A Query Language Based on the Ambient Logic

Luca Cardelli! and Giorgio Ghelli

L Microsoft Research, 1 Guildhall Street, Cambridge, UK
2 Universita di Pisa, Dipartimento di Informatica, Corso Italia 40, Pisa, Italy

Abstract. The ambient logic is a modal logic proposed to describe the
structural and computational properties of distributed and mobile com-
putation. The structural part of the ambient logic is, essentially, a logic
of labeled trees, hence it turns out to be a good foundation for query
languages for semistructured data, much in the same way as first order
logic is a fitting foundation for relational query languages. We define here
a query language for semistructured data that is based on the ambient
logic, and we outline an execution model for this language. The language
turns out to be quite expressive. Its strong foundations and the equiva-
lences that hold in the ambient logic are helpful in the definition of the
language semantics and execution model.

1 Introduction

This work arises from the unexpected convergence of studies in two different
fields: mobile computation and semistructured data.

Unstructured collections, or unstructured data, are collections that do not
respect a predefined schema, and hence need to carry a description of their own
structure. These are called semistructured when one can recognize in them some
degree of homogeneity. This partial regularity makes semistructured collections
amenable to be accessed through query languages, but not through query lan-
guages that have been designed to access fully structured databases. New lan-
guages are needed that are able to tolerate the data irregularity, and that can
be used to query, at the same time, both data and structure. Semistructured
collections are usually modeled in terms of labeled graphs, or labeled trees [3].

The ambient logic is a modal logic proposed to describe the structural and
computational properties of distributed and mobile computation [10]. The logic
comes equipped with a rich collection of logical implications and equivalences.
The structural part of the ambient logic is, essentially, a logic designed to describe
properties of labeled trees. It is therefore a good foundation for query languages
for semistructured data, much in the same way as first order logic is a fitting
foundation for relational query languages. First order logic is a logic of predicates
(i.e. relations) and therefore it is particularly suitable to describe relational data.
But, to describe tree-shaped data, we need a more suitable logic: a logic of trees
or graphs.

Here we define a query language for semistructured data that is based on the
ambient logic, and we outline an execution model for this language. The language



turns out to be quite expressive. Its strong foundations and the equivalences that
hold in the ambient logic are helpful in the definition of the language semantics
and execution model.

The paper is structured as follows. In this section we present a preview of the
query language, and compare it with related proposals. In Section 2 we define
the tree data model. In Section 3 we present the logic, upon which the query
language, defined in Section 4, is defined. In Section 5 we present the evaluation
model. In Section 6 we draw some conclusions.

1.1 A Preview

Consider the following bibliography, expressed in the syntax of our language
TQL, which we explain in detail later. Informally, a[F] represents a piece of data
labeled a with contents F. The contents can be a collection of similar pieces of
data, separated by “|”. When the collection is empty, we can omit the brackets,
so that, for example, POPL[ | can be written as POPL.

The bibliography below consists of a set of references all labeled article. Each
entry contains a number of author fields, a title field, and possibly other fields.

ARTICLES =

article] author[Cardelli] | author{Gordon] | title[ Anytime_Anywhere]
| conference[POPL] | year{2000]
| keyword Ambient_Calculus] | keyword][Logic] ] |

article] author[Cardelli] | title] Wide_Area_Computation]
| booktitle[ ICALP] | year[1999] | pages[403-444] | publisher|SV] ] |

article] author[Ghelli] | author]Pierce] | title] Bounded_Existentials]
| journal[ TCS] | year[1998] ]

Suppose we want to find all the papers in ARTICLES where one author is
Cardelli; then we can write the following query:

from ARTICLES E .article[X]
X E .author]|Cardelli]

select paper|X]

The query consists of a list of matching expressions contained between from
and select, and a reconstruction expression, following select. The matching ex-
pressions bind X with every piece of data that is reachable from the root
ARTICLES through an article path, and such that a path author goes from
X to Cardelli; the answer is paper[author[Cardelli] | author[Gordon] | ...] |
paper[author[Cardelli] | title] Wide Area Computation] | ...], i.e. the first two
articles in the databases, with the outer article rewritten as paper.

This query language is characterized by the fact that a matching expression
is actually a logic expression combining matching and logical operators. For
example, the following query combines path expressions and logical implication
(=) to retrieve papers with no other author then Cardelli. Informally, T matches
anything, hence the second condition says: if X is an author, then it is Cardelli.



from ARTICLES E .article[X]
X E .author[T| = .author{ Cardelli]
select X

Moreover, queries can be nested, giving us the power to restructure the collection,
as we explain later.

1.2 Comparisons with Related Proposals

In this paper we describe a logic, a query language, and an abstract evaluation
mechanism.

The tree logic can be compared with standard first order formalizations of
labelled trees. Using the terminology of [3], we can encode a labeled tree with a
relation Ref(source:OID, label:A, destination:OID). The nodes of the tree are the
OIDs (Object IDentifiers) that appear in the source and destination columns,
and any tuple in the relation represents an edge, with label label. Of course,
such a relation can represent a graph as well as a tree. It represents a forest if
destination is a key for the relation, and if there exists an order relation on the
OIDs such that, in any tuple, the source strictly precedes the destination.

First order formulas defined over this relation already constitute a logical
language to describe tree properties. Trees are represented here by the OID of
their root. We can say that, for example, “the tree z is a[]” by saying:

Jy. Ref (z,a,y) AN(Vy',y". ~Ref(y,y',y")) AN(Va', &". 2" #y = —Ref (z, 2, 2"))

There are some differences with our approach. First, our logic is ‘modal’, which
means that a formula A4 is always about one specific ‘subject’, that is the part of
the database currently being matched against A. First order logic, instead, does
not have an implicit subject: one can, and must, name a subject. For example,
our modal formula a[] implicitly describes the ‘current tree’, while its translation
into first order logic, given above, gives a name z to the tree it describes.

Being ‘modal’ is neither a merit nor a fault, in itself; it is merely a difference.
Modality makes it easier to decribe just one tree and its structure, whereas it
makes it more difficult to describe a relationship between two different trees.

Apart from modality, another feature of the ambient logic is that its funda-
mental operators deal with one-step paths (a[A]) and with the composition of
trees (A | A"), whereas the first order approach describes everything in terms of
one-step paths (Ref (01, a,02)). Composition is a powerful operator, at least for
the following purposes:

— it makes it easy to describe record-like structures both partially (b[] | ¢[] | T
means: contains b[], ¢[], and possibly more fields) and completely (d[] | ¢[]
means: contains b[], ¢[] and only b[], c[]); complete descriptions are difficult in
the path based approach;

— it makes it possible to bind a variable to ‘the rest of the record’, as in ‘X is
everything but the title’: paper[title[T] | X].



The query language we described derives its essential from-select structure
from set-theoretics comprehension, in the SQL tradition, and this makes it sim-
ilar to other query languages for semistructured data, such as StruQL [14, 15],
Lorel [5,18], XML-QL [13], Quilt [11], and, to some extent, YATL [12]. An in-
depth comparison between the XML-QL, YATL, and Lorel languages is carried
out in [16], based on the analysis of thirteen typical queries. In [17] we wrote
down those same queries in TQL; the result of this comparison is that, for the
thirteen queries in [16], their TQL expression is very similar to the correspond-
ing XML-QL, with a couple of exceptions. First, those XML-QL queries that,
in [16], are expressed using Skolem functions, have to be expressed in a different
way in TQL, since we do not have Skolem functions in the current version of
TQL. However, our Skolem-free version of these queries is not complex. Second,
XML-QL does not seem to have a general way of expressing universal quantifi-
cation, and this problem shows up in the query that asks for pairs of books with
the same set of authors; this is rather complex to express in XML-QL, but it is
not difficult in TQL. Another related class of queries that are simpler to express
using TQL are those related to the non-existence of paths, such as ‘find all the
papers with no title’ or ‘find all the papers whose only author, if any, is Ghelli’.
Lorel does not have these problems, since it allows universal quantification. Quilt
and XDuce [19] are Turing complete, hence are more expressive than the other
languages we cited here.

One important feature of TQL is that it has a clean semantic interpretation,
which pays off in several ways. First, the semantics should make it easier to
prove the correctness and completeness of a specific implementation. Moreover,
it simplifies the task of proving equivalences between different logic formulas or
queries. To our knowledge, no such formal semantics has been defined for YATL.
The semantics of Lorel has been defined, but looks quite involved, because of
their extensive use of coercions.

2 Information Trees

We represent semistructured data as information trees. In this section we first
define information trees, then we give a syntax to denote them, and finally we
define an equivalence relation that determines when two different expressions
denote the same information tree.

2.1 Information Trees

We represent labeled trees as nested multisets; this corresponds, of course, to
unordered trees. Ordered trees (e.g. XML data) could be represented as nested
lists. This option would have an impact on the logic, where the symmetric A | B
operator could be replaced by an asymmetric one, A;B. This change might
actually simplfy some aspects of the logic, but in this paper we stick to the
original notion of unordered trees from [10], which also matches some recent
directions in XML [1].



For a given set of labels A, we define the set Z7 of information trees, ranged
over by I, as the smallest collection such that:

— the empty multiset, {}, is in ZT;

— if misin A and I is in Z7 then the singleton multiset {(m,I)} is in ZT;

— IT is closed under multiset union ;. ; M(j), where J is an index set, and
MeJ—=IT.

2.2 Information Terms

We denote finite information trees by the following syntax of information term
(info-terms), borrowed from the ambient calculus [9]. We define a function [F]
mapping the info-term F' to the denoted information tree. To this aim, we define
three operators, 0, m[_] and |, on the domain of the information trees, which we
use to interpret the corresponding operations on info-terms.

Info-terms and their information tree meaning
I 1

F o= info-term
0 denoting the empty multiset
m[F] denoting the multiset {(m, F)}
F | F denoting multiset union
[0] =def 0 =def
[n[F]]  =aer m[[F]] =aer {(m,[F])}

[FVF") =aer [F'VIIE"] =aer [F'TW[F"]

We use II to denote the set of all terms generated by this grammar, also
using parentheses for precedence. We often abbreviate m[0] as m[], or as m. We
assume that A includes the disjoint union of each basic data type of interest
(integers, strings. .. ), hence 5[0], or 5, is a legitimate info-term. We assume that
“|” associates to the right, i.e. F'| F' | F" isread F | (F' | F").

2.3 Congruence over Info-Terms

The interpretation of info-terms as information trees induces an equivalence
relation F' = F’ on info-terms. This relation is called info-term congruence, and
it can be axiomatized as follows.

Congruence over info-terms
IF =F

F'=F=F=F

F=F F=F'=F=F"

F =F' = m[F] = m[F']
F=F'=F|F'=F|F"
Flo=F




F|F =F'|F
(F'[F') | F"=F| (F'| F")

This axiomatization of congruence is sound and complete with respect to the
information tree semantics. That is, F' = F' if and only if F' and F' represent
the same information tree.

2.4 Information Trees, OEM Trees, UnQL Trees

We can compare our information trees with two popular models for semistruc-
tured data: OEM data [24] and UnQL trees [6]. The first obvious difference is
that OEM and UnQL models can be used to represent both trees and graphs,
while here we focus only on trees. We are currently working on extending our
model to include labeled graphs as well, but we prefer to focus on the simpler
issue of trees, which is rich enough to warrant a separate study.

UnQL trees are characterized by the fact that they are considered modulo
bisimulation, which essentially means that information trees are seen as sets
instead of multisets. For example, m[n[] | n[]] is considered the same as m[n[]];
hence UnQL trees are more abstract, in the precise sense that they identify more
terms than we do.

On the other hand, information trees are more abstract than OEM data,
since OEM data can distinguish a DAG from its tree-unfolding.

3 The Tree Logic

In this section we present the tree logic. The tree logic is based on Cardelli and
Gordon’s modal ambient logic, defined with the aim of specifying spatial and
temporal properties of the mobile processes that can be described through the
ambient calculus [10]. The ambient logic is particularly attractive because it is
equipped with a large set of logical laws for tree-like structures, in particular
logical equivalences, that can provide a foundation for query rewriting rules and
query optimization.

We start here from a subset of the ambient logic as presented in [10], but we
enrich it with information tree variables, label comparison, and recursion.

3.1 Formulas

The syntax of the tree logic formulas is presented in the following table.

The symbol ~, in the label comparison clause, stands for any label compar-
ison operator chosen in a predefined family ©; we will assume that @ at least
contains equality, the SQL string matching operator like, and their negations.
The positivity condition on the recursion variable £ means that an even number
of negations must be traversed in the path that goes from each occurrence of &
to its binder.



Formulas:

n = label expression
n label constant
x label variable
A, B = formula,
0 empty tree
n[A] location
Al B composition
T true
-A negation
ANDB conjunction
X tree variable
Jz. A quantification over label variables
Jx.A quantification over tree variables
n~mn label comparison
& recursion variable
pné A recursive formula (least fixpoint); £ may appear only positively

The interpretation of a formula A is given by a semantic map [A],, 5 that maps
A to a set of information trees, with respect to the valuations p and 4. The
valuation p maps label variables z to labels (elements of A) and tree variables
X to information trees, while d maps recursion variables ¢ to sets of information
trees.

Formulas as sets of information trees

0,5  =as {0}
Al s =daer {p(I] | I €[A], s}
[A|Blys =aeg {I|I' | I€[A],s 1" €[B],s}

IIT]]p,tS —def IT

[=Alp, s =der LT \ [Alp,s
[AABlp s =der [Alp,s N[Blp,s
[X]5,6 =der {p(X)}

[[31‘../4]][,’5 =def UneA [[A]]p[am—m],&

[[ElX.A]]p,a —def UIeIT [[A]]p[XW—)I],(S

[n~n"Tps =daer if p(n) ~p(n') then IT else 0
[E-Alp,s  =aer NASCIT | S2[Al,,s1em5)}
I[[ﬁ]]p,a =des 0(§)

This style of semantics makes it easier to define the semantics of recursive
formulas. Some consequences of the semantic definition are detailed shortly.

[0],,s is the singleton {0}. [n[A]]l,,s contains the information tree m[I], if
m = p(n) and I is in [A],,s. (We assume that p maps any label in A to itself,
so that we can apply p to n even when 7 is not a variable.) For each I in [A],, s



and I' in [B],,s, [A | Bl,,s contains the information tree I | I'. [T],, s is the set
of all information trees (while its negation F denotes the empty set). [-.A],, s is
the complement of [A], s with respect to the set of all information trees Z7. I
isin [AAB],,s if it is in [A], s and in [B],,s. I is in [Fz.A],, s if there exists
some value n for x such that I is in [A],[z—n],s. Here p[z + n] denotes the
subtitution that maps & to n and otherwise coincides with p. [ ~ n'],, s is the
set ZT7 if the comparison holds, else it is the empty set. [u&.A], s is the least
fixpoint (with respect to set inclusion) of the monotonic function that maps any
set of information trees S to [A],, siemss)-

The meaning of a variable A" is given by the valuation p. Valuations connect
our logic to pattern matching; for example, [m[n[0]]] is in [2[X]],,s if p maps «
to m and X to [n[0]]. The process of finding all possible p’s such that I €[A],, s
is our logic-based way of finding all possible answers to a query with respect to
a database I.

We say that F' satisfies A under p,d, when the information tree [F] is in the
set [A],,s, and then we write F' F, 5 A:

FE, s A =aep [F] € [A]ps

Satisfaction enjoys the following properties, which are easily derived and help
making the above semantic definition more explicit. These properties may form
the basis of a matching algorithm of F' against A.

Some properties of satisfaction

I

F':p,(SO & F=0

FE,snlA] & FF.F=pmF'] A F'E,s A

F':p,§A|B p=4 3F’,F”.FEF’|F” A FI':p,LiA A F”':p,(SB

FE,; T

FE,s A & (FFy5 A
F':pﬁ.A/\B = F':pﬁA/\F':p,aB
F ':p75 dz. A & dImed F ':p[z>—>m],§ A
FE, s ¥ A & FI€lT. FExsns A
FE,sn~n & pn)~pn)

FE,s u6.A & FFE,s A{{+ p.A}
FEy s X & [F] = p(X)

Frse e [Fled)

3.2 Some Derived Formulas

As usual, negation allows us to define many useful derived operators, as described
in the following table.



Derived formulas:

n[= Al =ar —(n[-A]) AlB  =aes ~(=A|-B)
F =gef T AV B =def =(=A A -B)
Vr.A =g —(Fz.mA) VX.A =g —(3X.-A)

IVE-A =def ~(p€.~A{E + ~E})

F E m[= A] means that ‘it is not true that, for some F’, F = m[F'] and not
F'E A ie.if F has the shape m[F'], then F' E A’. To appreciate the difference
between m[A] and its dual m[= A], consider the following statements.

— F is an article where Ghelli is an author: F' E article[author|Ghelli]|T]
— If F is an article, then Ghelli is an author: F' E article[= author[Ghelli]|T|

F E A || B means that ‘it is not true that, for some F' and F", F = F' | F"
and F' E = A and F" E —B’, which means: for every decomposition of F' into
F'" | F" either F' E A or F" E B. To appreciate the difference between the |
and the || operators, consider the following statements.

— There exists a composition of F' into F' and F", such that F' satisfies
article[A], and F" satsfies T; i.e., there is an article inside F' that satis-
fies A: F E article[A] | T

— For every decomposition of F into F' and F", either F" satisfies article[= A],
or F" satisfies F; i.e., every article inside F satisfies A: F' F article[= A] || F

The dual of the least fixpoint operator pé.A is the greatest fixpoint opera-
tor v€.A. For example p&.€ is equivalent to F, while v€.£ is equivalent to T.
More interestingly, p£.0 V m[¢] describes every information tree that matches
m[m[...m[]]], and, on finite trees, it is equivalent to v£.0 V m[{]. However, if
we consider infinite trees, the distinction between least and greatest fixpoint be-
comes more important. For example, the infinite tree m[m][...]] satisfies v£.0 V
m[€], but does not satisfy p&.0Vml[¢]. When we consider only finite trees, as we
do here, the © and v operators are quite similar in practice, since most interesting
formulas have a single fixpoint.

Satisfaction over the derived operators enjoys the following properties, most
of which are easily derived from the definition, while others are more subtle.
For example, the properties of greatest fixpoints include a coinduction principle.
Again, these properties may form the basis for a matching algorithm.

Some properties of satisfaction for derived formulas

“FE,;F
FE,sn=Ale VF' . (F=p0)[F'] = F F,5 A)

FE,s A||B & VF,F'". F=F'|F" = (F'E,s AV F"E,;B)
Fr,s AVB & FF,s AV FE,sB

F ':p75 V. A & VmeA F ':p[z>—>m],§ A

F ':p75 VXA & VIEIT. F ':p[;(,_,[]’g A

FE,;v€A & FE,; A{§ <+ vE A}

FE,svEA & B.FE,s B AVF.F E,5B=FE,; Al « B}
L




Many logical equivalences have been derived for the ambient logic, and are in-
herited by the tree logic. We list some of them here. These equivalences could
be exploited by a query logical optimizer.

Some equations

nlA] & n[T] A nl= A nl= Al < n[T] = nlA]

n[F] & F n[= T] T

nANAT & nlA] An[A] n= AvVA] &= AlVn[= Al
AV Al & nlAlVylA] n= ANAT &= A An[= A
n[3z.A] & Jzn[A] (x #n) n[=Ve.A] & Vo= A] (z #n)
nVz. Al & VenlA] (x #n) n[= Jz.A] & Jzp= A (z #n)
n[3X.A] & X n[A] n=vVX.Al & VX.q= A
nVX.A] & VX .A] = 3IX.A] & IX = A]

Al A e A A Al A s Al A

(A[A) A" & A (A [A") (A A) || A" = AJ[ (A" [ A7)
AlF < F AT T

T|T & T F||F & F

Al (A VA& (AJTA)V(ATAY) Al (A AA") & (Al A)A (A A"
Az A & ImA|A @¢FV(A) A||Ve.A' & Vo d|| A (z¢ FV(A))
A|Ve. A VoAl A @¢FVA) A||Te. A & oAl A (v¢ FV(A))

3.3 Path Formulas

All query languages for semistructured data provide some way of retrieving all
data that is reachable through a path described by a regular expression. The tree
logic is powerful enough to express this kind of queries. We show this fact here
by defining a syntax for path expressions, and showing how these expressions
can be translated into the logic. This way, we obtain also a more compact and
readable way of expressing common queries, like those outlined in the previous
section.

Consider the following statement: X is some article found in the ARTICLES
collection, and some author of X' is Cardelli. We can express it in the logic using
the m[A] | T pattern as:

ARTICLES E article[X A (author[Cardelli] | T)] | T

Using the special syntax of path expressions, we express the same condition as
follows.
ARTICLES F .article(X).author|[Cardelli]

Our path expressions support also the following features:

— Universally quantified paths: X' is an article and every author of X is Cardelli.

ARTICLES F .article(X)!author|[Cardelli]

10



Label negation: X is an article where Ghelli is the value of a field, but is not
the author.
ARTICLES F .article(X).(nauthor)[Ghelli

Path disjunction: & is an article that either deals with SSD or cites some
paper ) that only deals with SSD.

ARTICLES F .article(X)(.keyword V .cites.article(Y)keyword)[SS D]

— Path iteration (Kleene star): X" is an article that either deals with SSD, or
from which you can reach, through a chain of citations, an article that deals
with SSD.

ARTICLES & .article(X)(.cites.article)” .keyword[SSD)]

— Label matching: there exists a path through which you can reach some field
X whose label contains e and mail (% matches any substring).

ARTICLES & (.%)* (% e%mail%)[X]
We now define the syntax of paths and its interpretation.

Path formulas:

Q= label matching expression
n matches any n such that n like n
—Q matches whatever a does not match
8= path element
Q some edge matches «a
la each edge matches «
p,q = path
16} elementary path
pq path concatenation
p* Kleene star
pVq disjunction
p(X) naming the tree at the end of the path

A path-based formula p[A] can be translated into the tree logic as shown below.
We first define the tree formula Matches(z,a) as follows:

Matches(xz,n) =gef x like n
Matches(x, ~a) = 4o ~Matches(z, )

Path elements are interpreted by a translation, [_]?, into the logic, using the
patterns m[A] | T and m[= A] || F that we have previously presented:

[.a[A]]? =4ef (3x.Matches(xz,a) A z[[AJP]) | T
['a[A]lP =4ef (Vo.Matches(z, o) = z[= [A]?]) || F

11



General paths are interpreted as follows. p*[A] is recursively interpreted as ‘either
A holds here, or p*[A] holds after traversing p’. Target naming p(X)[.A] means:
at the end of p you find X, and X satisfies A; hence it is interpreted using
logical conjunction. Formally, path interpretation is defined as shown below; path
interpretation translates all non-path operators as themselves, as exemplified for
T and |.

[pal AP =aer [Plal AN [P [AlP  =der n€-A Vv [PIE]]”
[(pV A =aer [PANP vV [al AP [p(X)[A]]" =der [p[X A AP
[Tl =des T [ATATP =aer [AP | [AT

3.4 Tree Logic and Schemas

Path formulas explore the vertical structure of trees. Our logic can also express
easily horizontal structure, as is common in schemas for semistructured data.
(E.g. in XML DTDs, XDuce [19] and XMLSchema [1]. However, the present
version of our logic deals directly only with unordered structures.)

For example, we can extract the following regular-expression-like sublan-
guage, inspired by XDuce types. Every expression of this language denotes a
set of information trees:

0 the empty tree

Al B an A next to a B

Av B either an A or a B

n[A] an edge n leading to an A

A* =gep p€. OV (A] &) a finite multiset of zero or more A’s
AT =gep A| A* a finite multiset of one or more A’s
A? =45 0V A optionally an A

In general, we believe that a number of proposals for describing the shape of
semistructured data can be embedded in our logic. Each such proposal usually
comes with an efficient algorithm for checking membership or other properties.
These efficient algorithms, of course, do not fall out automatically from a general
framework. Still, a general frameworks such as our logic can be used to compare
different proposals.

4 The Tree Query Language
In this section we build a full query language on top of the logic we have defined.
4.1 The Query Language

A query language should feature the following functionalities:

— binding and selection: a mechanism to select values from the database and
to bind them to variables;

12



— construction of the result: a mechanism to build a result starting from the
bindings collected during the previous stage.

Our Tree Query Language (TQL) uses the tree logic for binding and selection,
and tree building operations to construct the result. Logical formulas A are as
previously defined.

TQL queries:
I

Q = query
from Q E A select Q' valuation-collecting query
X matching variable
0 empty result
QlQ composition of results
Q] nesting of result
F (@) tree function, for any f in a fixed set &

We allow some tree functions f, chosen from a set & of functions of type
IT — IT, to appear in the query. For example:

— count(I), which yields a tree n[0], where n is the cardinality of the multiset
I;

— op(I), where op is a commutative, associative integer function with a neutral
element; if all the pairs in I have a shape n[I'], where n is a natural number,
then op(I) combines all the n’s using the op operation obtaining the integer
r, and returns r[0].

In practice, these functions would include user-defined functions written in an
external programming language.

4.2 Query Semantics

The semantics of a query is defined in the following table. The interesting case
is the one for from Q E A select @)'. In this case, the subquery Q' is evaluated
once for each valuation p’ that extends the input valuation p and such that
[Q], € [Al,,; all the resulting trees are then combined using the | operator.
The notation p'V’" D p¥ means that V! D V and that p’V' and pV coincide
over V. For F € RV — IT, we define Par,vegv F(pV) =aes W,overv F(pVY),
where W is multiset union, namely the information tree operator that is used to
interpret |.

Query semantics

[X],v = V()
[0],v =0
[Q] Qv = Qv | [,

13



[m[@I],v = m[[@],v]
[=[@]1,v pV(@)[[Q],v]

[f(@)],v = f([@],v)
[from Q E A select Q'] ,v

— !
= Paryvie(ov | vievurvia), oV 2,5V, [Ql,velAl v} [@Tpv
L ]

According to this semantics, the result of a query from Q' E A select Q" can
be an infinite multiset. Therefore, in a nested query, the database Q' can be
infinite, even if we start from a finite initial database. Obviously, one would not
like this to happen in practice. One possible solution is to syntactically restrict
Q' to a variable X'. Another solution is to have a static or dynamic check on the
finiteness of the result; one such option is dicussed in Section 4.4.

4.3 Examples of Queries

We explain the query operators through examples. As in Section 1.1, we abbre-

viate a query
from Q E A select from Q' E A’ select Q"

as

from QF A, Q' E A select Q" .

The database ARTICLES is the one given in Section 1.1.

All papers whose only author (if any) is Cardelli can be retrieved by the
following query (where we use X’ A ... as an alternative to a nested binder
XE..):

from ARTICLES E .article[X A lauthor[Cardelli]]  select X

We may use disjunction to find both e-mails and emails inside some author
field.

from ARTICLES E .article[.author|.e-mail[X] V .email[X]]]
select  e-mail[X]

Using recursion, we look for e-mail at the current level or, recursively, at any
inner nesting level.!

from ARTICLES E pué. .e-mail[X]V .email[X]V Jz. .z[¢]
select  e-mail[X]

The following query binds two label variables y and z to the label and the
content of a field y[z], where z is ‘like %Ghelli%’ (like matches %’ to any
substring). Recursion may be used to look for such fields at any depth.

! When every X is inside an m[] operator, like in this example, recursion is guaranteed
to terminate, but we still have enough flexibility to express complex queries, such as
queries that evaluate boolean circuits [22].

14



from ARTICLES E .article[.y[z] A z like %Ghelli %)
select found[labelly] | content[z]]

Query nesting allows us to restructure data. For example, the following query
rearranges papers according to their year of publication: for each year X' (outer
from), it collects all the papers of that year. The composition Year[X] | Z binds
Z to all fields but the year; this way of collecting all the siblings except one is
impossible, or difficult, in most other query languages.

from  ARTICLES E .article[.Year[X]]
select publications_by_year| Year[X]
| (from ARTICLES F .article[ Year[X] | Z]
select article[Z] )
]

Relational-style join queries can be easily written in TQL either by matching
the two data sources with two logical expressions that share some variables (equi-
joins) or by exploiting the comparison operators. Universal quantification can be
expressed both on label and tree variables; more examples can be found in [17].

4.4 Safe Queries

It is well-known that disjunction, negation, and universal quantification create
‘safety’ problems in logic-based query languages. The same problems appear in
our query language.

Consider for example the following query:

from dbE (author[X]V autore[Y]) | T select author[X]| autore[)]

Intuitively, every entry in db that is an author binds X but not ), and vice-
versa for autore entries. Formally, both situations generate an infinite amount
of valuations; for example, if p(db) = author[m[]], then {p" | [db], € [A],,} is
the infinite set

{(db~ author[m[]], X—>m[, Y1) | I€IT}.
Negation creates a similar problem. Consider the following query.
from dbE —author[X] select notauthor|X]

Its binder, with respect to the above input valuation, generates the following
infinite set of bindings:

{(db— author[m|[]], X—=1I) | I € IT,I #m[}},
and the query has the following infinite result:
{notauthor[I] | I€ZT,I #m[} .

These queries present two different, but related, problems:

15



— their semantics depends on the sets A and Z7 of all possible labels and
information trees;
— their semantics is infinite.

We say that a query is safe when its semantics is finite. Query safety is
known to be undecidable for the relational tuple calculus [4], and we suspect
it is undecidable for our calculus too. However, as in relational calculi, it is not
difficult to devise some sufficient syntactical conditions for safety, and to solve the
non-safety problem by restricting the language to the syntactically safe queries.
A different way to solve the problem is to allow unsafe queries, and to design
a query processor for them. Our semantics accounts for unsafe queries, since it
does not restrict the set of valuations generated by a binder to be finite, nor
does it restrict the query answer to be finite.

5 Query Evaluation

In this section we define a query evaluation procedure. This procedure is really
a refined semantics of queries, which is intermediate in abstraction between the
semantics of Section 4.2 and an implementation algorithm. It is based on an
algebra of trees and tables that is suggestive of realistic implementations, and
may be seen as a specification of such implementations. In Pisa we have realized
one such implementation, which is described in [23, 8].

The query evaluation procedure is based on the manipulation of sets of val-
uations. These sets, unfortunately, may be infinite. For a real implementation,
one must typically find a finite representation of infinite sets. Moreover, at the
level of query manipulations, one would like to push negation to the leaves, in-
troducing dualized logical operators as indicated in the first table in Section 3.2.
These dualized operators also become part of an implementation. We do not deal
here with the possible ways of finitely representing these infinite sets, or how to
implement operators over them. In [23,8], though, we describe a technique for
finitely representing sets of valuations in terms of a finite disjunction of a set of
conjunctive constraints over the valuations, in the style of [20, 21].

Any practical implementation of a query language is based on the use of
particular efficiently implementable operators, such as relational join and union.
We write our query evaluation procedure in this style as much as possible, but
we naively use set complement to interpret negation, and we do not deal with
dualized operators.

Our query evaluation procedure shows how to directly evaluate a query to a
resulting set, of trees. In database technology, instead, it is typical to translate
the query into an expression over algebraic operators (which, in [23,8] and in
XML Query Algebra [2], include also operators such as if-then-else, iteration
and fixpoint). These expressions are first syntactically manipulated to enhance
their performance, and finally evaluated. We ignore here issues of translation
and manipulation of intermediate representations.

The core of the query evaluation problem is binder evaluation. A binder
evaluation procedure takes an information tree I and a formula A, that is used

16



as a pattern for matching against I. The procedure takes also a valuation p and
returns the set of all the valuations for the free variables of A that are not in
the domain of p.

To describe the procedure, we first introduce an algebra over tables. Tables
are sets of valuations (here called rows). We then use this algebra to define the
evaluation procedure.

5.1 The Table Algebra

Let V =V1,...,V, be a finite set of variables, where each variable V; is either an
information tree variable X', whose universe U(X) is defined to be the set Z7
of all information trees, or a label variable x, whose universe U(z) is defined to
be the set A of all labels.

A row with schema V is a function that maps each V; to an element of U(V});
we use pV as a meta-variable to range over rows with schema V (or just p when
V is clear from context). A table with schema V is a set of rows over V; we use
TV for the set of tables with schema V, and RV as a meta-variable to range
over 7V. When V is the empty set, we have only one row over V, which we
denote with €; hence we have only two tables with schema (), the empty one, 0,
and the singleton, {e}. We use 1V to denote the largest table with schema V,
i.e. the set of all rows with schema V.

The table algebra is based on five primitive operators: union, complement,
product, projection, and restriction, each carrying schema information. They
correspond to the standard operations of relational algebra.

The operators of table algebra:
I

RY UV RV =4 RV URY c1v

CoV(RY) =4t 1V\ RV c1v
vVinv=0: RY xV"V'RV =,; {p;p | peRY, p e RV} C1VVV
V' CV: Hx,RV =aer {9 | pe1V 3peRrV.p2p}c1V
FV(n,n) €V oy RV =aer {p | pERY, pY(n) ~pY(n')} €1V

The table union RY UV R'V is defined as the set-theoretic union of two tables
with the same schema V.

The table complement CoV (RV) is defined as the set-theoretic difference
1V \ RV.

If RY and R’V are two tables whose schemas are disjoint, their table carte-
sian product RV xV>V' R'V' ig defined as the set containing all rows obtained
by concatenating each row of RV with each row of RV’ The result has schema
VuVv'

If V' is a subset of V, the projection HY,, RV is defined as the set of all rows
in RV restricted to the variables in V'.

17



Let pY be the function that coincides with pV over V, and maps every n ¢ V
to 1. If FV(n,n') €V, then the restriction o, RV is the set

{pV 1 pY € RY and pY(n) ~ pY(n)} ,
where ~ is a label comparison operator, as in Section 3.
We will also use some derived operators, defined in the following table.

Table algebra, derived operators:

IV C V': Exty, (RY) =4 RV xV,V\V VAV c1Vv
RV NV RV =4ef Co¥ (CoV(RV)UY CoV(RV)) c1v
RY %VoV' RV =40 Bty (RV) VY BtV (RV') C 1VOV
RY oV'V' RV =4 Exty v (RY) UV ExtY, v, (RV') C1V9V

V' cV: ]y, kY =uer CoV (TTv: Co¥(RY)) c1v
L

The operator RV XV:V' RV’ ig well-known in the database field. It is called
‘natural join’, and can be also defined as follows: the set containing all rows
obtained by concatenating each row p in RV with those rows p' in R such
that p and p’ coincide over V N V'. One important property of natural join
is that it always yields finite tables when is applied to finite tables, even if its
definition uses the extension operator. Moreover, the optimization of join has
been extensively studied; for this reason we will use this operator, rather than
extension plus intersection, in the definition of our query evaluation procedure.

Outer union RY &V-V' RV and co-projection ]_[2/,, RV are useful for treating
the dualized operators.

Outer union is dual to join, in the following sense:

RY aV.V' RV _ VOV (CoV(RY) MYV oV (R:V’))
Projection and co-projection are both left-inverse of extension:
[TV (Bzty, (RV)) = RY
Iy (Exty, (RV)) = RY
However, they represent two different ways of right-inverting extension:
[Iv.RY =N{RY' | Esty (RV') D RV}
v BY = U{RY' | Bety} (RV') C RV}

5.2 Query Evaluation

We specify here an evaluation procedure Q(Q), that, given a query () and a row
p that specifies a value for each free variable of @), evaluates the corresponding

18



information tree. A closed query “from Q E A select Q" is evaluated by first
evaluating () to an information tree I. The pair I, A is then evaluated to yield
a table RY whose schema contains all the free variables in A. Finally, Q' is
evaluated once for each row p of RVY; all the resulting information trees are
combined using |, to obtain the query result. This process is expressed in the
last case of the table below.

The first part of the table describes how a quadruple I, A, pY,~ is evaluated
by a binder evaluation procedure B to return a table with schema S(A,V,%).
The schema function S is specified in the table that follows, and enjoys the
property that S(A4,V,é) = FV(A) \ V. Here v is an environment that maps
recursion variables £ to functions from information trees to tables. We assume
that v is always given together with a schema 4 mapping recursion variables to
sets of variables V, such that v(¢§) € ZT — 776,

The notation {(z + n)} represents a table that contains only the row that
maps z to n, and similarly for {(X+—1I)}.

Binder and query evaluation

B(I,0),v = if 1 =0 then {e} else 0

B(I,n[A]),v,, = if I =n[l'] then B(I',A),v, else

B(I,z[A]),v., = B(,pY(x)[A]),v, ifzreV
B(I,z[A]),v, = ife gV

if I =n[I'] then {(z+s>n)} XEHhSAVI BT A) v _else B
BI,A|B)yv, =

ff{f/‘/g’{‘;;?}/ ri—n (B(I', A) v, MS(A V), S(B,V,7) B(I",B) v.-)
B(I,T),v, = {€
B(I,~A),v, = CoSAVI(BI,A),v,)
BUILLANB) v, = B(I,A),v, XSAVADSEVA BT B) v,
B(I,X),v,, = if I =pY(X) then {€} else ifX eV
B(I,X)pvﬂ, = {(X—=1)} ifX €V
B(L3X. Ay = IS0V D\ B Ay,
B(I,3z. A,y = TI8Av Doy BT Ay
B~ 1)y = opyf v 15 v
B(I,pé&A),v, = Fig(AMeIT — TSWEAVIDAY BV, A) yvq e m)) (D)
B(I,8),v, = ()
Q(X),v = pY(X)
Q(0) v =0
Q(Q | Ql)pv Q(Q)pv | Q(Ql)pv
Q(m[Q]) v = m[Q(Q),v]
Qz[Q)) v = p¥(@)[Q(Q),v]
Qf(@)),v = f(Q(Q),v)



Q(from Q E A select Q"),v =let I = Q(Q),v and RFVN\V =B(I, A),v

in PaT’preRFV(A)\v Q(QI)(pv;pr)
L 1

The schema function S

SO,V,I) = f

S(n[A,V,I') = S(A,V,I')
S(a[A], v, 1) = SAV, I U({z}\V)
S(A|B,V,I') = S(A,V,IYUSB,V,T)
S(T,V,I') =10
S(—A,V,I) = S(A,V,I)
S(AANB,V,I') = S(A,V,I"YUS(B,V,T)
S(X,V,I = {xX}\V
SEX. A, V,N= S(AV,I)\{x}
S(3zx. A, V,I') = S(A,V, D)\ {z}
S~n',V,I')= FV(n,n')\'V
S(ut. AV, I = S(A,V, T 0)
SV, 1) = I'(§)

Since the rule for comparisons i ~ 1’ is subtle, we expand here some special
cases.

Some special cases of comparison evaluation

B(I T~ v =0 iii}l{“”} ifegV,2' gV

B(Iz ~ &) v, = ;i}pv(m e} ifr g V,2' €V

B(I,x ~a')v ., = gv(z)wpv(z,)lo ifreVz' eV

B(I,x ~n),v, = aii}nl{m} ifx gV

Il’)’(I,n ~n'),v., = o 1% (ie. if n~n' then {€} else ) |
Lemma 1.

S(ug-A,V,5) = S(A, V5[ = S(ué.A, V,9)))
B(I, A),v, € TSAVA),

Lemma 2. Let A be a formula, V be a set of variables, let = be a set {£;} €T of
recursion variables that includes those that are free in A, and let v be a function
defined over = such that, for every &, y(&) € IT — TV&), where (&) is
disjoint from V. then:

Vpe WV, 1 €IT.B(I, A)pr ={p' | p' € 154V Te [A (0,50

where Y(p) = A:E{1 | pe~(§)I)} -

20



The following proposition states that the query evaluation procedure is equiv-
alent to the query semantics of Section 4.2. The proof uses Lemma 2 in the
from-select case.

Proposition 1. VQ, VD FV(Q), pV. 2(Q),v =[Q],v

6 Conclusions and Future Directions

We have defined a query language that operates on information represented
as unordered trees. One can take different views of how information should be
represented. For example as ordered trees, as in XML, or as unordered graphs,
as in semistructured data. We believe that each choice of representation would
lead to a (slightly different) logic and a query language along the lines described
here. We are currently looking at some of these options.

There are currently many proposals for regular pattern languages for semi-
structured data, many having in common the desire to describe tree shapes and
not just linear paths. Given the expressive power of general recursive formulas
né. A, we believe we can capture many such proposals, even though an important
part of those proposals is to describe efficient matching techniques.

In this study we have exploited a subset of the ambient logic. The ambi-
ent logic, and the calculus, also offer operators to specify and perform tree
updates [7]. Possible connections with semistructured data updates should be
explored.

An implementation of TQL is currently being carried out, based on the im-
plementation model we described. The current prototype can be used to query
XML documents accessible through files or through web servers.

Acknowledgements Andrew D. Gordon contributed to this work with many use-
ful suggestions. Giorgio Ghelli was partially supported by “Ministero dell’Univer-
sitd e della Ricerca Scientifica e Tecnologica”, project DATA-X, by Microsoft
Research, and by the E.U. workgroup APPSEM.

References

1. XML schema. Available from http://www.w3c.org, 2000.

2. XML query. Available from http://www.w3c.org, 2001.

3. S. Abiteboul, P. Buneman, and D. Suciu. Data on the WEB: From Relations to
Semistructured Data and XML. Morgan Kaufmann, San Mateo, CA, October 1999.

4. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
Reading, MA, 1995.

5. Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L.
Wiener. The Lorel query language for semistructured data. International Journal
on Digital Libraries, 1(1):68-88, 1997.

6. P. Buneman, S. B. Davidson, G. G. Hillebrand, and D. Suciu. A query language and
optimization techniques for unstructured data. In Proc. of the 1996 ACM SIGMOD
International Conference on Management of Data (SIGMOD), Montreal, Quebec,
Canada, pages 505-516, 4-6 June 1996. SIGMOD Record 25(2), June 1996.

21



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

L. Cardelli. Semistructured computation. In Proc. of the Seventh Intl. Workshop
on Data Base Programming Languages (DBPL), 1999.

L. Cardelli and G. Ghelli. Evaluation of TQL queries. Available from
http://www.di.unipi.it /~ghelli/papers.html, 2001.

L. Cardelli and A. D. Gordon. Mobile ambients. In Proceedings FoSSaCS’98, vol-
ume 1378 of LNCS, pages 140-155. Springer-Verlag, 1998. Accepted for publication
in Theoretical Computer Science.

L. Cardelli and A. D. Gordon. Anytime, anywhere: Modal logics for mobile am-
bients. In Proc. of Principles of Programming Languages (POPL). ACM Press,
January 2000.

D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML query language for
heterogeneous data sources. In Proc. of Workshop on the Web and Data Bases
(WebDB), 2000.

Sophie Cluet, Claude Delobel, Jrme Simon, and Katarzyna Smaga. Your mediators
need data conversion. In Proc. of ACM SIGMOD International Conference on
Management of Data (SIGMOD), 1998.

A. Deutsch, D. Florescu M. Fernandez, A. Levy, and D. Suciu. A query language
for XML. In Proc. of the Eighth International World Wide Web Conference, 1999.
M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language and processor
for a web-site management system. In Proc. of Workshop on Management of
Semistructured Data, Tucson, 1997.

Mary Fernandez, Daniela Florescu, Jaewoo Kang, Alon Levy, and Dan Suciu.
Catching the boat with Strudel: experiences with a web-site management sys-
tem. In Proc. of ACM SIGMOD International Conference on Management of
Data (SIGMOD), pages 414-425, 1998.

Mary Fernandez, J. Siméon, P. Wadler, S. Cluet, A. Deutsch, D. Florescu, A. Levy,
D. Maier, J. McHugh, J. Robie, D. Suciu, and J. Widom. XML query lan-
guages: Experiences and exemplars. Available from http://www-db.research.bell-
labs.com/user /simeon/xquery.ps, 1999.

G. Ghelli. TQL as an XML query language. Available from
http://www.di.unipi.it /~ghelli/papers.html, 2001.

R. Goldman, J. McHugh, and J. Widom. From semistructured data to XML:
Migrating the lore data model and query language. In Proc. of Workshop on the
Web and Data Bases (WebDB), pages 25-30, 1999.

B.C. Pierce H. Hosoya. XDuce: A typed XML processing language (preliminary
report). In Proc. of Workshop on the Web and Data Bases (WebDB), 2000.

P. Kanellakis. Tutorial: Constraint programming and database languages. In
Proc. of the 14th Symposium on Principles of Database Systems (PODS), San
Jose, California, pages 46-53. ACM Press, 1995.

G. Kuper, L. Libkin, and J. Paredaens. Constraint Databases. Springer-Verlag,
Berlin, 2000.

F. Neven and T. Schwentick. Expressive and efficient pattern languages for tree-
structured data. In Proc. of the 19th Symposium on Principles of Database Systems
(PODS), 2000.

F. Pantaleo. Realizzazione di un linguaggio di interrogazione per XML. Tesi di
Laurea del Dipartimento di Informatica dell’Universita di Pisa, 2000.

Y. Papakonstantinou, H.G. Molina, and J. Widom. Object exchange across het-
erogeneous information sources. Proc. of the eleventh IEEE Int. Conference on
Data Engineering, Birmingham, England, pages 251-260, 1996.

22



