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DNA strand displacement techniques have been used to implement a broad range of infor-
mation processing devices, from logic gates, to chemical reaction networks, to architectures
for universal computation. Strand displacement techniques enable computational devices
to be implemented in DNA without the need for additional components, allowing compu-
tation to be programmed solely in terms of nucleotide sequences. A major challenge in the
design of strand displacement devices has been to enable rapid analysis of high-level designs
while also supporting detailed simulations that include known forms of interference. Another
challenge has been to design devices capable of sustaining precise reaction kinetics over long
periods, without relying on complex experimental equipment to continually replenish
depleted species over time. In this paper, we present a programming language for designing
DNA strand displacement devices, which supports progressively increasing levels of molecular
detail. The language allows device designs to be programmed using a common syntax and
then analysed at varying levels of detail, with or without interference, without needing to
modify the program. This allows a trade-off to be made between the level of molecular
detail and the computational cost of analysis. We use the language to design a buffered archi-
tecture for DNA devices, capable of maintaining precise reaction kinetics for a potentially
unbounded period. We test the effectiveness of buffered gates to support long-running com-
putation by designing a DNA strand displacement system capable of sustained oscillations.

Keywords: DNA strand displacement; abstraction; modularity; formal methods;
DNA oscillator
1. INTRODUCTION

Biomolecular computers have great potential for use in
intelligent nanomedicine. They allow computation to
be performed at the molecular scale, while also interfa-
cing directly with the molecular components of living
systems. Nucleic acids are particularly suited for imple-
menting biomolecular computers. They form stable
structures that can be inserted into cells, and interactions
between species can be precisely controlled in vitro by
modifying their nucleotide sequences. The feasibility of
using nucleic acids to solve computational problems
was demonstrated by Adleman [1], who used DNA to
solve an instance of the directed Hamiltonian path pro-
blem. Recent work has also highlighted novel
therapeutic applications for nucleic acid computers,
such as selectively triggering cell death in cancer cells [2].

As the cost of DNA synthesis continues to decrease
[3], significantly more complex DNA computing devices
are being constructed [4,5]. As a result, such devices are
also becoming increasingly difficult to design by hand,
to the point where design automation tools will soon
be indispensable. Such tools should allow for modular
designs that encapsulate particular motifs, which can
orrespondence (andrew.phillips@microsoft.com).

plementary material is available at http://dx.doi.org/
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be parametrized and easily replicated [6,7]. They
should also allow some of the underlying complexity
of the molecular interactions to be abstracted away
when focusing on high-level design questions, since com-
plex models are more difficult to work with and more
computationally expensive to analyse. Once a high-
level design has been completed, such tools should
allow further complexity to be subsequently reintro-
duced, in order to obtain a more realistic model of the
system’s behaviour prior to its physical construction.
In this paper, we present a programming language for
designing DNA circuits, which meets these criteria.

Various approaches have been used to implement
DNA circuits, some of which rely on ingredients such
as restriction enzymes [8,9] or additional transcription
machinery [10] to operate on the DNA strands. DNA
strand displacement [11] is an alternative approach
that relies solely on hybridization between complemen-
tary nucleotide sequences to perform computational
steps. Strand displacement has been used with a wide
variety of DNA structures, from simple linear complexes
[12] and hairpins [13,14] to more sophisticated systems
such as molecular walkers [15]. Strand displacement sys-
tems are driven by increases in entropy (from releasing
strands) [12] and enthalpy (from forming additional
base pairs), with irreversible reactions providing the
thermodynamic bias towards producing output.
This journal is q 2011 The Royal Society
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Figure 1. An example of toehold-mediated strand displacement. Edges with just a hollow arrowhead indicate irreversible reac-
tions, whereas those which also have a solid arrowhead on the other end denote reversible reactions.

1A user manual for the tool is available online at http://research.
microsoft.com/dna/manual.pdf.
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The reaction graph in figure 1 illustrates the strand
displacement paradigm in action. The letters represent
domains, which are finite, non-empty sequences of
nucleotides. The domain x* represents the complemen-
tary domain, which will bind with x, constructed using
Watson–Crick (C–G, T–A) complementarity. The grey
domains are assumed to be sufficiently long that they
bind irreversibly, while the coloured domains are assumed
to be sufficiently short that they bind reversibly. We refer
to these short domains as toeholds. We also assume that
distinct letters represent distinct nucleotide sequences
that do not interfere with each other.

Since toeholds bind reversibly, they are ideal for con-
trolling interactions between species. Working from left
to right in figure 1, in the first reaction (A), the toehold
t in the single-stranded molecule binds reversibly to the
exposed toehold t* in the double-stranded complex. This
produces a double-stranded complex with an overhan-
ging single strand. Since the x domain in the
overhanging strand matches the x domain of an already
bound strand, the junction performs a random walk
along the x domain, called a branch migration. Even-
tually, the overhanging strand completely displaces the
bound strand (B). Since x is not a toehold, we assume
that the newly bound strand will not spontaneously
unbind, which effectively renders this step irreversible.
Following this, there is a reversible branch migration
involving the y domain (C). Once the branch migration
reaches the far right, the bound strand is only attached
by the short toehold domain u and can therefore
unbind (D). This basic computational mechanism
allows us to construct computational devices, which
translate input signals into output signals. Since the
inputs and outputs are both just single strands of
DNA, these devices can be combined to produce cascades
that implement more complicated functionality [12].

In this paper, we expand on previous work [16] and
present a language for designing modular DNA circuits
using strand displacement. We provide a number of
different abstractions for the language, which range
from the simplified to the highly detailed. Moving
between these different abstractions allows the user to
model their system at a number of different levels of
detail, which correspond to different levels of complex-
ity. The various semantic abstractions that we
describe encode different qualitative and quantitative
assumptions about the behaviour of the system under
experimental conditions. As an example, we use the
language to design a novel architecture of buffered
gates and compare simplified and detailed models of
the system. Buffered implementations of reaction
J. R. Soc. Interface (2012)
gates support long-running, potentially unbounded
computations at fixed rates, which allows for robust
encodings of chemical kinetics into DNA. As such,
they offer an alternative to using a complex laboratory
equipment such as continuous-flow reactors to deliver
additional reactants [17]. We use these gates to design
a three-phase oscillator in DNA, which displays
sustained oscillations with precise kinetics.

Our implementation of the DNA Strand Displace-
ment language (DSD) is available as a webserver
at http://lepton.research.microsoft.com/webdna. The
software allows a description of a DNA strand displace-
ment system to be compiled into a reaction network for
subsequent analysis and simulation. The user first pro-
grams a collection of DNA species, and the DSD
compiler then automatically generates the reaction net-
work corresponding to the different ways in which these
species can interact with each other over time, including
new species that can be produced as a result of the
interactions. For example, for the simple system in
figure 1, the user first programs the two DNA species
outlined in bold, and the compiler then generates the
complete reaction network derived from these species.
The generated reaction network can then be simulated
either stochastically or deterministically within the
DSD tool itself, or exported in SBML format for simu-
lation using a third-party tool such as COPASI [18].
The DSD tool was used to design and analyse the buf-
fered gates and oscillator systems presented in this
paper.1
2. LANGUAGE DEFINITION

We define the set of possible configurations of DNA
species by means of a formal syntax, and the set of pos-
sible interactions between species by means of a formal
semantics. The definitions are given in the style of pro-
cess calculi such as the pi-calculus [19,20], and are used
both for implementing the DSD language and for
reasoning about its properties.

2.1. Syntax

Species in the DSD language can be single-stranded
molecules or double-stranded complexes. A single
strand has an orientation from its 50 end to its 30 end,
indicated by an arrow at the 30 end. A double strand
is formed of two single strands with opposing orien-
tations and complementary nucleotide sequences,
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http://research.microsoft.com/dna/manual.pdf
http://research.microsoft.com/dna/manual.pdf
http://research.microsoft.com/dna/manual.pdf
http://rsif.royalsocietypublishing.org/


Table 1. Syntax of the DSD language, in terms of strands A,
gates G and systems D. Where present, the graphical
representation below is equivalent to the program code above.

syntax description

A <S>

S

upper strand with domain
concatenation S

{S}

S

lower strand with domain
concatenation S

G {L’}<L>[S]<R>{R’}

R

R’
L

S

S*

L’

double-stranded complex
[S] with overhanging
single strands ,L.,
,R. and fL’g, fR’g

G1:G2 gates joined along a lower
strand

G1::G2 gates joined along an upper
strand

D A strand A
G gate G
D1 j D2 parallel systems D1, D2
new N D system D with private

domain N
X(ñ) module X with parameters ñ
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assuming Watson–Crick complementarity (C–G, T–A).
For consistency, one of the strands is drawn on top and is
oriented to the right, while its complementary strand is
drawn underneath and is oriented to the left.

The syntax of the DSD language is defined in terms of
domains M and domain concatenations S, L, R. A domain
M represents a nucleotide sequence with explicit infor-
mation about its orientation. For example, the domain
50-CACACA-30 denotes the sequence CACACA oriented
to the right. This can also be written as 30-ACACAC-50,
which denotes the same sequence oriented to the left. A
domain can be a long domain N or a short domain N^.
Short domains are assumed to be between 4 and 10
nucleotides in length and are also known as toeholds,
while long domains are assumed to be at least 20 nucleo-
tides in length. The intention is that toeholds are
sufficiently short to bind reversibly whereas long domains
are sufficiently long to bind irreversibly. We abbreviate a
toehold N^ to N and use a different colour for each distinct
toehold. In general, we assume that distinct domains are
mapped to distinct, non-interfering nucleotide sequences
using established coding techniques [12,21]. Thus,
domains allow us to abstract away from the underlying
nucleotide sequences that occur in a physical implemen-
tation. A domain concatenation S consists of finitely
many domains with the same orientation, where domain
concatenations L and R can potentially be empty, written
(_). The complement M* of a domain M is the domain that
hybridizes with M. This is computed by reversing the
orientation of the domain and taking the Watson–Crick
complement of each individual nucleotide in the
domain. For example, the complement of 50-CACACA-
30 is 30-GTGTGT-50, which can also be written as 50-
TGTGTG-30. Similarly, the complement S* of a
domain concatenation S is computed by reversing then
taking the complement of each domain in S.

The syntax of the DSD language is defined in table 1 in
terms of systems D, which consist of species in solution. A
single species can be a strand A or a gate G. A strand can
be written either as an upper strand ,S., which denotes
a concatenation of domains S oriented to the right, or as a
lower strand fSg, which denotes a concatenation of
domains S oriented to the left. Since nucleic acids may
take different physical orientations in three-dimensional
space, the distinction between upper and lower strands is
purely syntactic, serving only as a convenient way of pre-
senting strands on the page. We, therefore, assume that
species are equal up to rotation symmetry, where rotate(I)
denotes the result of rotating the strand or gate I through
1808. Formally, we identify individual species I up to a
structural equivalence relation (;) which is such that I ;
rotate(I) (see electronic supplementary material for defi-
nitions). For example, the textual and graphical
representations of two strands that are equivalent up to
rotation symmetry are shown below, along with a possible
assignment of nucleotide sequences to their domains.

<a b  c> =               = 5’CCTACG TCTCCA CCCT-3’

{c b  a} =               = 3’TCCC ACCTCT GCATCC-5’

a b c

c b a

A double strand [S] denotes an upper strand ,S.

bound to its complementary lower strand fS*g. Only
the domain concatenation S of the upper strand is written
J. R. Soc. Interface (2012)
explicitly, enabling a more compact notation. A gateG can
be a double-stranded complex fL’g,L.[S],R.fR’g,
which consists of a double stranded region [S]with over-
hanging strands ,L.,,R. and fL’g,fR’g. This
represents an upper strand ,L S R. bound to a lower
strand fL’ S* R’g along the double-stranded region
[S]. We omit empty overhanging strands ,_. and
f_g for convenience. A gate can also be a concatenation
G1:G2 of two gates that share a common lower strand,
or a concatenation G1::G2 of two gates that share a
common upper strand. We represent the joining of two
gates explicitly in the graphical syntax. For example, the
gate fag,b.[c],d.feg:fvg,w.[x],y.fzg is
represented as follows, by joining the left and right gates
along their lower strands between the e and v domains.

c
d yb w

c*
a z

e v x*

x

In general, there may be several equivalent ways to
represent the joining of two gates in the DSD syntax.
This arises from the fact that an overhanging strand
joining two gates can belong either to the left or
the right gate. For example, [a]fbg:[c] and
[a]:fbg[c] represent the same gate, as do
[a],b.::[c] and [a]::,b.[c]. We formalize
this by including rules for gates with shared overhangs
in the structural equivalence relation mentioned above
(see electronic supplementary material).

Multiple systems D1,D2 can be present in parallel,
written D1jD2. We abbreviate K parallel copies Dj..jD
of a system D to K*D. A domain N can also be restricted
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to the system D, written new N D. This represents the
assumption that the domains N and N* do not appear
outside of D, which is a useful programming abstraction.
We also allow module definitions of the form X(m̃)=D,
where m̃ is a list of module parameters and X(ñ) is an
instance of the system D with the parameters m̃ replaced
by values ñ. We assume a fixed environment E of module
definitions, which are declared at the start of the pro-
gram. The definitions are assumed to be non-recursive,
meaning that a module cannot invoke itself, either
directly or indirectly via another module. We also
assume that systems D are well-mixed, and formalize
this by extending the structural equivalence relation
(see electronic supplementary material).

Finally, we define a notion of well-formed systems,
where a system is well-formed if no long domain and its
complement are exposed simultaneously. This ensures
that two species can only interact via complementary toe-
holds, as discussed in Zhang et al. [12]. In the remainder of
this paper, we assume that all systems are well-formed.

2.2. Semantics

We formalize the different ways in which species can
interact with each other by defining a set of elementary
reduction rules (figure 2). The rules are of the form

D!R;r D0, which states that D can reduce to D’ by per-
forming an interaction with finite rate r according to
rule R. Rules (RB) and (RU) define strand binding
and unbinding on a toehold, where each toehold N^ is
associated with corresponding binding and unbinding
rates given by Nþ and N2, respectively. This relies on
our assumption that toeholds are sufficiently short that
they hybridize reversibly. There is no rule for binding
on a long domain, since the well-formedness constraints
prevent a long domain and its complement from being
exposed simultaneously. There is also no rule for unbind-
ing on a long domain, since the hybridization of two long
domains is assumed to be sufficiently strong that it is
essentially irreversible. Rule (RC) defines a toehold
covering reaction, where an exposed toehold in a lower
strand is covered by a complementary exposed toehold
in an upper strand. We assume that covering reactions
are also irreversible, since they result in the formation
of a long double-stranded complex, which is thermodyna-
mically stable. Rule (RM) defines a branch migration
reaction, where one strand partially replaces another on
a gate. Each domain concatenation S is associated with
a corresponding branch migration rate S�, which depends
on the number of domains. The branch migration rate for
a domain of length L is given by r/L2, where r is the
single nucleotide migration rate, taken to be 8000 s21

[22]. The rule models a maximal sequence of elementary
branch migration steps as a single reduction. Rule (RD)
defines a strand displacement reaction that results from
a branch migration, where one strand completely
displaces another from a gate.

The elementary reduction rules of figure 2 can also
occur inside a range of contexts. We formalize the set
of possible contexts by defining additional contextual
reduction rules (see electronic supplementary material).
For example, if we join additional double-stranded
gates to either side of a reacting complex, we still
J. R. Soc. Interface (2012)
obtain a valid reaction. This is illustrated by the follow-
ing reaction, which is derived from the elementary
reduction rule (RD) using the contextual rules.

A

A*

S1
L1

L2

S1*

S2

S2*

Z
R2

R1

S2

Z*

A

A*

S1
L1

S1*

S2 S2 R2L2

S2*

Z
R1

Z*

We also use contextual rules to express that
reductions can take place on either the top or bottom
strand, or towards the left or right side of the gate.
For example, rule (RD) can also be used to displace a
strand by migrating towards the left-hand side of a
gate, by application of a contextual symmetry rule.
The combination of elementary and contextual
reduction rules allows interactions involving at most
two individuals. An important point to note is that
the set of reduction rules can be readily extended as
needed, to incorporate additional assumptions about
the nature of interactions between species.

As described previously, a key assumption of the
language is that two species can only interact with
each other via complementary toeholds. This is
enforced syntactically by our notion of well-formed sys-
tems. In order to ensure that species can only ever
interact on toeholds, it is sufficient to show that this
well-formedness property is preserved by reduction.
The proof is by case analysis on the various reduction
rules (see electronic supplementary material). The key
fact is that none of the rules result in the exposure of
a long domain, which was not previously exposed.

2.3. A hierarchy of semantics

The main contribution of this paper is to equip the DSD
language with multiple semantic interpretations that
abstract away some of the complexity of the DNA inter-
actions. We achieve this by parametrizing the semantics
of the DSD language, so that model accuracy can be
balanced with the computational cost of model analysis.
The resulting modifications give rise to a hierarchy of
semantics for the language. This allows a system to be
formalized once and then analysed under many differ-
ent behavioural assumptions. Below, we describe the
specific behaviours we might like to abstract away or
introduce, namely unproductive, leak and fast reactions.

2.3.1. Unproductive reactions. Some of the reactions
involving a given collection of species are unproductive
in the sense that they do not contribute meaningfully
to the progress of a simulation. An example of an unpro-
ductive reaction is the case where a strand binds to a gate
along a short domain, but cannot initiate any subsequent
migration or displacement reactions, as illustrated below.

t*

t y t x
y

t* x*x*

x

In our formalism, a binding reaction is considered to
be unproductive, if none of the domains immediately
adjacent to the binding toehold on the stand is com-
plementary to those on the gate. Productive reactions
are defined by rule (RP) in figure 3.
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before

{L’ N^* R’} | <L N^ R> {L’}<L>[N^]<R>{R’}

{L’}<L>[N^]<R>{R’}

{L’}<L>[S]<N^ R>{N^* R’} {L’}<L>[S N^]<R>{R’}

{L’ N^* R’} | <L N^ R>

{L’}<L>[S1]<S R2>:

<L1>[S S2]<R>{R’}

{L’}<L>[S1]<S R>:

<L1>[S]<R2>{R’}

<L2 S R2> |

{L’}<L>[S1 S]<R>{R’}

{L’}<L>[S1 S]<R2>:

<L1 S> [S2]<R>{R’}

RB,N+

RU,N–

RC,N~

RM,S~

RD,S~

rule after

L LN

N

N*

R

L N R

R

R’L’

L’

L

N

N*

R

R’L’

L

N

N*

S

S*

R

R’L’

L
S

S*

S1

S1*

R

R’L’

L

S

S*

S1

S1*

S2

S2*

S

S*

R

N

R’

RS

R2

R’

N*L’

L L1

L’

S1

S1*

S

S*

S

R2
R2

R’

L L2

L’

S1

S1*

S2

S2*

S

S*

RR2

R’

L S

L1

L’

N* R’

L’ N* R’

L2 S R2

Figure 2. Elementary reduction rules of the DSD language. For each rule, the graphical representation below is equivalent to the
program code above. We let S� denote the migration rate of a domain concatenation S, and we let Nþ and N2 denote the binding
and unbinding rates, respectively, of a toehold N^. We let fst(S) and lst(S) denote the first and last domains in a concatenation S,
respectively, and we assume that fst(R2) = fst(S2) for rule (RM). This ensures that branch migration is maximal along a given
domain concatenation and that rules (RM) and (RD) are mutually exclusive.
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2.3.2. Leak reactions. Our key assumption is that
short domains are short enough to bind reversibly,
while long domains are long enough to bind irreversibly.
However, in practice, a long domain does not need to
unbind completely in order to initiate a reaction: a
double-stranded region of DNA may start to fray
slightly at one end, creating a short exposed region of
J. R. Soc. Interface (2012)
single-stranded DNA, which can then function as a
temporary toehold. A free strand with the same
domains as one of the bound strands can then bind to
this exposed toehold and displace the bound strand.
Such reactions are referred to as leaks. Leak reactions
in DSD are defined by rules (LS) and (LT) in figure 3.
Since leaks occur with very low probability, we assume

http://rsif.royalsocietypublishing.org/


before

<L1 N^ S R1> |

{L’ N^*}<L>[S R2]<R>{R’}

<L1 S R1> |

{L’}<L>[S]<R>{R’}

{L’}<L>[S1]<S R2>:

<L1>[S S2]<R>{R’}

{L’}<L>[S1 S]<R2>:

<L1 S>[S2]<R>{R’}

<L1 S R1> |

{L’}<L>[S N^]<R>{R’}

<L S N^ R> |

{L’}<L1>[S]<R1>{N^* R’}

{L’}<L1>[S]<R1>{R’}

<L S R> |

{L’}<L1>[N^]<S R1>:

<L>[S R2]<R>{R’}

RP,N+

LS,leak

LT,leak

EM

rule after

L1 N S R1

L S N R

L1 S R1

L1 S R1

L S R

L

R2

R2*

S

S*

R

R

R’

R’

L’

L

S

S*

L’

R

R’

L

S

S*

L’
N*

S1

S1*

S2

S2*

S

S*

S

R2

R

R’

L L1

L’

S1

S1*

S2

S2*

S

S*

S

R2 R

R’

L

L1

L’

N

N*

N

N* N*

R2

R2*

S

S*

S

S*

R

R1

R1

S

R’

R’
L1 L

L’

L1

L’

S

S*

R1

R’

L1

L’

Figure 3. Additional reduction rules for the DSD language. Rule (RP) ensures that toehold binding can only take place if a sub-
sequent migration reaction is possible, while rules (LS) and (LT) model interferences between species, assuming that S= N^ in
rule (LS) and R1= N^ R1’ in rule (LT). Finally, rule (EM) ensures that gates are equivalent up to branch migration.
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that the leak rate l is much smaller than the rates of other
types of reactions [23]. If there is a mismatched toehold at
one end of the double-stranded segment, then the other
end must unbind in order to initiate the leak reaction,
as in rule (LT). We do not include a rule for leak reactions
J. R. Soc. Interface (2012)
with mismatched toeholds at both ends, since we assume
that the rate of such a reaction is negligible.

Leak reactions represent a form of unwanted inter-
ference between species, which can sometimes have a
significant impact on the behaviour of the system.

http://rsif.royalsocietypublishing.org/


Table 2. Semantic abstractions for the DSD language. For a
given semantic abstraction s, the table presents the
primitive reduction rules from figures 2 and 3, which
correspond to slow reductions slowrules(s), and fast
reductions fastrules(s). These vary depending on the level of
abstraction level(s). The values of unproductive(s) and
leaks(s) influence which rules appear in slowrules(s). We
define leakrules(s)=(if leaks(s) then fLS, LTg else fg) and
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However, allowing leaks can drastically increase the
number of possible reactions in the system, leading to
a sizeable increase in the computational cost of analysis.
Nevertheless, it is important that tools for designing
DNA circuits allow unwanted interference to be mod-
elled and studied formally, so that its effects on the
overall behaviour of the system can be quantified.
bindrules(s)=(if unproductive(s) then fRBg else fRPg).
Glossary of rules: (RM) branch migration, (RD) strand
displacement, (RU) toehold unbinding, (RC) toehold
covering, (RB) toehold binding, (RP) productive toehold
binding, (LS) and (LT) leaks.

level (s) slowrules (s) fastrules (s)

Detailed bindrules(s) < leakrules(s) <
fRM, RD, RU, RC, RFg

fg

Finite bindrules(s) < leakrules(s) fRD, RC, RUg
Default bindrules(s) < leakrules(s) <

fRUg
fRD, RCg

Infinite fRPg < leakrules(s) fRD, RC, RUg
2.3.3. Fast reactions. Some of the reactions in our
models occur on a much faster timescale than others.
In order to simplify the model and improve the efficiency
of simulation, it is often useful to abstract away from
these fast reactions. In some cases, we may decide to
treat fast reactions as if they happen instantaneously;
in others, we may merge them into a single step with a
fixed rate. In what follows we distinguish between fast
reactions and other reactions, which we refer to as slow
reactions. The exact definitions of which reactions are
fast and which are slow, and the value of the fast reaction
rate, will depend on our chosen semantic abstraction.

Note that in the general case, a given system D can
potentially reduce to multiple possible systems D’
through mutually exclusive, competing fast reactions.
However, if we ensure that the initial system does not
have any competing fast reactions, then we can show
that no subsequent species produced by the system
will have competing fast reactions (see electronic
supplementary material).
2.4. Semantic abstractions

We now present a formal definition of the hierarchy of
semantic abstractions available in the DSD language.

Definition 2.1. A semantic abstraction s is a
triple (s,l,u) where s e fInfinite, Default, Finite, Detailedg
denotes the level of abstraction, l e ftrue,falseg
denotes whether or not to include leaks, and u e
ftrue,falseg denotes whether or not to include unpro-
ductive reactions. If s ¼ (s,l,u), we say that level(s) ¼ s,
that leaks(s) ¼ l and that unproductive(s) ¼ u.

Each of the four levels of abstraction is defined in terms
of a set of slow reduction rules slowrules(s) and a disjoint
set of fast reduction rules fastrules(s) (table 2), chosen
from the set of primitive reduction rules of figures 2
and 3. These sets also depend on whether the semantic
abstraction s includes leaks or unproductive reactions. If
leaks(s)¼true, then we add the leak rules (LS) and
(LT) to the set of slow reduction rules. In the Detailed,
Finite and Default semantics, we use the value of unpro-
ductive(s) to decide whether to include unproductive
reactions: if unproductive(s)¼false, then we add the
productive binding rule (RP) to the set of slow reductions;
otherwise, we use the more general (RB) rule which may
include unproductive binding reactions. The exception to
this is the Infinite level of abstraction, where we use (RP)
irrespective of the value of unproductiveðsÞ. The levels of
abstraction also vary in the way in which fast reduction
rules are merged together, and the way in which branch
migration is handled (table 3).

We formalize the notions of fast and slow reductions

as follows. We write D!R;r D0 to mean that the system D
J. R. Soc. Interface (2012)
can be reduced to D0 in a single step at rate r, using
one of the elementary reduction rules R from figures 2
and 3, and the additional contextual rules from the
electronic supplementary material. We then derive a

fast reduction relation !Fast
s, parametrized by the seman-

tic abstraction s (table 3). This rule picks out any
reduction that uses an elementary rule R from the set
fastrules(s) and casts it into the fast reduction relation.

We write D !Fast �
s D
0 if D reduces to D’ by a sequence of

zero or more fast reductions, D !Fast þ
s D
0 if that sequence

is non-empty, and D0 !=
Fast

s if D’ cannot perform any
fast reductions at all. Similarly, we derive a parametrized

slow reduction relation !Slow;r
s corresponding to a

reduction using an elementary slow reduction rule from
slowrules(s) (table 3). The reduction is labelled with
the corresponding reaction rate r.

In order to abstract away from fast reactions, we
need some way of merging fast reactions with each
other and with the slow reactions. Table 3 presents
inference rules for deriving a merged reduction relation

(!r s) from the fast (!Fast
s) and slow ( !Slow;r

s) reduction
relations. The details depend on the level of abstraction
chosen (level(s)), as summarized below.
2.4.1. Detailed abstraction. There are no fast reductions,

and every slow reduction D !Slow;r
s D
0 corresponds to a

single reduction D!r s D
0. As a result, toehold binding,

unbinding, strand displacement and branch migration
all appear as distinct reactions. This is the most detailed
of the four levels of abstraction and is valid in the limit
of high concentration, when toehold binding rates are
sufficiently high that the duration of intermediate
steps (such as branch migration) can no longer be
discounted. For example, in the case of toehold
exchange reactions [22], our Detailed abstraction corre-
sponds to the ‘three-step model’ from that paper.
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Table 3. Reaction merging rules for the DSD language. Depending on the semantic abstraction s, fast reactions may be
merged with slow reactions or treated as separate reactions in their own right. The top two rules define fast and slow
reductions for a given semantic abstraction s according to table 2. The next rule formalizes the inclusion of branch migration
in the structural equivalence relation ;s when level(s) = Detailed. The remaining rules define the merged reduction relation
(!r s) in terms of the fast and slow reduction relations.

conditions before rule after

R e slowrules(s) and D!R;r D0 D !Slow;r
s D0

R e fastrules(s) and D!R;r D0 D !Fast
s D0

level(s) = Detailed and D ;
EM

D0 D ;s D0

level(s) ¼ Detailed and D !Slow;r
s D
0 D !r s D0

level(s) ¼ Finite and D !Fast þ
s D
0 !=

Fast
s D !t s D0

level(s) ¼ Finite and D !Slow;r
s D
0 D !r s D0

level(s) ¼ Default and D !Slow;r
s D
00 !Fast �

s D
0 !=

Fast
s D !r s D0

level(s) ¼ Infinite and D !Slow;r
s D
00 !Fast �

s D
0 !=

Fast
s D !r s D0

DNA circuit design M. R. Lakin et al. 477

 on May 1, 2015http://rsif.royalsocietypublishing.org/Downloaded from 
2.4.2. Finite abstraction. We assume that strand displa-
cement (RD), toehold covering (RC) and toehold
unbinding (RU) are all fast reductions. As in the
Detailed case, we assume that every slow reduction

D !Slow;r
s D
0 corresponds to a single reduction D!r s D

0.
In addition, a maximal sequence of one or more fast

reductions D !Fast þ
s D
0 !=

Fast
s is combined into a single

merged reduction with finite rate t. This models fast
reductions as taking a finite amount of time, while
abstracting away from individual fast reductions.

2.4.3. Default abstraction. We assume that strand dis-
placement (RD) and toehold covering (RC) are fast
reductions that are effectively instantaneous. As a

result, if a slow reduction D !Slow;r
s D
00 is followed by a

maximal sequence of zero or more fast reductions

D00 !Fast �
s D
0 !=

Fast
s then these are merged into a single

reduction D!r s D
0. Note that the sequence of fast

reductions may be empty, resulting in the reduction

D!r s D
00. This corresponds to the semantics originally

presented in Phillips & Cardelli [16].

2.4.4. Infinite abstraction. We assume the same set of fast
reductions as in the Finite case and the same rule for mer-
ging fast reductions, but fast reductions are instantaneous
in the Infinite abstraction. Since unbinding reductions are
instantaneous, any strand that binds but cannot initiate
a cover or displacement reactionwill immediately disassoci-
ate—hence we ignore unproductive binding reactions. This
model is valid in the limit of low concentration, when the
rates for toehold binding reactions are sufficiently low
that unary reactions are instantaneous in comparison. In
the case of toehold exchange reactions, our Infinite abstrac-
tion corresponds to the ‘bimolecular reaction model’ from
Zhang & Winfree [22].

For efficiency reasons, we also discard any merged

reactions of the form D!r s D, which we call circular.
This is reasonable because we assume that all reaction
rates are exponentially distributed, so ignoring circular
reactions has no effect on the dynamics of the system.

For each of the levels of abstraction involving merged
fast reactions (Finite, Default and Infinite), we treat
J. R. Soc. Interface (2012)
gates that differ only by branch migrations as being
equal. Since branch migration steps are reversible, treating
species as equal up to branch migration greatly simplifies
the task of merging fast reactions by removing the pos-
sibility of loops in fast reaction sequences. We achieve
this by building branch migration into the definition of
structural equivalence for the Finite, Default and Infinite
semantic abstractions. Thus, the structural equivalence
relation ;s is parametrized by the semantic abstraction
s. Formally, if level(s) = Detailed, then the branch
migration equivalence rule (EM; ) from figure 3 is included
in the definition of the structural equivalence relation ;s.

Figure 4 illustrates our approach with a concrete
example that shows how different reaction graphs can be
produced from the same program by using different levels
of abstraction. In the Detailed case, the initial strand and
gate can bind reversibly (A) and the ,x. strand can
then be displaced (B). The ,y u^. strand can then
migrate backwards and forwards along the y domain
(C), and subsequently unbind and bind reversibly on the
u^ toehold (D). In the Finite case, following the binding
of the initial strand and gate (E), the displacement of the
,x. strand and the migration and subsequent unbinding
of the ,y u^. strand all take place in a single step (F).
The ,y u^. strand can subsequently bind and unbind
reversibly on the u^ toehold (G). For Default, since
strand displacement is instantaneous, the initial binding
and displacement reactions take place in a single step
(H ). Furthermore, species are considered equal up to
branch migration under this abstraction, so the branch
on the top strand is migrated far as possible to the right
by default. This strand can subsequently unbind and
bind reversibly on the u^ toehold (I). At the Infinite
level of abstraction, the binding, displacement, migration
and unbinding reactions are all merged into a single reac-
tion (J ), where the binding reaction has a finite rate and
the other reactions are instantaneous. Since both branch
migration and unbinding reactions are instantaneous, the
re-binding reaction of the ,y u^. strand is not included,
as this is a circular reaction.
2.5. Language compilation

In order to simulate a DSD program, we first compile
the program to a set of chemical reactions, and then
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Figure 4. Example of the language hierarchy. The four images show the reaction graphs produced for the program (,t̂ x y. j
ft̂ *g[x]:[y û ]) for the four possible values of level(s), where unproductive(s)=leaks(s)=false. Edges with just a hollow
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semantic models of the DNA interactions.
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apply either a deterministic or stochastic simulation
method (see electronic supplementary material).
There are two modes of compilation, a saturating
(SAT) mode and a just-in-time (JIT) mode.

In SAT mode, the compiler starts with an initial set
of species and computes the set of possible reactions
between those species, using the merged reduction
relation !r s, which depends on the choice of semantic
abstraction s. We use the !r s reduction relation to
determine the reactions, since this allows us to present
generic definitions of compilation and simulation for
an arbitrary semantic abstraction s. These reactions
can potentially generate new species, which in turn
can potentially generate new reactions. The SAT compi-
ler continues generating reactions and species in this
way until no new species can be generated. The result
is the set of all possible reactions that can potentially
take place given the initial set of species.

In contrast, the JIT compiler only computes the set of
reactions that directly involve the initial species, and
then uses these reactions together with the initial species
populations to make a choice as to which reaction to
select, according to standard stochastic simulation
methods (see electronic supplementary material).
The chosen reaction is then applied to the current set
of species, resulting in some species being consumed
and some new species being produced. The set of reac-
tions involving the updated set of species is computed,
and the next reaction is chosen as above. Thus, in JIT
mode, the compilation of reactions is interleaved with
the simulation of the system. This allows systems with
potentially unbounded numbers of species and reactions
to be simulated exactly. The JIT compiler is an exten-
sion of the generic compilation algorithm presented in
Pauleve et al. [24]. Our contribution is to instantiate
this generic algorithm to the DSD language and to
define a novel use of the JIT compiler to explore all
J. R. Soc. Interface (2012)
possible trajectories of the system, in order to generate
a continuous time Markov chain (CTMC) representation
(see electronic supplementary material).
3. BUFFERED REACTION GATES

In this section, we demonstrate the practical use of the
DSD language to design DNA computational elements.
We show how different levels of detail can be achieved
using different semantic abstractions, and how analysis
of DSD programs can be used as a starting point for
formal verification of DNA circuit designs.

Figure 5 presents the chemical reaction network (CRN)
for a simple unbuffered implementation of a join gate,
which accepts two input signals A and B and produces
two output signals C and D. A signal X is represented as
a three-domain strand of the form ,hX t^ X., where
the choice of history domain hX is irrelevant. The initial
reaction gate accepts the input strands ,hA t^ A. (A)
and ,hB t^ B. (B). The ‘intermediate 2’ gate then
accepts a ,t^ Ch t^ Dh t^. fuel strand, which triggers
the release of the output strands ,Ch t^ C. and
,Dh t^ D. (C). Note that this simple design does not
include additional structures for garbage collection of
waste species.

Unfortunately, using an unbuffered gate design such
as this does not provide stable kinetics: gates are con-
tinuously being consumed during the operation of a
DNA circuit, since the energy driving the circuit is
partly provided by gates being turned into waste struc-
tures. Hence, the gate populations are not fixed, which
means that the kinetics of the system changes over time.
This can be particularly problematic for long-running
computations. One solution is to use a very large and
hence almost-constant population of gates with respect
to the population of signals, but this means that the
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design of the system becomes linked to the length of
time for which the system is intended to run. An
alternative solution is to continually replenish the
gates during the course of the computation in order to
maintain the desired kinetics. However, unless the
gates are replenished very frequently, for example, by
means of a sophisticated experimental set-up, the kin-
etics will drift between replenishments, which may
adversely affect the behaviour of the system. The opti-
mal situation would, therefore, be to maintain a
constant population of gates awaiting input.

An abstract buffering technique was proposed in Car-
delli [25] to achieve constant concentrations of gates
awaiting input. Here, we refine this technique and propose
concrete structures that can be simulated using the DSD
language.The idea is tomaintain a quasi-constant but rela-
tively low concentration of initialized gates by means of a
higher concentration of buffered gates, which are initialized
on demand. Only initialized gates implement the desired
chemical reaction. Since changes in the population of buf-
fered gates do not significantly affect the kinetics of the
reactions, the buffered gates only need to be replenished
periodically. Thus the effective rates of the reactions can
be held constant for arbitrarily long periods of time, pro-
vided that the buffered gates are not completely
exhausted. This approach is equivalent to using a continu-
ous-flow reactor to provide auxiliary gates at low
concentration, which was suggested in Soloveichik et al.
[17] (see electronic supporting material) as a means of
counteracting the effects of gate depletion and leaks. How-
ever, buffered gates achieve this effect based solely on the
design of the nucleic acid sequences, without the need for
additional laboratory equipment.

We will use a three-phase oscillator to illustrate the
benefits of buffered reaction gates. Producing oscillatory
behaviour in an experimental setting is non-trivial since
J. R. Soc. Interface (2012)
it relies on precise kinetics being maintained over an
extended period. This makes an oscillator system an ideal
candidate for implementation using buffered gates.
Figure 9 in §3.2 demonstrates the benefit of using buffered
reaction gates to implement an oscillator.Adirect compari-
son of the kinetics of individual buffered and unbuffered
join gates is less illuminating, since the benefits of buffered
gates are most apparent in systems with long-running com-
putations (see electronic supplementary material).

More generally, the buffered gate scheme presented in
this section can be used to construct a broad range of
long-running dynamical systems in DNA. Each buffered
gate BJ2x2(Buffer,Fuel,Init,A,B,C,D) effec-
tively corresponds to a chemical reaction of the form
Aþ B!r C þ D, where the rate r is determined by setting
the Init parameter. Thus, multiple instances of the gate
can be used to construct an arbitrary chemical system con-
sisting of reactions with two reactants and two products.
Furthermore, simple modifications to the gate structure
can be made to simulate reactions with different arities,
using a similar approach to Soloveichik et al. [17].
3.1. Buffered gate implementation

We have designed a buffered join gate that accepts two
inputs A and B and produces two outputs C and D,
with an initial input that initializes a buffered gate,
and an additional output that initializes another buf-
fered gate to replace the gate that has been consumed.
The DSD code for the buffered join gate, together with
input strands representing A and B, is presented in
figure 6. The Signal module represents a single-
stranded signal and the BJ2x2 module represents
the buffered join gate itself. The Buffer variable con-
trols the initial population of buffered gates, Init
controls the number of those gates that should be
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def  bind  =  0.0003
def  unbind  =  0.1126
new  t@bind,  unbind

def Buffer = 1000
def Fuel = 1000
new hA new A new hB new B

def Signal (M, h, A) = M * <h t^ A>
def BJ2x2(Buffer, Fuel, Init, A, B, C, D)=

( BJ2x2(Buffer, Fuel, 1, A, B, C, D)

new I new J new K new Ch new Dh
( Buffer * {t^*}[K t^]:[A t^]<I>:[B t^]<K>:

[Ch t^]<C>:[Dh t^]<D>:[J t^]:[I]
| Fuel * <t^ Ch t^ Dh t^ J>
| Fuel * [J]{t^*}

| Fuel * [K]{t^*}
| (Init*10) * <A t^ I>

| Init * <B t^ K>)

| Signal(1, hA, A) | Signal(1, hB, B) )

Figure 6. DSD code for buffered join gate.
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initialized at any one time and Fuel controls the
number of fuels for displacing outputs and performing
garbage collection, which should be present in excess.
Note that by default, the DSD language assumes discrete
populations of species and produces stochastic simu-
lations. Thus, the units of the rate constants bind and
unbind in figure 6 are s21. See electronic supplementary
material for details on converting discrete populations to
continuous concentrations for deterministic simulations.

The CRN for this program, generated using the
Infinite semantic abstraction and the SAT compiler
(ignoring leaks and unproductive reactions), is shown
in figure 7. This design extends the simplified unbuf-
fered gate design from figure 5 by adding additional
reactions for buffering (A) and garbage-collection
(E,F,G). Initially, the trigger strand ,B t^ K. turns
a buffered gate into an initialized gate (A), which can
then accept the input strands ,hA t^ A. (B) and
,hB t^ B. (C). The ‘intermediate 2’ gate then
accepts a ,t^ Ch t^ Dh t^ J. fuel strand which trig-
gers the release of the output strands ,Ch t^ C. and
,Dh t^ D. (D). The by-products of the reactions are
garbage-collected, turning them into unreactive waste
(E,F,G). The design of the gate ensures that the first
input strand ,hA t^ A. is not consumed irreversibly
until there is also a corresponding ,hB t^ B. input.
This is vital for the correctness of the gate design
because there might be another gate in the system
which could make use of the ,hA t^ A. strand. Cru-
cially, consumption of the ,hB t^ B. strand (C)
causes the release of another trigger strand
,B t^ K., which initializes another buffered gate to
replace the gate that was consumed. The long domains
I, J, K, Ch and Dh are restricted to only appear in the
scope of a particular instance of the module BJ2x2,
which prevents unwanted crosstalk between gates.
The intermediate product ,A t^ I. is also included
as an initial species, in order to prevent too many
inputs binding to a particular reaction gate, which
could disrupt the kinetics of the system. Empirical test-
ing showed that using 10 copies of this strand for every
initialized gate seems to produce reasonable results.
J. R. Soc. Interface (2012)
Running a stochastic simulation for 100 copies of the
join gate produces the plot shown in figure 8a. We see
that, over time, the populations of the input strands tend
to zero whereas the populations of the output strands
tend to 100, as we would expect. The red line displays a
jagged effect because ,hA t^ A. strands which bind to
the gates are often pushed back off by the ,A t^ I.

strands from theBJ2x2module definition. As the buffered
join gate is a relatively small system, it is feasible to con-
struct the corresponding CTMC by computing all
possible interleavings of the reactions from the CRN in
figure 7, given a single copy of the input strands
,hA t^ A. and ,hB t^ B.. We find that the CTMC
contains 30 states and 72 transitions. Furthermore, there
is a single terminal state (that is, a state from which no
further reactions are possible). This fact provides the first
piece of evidence that our gate design functions as
expected. See the electronic supplementary material for
more information on the CTMC.

The CRN presented in figure 7 is a simplified approxi-
mation to the true behaviour of the system, because we
used the Infinite semantics (and ignored unproductive
reactions). In order to obtain a more realistic model of
the system, we move to the other end of our spectrum
of levels of abstraction, from Infinite to Detailed. This
results in a larger CRN and a larger CTMC because the
Detailed semantics includes separate reactions for
branch migration, strand displacement and toehold
unbinding, which were assumed to be instantaneous in
the Infinite semantics. Table 4 shows how the sizes of
the CRN and the CTMC increase as we move from the
Infinite to the Detailed levels of abstraction (excluding
leaks and unproductive reactions). Even in the Detailed
semantics, there is still only one terminal state and it
contains precisely the same species as the terminal state
for the Infinite system. Thus, moving to the more
fine-grained Detailed semantics has not affected the quali-
tative behaviour of the system (table 4).

3.2. A three-phase oscillator

We can compose three join gates into a circuit to obtain a
three-phase oscillator. Given three signals A, B and C, the
gates implement the reactions ðAþ B ! B þ BÞ,
ðB þ C ! C þ CÞ and ðC þ A! Aþ AÞ [26,27]. This
is an intrinsically unstable oscillator but a very simple
one. We simply reuse the previous definitions of signals
(Signal) and the buffered join gate (BJ2x2) from
figure 6, along with an initial population of signals to
start the oscillation.

def Buffer = 1000

def Fuel = 1000

def Init = 10
new Ah new A new Bh new B Ch new C

| Signal(2, Ch, C) )
| Signal(4, Bh, B)
| Signal(2, Ah, A)
| BJ2x2(Buffer, Fuel, Init, C, A, A, A)
| BJ2x2(Buffer, Fuel, Init, B, C, C, C)
( BJ2x2(Buffer, Fuel, Init, A, B, B, B)

The CRN for the buffered oscillator program (using
the Infinite semantics) contains 168 species and
264 reactions. The CTMC for this system is too large
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for analysis using currently available tools. However, we
can run stochastic simulations to obtain plots of the
three signals oscillating over time. Figure 9 pre-
sents such plots for oscillators implemented using
both buffered (figure 9a) and unbuffered (figure 9b)
join gates. In both cases, the amplitude of the oscil-
lations varies stochastically. In the buffered case, the
period of oscillations remains constant until around
700 000 time units, at which point the population of
buffered gates is exhausted and the oscillation breaks
down. In the unbuffered case, however, the period of
oscillation gradually increases as the gate population
is depleted. This effect is certainly noticeable by
around 700 000 time units, at which point around 70
per cent of the gates have been consumed. Gates are
used up faster in the buffered case as there depletion
is linear whereas in the unbuffered case it is exponential
(see electronic supplementary material for the associ-
ated plots of gate populations). Thus, the kinetics of
the buffered oscillator are constant right up until the
oscillation fails, which implies that we could replace
the lost buffered gates without affecting the kinetics
of the oscillator, allowing the system to run for even
longer time periods. This justifies the additional com-
plexity of the buffered gate design from figure 7
compared with the simpler unbuffered design from
figure 5.

We have also run simulations of the join gate and the
three-phase oscillator using all four levels of abstraction
and have examined the effect of leak reactions on the
oscillator. In addition, we have carried out further com-
parisons of the buffered oscillator with an oscillator
constructed using unbuffered reaction gates with gar-
bage collection, which demonstrates that the different
behaviour seen in figure 9 is not caused by the lack of
garbage collection in the unbuffered gate design. We
have also run longer simulations of the buffered oscil-
lator to demonstrate that robust kinetics can be
maintained over longer time periods than shown in
figure 9. The reader is referred to the electronic
supplementary material for further details.
3.3. Enabling leaks in the buffered join gate

Finally, we will demonstrate the analysis of unwanted
interference in the buffered join gate design. When leak
reactions are enabled under the Infinite semantics, the
full CRN of the buffered join gate has 90 species and 468
reactions (of which 248 are leaks), compared with 22
species and 10 reactions without leaks. However, if we
run a simulation with leaks enabled using the JIT compi-
ler, we produce a CRN with far fewer species and reactions.
The exact numbers vary because the JIT compiler only
builds the CRN for the reactions which occur in a given sto-
chastic simulation run, but averaging 10 JIT simulations
only produced about 75 species and 125 reactions. This
suggests that the majority of the leak reactions that are
theoretically possible may never actually happen, owing
to their low probability. Figure 8b shows an example plot
from a buffered join gate simulation using the JIT compi-
ler with leaks enabled. This is indistinguishable from the
corresponding plot produced when all possible leak reac-
tions are pre-computed. In general, we can use the
J. R. Soc. Interface (2012)
simulator with the JIT compiler to save computation
time and still obtain the exact dynamic behaviour of the
full system (see electronic supplementary material).

However, comparing the two plots from figure 8
shows a qualitative difference between the behaviour
of the system with leaks versus the system without
leaks—when leaks are allowed, the population of
output strands tends to keep growing over time,
beyond the original population of 100 of each input
strand. Looking through the set of possible reactions
when leaks are included, we find a whole family of reac-
tions similar to the following:
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which consume buffered gates and erroneously produce
the output strands ,Ch t^ C. and ,Dh t^ D.. These
additional mechanisms for production of output strands
explain how the populations of the output strands in
the leak simulation turn out to be so much higher
than the initial populations of the input strands. Since
buffered gates can take part in these leak reactions,
and there are many copies of the buffered gates, there
are a large number of possible leak reactions that
could occur and an even larger number of interleavings
of these with the non-leak reactions. The situation is
worse if there is a larger population of buffered gates,
as this increases the probability of leak reactions occur-
ring (we reduced the value of the Buffer variable from
1000 to 100 in the code from figure 6 to produce the plot
in figure 8b). Furthermore, the CTMC becomes very
large with leaks enabled, even for a relatively simple
system such as a join gate. Analysing strand displace-
ment systems with leak reactions is likely to be a
major technical challenge: the problem is that leak reac-
tions are not mediated by toehold domains, which
greatly increases the complexity of the analysis.
4. DISCUSSION

We have presented a hierarchy of semantic abstractions
for modelling the behaviour of computational devices
implemented using DNA strand displacement. The
different semantic abstractions are suitable for different
purposes, from high-level, simplified views for assem-
bling large systems to low-level, detailed views for
designing and verifying individual components of the
DNA circuits. More complex models require more com-
putational resources to simulate or analyse, so designers
can move from simpler models to more complex models
as their confidence in a new design increases. This
means that we do not have to commit large amounts
of computational resources to detailed analysis of a
design until we have some degree of confidence that it
will function as expected. Furthermore, our abstraction
approach is general in the sense that it can be readily
extended to define new abstractions that take into
account new assumptions about the way in which
species interact. Such rule-based modelling is becoming
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Figure 8. Stochastic simulation plots of 100 copies of the buffered join gate, both with (b) leak reactions and (a) without. The red
and green lines are the populations of the ,hA t^ A. and ,hB t^ B. input strands, respectively. The blue and yellow lines are
the population of the ,Ch t^ C. and ,Dh t^ D. output strands (the populations of these are always identical). The darker
orange line is the population of the trigger strands ,B t^ K., which initialize buffered gates on demand. The plot with leaks
enabled is qualitatively different from the plot without leaks, suggesting that the unwanted inference is adversely affecting the
behaviour of the system (see §3.3 for further discussion on how leak reactions affect the buffered join gate).

482 DNA circuit design M. R. Lakin et al.

 on May 1, 2015http://rsif.royalsocietypublishing.org/Downloaded from 
increasingly prevalent in the study of biochemical sys-
tems, for example [28,29].

The syntax presented in this paper extends the
language described in Phillips & Cardelli [16] in a
J. R. Soc. Interface (2012)
number of ways—we permit double-stranded complexes
to be joined along either strand (not just the one which
is oriented towards the bottom of the page) and also
allow overhanging single strands along either strand.

http://rsif.royalsocietypublishing.org/


0

0 400 000200 000 600 000 800 000 1200 000 1400 000 0

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

500

400 000200 000 600 000 800 000 1200 0001000 0001000 000 1400 000

40

80

120

160

200

240

280

320

360

400

440

480

520

560

600

640

(a) (b)

Figure 9. Stochastic simulation plots for the three-phase oscillator, comparing buffered and unbuffered implementations. (a) Buffered
oscillator using the buffered join gate defined in figure 6. The initial populations of buffered gates, initialized gates and fuels were 10 000,
1000 and 100 000, respectively. We observe constant periods of oscillation right up until the buffered gates are completely depleted at
around 700 000 time units. (b) Unbuffered oscillator using an unbuffered join gate without garbage collection, the CRN of which
was presented in figure 5. The initial populations of gates and fuels were 10 000 and 100 000, respectively. The higher initial population
of unbuffered gates compared with initialized gates in the buffered case is offset to an extent by the fact that more ‘backwards strands’
,A t^ I. are present in this case. We observe a gradual drift in the period of oscillation as the gate population is gradually
depleted. (a,b) red line, sumð, Ah t^A .; , Ch:10 t^A .; , Dh:11 t^A .Þ; green line, sumð, Bh t^B .; , Ch:1 t^B .;
, Dh t^B .Þ; blue line, sumð, Ch t^C .; , Ch:5 t^C .; , Dh:6 t^C .Þ:

Table 4. Metrics of system complexity for a single buffered
join gate using different semantic abstractions. We fix
unproductive(s)=leaks(s)=false and vary level(s). We
tabulate the numbers of species and reactions in the full
CRN and the numbers of states and state transition arcs in
the full CTMC of the system.

level(s) species reactions states arcs

Infinite 22 10 30 72
Default 26 18 52 145
Finite 30 26 158 640
Detailed 35 35 231 954
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Along with these generalizations, we introduce the
notion of rotation symmetry which overcomes some of
the difficulties of conveniently representing nucleic
acid structures on the page. In terms of the semantics,
we have defined a new method for moving between
different levels of abstraction, and have defined four
distinct abstraction levels, coupled with new rules for
handling leaks and unproductive reactions. We have
also defined a method for JIT compilation of strand
displacement systems, together with a method for gen-
erating a CTMC for further analysis. We have released
a new version of the DSD language that incorporates
these extensions. The close integration of modelling,
simulation and analysis methods within a programming
language environment is an important step towards the
design automation of DNA strand displacement
systems.
J. R. Soc. Interface (2012)
Our experience using these techniques to design the
buffered join gate and three-phase oscillator shows how
the DSD language can be integrated in the scientific
workflow. We initially used the simplified Infinite level
of abstraction to analyse the behaviour of a single buf-
fered join gate, constructing the CTMC to explore all
possible reduction paths and check for unwanted behav-
iour. We then moved to the more involved Detailed level
of abstraction and performed a similar analysis, which
required more computation time. We then switched
back to the Infinite level of abstraction, so we could pro-
duce a tractable model of a three-phased oscillator, using
several join gates as components. Owing to the larger
populations involved in the three-phase oscillator, we
had to switch to stochastic simulation as our primary
means of analysing the behaviour of the system. We
believe that this approach to modelling DNA inter-
actions is a good fit for the natural workflow of the
scientific design automation process.

To our knowledge, this paper is the first to present
a formal, generic method for automatically deriving
multiple levels of abstraction for a given DNA strand
displacement system. As mentioned above, Zhang &
Winfree [22] described abstracted models for the case
of toehold exchange reactions—our contribution is to
formalize and extend this approach to cover a wider
range of systems. The gate designs presented in this
paper employ a three-domain scheme for representing
signals as single strands, which was introduced in Car-
delli [25]. Soloveichik et al. [17] employed a more
complex representation with additional toeholds in
the signal strands. They also described a means of
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using DNA as a substrate to emulate arbitrary chemical
kinetics. Their work can be viewed as complementary to
the buffered gate scheme described in this paper, which
is concerned with maintaining those kinetics for an
extended period. Another scheme for representing sig-
nals is Cardelli’s two-domain scheme [26], which only
involves species with no overhanging strands. This
enables new construction methods: one can construct
two-domain gates by using enzymes to introduce
breaks in a double-stranded complex, instead of anneal-
ing multiple single strands in solution. In principle, one
could also construct buffered versions of these two-
domain gates.

Switching between different semantic abstractions can
qualitatively change the behaviour of systems. We demon-
strated above that adding leak reactions significantly
alters the behaviour of our join gate design, and many
chemical oscillators are easily perturbed by the presence
of leaks. Furthermore, certain programming idioms may
not be possible under certain semantic abstractions. We
mentioned above that unproductive reactions never
appear when the Infinite level of abstraction is selected.
In particular, the possibility of branch migration is not
sufficient for a reaction to count as productive in this
case (since species are considered equal if they differ
only by branch migration steps). This means that co-
operative displacement [30] cannot be modelled at the
Infinite level of abstraction, because even though the
first incoming strand may be able to perform branch
migration steps, it does not stay bound long enough for
a second strand to arrive and complete the co-operative
displacement process. Thus, one must take care to select
the correct semantic abstraction for a given program.

Our buffered reaction gate design addresses the issue
of running strand displacement computations with
quasi-constant kinetics over extended periods of time.
By maintaining a large population of ‘buffered’ gates
from which a smaller population of ‘initialized’ gates
are drawn on demand, we separated the on-going reac-
tion rates from the total population of gate structures in
the system (provided that the buffer is periodically
replenished before all the buffered gates are consumed).
This separation is desirable for designing strand displa-
cement systems with robust kinetics, however, there
may be other ways of achieving this effect. One possi-
bility is the use of remote toeholds [31], which insert a
non-matching spacer between the toehold and the
long recognition domain in both strands and gates.
When a strand binds to the remote toehold, there is
an internal diffusion step that produces a bulge, after
which branch migration and strand displacement can
proceed on the recognition domain. Genot et al. [31]
demonstrated that modifying the design of the spacers
allows precise control of the reaction rate. In particular,
the internal diffusion step can be made rate-limiting,
with the result that the reaction rate remains constant
over a wider range of concentrations. However, this
comes at the cost of considerably slowing down all
binding reactions in the system.

Although the rules of the DSD language ensure that
no secondary structures can be created, when physical
DNA strands are mixed together, it may still be possible
for them to form unwanted structures. This is because
J. R. Soc. Interface (2012)
the DSD syntax introduced in §2.1. implicitly works
at the level of interactions between complementary
domains as opposed to interactions between individual
nucleotides. While the domain abstraction is reasonable
for the high-level design of strand displacement systems,
when it comes to laboratory implementations of these
designs, one must inevitably move to a lower level of
abstraction. The DSD compiler currently checks for a
number of interactions that could potentially create
unwanted structures such as hairpins and rings, for
example, when a gate folds back on itself, and signals
an error to the user. However, more work is needed to
ensure that species that behave as desired in DSD will
also exhibit the same behaviour in the physical
system, particularly with regards to branching struc-
tures. One way to achieve this is to generate the
complete set of nucleotide sequences and to use tools
such as NUPACK [32] and Multistrand2 to perform rig-
orous structural analysis at the nucleotide level. Ideally,
in future, we would like to detect as many unwanted
interferences as possible at the domain-level, directly
within the DSD compiler. Thus, our work is comp-
lementary to existing work on low-level design of
biomolecular computers, and indeed, we view DSD as
but one component in a wider tool chain providing
automation support for designers of strand displace-
ment systems.

The DSD language presented above places no restric-
tions on the order in which domains may appear within
a DNA strand. This means that it is permissible to have
two or more neighbouring toeholds on the same strand.
In this case, the binding reactions are computed as one
might expect: a separate binding reaction for each toe-
hold followed by a cover reaction that clamps down
the remaining adjacent toeholds. Binding along con-
secutive toeholds is useful for modelling fast,
irreversible binding between strands, for example, to
model threshold binding as described in Qian & Winfree
[33]. Since the binding strength increases exponentially
with the number of bound bases, two consecutive toe-
holds will generally behave like an exposed long
domain hybridizing with its complement, which circum-
vents our assumption that all interactions are mediated
by reversible binding on a single toehold domain.
Hence, we view programs that use multiple adjacent
toeholds as a potentially unsafe subset of the DSD
language, which we advise users to exploit with care.
In future versions of DSD, we expect to provide a
means of specifying the length of domains within the
syntax of the language, which would allow such systems
to be modelled in a more rigorous way.

Once a system has been rigorously specified, we have
the possibility of verifying that it satisfies certain correct-
ness properties. Probabilistic model checking offers great
potential for verifying the correctness of DNA computing
devices specified using the DSD language. Tools such as
the PRISM model checker [34] can compute quantitative
properties from a CTMC, such as the expected time to
reach the terminal state. Model checkers can also verify
that systems satisfy properties expressed in a temporal
specification logic such as continuous stochastic logic
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(CSL) [35], for example, checking that the system must
always pass through a particular intermediate state.
However, model checking is currently only feasible for
very small systems because the size of the CTMC
grows exponentially as species populations increase.
Our semantic hierarchy mitigates this to a limited
extent because we can choose to model check at a simpler
level of abstraction (e.g. Infinite), which produces fewer
different species and reactions. Even so, model checking
is limited in that it cannot prove anything about the be-
haviour of a component in context, which is key for the
design of scalable systems. For this, we would need
formal machine-assisted proofs of correctness.

Finally, the accuracy of our simulations is affected by
our ability to correctly assign rates to the various reac-
tions. In particular, we do not currently recompute rate
constants between the four levels of abstraction. This
means that the kinetics of a system may vary slightly
depending on which semantic abstraction is chosen.
This situation could be improved by integration with
tools such as NUPACK and Multistrand, which would
allow us to compute more realistic rate constants
given the specific nucleotide sequences assigned to the
domains in question, and by looking into ways to esti-
mate more accurate rate constants for reactions at the
different levels of abstraction. We could then use these
values to produce more accurate models.
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