
and Wy x ... x Wy, the exchange of a tuple of messages with elements of
the respective message types. For k = 0, the empty tuple type is called 1; it
allows the exchange of empty tuples, that is, it allows pure synchronization.
The case k = 1 allows any message type to be an exchange type.

One of the original motivations of the ambient calculus was to provide a
natural semantics for wide-area network languages. We define a simple agent
language inspired by Telescript 4. We give its semantics in terms of ambients.
Moreover, we are able to assign types to our definitions, yielding a typed agent
language.

References

1. L. Cardelli and A.D. Gordon. Mobile ambients. In Foundations of Soft-
ware Science and Computational Structures, Maurice Nivat (ed.) LNCS
1378, pages 140-155. Springer-Verlag, 1998.

2. L. Cardelli. Abstraction for mobile computation. to appear, 1989.

3. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes
(parts I and II). Information and Computation, 100(1):1-77, 1992.

4. J.E. White. Mobile agents. In J. Bradshaw, editor, Software Agents.
AAAI Press / The MIT Press, 1996.



