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Introduction
The Amber language embeds many recent ideas in programming language design, and

tries to introduce all the features in their minimal, essential, form. One of its main goals is to
safely blend static typing with the dynamic requirements of a system programming
language. For this purpose, multiple inheritance and persistent objects are integrated in a
strongly typed language. Other features include graphics, higher-order functions, modules
and concurrency.

Amber is a spin-off of the ML programming language [Milner 84]. The ML language is
now being standardized, and as such is not very suitable for experimentation. Amber  is
intended as a tool for trying out new ideas in language implementation, language design, and
language environments, while being deeply influenced by the ML experience.

As a programming language, Amber was defined to experiment with a new style of
polymorphism [Cardelli 84b] which, unlike the ML-style parametric polymorphism [Milner
78], is based on a notion of type inclusion, and can be used to interpret many programming
concepts found in object-oriented languages [Goldberg Robson 83]. In this view, the main
features of functional and object-oriented languages can be naturally integrated, and the
combination of higher-order functions and multiple inheritance can be strongly typed. Some
typechecking anomalies are still present in Amber, and current research is aimed at solving
them and integrating inclusion polymorphism with parametric polymorphism.

Type inclusion also plays an important role in modularization. Amber programs can be
partitioned into modules and separately compiled. Modules have import-export lists for
types and values. When a type is imported, its actual definition is not accessible: this is a
form of data abstraction realized through the module mechanism, and implies that modules
can be compiled in any order. It is possible to specify that two imported types, although
unknown, are one a subtype of the other,  so that inheritance  can be made to work across
module boundaries.

At the programming system level, the implementation is heavily based  on  the ability to
export and import arbitrary values  to/from  persistent  storage.  This feature is provided at
the lowest level, and guarantees the preservation of any circularity or sharing present in the

1Current addresss: DEC SRC, 130 Lytton Ave, Palo Alto, CA 94301.
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data structures. As the language is statically scoped and the implementation of functions is
based on closures, exporting a function will automatically export everything the function
needs to run when it is imported.  Complex data structures, like trees or fonts, can be
exported and imported without having to write ad-hoc routines to unparse and reparse them.
Separate compilation is also based on persistence, and involves importing and exporting
module data structures. Moreover, persistent data are strongly typed, so that a type error is
generated (at run time) if one happens to import the wrong kind of object. A limitation is
that one can only import/export whole objects; hopefully a scheme will be found to store
partial objects, along the lines of [Atkinson Bailey Chisholm Cockshott Morrison 83].

At the implementation level, the Amber system is organized in three layers. At the
bottom there is a kernel which provides input-output, graphics, heap management and (in the
future) process scheduling. Heap management consists of data allocation, collection and
persistent storage. This level  is largely independent of any particular language, and only
deals with four basic data formats: immediates (such as  booleans, integers and pointers),
strings of bytes, arrays of immediates and bitmaps.

The  second layer is an abstract machine, similar to the one in [Cardelli 84a], which
provides an instruction set and data types (such as records, functional closures, etc.) based
on the underlying data formats. Programs are at the moment encoded as byte streams to be
interpreted, but nothing would prevent them from being compiled to machine code (except
for portability considerations). This level is mildly language-dependent, and can be used to
implement different languages in the same generic class with few changes.

The third layer is the compiled Amber compiler, and its  source which is written in
Amber. The compiler has already gone through dozens of generations, each time
recompiling a new version of itself. The system has been ported to three different machines
and currently runs on an Apple Macintosh.

Features
This section summarizes the main language features, before going into more detail in the

following sections.
Amber is interactive. Every time a phrase is entered at the top level, the phrase is

analyzed, compiled and executed. A phrase can be as simple as evaluating 1+2, or as
complicated as compiling and linking a program module.

Amber is statically scoped. Every variable is bound to the nearest enclosing defining
occurrence of that variable. Functions referring to global variables can be treated as self-
contained objects which can be passed to other functions, returned from other functions,
stored into data structures and exported to persistent storage. Static scoping is also
respected at the top level.

Amber is a safe language. Static and dynamic typechecking ensures the consistent use
of data and operations. Typechecking is mostly static, with some provisions for dynamic
checks, as described below.

Amber has safe dynamic types. Any value in the language can be bundled into a
dynamic value, which carries its full type with it. Dynamic values can later be coerced to
some specific type, stripping them of the dynamic type information. The coercion process
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only succeeds if the specified type matches the dynamic type.
Amber has persistence. Any dynamic value (and hence any value, data or program) can

be exported to persistent storage, and later imported and coerced, probably during a different
program session. This process preserves sharing and circularities within the exported
objects.

Amber has modules. As a special case of persistent objects, program modules can be
separately compiled and later linked into the system. The linking process performs
typechecking across module boundaries and preserves the sharing of data and programs in
common ancestor modules. A module is a set of declarations with an import list
(declarations imported from other modules) and an export list (declarations which can be
imported by other modules).

Amber has multiple inheritance. The type system is based on an implicit inheritance
relation between types, so that some fundamental aspects of object-oriented languages can
be modeled within a strongly typed system.

Amber has signals. Primitive operations produce signals on error conditions (like divide
by zero). These signals can be trapped and recovery actions can be taken. User-defined
signals can also be generated, and they are treated in the same way as primitive signals.

Amber has concurrency. The concurrency model is synchronous, handshake
communication on typed channels between pairs of processes. Channels are denotable
values and can transmit any value (including other channels). Any number of processes can
input or output on the same channel. Processes are not denotable values, but can be
dynamically created and linked to other processes. Process scheduling is non-preemptive
and context switches happen after every communication.

Amber has graphics. A set of primitives gives access to a bitmap display and pointing
device, allowing the construction of editors and window systems within the language.
Graphics is viewed as an essential part of the language.

Amber is written in itself. A one-pass compiler produces a portable intermediate abstract
machine code, which can then be interpreted or assembled, depending on the
implementation. The abstract machine, called Chaos, supports graphics, persistence, dynamic
data structure allocation and garbage collection. It can be defined without any reference to
the language itself and provides facilities for building self-compiling compilers.

Data Types
There is a basic distinction between single values and multiple values. A single value is

any ordinary value which can be manipulated, like a number, a record or a function. Multiple
values are formed by tupling: (3,true) is a tuple (pair) of 3 and true, and it has type
(Int,Bool). A tuple of a single value, like (3), is considered as a single value, and is
equivalent to 3. A tuple of tuples like (3,(true,"foo"),5) is equivalent to its flattening:
(3,true,"foo",5). A null tuple () is no value, and it is absorbed when nested in other tuples:
(3,(),4) is the same as (3,4).

Similarly, there is a distinction between single types (the types of single values) and
multiple types (the types of tuples). Multiple values and types can only be used in restricted
contexts, as described in the sequel.
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Ground Types
- There is a trivial type called Unit, and the only value of this type is the constant unity.
- The boolean type is Bool, with constants true and false.
- The integer type Int has constants 0, ~1, 1, ~2, 2, ... .

Moreover, a quoted character (e.g. 'a) denotes its ascii integer value.
- Strings of ascii characters have type String with constants "", "abc123", "this is a

string". The escape character is \, which can be used to introduce " and \ in strings.
- Bitmaps have type Bitmap, and there are no constants of this type.
- Regions (related to bitmaps) have type Region, and there is a constant nullregion.

Tuples
A tuple (3,true) has a tuple type (Int,Bool). The null tuple () has type (). Expressions

can be  multiple-valued, and functions can take multiple arguments (i.e. tuples of arguments)
and return multiple values (i.e. tuples of results). However, program variables can only
denote single (i.e. non-tuple) values, and data structures can only be composed of single
values. The reason for these restrictions is that tuple creations and manipulations do not
involve dynamic storage allocation: tuples are always built and manipulated on the stack.

Records
Records are unordered, labeled sets of values: {a = 3, b = true} has type {a : Int, b :

Bool}, where a and b are labels. The above record has also type {a : Int}, in the sense that it
has an a field which is an Int, and we may not care about other fields. Individual fields of a
record can be declared to be updatable by using the symbol =>, instead of =, in records, and
:>, instead of :, in record types. Hence {a => 3, b = true} has type {a :> Int, b : Bool}, and
the a field can be updated to a different integer.

Variants
Variants are labeled values, and variant types are unordered, labeled sets of types: [a = 3]

has type [a : Int]. An object of type [a : Int, b : Bool] is either an a variant with Int contents,
or a b variant with Bool contents; in this sense, the variant [a = 3] has also type [a : Int, b :
Bool]. Individual cases of variant types can be declared to be updatable by using the symbol
=>, instead of =, in variant objects, and :>, instead of :, in variant types. Hence [a => 3] has
type [a :> Int, b : Bool] and and it can be updated to a different integer (changing the tag is
not allowed).

Arrays
Array types can be formed out of arbitrary single types, for example integer arrays have

type Array(Int). Arrays of the same type can have different lengths, and the length is fixed at
creation time. Array indices are zero-based and array bounds are dynamically checked.
Arrays are updatable.

Functions
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Function types can be made out of single or multiple types; Int -> Int is the type of
functions from integers to integers, (ex.: fun(x:Int) x+1). The type (Int,Int) -> (Bool,Bool)
is the type of functions of two integer arguments and two boolean results, (ex.: fun(x:Int,
y:Int) (x=0, y=0)).  Function types are always single types.

Dynamic
 Any single value can be converted to a dynamic value, which is obtained by tagging the

value with its full type. Dynamic values can be dynamically typechecked and coerced back
to non-dynamic values. Dynamically typed values have type Dynamic.

Channels
 Communication channels can be made out of any other single type, including channels.

An integer channel has type Channel(Int).

Operations

Equality
The operator = can be applied to objects of any type, provided that its arguments have

compatible types. It tests the equality of objects of type Unit (always true), Bool and Int, and
the identity of objects of any other type, i.e. whether they are the same object in store.

Assignment
Assignable variables (described later) can be updated by the operation var a = e, which

takes an assignable variable (a) and an expression (e) and returns the null tuple ().

Ground Types
- There are no operations on the Unit type.
- Boolean operations are the conditional (e.g. if true then 3 else 4) and the while (e.g.

while true repeat ()) expressions, plus the infix operators \/ (or), /\(and) and the function
not. The type of a conditional is the type join of the types of its branches. The type of a
while expression is () (the null tuple type), and its body must also have type ().

- Integer operations are (infix) +, -, *, /, %(modulo), <, >, <= and >=.
- Strings can contain characters whose representation is in the range 0..255. The first

element of a string has index 0.  String operations are:

string: (Int, Int) -> String

string(size,char) returns a string of given size, all initialized to the same character.

length: String -> Int

length(string) returns the length of a string.
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getascii: (String, Int) -> Int

getascii(string, n) returns the ascii representation of the n-th element of a string.

putascii: (String, Int, Int) -> ()

putascii(string, n, char) updates the n-th element of a string by a new ascii value.

sub: (String, Int, Int) -> String

sub(src, index, size) extracts the substring of src starting from index and of length size.

setsub: (String, Int, String) -> ()

setsub(dst, index, src) affects dst by replacing src for the substring of dst starting at
index and of size length(src).

stringblit: (String, Int, Int, String, Int) -> ()

stringblit(src, srcIndex, length, dst, dstIndex) copies a substring of the source, starting
from the source index, into the destination, starting from the destination index. If the two
strings are the same, the copy order is chosen so that the result is correct even if src and dst
overlap.

search: (String, String, Int, Bool) -> Int

search(chars, string, from, direction) searches for the first occurrence (forward if the
direction is true, backward if false ) of any of the characters in chars in the string string,
starting from some position in the string. Returns the index of the occurrence, if found, or
signals search if not found.

equal: (String, String) -> Bool

equal(string1,string2) compares the contents of two strings.
- Bitmaps are rectangular regions of pixels with a coordinate system. A pixel can have

two values: white pixels are false, and black pixels are true. Operations are:

bitmap: (Int, Int, Int, Int) -> Bitmap

bitmap(x, y, hor, ver) returns a new white bitmap of horizontal size hor, vertical size ver,
and top left corner at x,y.

bitmaptile: Bitmap -> (Int, Int, Int, Int)
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bitmaptile(bitmap) returns the x, y, hor, ver information of a bitmap.

pixel: (Bitmap, Int, Int) -> Bool

pixel(bitmap, x, y) returns the value of a pixel (in the bitmap coordinates) in a bitmap. If
the coordinates are out of bounds, the result is false.

bitblit: (Bitmap, Int, Int, Int, Int, Bitmap, Int, Int, Int, Region) -> ()

bitblit(src, srcX, srcY, hor, ver, dst, dstX, dstY, op, clip) transfers a rectangular region of
size hor,ver from the source to the destination bitmap. The region starts at srcX,srcY in the
source and is transferred to dstX,dstY in the destination, clipped to the clip region (only
points inside the clip region of dst are affected by the operation); the region may fall
partially or totally outside the source or the destination: pixels outside the source have value
false. The transfer is done by replacing the destination region pixel-by-pixel by a boolean
operation of the source and destination, encoded by the op argument. op, in the range 0..3,
means respectively: copy, or, xor, clear.

texture: (Bitmap, Bitmap, Int, Int, Int, Int, Int, Region) -> ()

texture(pattern, bitmap, x, y, hor, ver, op, clip) fills the rectangle x, y, hor, ver of
bitmap (further clipped by the clip region) by replicating the pattern bitmap. The pattern is
aligned to the origin (0,0) in bitmap coordinates, so that independently textured regions
merge correctly. The op argument works as in bitblit. The size of the pattern is fixed (e.g.
8x8) and implementation-dependent.

line: (Bitmap,Bitmap, Int, Int, Int, Int, Int, Region) -> ()

line(texture, bitmap, fromX, fromY, toX, toY, penHor, penVer, op, clip) draws a line
from the point fromX,fromY to the point toX,toY in bitmap coordinates, with pen size
penHor,penVer and pattern texture (an 8x8 bitmap), using the operation op, and clipping
to the clip region.  op is the same as in the bitblit operation, with the source always taken to
be true.

screen: () -> Bitmap

screen() returns the screen bitmap. Changes to this bitmap are immediately reflected on the
screen.

cursor: () -> (Int,Int)

cursor() returns the current position of the cursor on the screen bitmap, in screen
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coordinates.

setcursor: (Int,Int) -> ()

setcursor(X,Y) moves the cursor to a given position on the screen.

button: () -> Bool

button() returns the current state of the button (only one button is assumed to exist) on the
pointing device; true if pressed, false if released.

cursoricon: () -> Bitmap

cursoricon() returns a bitmap which contains the current cursor icon. Changes to the
contents of this bitmap will affect the cursor icon on the screen.

cursortip: (Int,Int) -> (Int,Int)

cursortip(x,y) changes the tip (in cursor icon coordinates) of the cursor, i.e. the  point
which determines which pixel on the screen is being pointed at. Returns the old tip.

makeregion: Bitmap -> Region

makeregion(bitmap) turns a bitmap into a region to be used for clipping in bitblit, texture
and line. Blank bitmaps are turned into nullregion. A region is an arbitrary set of points in a
coordinate system. Unlike bitmaps, regions do not  have boundaries.

offsetregion: (Region,Int,Int) -> Region

offsetregion(region,dx,dy) translates a region with respect to its coordinate system and
returns the new translated region.

insetregion: (Region,Int,Int) -> Region

insetregion(region,dh,dv) shrinks (or expands, for negative dx and dy) a region, by
moving all its points inward (or outward) according to the given displacement.

unionregion: (Region, Region) -> Region
sectregion: (Region, Region) -> Region
diffregion: (Region, Region) -> Region
xorregion: (Region, Region) -> Region

return the union, intersection, difference and xor of two regions.
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pointinregion: (Int,Int,Region) -> Bool

pointinregion(x,y,region) tests whether a point belongs to a region.

tilesectregion: (Int,Int,Int,Int,Region) -> Bool

tilesectregion(x,y,hor,ver,region) tests whether a tile intersects a region.

equalregion: (Region,Region) -> Bool

equalregion(region1,region2) tests whether two regions are the same set of points in the
same coordinate system, except that two empty regions are always equal.

Tuples
There are no operations on tuples (multiple values). Tuples can be built by the syntax

(e1, ... , en) and can be taken apart in function arguments and declarations.

Records
Record fields can be extracted by the notation r.a, which selects the a component of a

record r. If a record field is updatable, the assignment  set r.a = e  (which returns the null
tuple) can be used to update it.

Variants
Variants can be inspected by the case statement: case v [a1 = x1] e1 ... [an = xn ] en

otherwise e.  The contents of the variant v are bound to xi if the variant tag is ai , and ei is
evaluated; otherwise e is evaluated. The scope of each xi is the respective ei. If one does not
care about binding some of the xi variables, they can be omitted together with the respective

= signs. If a variant case is updatable, the assignment  set v[a] =  e  (which returns the null
tuple) can be used to update it.

Arrays
Arrays can be created by array(12,"a"), which builds an array of 12 elements, all "a".

The size of an array is given by arraysize(a). Arrays are indexed by index(a,i) and updated
by update(a,i,v) (which returns the null tuple);  the first element of an array has index 0.

Functions
The only operation on functions is function application: f(a). The function is evaluated

first, then the argument, and then the application is performed. The argument can be a tuple,
e.g. f(a,b,c).

Dynamics
Dynamic values are created by the expression dynamic e, where e can have any single
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type. They are coerced to some known type t by coerce e to t; if the dynamic value e does
not have type t, a run-time error is produced. Dynamic values can be copied to persistent
storage by extern(name,e), where name is a string (a file name) and e has type Dynamic.
Persistent values are reimported by intern(name), which returns a dynamic.

Channels
 Channels are created by the channel(t) form, where t is any single type, which returns a

new channel of type Channel(t). Communication is achieved by the select construct, which
attempts communication simultaneously on several channels:

 select ch1 ? x => e1
 or ch2 ! e => e2
 or ...

where ch1, ch2 are channel-valued expressions, and e1 , e2  are expressions of any type
(their types have to match), x is a variable of a type corresponding to ch1 messages, and e is
an expression of type corresponding to ch2 messages. Question marks (?) are for input

communications, where the message is bound to a variable, and exclamation marks (!) are
for output communications, where the result of an expression is passed as a message. For
channels of type Unit, the variable following ?, and the expression following ! can be
omitted.

Only one of the channels of a select is chosen for communication at any given time.
When this happens, the corresponding expression (following =>) is evaluated and its value
is the value of the whole construct. select may wait indefinitely, until at least one of its
channels is ready for communication.

Communication happens by handshake between a process waiting for input and another
process waiting for output on the same channel. Any number of processes can be waiting
for input or output on the same channel, and a communicating pair is selected according to
some scheduling strategy (which may be unfair). Channels are legal values and can be
passed on other channels of the appropriate type.

All the output messages of a select are evaluated before any communication attempt.
Communications can happen while evaluating the message for an output communication.

Signals
Primitive operations produce signals, instead of values, on error conditions. The name of

the signal is usually the same as the name of the operation which generates it. If a signal is
not trapped and reaches the top level, a message is printed.

3/0 signals    /

getascii("",0) signals    getascii

Signals can be trapped by the on sig e1 in e2 construct, which evaluates e2 and
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normally returns its value, but if the signal sig is produced, then evaluates e1. If a signal
different from sig is produced in e2, or if a signal is produced in e1, the signal propagates

outside the on construct.

on getascii 'a in getascii("",0)      yields      'a

on foo 'a in getascii("",0)              signals     getascii

User-defined signals are generated by the signal sig : type construct, where sig (which
is not evaluated) is an identifier which is the name of the signal, and type is the type of the
signal. Signals are usually generated to avoid returning a value of some type, and the type of
a signal is the type of the value they replace.

if false then 3 else signal foo : Int      signals    foo

on foo 4 in signal foo : Int                    yields      4

Signals propagate dynamically, back along the chain of function calls leading to them.
Hence a signal trap like on foo x in f(a) will trap any foo signal generated in the execution
of f(a), although  the definition of f and the signaling of foo may be in a different syntactic
scope.

Local Declarations
Local declarations are introduced by the let-do construct. This is a sequence of let-

clauses and do-clauses in any order; the last clause must be a do-clause. A let-clause
introduces and initializes new variables, which can be used in all the succeeding clauses; a
do-clause evaluates an expression for side effects, or to produce a result. Clauses are
evaluated in order, and the value and type of the last clause are the value and type of the
whole construct.

 let a = 3
 let f = fun () a+1
 do f()

Declarations and evaluations can involve multiple values:

 let (a,b) = (3,4)
 let f = fun () (a+1,b+1)
 do f()

Updatable variables can be declared and initialized by the form  let var a = e, and they
can then be assigned by the form var a = e. assignment takes a variable (previously
declared by var), and an expression, and returns the null tuple. In declarations and
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assignments the var keyword must be followed by a single variable.

 let var a = 3
 do var a = a + 1;

Global Declarations
Global (or top-level) value declarations are introduced by the keyword value, which

behaves very much like a let; assignable global variables are declared by value var.

value fact =
 fun(n: Int)
 let var result = 1
 let var count = n
 do while count > 0 repeat
 (do var result = result * count
  do var count = count - 1)
 do result;

Global type declarations are introduced by the keyword type. Types can only be
declared globally.

type Point = {x : Int, y : Int};
type (A, B) = (Int, Bool);
type IntTriple = (Int, Int, Int);

A type declaration can introduce a new type name (e.g. Point). Or it can introduce a tuple of
names (e.g. (A, B) ) respectively bound to types in a tuple of types. Or it can bind a type
name to a tuple of types (note that the equivalent situation in value and let declarations is
illegal).

A type name declared in this way is a simple abbreviation. It is equivalent to its defining
type expression and to any other type name equivalent to that expression.

Recursion
Recursive and mutually recursive types are defined by the forms:

 rec(a) t
 rec(a1, ... , an) (t1, ... , tn)

This produces a tuple of types, which can be used in type definitions:

 type IntList =
 rec(List) [nil : Unit, cons : {first : Int, rest : List}]



 13

 type (A,B) =
 rec(A,B) (... , ...)

Recursive and mutually recursive objects and functions are obtained by the expressions:

rec(a: t) e
rec(a1: t1, ... , an: tn ) (e1, ... , en)

where ai are variables, ti are types, and ei are constructors. A constructor is either a record

expression, a variant expression, an array expression (array(...)) or a function expression.
The result is a tuple of all the mutually recursive objects defined.

 value fact =
 rec(f: Int -> Int)
 fun(n: Int)
 if n=0 then 1 else n * f(n-1);

 value (f,g) =
 rec(f: Int -> Int, g: Int -> Int ) (fun(x:Int) ... , fun(y:Int) ...);

 value ones =
 rec(ones: IntList) [cons = {first = 1, rest = ones}];

 Here is another technique for defining mutually recursive functions. The two functions
are independently built as recursive functions, and the second is passed back to the first to
achieve mutual recursion (the first is known to the second by the order of definition):

value f =
rec(f: (Int->Int, Int) -> Int)

fun(g: Int->Int, a:Int) ... g(...) ... f(g,...) ... ;
value g =

rec(g: Int->Int)
fun(b: Int) ... g(...) ... f(g,...) ... ;

This is useful when f and g are defined in two distinct modules, as modules cannot be
mutually recursive.

Inheritance
 Typechecking is based on an inclusion relation between types, which is also referred to

as type inheritance.  Type inclusion is only determined by the structure of type terms, even
when the types are recursive. Type definitions and type names are only used as
abbreviations.
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Every type is included in itself. The most useful non-trivial case of inclusion has to do
with record types. A record type T with fields a : Int, b : Bool is considered as the set of all
records with an integer value labeled a, a boolean value labeled b , and possibly more fields.
A type U with an additional field c : String is included, as a set, in T (as all the records in U
are also in T, but there are two-field records which are in T but not in U).  Hence a record
type with more fields is included in a record type with fewer fields, provided that the labels
match and the respective field types are included. An updatable field is included in a
corresponding non-updatable field if the corresponding types are included. A non-updatable
field is never included in a corresponding updatable field. An updatable field is included in a
corresponding updatable field if the corresponding types are equal.

For variant types, a variant type with fewer fields is included in one with more fields,
provided that the labels match and the corresponding field types are included. An updatable
field is included in a corresponding non-updatable field if the corresponding types are
included. A non-updatable field is never included in a corresponding updatable field. A
updatable field is included in a corresponding updatable field if the corresponding types are
equal.

An array type is included in another if the respective base types are equal.
A channel type is included in another if the respective base types are included.
A tuple type is included in another if the respective components are included.
A function type T -> T' is included in U -> U'  if U is included in T and T' is included in

U' (note the reversal of inclusion in the domains). In a function application, the type of the
argument must be included in the type of the domain of the function.

Finally, a recursive type rec(t) T is included in a recursive type rec(u) U, if assuming t
included in u implies T included in U. Inclusions where only one of the types is recursive
are covered by the fact that any type T is equivalent to rec(t) T, if t does not occur in T.

Here are the basic types used by the graphics system: points, frames (rectangles with
horizontal and vertical dimensions) and tiles (frames in a reference system which determines
the position of their top left corners).

type Point = {x : Int, y : Int};
type Frame = {hor : Int, ver : Int};
type Tile = {x : Int, y : Int, hor : Int, ver : Int};

value origin = {x = 0, y = 0};
 value unitFrame = {hor = 1, ver = 1};

value unitTile = {x = 0, y = 0, hor = 1, ver = 1};

 According to the inclusion rules, every tile is a point (the type Tile is included in the
type Point) and every tile is a frame (Tile is included in Frame). Another way of saying this
is that Tile inherits the properties (fields) of Point and Frame, or that Tile is a subtype of
both Point and Frame. When a type inherits from several other types it is said to enjoy
multiple inheritance.

 The type inclusion rules also assert that the argument of a function must have a subtype
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of the type of the domain of the function. Hence, all the functions accepting points can also
accept tiles; similarly, all functions accepting frames accept tiles:

 value xCoord = fun (p: Point) p.x;
 value horSize = fun (f: Frame) f.hor;

 xCoord(unitTile) yields   0
 horSize(unitTile) yields   1

Inheritance also works at higher functional levels. In the following example, a function
expecting a function of type Tile -> Int as an argument can be applied to an argument of
type Point -> Int, as Point -> Int is included in Tile -> Int:

 value applyUnitTile = fun (f: Tile -> Int) f(unitTile);

 applyUnitTile(xCoord) yields  1

Functions can be embedded in record fields, and recursion can be used to refer to other
components of the same record:

 type ActivePoint =
 rec(ActivePoint)
 {x :> Int, y :> Int, double : () -> ActivePoint};

 value makeActivePoint =
 fun (theX: Int, theY: Int)
 rec(self: ActivePoint)
 { x => theX,
 y => theY,
 double =
 fun ()
 do set self.x = 2 * self.x
 do set self.y = 2 * self.y
 do self
 }

 xCoord(makeActivePoint(1,1).double().double())     yields    4

 Note how recursive types and recursive objects are used to model the concept of self
found in object-oriented languages.

Modules
Modules are self-contained program units which can import/export names from/to other
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modules. Modules can be compiled separately; the import/export dependencies must form a
directed acyclic graph (mutual dependencies are not allowed). Modules can be compiled in
any order, independently of their dependencies. They can only be defined at the top level.

When a type is imported from another module, the definition of that type is not
accessible in the current module. In order to create and use objects of that type, appropriate
operations have to be imported from the other module. The following example shows some
of the possible relations between imported types and values.

module "A"
 import "B"
 type T, U
 value var b : T, f : T -> U;

type TtoT = T -> T;
 import "C"
 value c1 : Int, c2 : TtoT;
 export
 type A
 value g : A -> T, var a : Int;

type A = {t : T, u : U};

 value g = fun (x: A) x.t;

 value var a = 0;

 end;

Note how type definitions like  type TtoT = T -> T  can be intermixed with import lists. It
is also possible to intermix type "file.typ", in which case the type definitions in the file
file.typ are expanded in place.

An imported type can be declared to be included in some other imported type, even if the
definitions of both types are not accessible in the current module. This way inheritance can
function across module boundaries. The following (incomplete) example shows how to
import points, frames and tiles from different modules, and how to declare their inclusion
relations. In the body of the module, tiles can be used as points and as frames.

 module "Graphics"
 import "Point"  type Point  value ... ;
 import "Frame"  type Frame  value ... ;
 import "Tile"
 type Tile in Point, Frame
 value ... ;

export ... ;
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 ...
end;

Type inclusion is used in several ways when matching module interfaces: (a) the user of
a module can import fewer names than are actually defined in the module; (b) every name
can be exported with a type that includes (is less specific than) the real type of that name; (c)
every name can be imported with a type that includes the exported type of that name (e.g. a
record with three fields can be imported as a record with two fields); and  (d) the above
mentioned inclusion specifications of imported types must be verified.

When a module definition is evaluated, a structure is stored into persistent storage
representing that compile module. To interactively import some of the contents of a
compiled module, one uses the form (only at the top level):

import "A"
 type A
 value var a : Int;

A top-level import invokes the linker to link all the modules necessary to produce the
desired values. The linker performs typechecking across module boundaries and evaluates
the module bodies (a module definition does not involve any evaluation). For every single
import statement, each module is evaluated exactly once, the first time it is imported:
succeeding imports of the same module will use the values which have already been
evaluated. This caching of imported modules ensures sharing of code and data structures
which are imported through different paths. However, every import statement independently
re-imports and re-evaluates modules, independently of the modules cached by previous
imports.

Concurrency
Processes are created by the process e form, which starts a new process in parallel with

the current one, executing the expression e. The current process is not stopped: the result of
starting a new process is the null tuple.

The current process is stopped either when executing a stop command, which kills it, or
when requesting a communication by select. In the latter case, other waiting processes get a
chance to run; the current process is reactivated only if there is a possibility of
communication.

Here is a process which duplicates itself indefinitely, but only after receiving an ok from
its parent:

value rabbit =
 rec(rabbit: Channel(Unit ) -> ())
 fun (ok: Channel(Unit))
 select
 ok ? =>
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 let (one, two) = (channel(Unit), channel(Unit))
 do process rabbit(one)
 do process rabbit(two)
 do select one ! => ()
 do select two ! => ()
 do stop;

 value zillions =
 fun ()
 let ok = channel(Unit)
 do process rabbit(ok)
 do select ok ! => ();

A different flavor of process is obtained by the form realtime process e. Real-time
processes behave very much like ordinary processes, but they are scheduled very frequently
(typically 60 times a second) by preempting ordinary processes. This  frequent scheduling
is represented as a communication on a special channel, called tick, which is reserved for use
by real-time processes.

Real-time processes should complete their tasks (i.e. perform a new select) in very
short time. Other restrictions may apply to them, for example they should not allocate
dynamic storage during their normal activity.

Here is a real-time process handling mouse events, for the benefit of slower (ordinary)
processes. It provides, on the transition channel, the latest mouse button transition detected
since the last time the channel was used.

 type Trans = [noTrans : Unit, upTrans : Unit, downTrans : Unit];

 value noTrans = [noTrans = unity];
 value upTrans = [upTrans = unity];
 value downTrans = [downTrans = unity];

 value transitionOf =
 fun (old: Bool, new: Bool)
 if old then if new then noTrans else upTrans
 else if new then downTrans else noTrans;

 realtime process
 let var lastTrans = noTrans
 let var lastButton = false
 do while true repeat
 select
 transition ! lastTrans  =>
 var lastTrans = noTrans
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 or tick ? =>
 let thisButton = button()
 do var lastTrans = transitionOf(lastButton,thisButton)
 do var lastButton = thisButton;

Keyboard interaction is handled by a channel key: Channel(Int,Bool), where the
integer is a key number, or an encoding of the keyboard status, and the boolean is true for
pressed and false for released.

Inspecting dynamic values
A set of primitives are provided to inspect and manipulate unknown dynamic objects,

e.g. ones obtained by intern, and which we do not know how to coerce. One of these
primitives returns the type of a dynamic object, as an object of type Type. The type Type
is not primitive, and is defined below.

 type (Type, FunctionType, TaggedTypeList, RecType) =
 rec (Type, FunctionType, TaggedTypeList, RecType)
 ([unit  : Unit,
    bool  : Unit,
    int  : Unit,
    string : Unit,
    bitmap : Unit,
    region : Unit,
    function : FunctionType,
    record  : TaggedTypeList,
    variant : TaggedTypeList,
    array : Type,
    channel : Type,
    dynamic : Unit,
    rec : RecType
   ],

  {dom : Type, cod : Type},

  [nil : Unit,
   cons :
  {tag : String, type : Type,
    updatable : Bool, rest : TaggedTypeList}
  ],

   {printName : String, type : Type}
);
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 type TaggedValue =
 {tag : String, value : Dynamic};

 type TaggedValueList =
 rec(TaggedValueList)
 [nil : Unit,
  cons :
 {tag : String, value : Dynamic, rest : TaggedValueList}
 ];

 The following set of primitives allows one, among other things, to print the type
and the value of an unknown dynamic object.

 typeOf: Dynamic -> Type

Returns an encoding of the type of a dynamic object. Objects of type Type are ordinary
values, and are only useful as a guide for applying appropriate coercions to dynamic objects.
This does not imply any ability to manipulate Amber types as values.

exposeFunction: Dynamic -> (Dynamic -> Dynamic)

If the argument of exposeFunction is a dynamic object containing a function f: A -> B,
then the result is the function fun(x: Dynamic) dynamic f (coerce x to A).

exposeRecord: Dynamic -> TaggedValueList

If the argument of exposeRecord is a dynamic object containing a record {a = e}, or {a
=> e}, then the result is a list [cons = {tag = "a", value = dynamic e, rest = [nil = unity]}]
(similarly for records with more fields). Information about which fields are assignable can
be extracted by typeOf.

exposeVariant: Dynamic -> TaggedValue

If the argument of exposeVariant is a dynamic object containing a variant [a = e],
then the result is {tag = "a", value = dynamic e}

exposeArray: Dynamic -> Array(Dynamic)

If the argument of exposeArray is a dynamic object containing an array with elements e1
... en, then the result is a new array with elements dynamic e1 ... dynamic en.

exposeRec: Dynamic -> Dynamic
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If the argument of exposeRec is a dynamic object with a recursive type of the form
{printName = a, type = t} and value v, then the result is a dynamic object with type t and
value v.

Examples
The following Amber program defines the Fibonacci function:

 value fib =
 rec(fib: Int -> Int)
 fun (n: Int)
 if n < 2 then 1
 else fib(n-1) + fib(n-2);

This is a call-by-value lambda-calculus interpreter.

 module "Eval"
 export

 type Ide
type Term
type Env
type Value

 value empty: Env
 value extend: (Ide,Value,Env) -> Env
 value lookup: (Ide,Env) -> Value
 value eval: (Term,Env) -> Value;

 type Ide = String;

 type Term =
 rec(Term)
 [ide : Ide,
  fun : {bind : Ide, body : Term},
  apply : {fun : Term, arg : Term}
 ];

 type (Value,Env) =
 rec(Value,Env)

({bind : String, body : Term, env : Env},
   Ide -> Value);

 value empty =
 fun (lookedFor: Ide) signal empty:Env;
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 value extend =
 fun (ide: Ide, value: Value, env: Env)
 fun (lookedFor: Ide)
 if equal(lookedFor,ide) then value else env(lookedFor);
 
 value lookup =
 fun (ide: Ide, env: Env) env(ide);

 value (eval,apply) =
 rec(eval: (Term,Env) -> Value, apply: (Value,Value) -> Value)
 (fun (term: Term, env: Env)
 case term of
 [ide = i]  lookup(i,env)
 [fun = f] {bind = f.bind, body = f.body, env = env}
 [apply = a] apply(eval(a.fun,env), eval(a.arg,env))
 otherwise signal eval:Value,
  fun (fun: Value, arg: Value) to Value is
 eval(fun.body, extend(fun.bind, arg, fun.env))

);
 
 end;
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Shadow 4.0 Release
 This section is supposed to tell you what is really in the current shadow - or, more often,
what is not there yet.

Actual use of the system
The Macintosh "Switcher" program is automatically loaded when booting from the

Amber system disk (if not, run the Switcher first). From the "File" menu of the Switcher
select "Load Set...", and then open "Amber Set". This will load the Amber system and the
editor.

Every top-level phrase must be terminated by semicolon:

type A = Int;
value a = 3;
a+1;

The variable it always denotes the last value which has been generated at the top-level.
Declarations and erroneous computations do not count. it is just an ordinary program
variable, and is statically scoped.

A file containing an Amber program (e.g. a set of definitions and expressions; one or
more modules; etc.) can be loaded by:

infile("filename");

Identifiers are either alphanumeric (starting with a letter), or symbolic (composed by
!@#$%^&*_-+=|\/?<> ). All symbolic identifiers are automatically infix, and must be
declared as functions of two arguments:

value ** = fun(x:Int, y:Int) (x*x)+(y*y);
3 ** 4;

All infix identifiers have the same precedence and associate to the right, even the primitive
ones
like +, * and =. Infix identifiers are also accepted in function position:

+(3,4);

Comments are enclosed in backquoted parentheses, and can be nested:

`(This is a `(This is a comment within a comment)` comment)`

 In case of syntactic or typechecking errors, the evaluation of the faulty phrase is
inhibited, so no harm will result. Looping programs will crash the system.
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Mac interface
There are two windows, called "Text" and "Graphics". All the character I/O takes place

in the text window, and all the operations involving the screen() bitmap have effect in the
graphic window.

The text window is split into two panels: the upper one is the past and the lower one is
the future. They are separated by the present line.After entering the system you can just type
phrases, and everything will behave like a normal terminal.

 If you type in the future panel (which is the active one, initially) the text accumulates
until you hit carriage return. Before hitting carriage return, you can backspace or mouse-edit
the text. When you hit carriage return all the text disappears from the future panel, crosses
the present line and shows up again in the past panel. Whenever some text crosses the
present line, it is also sent to Amber for execution; the answers will appear in the past panel.
You can hit the enter key, instead of carriage return, to create multi-line text in the future
panel. When you are ready to execute it, just hit carriage return (anywhere in the future
panel).

 You can also type and mouse-edit in the past panel, and cut and paste across panels (the
enter key in the past panel behaves like carriage return). Text in the past panel can be sent to
Amber directly, without having to paste it into the future panel, by selecting it and choosing
"Exec" in the "Edit" menu. "Exec" always refers to the selection in the past panel, even if the
future panel is the active one.

 Past and future can be independently scrolled vertically, and simultaneously scrolled
horizontally. The past panel fills up after a while; the lines scrolling off the top of the full
panel are lost forever. The future panel also fills up, but no lines are ever lost. The panel
stops scrolling and the bottom lines fall off the bottom: they become inaccessible (except by
cleaning up the panel higher up), but they are there. You can move the present line by
dragging it up and down.

 Cut and past between the text window and the clipboard does not work at the moment,
so you cannot transfer text directly to/from the editor.

 The graphic window pops up automatically whenever a graphic operation is executed,
and stays there until the text window is selected again from the "Windows" menu. The
graphic window cannot be moved or reshaped.

 At the moment, the contents of the graphic window are not saved: whenever a window is
put on top of the graphic window, the graphics under it is lost.

Files
 The "Amber" icon (a griffin) starts up the normal Amber system. The system also

needs "amber.dex" and "ops.dex" to run. Files created by the system have unicorns as
icons.

The "Amber" icon has a 200K heap space, and can run under the Switcher. The "Amber
Trace" icon is the same, but also allows tracing. The "Big Amber" icon has a 350K heap
space, and cannot run under the Switcher. To give you a feeling of heap sizes, "Big Amber"
is enough to recompile the whole Amber system (5000 lines partitioned in 23 modules) with
only three or four garbage collections.



 26

 The conventional file extensions are ".amb" for source files, ".dex" for files produced
by extern, and ".mod" for compiled modules.

Input-Output
Input-output is rather rudimentary, and subject to change. There is an idea of an input

stream and an output stream (initially connected to the top-level), used implicitly by input
and output operations.

 The input stream is redirected to a file by:

infile: String -> ()

if an end-of-file is found, or if an infile("") is executed, the input is returned to the previous
stream.  The output stream is redirected to a file by:

outfile: String -> ()

if an outfile("") is executed, the output returns to the previous stream.
Input operations are:

input: () -> Int
read a character

caninput: () -> Bool test if there are characters to be read

Output operations are:

output: Int -> ()
write a character

outstring: String -> ()
write a string

Side-effects
The sections on records and variants talk about control of side-effects by the => and :>

notation (instead of = and :). This is not implemented: all record fields are assignable and
variants are not assignable; => and :> are not legal syntax in the current shadow.

Graphics
The following bitmap operations are not implemented: setcursor, cursoricon, cursortip.

None of the region operations are implemented, except for nullregion.

Concurrency
Not implemented at all.
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Dynamics
The operations typeOf and expose... are not implemented.

Recursive definitions
Only functions can be recursively defined at the moment; not records, variants etc. The

effect of recursive records etc. can however be achieved by inserting extra fun().

Reset
The top-level command reset; will clear the type and value environments, which

otherwise keep growing during interaction. It is not normally necessary to reset. Module
compilations do not affect the environments, hence you don't need to reset between
compilations.

Debugging
Not much of it. There is a generic print function, a trace facility, and a few system flags.
The function  print accepts any value and prints its internal format, no matter what its

type is. Several print options are described below. This routine is also used by the trace
facility, and the setting of the print options affects the trace output.

The trace facility only works with the "Amber Trace" system, which is distinct from with
the normal "Amber" system (and slightly slower). When tracing is enabled, all the function
calls and function returns are reported, together with parameters and results.

The system function takes a string and interprets it to set system flags.
"t-" disable tracing
"t0" trace the inner execution of the compiler
"t1" trace user programs
"s+" start tracing signals and traps
"s-" stop tracing signals and traps
"pdn" set maximum print depth to n, for n in 0..9
"pwn" set maximum print width (for arrays and strings) to n*100 items
"pln" set total amount of output to approx n*100 items per print
"pb+" enable printing of non-ascii strings
"pb-" disable printing of non-ascii strings
"pa+" enable printing of arrays of immediates (e.g. int or bool)
"pa-" disable printing of arrays of immediates

Bugs
There are no known bugs at present (other than dubious features). The system

recompiles itself quite happily and the garbage collector seems to be very robust.
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Lexicon

char  ::= any printable character (excluding blank)

letter  ::= a..z,  A..Z

digit  ::= 0..9

special  ::= !@#$%^&*_-+=|\/?<>

alphanum  ::= sequence of letter or digit starting with a letter

symbol  ::= sequence of special

number  ::= sequence of digit possibly prefixed by  ~

stringchar  ::= blank or any char but  " and  \

stringescape  ::= \ followed by any char or blank

string  ::= any sequence of stringchar or stringescape enclosed in   "

Comments are enclosed between backquoted parentheses  ̀ (  and  )` , and can be nested.

Keywords:
Array array arraysize case coerce do dynamic else end
export false fun if import in index let module nullregion on
otherwise rec repeat reset set signal then to true type unity
update value var while  ->

ide  ::= alphanum  |  symbol             but not a keyword
typeide  ::= alphanum                               but not a keyword
oper  ::= symbol                                    but not a keyword
label  ::= alphanum
signal  ::= alphanum  |  symbol
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Syntax

Terminal symbols are in bold, non-terminals and meta-syntactic notation in roman.
... ... sequencing (strongest binding power)
... | ... alternative (weakest binding power)
[ ... ] optionally
{ ... } zero or more times
{ ... / ... } zero or more times (left dots) separated by (right dots).
( ... ) grouping

top  ::=
( phrase | module | import | reset ) ;

phrase  ::=
type typebind = type |
value bind = exp |
exp

typebind  ::=
typeide |
( { typeide / , } )

type  ::=
Unit | Bool | Int | String | Bitmap | Region | Dynamic |
typeide |
( { type / , } ) |
{ { label : type / , } } |
[ { label : type / , } ] |
type -> type |
Array ( type ) |
rec ( { typeide / , } ) type

bind  ::=
[ var ] ide |
( { ide / , } )

exp  ::=
unity | true | false | 'char | number | string |
ide |
( { exp / , } ) |
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{ { label = exp / , } } |
[ label = exp ] |
fun ( { ide : type / , } ) exp |
if exp then exp else exp |
while exp repeat exp |
dynamic exp |
coerce exp to type |
exp . label |
set ide . label  = exp |
case exp {  [ label [ = ide ] ] exp } otherwise exp |
exp ( { exp / , } ) |
exp oper exp |
{ let bind = exp | do exp } do exp |
rec ( { ide : type / , } ) exp |
var ide = exp |
signal signal : type |
on signal exp in exp

module  ::=
module string
{ import ;  |  type ( string |  typebind = type ) ; }
export interface ;
{ phrase ; }
end

import  ::=
import string interface

interface  ::=
{ type typeide [ in typeide { , typeide } ]  |
  value [ var ] ide : type }


