
doi: 10.1098/rsif.2009.0072.focus
 published online 17 June 2009J. R. Soc. Interface

Andrew Phillips and Luca Cardelli

A programming language for composable DNA circuits

References

 us.full.html#related-urls
http://rsif.royalsocietypublishing.org/content/early/2009/06/10/rsif.2009.0072.foc
Article cited in:

html#ref-list-1
http://rsif.royalsocietypublishing.org/content/early/2009/06/10/rsif.2009.0072.focus.full.

 This article cites 18 articles, 6 of which can be accessed free

P<P Published online 17 June 2009 in advance of the print journal.

Rapid response
http://rsif.royalsocietypublishing.org/letters/submit/royinterface;rsif.2009.0072.focusv1

 Respond to this article

Subject collections
 (31 articles)synthetic biology �

Articles on similar topics can be found in the following collections

Email alerting service hereright-hand corner of the article or click
Receive free email alerts when new articles cite this article - sign up in the box at the top

publication.
Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial
online articles are citable and establish publication priority; they are indexed by PubMed from initial publication.
the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance
Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in

 http://rsif.royalsocietypublishing.org/subscriptions go to: J. R. Soc. InterfaceTo subscribe to

This journal is © 2009 The Royal Society

 on 3 July 2009rsif.royalsocietypublishing.orgDownloaded from

http://rsif.royalsocietypublishing.org/content/early/2009/06/10/rsif.2009.0072.focus.full.html#ref-list-1
http://rsif.royalsocietypublishing.org/content/early/2009/06/10/rsif.2009.0072.focus.full.html#related-urls
http://rsif.royalsocietypublishing.org/letters/submit/royinterface;rsif.2009.0072.focusv1
http://rsif.royalsocietypublishing.org/cgi/collection/synthetic_biology
http://rsif.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royinterface;rsif.2009.0072.focusv1&return_type=article&return_url=http://rsif.royalsocietypublishing.org/content/early/2009/06/10/rsif.2009.0072.focus.full.pdf
http://rsif.royalsocietypublishing.org/subscriptions
http://rsif.royalsocietypublishing.org/

J. R. Soc. Interface

 on 3 July 2009rsif.royalsocietypublishing.orgDownloaded from
*Author for c

One contribut
challenges an

doi:10.1098/rsif.2009.0072.focus
Published online

Received 25 F
Accepted 13 M
A programming language for
composable DNA circuits

Andrew Phillips* and Luca Cardelli

Microsoft Research, Cambridge CB3 0FB, UK

Recently, a range of information-processing circuits have been implemented in DNA by using
strand displacement as their main computational mechanism. Examples include digital logic
circuits and catalytic signal amplification circuits that function as efficient molecular detec-
tors. As new paradigms for DNA computation emerge, the development of corresponding
languages and tools for these paradigms will help to facilitate the design of DNA circuits
and their automatic compilation to nucleotide sequences. We present a programming
language for designing and simulating DNA circuits in which strand displacement is the
main computational mechanism. The language includes basic elements of sequence domains,
toeholds and branch migration, and assumes that strands do not possess any secondary
structure. The language is used to model and simulate a variety of circuits, including an
entropy-driven catalytic gate, a simple gate motif for synthesizing large-scale circuits and a
scheme for implementing an arbitrary system of chemical reactions. The language is a
first step towards the design of modelling and simulation tools for DNA strand
displacement, which complements the emergence of novel implementation strategies for
DNA computing.

Keywords: DNA computing; circuits; programming language; compositional
1. INTRODUCTION

Nucleic acids have a number of desirable properties for
engineering artificial biochemical circuits. Their
sequences can be precisely controlled in order to
encode distinct signals while avoiding cross-talk
between molecules, and Watson–Crick base pairing
can be used to engineer interactions between specific
molecules at well-defined rates. Previous efforts in
designing biochemical circuits with DNA have tended
to make use of additional restriction enzymes
(Benenson et al. 2001, 2003), or structural features
such as hairpins within the molecules to perform com-
putation (Sakamoto et al. 2000; Benenson et al. 2004;
Yin et al. 2008). While this allows the implementation
of somewhat ingenious molecular devices (Yurke et al.
2000; Venkataraman et al. 2007), simpler designs
have recently been proposed for the construction
of large-scale, modular circuits. In particular, a range
of information-processing circuits have recently been
implemented in DNA by using strand displacement as
the main chemical process to perform computation.
Examples include various digital logic circuits (Seelig
et al. 2006) together with catalytic signal amplification
circuits that function as efficient molecular detectors
(Zhang et al. 2007). The use of DNA strand displace-
ment to perform computation enables the construction
of simple, fast, modular composable and robust circuits,
as demonstrated in Zhang et al. (2007).
orrespondence (andrew.phillips@microsoft.com).

ion to a Theme Supplement ‘Synthetic biology: history,
d prospects’.

ebruary 2009
ay 2009 1
A range of modelling approaches have also been
developed for DNA computation (Paun et al. 1998).
One example is sticker systems (Kari et al. 1998;
Paun & Rozenberg 1998), which model the sticking
together of DNA strands. Such operations can effec-
tively model Adleman’s experiment (Adleman 1994),
in which DNA was used to compute a Hamiltonian
path in a graph. Other examples include Watson–
Crick automata, which are the automata counterpart
to sticker systems, insertion–deletion systems, which
contain operations for inserting and deleting DNA
sequences, and splicing systems, which can be physically
implemented with the help of restriction enzymes. A
more recent review of modelling approaches is presented
in Amos (2005), together with their corresponding
physical implementations.

So far, however, DNA strand displacement operations
have only been represented either by informal notations
or by manually constructing a corresponding set of
chemical reactions. Here, we investigate whether strand
displacement can be used as the basis for a DNA pro-
gramming language. The execution rules of the language
correspond to interactions between physical DNA
strands, while the kinetics of these rules correspond to
the underlying kinetics of strand displacement.

We first present an overview of a programming
language for DNA strand displacement, which includes
basic elements of sequence domains, toeholds and
branch migration. We also present an algorithm for auto-
matically generating a set of chemical reactions from a
given set of DNA molecules. We then use our language
to model various practical and theoretical systems,
This journal is q 2009 The Royal Society

mailto:andrew.phillips@microsoft.com
http://rsif.royalsocietypublishing.org/

2 Programming language for composable DNA circuits A. Phillips and L. Cardelli

 on 3 July 2009rsif.royalsocietypublishing.orgDownloaded from
including an entropy-driven catalytic gate (Zhang et al.
2007), a simple gate motif for synthesizing large-scale cir-
cuits (Qian & Winfree 2008) and a scheme for implement-
ing an arbitrary system of chemical reactions (Soloveichik
et al. 2008). More generally, the algorithm allows a given
circuit design to be repeatedly modified and simulated in
an iterative cycle, until it exhibits the desired behaviour.
Inspired by the work of Yin et al. (2008), in the long
term we envisage a language that can be used to program
a range of DNA molecules, simulate their behaviour and
then automatically generate the corresponding nucleic
acid sequences, ready for synthesis.
2. RESULTS

2.1. A language for DNA strand displacement

2.1.1. Simple examples. We present a language for DNA
strand displacement by means of simple examples,
together with their corresponding graphical
representation. The design of the language is
motivated by the assumptions outlined in Zhang et al.
(2007). Examples of DNA molecules are presented
below, where parallel composition (j) denotes the
presence of multiple molecules next to each other.

The molecule 1 : 2 represents a lower strand of DNA,
where the 30 end of the strand is assumed to be on the
left, as indicated by an arrowhead in the graphical rep-
resentation. The strand is divided into domains, which
correspond to short DNA sequences. The domains are
represented by numbers 1 and 2, where each number
represents a distinct domain. The DNA sequences of
distinct domains are assumed to be sufficiently different
that they do not interfere with each other. The red
domain 1 represents a toehold domain, while the black
domain 2 represents an ordinary specificity domain.
The colour is merely an annotation, since the length
of the domain sequence is sufficient to determine its
type. Toehold domains are very short sequences, gener-
ally between 4 and 10 nucleotides in length, that enable
one DNA strand to bind to another. Since the sequence
is short, the two strands will quickly unbind from each
other in the absence of further interaction along neigh-
bouring domains. The molecule ,1 2. represents an
upper strand of DNA, where the 30 end of the strand
is assumed to be on the right. The strand consists of
two domains that are complementary to domains 1
and 2, where two domains are complementary if their
respective sequences are Watson–Crick complemen-
tary. We denote 1 : 2 as a lower strand and ,1 2.

as an upper strand in order to emphasize the comple-
mentarity between strands. Two complementary
strands 1 : 2 and ,1 2. can hybridize along their
complementary domains to form a double-stranded
molecule [1 2]. A molecule can also consist of multiple
upper strands bound to a single lower strand. For
example, [1 2]:[3 4] consists of upper strands
J. R. Soc. Interface
,1 2. and ,3 4. bound to a single lower strand
1:2:3:4. There can also be gaps between bound
upper strands, as in the molecule [1 2]:3:[4 5],
where domain 3 of the lower strand is unoccupied.

Bound upper strands can also overhang to the left or
right, as shown below.

The molecule ,1.[2 3],4. consists of an upper
strand ,1 2 3 4. bound to a lower strand 2:3. The
region [2 3] of the molecule is double-stranded, while
,1. and ,4. represent single-stranded regions over-
hanging to the left and right. The molecule
[1],2.:[3] consists of an upper strand ,1 2.

bound to a molecule 1:[3], where the single-stranded
region ,2. is overhanging the double-stranded region
[3]. Multiple overhanging strands can be bound simul-
taneously along different regions, as in the case of the mol-
ecule ,1.[2 3],4.:,5.[6 7],8 . , which
represents two upper strands, ,1 2 3 4. and ,5 6 7
8 . , bound along regions [2 3] and [6 7], respectively.
Notice how the colon is used to separate the two bound
upper strands. In general, the DNA molecules are assumed
to have no additional secondary structure. This can be
achieved by careful selection of appropriate DNA
sequences, as discussed, for example, in Zhang et al. (2007).

We give examples of the main types of interactions
that are possible between DNA molecules in the
strand displacement language. The simplest example
is of one strand binding to another, as shown below.

An upper strand ,1 2. can bind to a molecule
1:[3] on toehold domain 1, and the bound strand
can subsequently unbind. The rates of binding and
unbinding are determined by the sequence of the toe-
hold domain 1 and are given by r1 and r21 which can
be abbreviated to þ1 and 21, respectively.

A given strand can also be displaced by another
strand as a result of binding, as shown below.

Although toehold domains are short enough to
unbind rapidly in the absence of additional specificity
domains, they are still long enough to greatly accelerate
the initiation of strand displacement when additional
specificity domains are present. In the above example,
when the strand ,1 2. becomes bound, it initiates
the displacement of its neighbouring strand by a process
of branch migration. Although this process involves a

http://rsif.royalsocietypublishing.org/

Programming language for composable DNA circuits A. Phillips and L. Cardelli 3

 on 3 July 2009rsif.royalsocietypublishing.orgDownloaded from
random walk of multiple elementary steps, these are
relatively fast at experimental concentrations and can
be omitted (Zhang et al. 2007). This was previously
demonstrated by Green & Tibbetts (1981) and Yurke
& Mills (2003), who showed that strand displacement
can be modelled as a second-order process over a wide
range of experimental conditions. This means that the
unbinding reaction on toehold domain 1 can be effec-
tively ignored, and the two consecutive reactions can
be approximated by a single displacement reaction
with rate r1 as follows.

Once bound, a given strand can also cause the toe-
hold domain of a neighbouring strand to unbind, as
shown below.

A strand ,1 2. can bind to a molecule 1:[2 3] on
toehold domain 1, and then displace the bound domain 2
of its neighbouring strand by branch migration. This can
result in the unbinding of the neighbouring strand on toe-
hold domain 3. The reverse sequence of reactions can also
occur. Since branch migration is very fast compared with
binding and unbinding reactions, the two molecules
[1],2.:[2 3] and [1 2]:,2.[3] are considered
equivalent. This is because the molecule will be constantly
migrating back and forth between these two states, such
that the states become indistinguishable from the point
of view of the slower binding and unbinding reactions.

The strand displacement language also allows
parametrized modules to be defined, as shown below.

A module is represented as a collection of one
or more molecules enclosed in a box. In this example,
the module consists of a population of molecules
Z*A:[B C],D . , where Z* denotes the number of
copies of the molecule. The name of the module
Cascade(A,B,C,D) is written along the bottom,
where A,B,C,D represent parameters of the module.
The parameters allow similar molecules to be
constructed using different domains, as shown below.
J. R. Soc. Interface
The molecules represent the result of executing
three separate instances of the module Cascade
(A,B,C,D) with three different sets of parameters:
Cascade(2,3,4,5), Cascade(4,5,6,7) and
Cascade(5,6,7,8). In this example, a strand ,1 2 3.

will be able to displace a strand ,3 4 5. from the
first stage of the cascade, which will in turn displace a
strand ,5 6 7. from the second stage, which will
then displace a strand ,7 8 9. from the third and
final stage. In general, modules allow parts of a program
to be reused with different parameters, reducing code
repetition and enabling more compact programs.

The language also allows local domains to be defined
for a particular collection of molecules, as shown below.

Local domains are represented using the new key-
word. Graphically, they are represented by placing a
dotted line around the molecules, with the local
domains in the top left corner. In this example, the
domains (C,D) are local to molecules A:[B C],D.

and C:[D E],F. . This guarantees that there can
be no interference on domains C and D from any other
molecules in the system, even if those molecules use
the same names C or D. In practice, this is enforced by
renaming the local domains C, D in the event of any
clashes. The renaming is done prior to executing a
given system of molecules. Local domains are particu-
larly useful when building large programs from smaller
building blocks, since they avoid having to manually
check all the domains in a given program to ensure
that there are no unintended clashes.
2.1.2. Main syntax and execution rules. In general, there
are many possible configurations for individual DNA
molecules, and many ways in which these molecules
can interact with each other over time. We capture
the set of possible molecular configurations and
interactions by defining precise syntax and execution
rules for the DNA strand displacement language. In
this section, we present the main rules, together with
their corresponding graphical representation. The
complete set of rules is provided in §3.

The syntax of the strand displacement language is
presented in figure 1, in terms of DNA molecules D, mol-
ecule segments G and DNA sequences S, L, R. A
sequence S consists of a series of domains O1 . . . OK,
where a domain O can be a specificity domain N or a toe-
hold domain Nˆc with degree of matching c. N is a name
or number representing a unique DNA sequence, where

http://rsif.royalsocietypublishing.org/

N^c

Nc

lower strand with toehold Nc

S

RL

<L>[S]<R>

double strand with sequence S
and overhangs L, R

S

G1 G2 ... GK

G1:G2:...:GK

<S>

upper strand with sequence
complementary to S

molecule with segments G1,..., GK

D1 D2 ... DK

D1 | D2 | ... | DK

parallel molecules D1,..., DK

O1 O2 ... OK

O1 O2 ... OK

sequence of domains O1,..., OK

new (N1,...,NK) D

molecules D with private domains N1,..., NK

(N1,..., NK)
D

(a) syntax of DNA molecules D (b) syntax of DNA segments G

(c) syntax of DNA sequences S, L, R

Figure 1. Syntax of the strand displacement language, in terms of (a) DNA molecules D, (b) molecule segments G and (c) DNA
sequences S, L, R. For each construct, the graphical representation at the top is equivalent to the program code at the bottom.
Sequences S, L, R are composed of a series of domains O1 . . . OK, where a domain O can be a specificity domain N or a toehold
domain N ĉ with degree of matching c. We assume that all toeholds in upper strands have degree of matching 1.

4 Programming language for composable DNA circuits A. Phillips and L. Cardelli

 on 3 July 2009rsif.royalsocietypublishing.orgDownloaded from
the sequence of toehold domains is assumed to be
between 4 and 10 nucleotides in length. The degree of
matching c allows different binding and unbinding
rates to be implemented for different molecules that
interact on the same toehold domain. The degree c is
assumed to be greater than 0 and less than or equal
to 1, where a sequence N̂ 1 with degree 1 is identical to
the sequence N. Degrees of matching 1 can usually be
omitted, where N̂ 1 is abbreviated to N. Small mis-
matches in sequence complementarity can significantly
affect toehold binding and unbinding rates, while still
avoiding interference with other toehold domains.
Thus, the degree of matching can be used to modify
the binding and unbinding rates of a given toehold.
For example, a toehold ,N̂ 1. will interact with toe-
holds N̂ c1 and N̂ c2 at different rates depending on
the degrees of matching c1 and c2. If c1 , c2 , 1
then toehold ,N̂ 1. will have a higher binding rate
and a lower unbinding rate when interacting with
N̂ c2, compared with N̂ c1. To simplify the syntax,
we assume that all toeholds in upper strands have
degree of matching 1. This avoids having to record
the degree of matching for both upper and lower strands
in a double-stranded molecule.

A molecule D can be an upper strand ,S. with a
sequence complementary to S, or a molecule with
segments G1: . . . :GK. A segment G can be a lower
strand with toehold domain N̂ c, or a double
strand [S] with upper strands ,L. and ,R. over-
hanging to the left and right, respectively, written
,L.[S],R . . The syntax ensures that specificity
domains on the lower strands are always occupied by
an upper strand, such that only toehold domains on
the lower strands can be unoccupied. This ensures
J. R. Soc. Interface
that two single-stranded molecules can only interact
with each other via complementary toehold domains,
as described by Zhang et al. (2007).

Multiple DNA molecules can be present in parallel,
written D1 j . . . j DK. We abbreviate K parallel copies of
the same molecule D to K*D . Domains N1, . . . ,NK can
also be restricted to molecules D, written new (N1, . . . ,
NK) D. This represents the assumption that the domains
are not used by any other molecules apart from D. We
also allow module definitions of the form X(m)¼ D,
where m are the module parameters and X(n) represents
an instance of the module D with parameters m replaced
by n. We assume a fixed set of module definitions, which
are declared at the start of the program.

The main reduction and equivalence rules of the
language are presented in figure 2. The reduction rules
are of the form D! r D0, which means that D can reduce
to D0 by a reaction with rate r. We write D r 0 $ r D0

as an abbreviation for the two reductions D! r D0 and
D0 ! r 0 D. We also write D! D0 as an abbreviation for
a reduction that is effectively immediate.

The first reduction rule models toehold binding and
unbinding. Each toehold domain N is associated with
corresponding binding and unbinding rates given by rN

and r2N, which can be abbreviated to +N and 2 N,
respectively. We multiply the binding rate by the
degree of matching c of domain N and we divide the
unbinding rate by this degree, since a low degree of
matching between toehold sequences will result in
slower binding and faster unbinding. In practice, the
degree of matching c of a toehold N̂ c can be deter-
mined by measuring the binding rate of N̂ c to ,N.

and dividing by the binding rate of N̂ 1 to ,N. .
The next two rules model a strand being displaced

http://rsif.royalsocietypublishing.org/

S2

N RL Nc G2G1 Nc

L R

G2G1

S1

L1 S2

R1
L2 R2

R2L2S2S1

L1 R1
S2

+N·c–N/c

1. toehold binding and unbinding

S2S1

L1 R1S1 R2
R1L1S2S1

L2 R2
S1

2. strand displacement to the right

L2

3. strand displacement to the left

S2S1

L1 S2

R1
L2 R

2
S3 S2S1

L
1

S2

L2
R2

S3

R1

4. branch migration

<L1>[S1]<S2 R1>:<L2>[S2]<R2> <L1>[S1 S2]<R1> | <L2 S2 R2>

<L1>[S1]<R1>:<L2 S1>[S2]<R2> <L2>[S1 S2]<R2> | <L1 S1 R1>

<L1>[S1]<S2 R1>:<L2>[S2 S3]<R2> <L1>[S1 S2]<R1>:<L2 S2>[S3]<R2>

<L N R> | G1:N^c:G2 G1:<L>[N^c]<R>:G2

Figure 2. Reduction and branchmigration rules of the strand displacement language. For each rule, the graphical representation at the
top is equivalent to the program code at the bottom.

Programming language for composable DNA circuits A. Phillips and L. Cardelli 5

 on 3 July 2009rsif.royalsocietypublishing.orgDownloaded from
from a molecule to the right and left. The reductions are
immediate, since branch migration is considered to be
much faster than toehold binding or unbinding. The
fourth rule models equivalence of molecules up to
branch migration. Since a given DNA molecule can
rapidly sample its space of possible configurations by
branch migration, the different configurations are con-
sidered to represent the same molecule.

We can use the reduction rules of the language to
generate the set of all possible reactions for a given set
of DNA molecules. Essentially, this is achieved by
repeated application of the reduction rules to the mol-
ecules, where each application of a rule corresponds to
a reaction. The rules are repeatedly applied until no
new reactions are generated. The algorithm is presented
in more detail in §3. The strand displacement language
can be used to construct an initial set of DNA mol-
ecules, and then to determine automatically the set of
all possible interactions between these molecules over
time, together with their corresponding interaction
rates. We illustrate the application of the strand
displacement language to three main case studies.
2.2. Case study: entropy-driven catalytic gate

This case study uses the strand displacement language to
implement an entropy-driven catalytic gate developed by
Zhang et al. (2007). The gate enables key functions of
signal amplification and circuit gain, which are essential
for implementing large cascaded circuits in DNA.
According to Zhang et al. (2007), the gate is
J. R. Soc. Interface
substantially simpler, faster, better understood and
more modular than previous DNA hybridization designs.

Figure 3 presents an implementation of the entropy-
driven catalytic gate of Zhang et al. (2007) in the strand
displacement language. The gate consists of initial con-
centrations of fuel, catalyst and substrate molecules.
The full sets of species and reactions for the gate are
presented in figure 4. These were compiled from the
molecules of figure 3 using the algorithm described in
§3. From the compiled reactions, we observe that Cata-
lyst C binds to Substrate S, causing the release of Signal
SB and Output OB in the presence of Fuel F. The same
catalyst can be reused to drive the release of multiple
signal and output strands, provided sufficient substrate
and fuel molecules are present. Thus, the compiled reac-
tions serve as an initial validation of the catalytic gate
design.

Note that the compiled reactions of figure 4 differ
from the manually defined reactions of Zhang et al.
(2007). A comparison between the two sets of reactions
is given in figure 5. A non-catalytic reaction

Sþ F�!k0 OBþ SBþW as also given in Zhang et al.
(2007), but the rate k0 was considered to be negligible
and can be effectively ignored. Both models also
assume the presence of excess reporter molecules SR
and OR, which detect the signals SB and OB, respect-
ively, as follows:

SBþ SR�!kTET TET; ð2:7Þ

OBþOR�!kTET ROX: ð2:8Þ

http://rsif.royalsocietypublishing.org/

542
1 6

33 42 4 5

Catalytic

PS*PF * PC *

Catalytic =
(PF*<2 3 4> | PC * <4 5> | PS * <1>[2]:<6>[3 4]:5)

Figure 3. An implementation of the entropy-driven catalytic
gate of Zhang et al. (2007) in the strand displacement
language. The gate consists of Fuel ,2 3 4. , Catalyst
,4 5. and Substrate molecules ,1.[2]:,6.[3 4]:5,
at initial concentrations given by PF, PC and PS, respectively.

+3

+3
–3

42

1 6 4

3 42

1 6 4

542

1 6

42

1 2

42

42

5

5

3 5

33

5

5

3

3

4

3 42 3 46

21

4

42

1 2

53

4

Substrate S

Fuel F

Intermediate I1

Waste W

Signal SB

Output OB

4 5

Catalyst C

Intermediate I4

Intermediate I5

3 42

1

5

Intermediate I3

+5
–5

+5
–5

C = <4 5> S = <1>[2]:<6>[3 4]:5
SB = <6 3 4> I1 = <1>[2]:<6>[3]<4>:[4 5]
F = <2 3 4> I3 = <1>[2]:3:[4 5]
OB = <1 2> I4 = <1>[2]:<2>[3]<4>:[4 5]
W = [2 3 4]:5 I5 = [2 3 4]:<4>[5]

S + C {rm5}<->{r5} I1 I1 {r3}<->{rm3} I3 + SB
I3 + F ->{r3} I4 I4 -> I5 + OB
I5 {r5}<->{rm5} C + W

Figure 4. Species and reactions for the entropy-driven cataly-
tic gate of Zhang et al. (2007). Starting from the molecules of
figure 3, the full set of species and reactions were compiled
using the algorithm described in §3. Species are given
unique identifiers to allow a more compact representation of
reactions. Here the species identifiers were chosen to be the
same as in Zhang et al. (2007).

S + C
k1

k−1

I3 + SB (2.1)

(2.6)

I3 + F
k2−→ I5 + OB (2.2)

I 5
k3

k−3

C + W (2.3)

S + C
ρ5

ρ
 – 5

I1
ρ

 – 3

ρ3
I3 + SB (2.4)

I3 + F
ρ3−→ I 4 → I5 + OB (2.5)

I5
ρ

 – 5

ρ5

C + W

Figure 5. Comparison between the manually defined reactions
of Zhang et al. (2007), shown on the left, and the compiled
reactions of figure 4, shown on the right.

6 Programming language for composable DNA circuits A. Phillips and L. Cardelli

 on 3 July 2009rsif.royalsocietypublishing.orgDownloaded from
The reporter SR binds to the signal SB causing the
release of the green tetrachlorofluorescein (TET) fluor-
ophore, while the reporter OR binds to the output
OB causing the release of the red carboxy-Xrhodamine
(ROX) fluorophore. Thus, the levels of green and red
fluorescence can be used to measure the concentrations
of signal and output strands, respectively.

The remaining reactions in Zhang et al. (2007)
assume that the binding rate for S and C is the same
as the binding rate for C and W, since both reactions
J. R. Soc. Interface
involve the same toehold sequence 5. Similarly, the
binding rate for I3 and SB is assumed to be the same
as the binding rate for I3 and F. Thus, k1 ¼ k23 ¼ r5

and k21 ¼ k2 ¼ r3. This is consistent with the reduction
rules of the strand displacement language, which
assume that interactions on the same toehold occur at
the same rate.

For reaction (2.5), since strand displacement is
assumed to be much faster than toehold unbinding,
the unbinding reaction on toehold 3 is effectively
ignored, which is consistent with reaction (2.2). This
assumption was previously discussed in §2.1. For reac-
tion (2.4), the original reactions ignored the formation
of the intermediate complex I1, resulting in the approxi-
mation reaction (2.1). The toehold unbinding reaction
r23 is considered to be quite fast, since toehold 3 is
deliberately shortened to accelerate strand unbinding.
However, the original reactions do not explicitly take
into account the constraints between r23 and r25.
According to our reactions, the rate of unbinding of
toehold 3 must be significantly faster than the rate
of unbinding of toehold 5, and we can simulate the
effects of different unbinding rates for these toeholds.

In figure 6, we simulate the system assuming that
toehold 3 unbinds 10 times more quickly than toehold
5, and we compare this with the simulation of the orig-
inal reactions presented in Zhang et al. (2007). Even
with an order of magnitude difference, the effects on
the system behaviour are still noticeable. The faster
the unbinding rate for toehold 3, the closer the results
to the original simulations (not shown). Thus, we can
quantify the impact of toehold strengths on the overall
system dynamics, prior to implementing the physical
system in DNA. Note that the chemical reactions for
the system were compiled directly from the DNA
molecules themselves by application of the algorithm
outlined in §3. This simplifies the process of evaluating
new designs before their subsequent implementation.
In the original experimental setup, the reaction rate
k3 ¼ r25 was difficult to measure, and was fit to the
data. Even if we are unable to measure the exact rates
experimentally, it is possible to ensure constraints
between rates, such as r23�r25, by choosing appropriate
sequences for the corresponding toehold domains.
2.3. Case study: gate motif for large-scale
circuits

This case study uses the strand displacement language
to implement a DNA gate motif developed by Qian &
Winfree (2008). The motif was designed as a building

http://rsif.royalsocietypublishing.org/

ROX(1.0)
ROX(0.5)
ROX(0.2)
ROX(0.1)
ROX(0.05)
ROX(0.02)
ROX(0.01)
ROX(0.005)
ROX(0.002)
ROX′(1.0)
ROX′(0.5)
ROX′(0.2)
ROX′(0.1)
ROX′(0.05)
ROX′(0.02)
ROX′(0.01)
ROX′(0.005)

ROX′(0.002)

7000

7000

6000

6000

5000

5000

4000

time

4000

3000

3000

2000

2000

1000

1000

0

Figure 6. Simulation results for the entropy-driven catalytic gate of figure 4, using reactions (2.4)–(2.8). The rates are taken from
Zhang et al. (2007), with r5 ¼ 6.5 � 105, r3 ¼ 4.2 � 105, kTET ¼ 8 � 105 and kROX ¼ 4 � 105 M21 s21, and with r25 ¼ 4 �
1023 s21 and r23 ¼ 10 � r25. Initial concentrations of S ¼ C ¼ 10 nM, F ¼ 13 nM and OR ¼ SR ¼ 30 nM were used, where
the concentration of C was varied by a factor of 1–0.002. The levels of ROX fluorescence (arbitrary units) were plotted over
time (s) for different input concentrations of catalyst C. The simulation results for the reactions of Zhang et al. (2007) are
represented on the same plot using dark colours, while the results from the reactions of figure 4 are shown in pale colours.
The simulation results of both systems differ slightly, where the choice of rate constants is discussed in the main text.

Programming language for composable DNA circuits A. Phillips and L. Cardelli 7

 on 3 July 2009rsif.royalsocietypublishing.orgDownloaded from
block for synthesizing large-scale circuits involving
potentially thousands of gates.

Figure 7 presents an implementation of the seesaw
gate of Qian & Winfree (2008) in the strand displacement
language. The gate is essentially a simplified version of
the catalytic gate developed by Zhang et al. (2007).
The main species and reactions for the gate are presented
in figure 8. These were compiled from the molecules of
figure 7 using the algorithm of §3. The compiled reactions
are consistent with the manually defined reactions of
Qian & Winfree (2008). From the compiled reactions,
we observe that the Input I is neutralized by the
Threshold Th. Once all the Threshold molecules are
consumed, the Input can bind to the GateOutput GO,
causing the release of the Output O. The Fuel F binds
to the GateInput GI, causing the release of the Input I,
which can be subsequently reused to catalyse the
displacement of additional Output molecules.

In addition to the reactions shown in figure 7, there
are a number of spurious reactions between toehold
domains. For example, the Input ,S3 T S4. can inter-
act with T:[S3 T],S4. on toehold T. However, since
there is a mismatch in the specificity domains of these
molecules, they will immediately unbind. Although
these reactions can potentially slow down the system,
they will not result in major interferences. This illus-
trates an important principle when designing
large-scale circuits: the same toehold domain can be
reused in multiple reactions, provided the specificity
domains are chosen accordingly. Toehold domains can
bind and unbind repeatedly, but a displacement reac-
tion can only progress if there is a subsequent match
J. R. Soc. Interface
between the adjacent specificity domains. In the
remainder of the paper we omit such spurious
interactions on toehold domains.

An empty seesaw gate T:S3:T consists of a single
domain S3 with toehold domains T to the left and
right. The Input binds to the right toehold of the gate,
while the Output and Fuel bind to the left toehold.
The Input, Output and Fuel strands are defined as
,S3 T S4 . , ,S1 T S3. and ,S2 T S3 . , respect-
ively, and are termed wires, since they can each form a
link between two gates. For example, the Input wire
,S3 T S4. can form a link between gates T:S3:T
and T:S4:T. The threshold molecules consume the
Input, preventing it from binding to the main gate
until all the threshold molecules are depleted. This acts
to filter out low levels of input that could have been pro-
duced accidentally, such as those produced by a leaky
circuit. In order to achieve this, the threshold gate is
designed so that it binds to the input at a much faster
rate than the main gate. In Qian & Winfree (2008),
this is implemented by extending the binding region of
the threshold toehold. Here, we implement the increased
binding rate by increasing the degree of matching of the
threshold toehold, so that it is significantly higher than
the degree of matching of other toeholds. Although the
maximum degree of matching is 1, in practice we can
encode a degree of matching greater than 1 by lowering
the degree of matching of all other toeholds.

In general, each seesaw gate can interact with mul-
tiple wires to the left and right. We can model this by
defining two modules, SeesawL and SeesawR, as
shown in figure 9. The specificity domains of the gate

http://rsif.royalsocietypublishing.org/

Seesaw

TS3T

S1

S3 TTcS3 PGO*PTh* PI*T S3PF * S2 S4

Seesaw = (PF * <S2 T S3> | PTh * [S3]:Tˆc
 | PI * <S3 T S4> | PGO * <S1>[T S3]:T)

Figure 7. An implementation of the seesaw gate of Qian &
Winfree (2008) in the strand displacement language. The
gate consists of Fuel ,S2 T S3. , Threshold [S3]:T ĉ,
Input ,S3 T S4. and GateOutput molecules ,S1.[T
S3] : T, at initial concentrations given by PF, PTh, PI and
PGO, respectively.

T

TS3T
S1

S3 T

S3T
S1 S4S3

TS3

S4
TT S3 T S3

TS3T
S2 S4S3

TS3T
S

2
TcS3

S3

GateOutput GO Input I GateFuel GF

Output O GateInput GI Fuel F

TS3

S4

Waste w

GateOutputInput GOI GateInputFuel GIF

Threshold Th

Waste e

+T.c

+T
–T

+T
–T

+T
–T

+T
–T

S1 S2

S4

I = <S3 T S4> Th = [S3]:Tˆc
F = <S2 T S3> GF = <S2>[T S3]:T
O = <S1 T S3> GO = <S1>[T S3]:T
e = <S3> GOI = <S1>[T S3]:<S3>[T]<S4>
w = [S3 T]<S4> GIF = <S2>[T]<S3>:[S3 T]<S4>
 GI = T:[S3 T]<S4>

Th + I ->{rT*c} e + w
GO + I {rmT}<->{rT} GOI GOI {rT}<->{rmT} GI + O
GI + F {rmT}<->{rT} GIF GIF {rT}<->{rmT} I + GF

Figure 8. Species and reactions for the seesaw gate of Qian &
Winfree (2008). Starting from the molecules of figure 7, the set
of species and reactions were compiled using the algorithm
described in §3.

SeesawL (S3, S1, PT, P)

TS3T

S1
Tc S3 P*PT *

SeesawR (S3, S4, PT, P)

PT* TcS3 TS3

S4
TP*S3 T

Wire (S3, S4)

S4

Wire(S3,S4)=<S3 T S4>
SeesawL(S3,S1,PT,P)=PT*Tˆc:[S3] | P*<S1>[T S3]:T
SeesawR(S3,S4,PT,P)=PT*[S3]:Tˆc | P*T:[T S3]<S4>

Figure 9. Generic modules for the seesaw gate of figure 7.

Input S4

Output S1

Fuel S2

10

Gate S3

–0.5

10

(SeesawL(S3,S1,0,10.0|SeesawR(S3,S1,0.5,0)
| 1*wire(S3,S4)|10*wire(S2,S3))

1

Figure 10. An instance of the seesaw gate of figure 7, using the
more general modules of figure 9. A more abstract graphical
representation of the gate is also given.

8 Programming language for composable DNA circuits A. Phillips and L. Cardelli

 on 3 July 2009rsif.royalsocietypublishing.orgDownloaded from
and interacting wire are passed as parameters, together
with the populations of the threshold gate and the
initially bound wires. Figure 10 presents an instance
of the seesaw gate of figure 7, using the more general
modules of figure 9. A more abstract graphical represen-
tation of the gate is also given. Initial populations of
Fuel, Input and Output wires are given by 10, 1 and
0, respectively. The populations are represented as
numbers on the edges connected to the gate, where
the absence of a number denotes a population of 0.
There is also an initial population of 10 Output wires
bound to the left side of the gate, assuming suitable
population units. This is indicated by the number 10
inside the left half of the circle, next to the Output
wire. There are no Fuel or Input wires bound to the
gate, since there are no positive numbers inside the
circle next to the Fuel or Input wires. The negative
J. R. Soc. Interface
number 20.5 on the inside of the circle next to the
Input wire indicates an initial population of 0.5
threshold gates. According to Qian & Winfree (2008),
we assume that a given seesaw gate will not have both
a population of bound wires and a population of
threshold gates. Under these assumptions, a single
integer can be used to represent both populations. If
the integer is positive, then it represents the population
of bound wires, and if it is negative, then its absolute
value represents the population of threshold gates. For
the program definition of our seesaw modules, rather
than using a single integer, we use two positive numbers
PT and P, with the additional constraint that both
numbers cannot be greater than zero simultaneously.

We can use these modules to implement the logical
OR gate presented in Qian & Winfree (2008), as
shown in figure 11. Gates with a dotted outline have a
population of zero, and are not needed. They are
mainly included to give a uniform representation. As
a result, for the OR gate implementation only domains
3 and 4 need to be passed as parameters. The OR gate
takes two wires that bind to the left of domain 3. Once
one or both of these wires are present in sufficient num-
bers to consume all the threshold gates, they will
displace the wire ,3 T 4. that is bound on the right
of domain 3. The fuel ,3 T 5. ensures that the
bound input wires are freed again from the gate 3.
A module for the AND gate can also be defined,
though its behaviour is more complicated (see Qian &
Winfree 2008 for full details). Here we have shown how
seesaw gate modules can be used to construct simple
logic gate modules, which can in turn be used to
construct complex logical circuits of arbitrary size.
2.4. Case study: compiling chemical reactions
to DNA

The previous case studies described how physical DNA
systems can be represented as molecules in the strand
displacement language. The molecules were then

http://rsif.royalsocietypublishing.org/

–0.5

3

1.5

w13

w23

–0.5 2.5

1

2

w34

4

5

w34 = w13 OR w23

OR(3,4)=new (1,2,5)
(SeesawL(3,1,0.5,0) | SeesawL(3,2,0.5,0)
| SeesawR(3,4,1.5,0) | 2.5*Wire(3,5))

Figure 11. Example logical OR circuit made of seesaw gates.
Signal concentrations below 0.1 are considered OFF, while
signal concentrations above 0.9 are considered ON.

4

2

1 432 2 3 4

5
6

3 4

1

643 5

5 876

input A gate g

waste wg intermediate o

waste wt output B

5 6

3

4 5 6

7
8

gate t

+2

+4

A = <1 2 3 4> g = 2:[3 4]<5 6>
o = <3 4 5 6> t = 4:[5 6]<7 8>
B = <5 6 7 8> wt = <3>[4 5 6]
 wg = <1>[2 3 4]

A + g ->{r2} wg + o o + t ->{r4} wt + B

Figure 13. DNA implementation of a transition reaction
A�!r B. The implementation uses a constant population Pg
of gates g, such that r ¼ r2 . Pg, and a very large constant
population Pt of translation gates t such that r4 . Pt� r.

1 432 2 3 4

input A gate g

2 3 4

1

waste w

43

empty e

+2

A = <1 2 3 4> g = 2:[3 4]
e = <3 4> w = <1>[2 3 4]

A + g ->{r2} w + e

Figure 12. DNA implementation of a degradation reaction
A�!r 1. The implementation uses a constant population Pg
of gates g, such that r ¼ r2 . Pg.

Programming language for composable DNA circuits A. Phillips and L. Cardelli 9

 on 3 July 2009rsif.royalsocietypublishing.orgDownloaded from
systematically translated to chemical reactions for
simulation and analysis. This case study addresses the
reverse question of how to translate an arbitrary set of
chemical reactions to a set of DNA molecules, in order
to derive systematically a physical DNA implemen-
tation. The question was previously addressed in
Soloveichik et al. (2008) by translating a given set of
chemical reactions to an extended set of reactions repre-
senting the implemented system. Here we present a
translation from a set of chemical reactions directly to
a set of DNA molecules. The extended set of reactions
for these molecules is then derived automatically
using the algorithm of §3.

We first illustrate the principle of the translation on a
number of simple chemical reactions, using the
approach presented in Soloveichik et al. (2008). Essen-
tially, each chemical species X is associated with three
distinct domains X1,X2,X3, where X1 and X3 are
toeholds. The general form of a species X is given by
,H X1 X2 X3. , where ,X1 X2 X3. denotes the rec-
ognition region of the species, and ,H. denotes the
history region. We assume that members of the same
species must all have the same recognition region, but
can have different history regions.

Figure 12 presents a DNA implementation of a
degradation reaction A�!r 1, where species A is associ-
ated with the recognition region ,2 3 4.. The reac-
tion is implemented by a population of gates g, which
transform a strand ,1 2 3 4. into inert waste. The
reaction rate r is obtained by using a constant popu-
lation Pg of gates g, such that r ¼ r2 . Pg. In order to
achieve this, Soloveichik et al. (2008) assume an
excess population of gates that is large enough to
remain effectively constant. We adopt the same
approach for the implementation of constant gate
populations, but later discuss a potential alternative.

Figure 13 presents a DNA implementation of a tran-
sition reaction A�!r B. As with degradation, the
reaction is implemented by a constant population Pg
of gates g, such that r ¼ r2 . Pg. In order to ensure
that the domains of species B are completely indepen-
dent from the domains of species A, an additional trans-
lation gate t is needed. Furthermore, in order to ensure
that the reaction remains effectively first order, a very
J. R. Soc. Interface
large constant population Pt of translation gates t is
used, such that r4 . Pt� r.

Figure 14 presents a DNA implementation of a
production reaction A�!r B þ C . The implementation
of the reaction is similar to that in figure 13, except
that the intermediate output strand o displaces two
strands instead of one from the translation gate t,
which correspond to the two output species of
the reaction.

Figure 15 presents a DNA implementation of a
binary reaction Aþ B�!r C . The implementation is
less straightforward than in the previous examples,
since the output C must only be produced when both
inputs A and B are present. The solution, as presented
in Soloveichik et al. (2008), is to use a linker gate l that
rapidly binds and unbinds the reactant B, such that the
bound and free species B are in equilibrium, where

http://rsif.royalsocietypublishing.org/

2

–6

73 8

9
10

gate Bg

5 876

input A

6

41

63

buffer b

+6

71 432 2 3 6 8

9
10

input B linker gate l

+2
–2

2 73 8

9
10

gate Bl

1

6

3
4

2

+6

73 8

waste wl

7 10988 9 10

11
12

intermediate o

41

gate t

5

6

+8

9 121110 9 10

output C waste wl

8

7

B = <1 2 3 4> l = 2:[3 6]:[7 8]<9 10>
b = <3 6> Bl = <1>[2]<3 4>:[3 6]:[7 8]<9 10>
A = <5 6 7 8> Bg = <1>[2 3]<4>:6:[7 8]<9 10>
o = <7 8 9 10> t = 8:[9 10]<11 12>
C = <9 10 11 12> wt = <7>[8 9 10]
 wl = <1>[2 3]<4>:<5>[6 7 8]

B + l {rm2}<->{r2} Bl Bl {rm5}<->{r5} b + Bg
Bg + A ->{r5} o + wg o + t ->{r8} C + wt

Figure 15. DNA implementation of a binary reaction
Aþ B�!r C . The implementation uses large constant popu-
lations Pl and Pb of linker gates l and buffers b, respectively,
such that Pl . r2 and Pb . r6� r. Furthermore, the toehold
unbinding rates are chosen such that r22 and r26� r.
These constraints ensure that an equilibrium can be rapidly
established between the population of free linker gates l and
bound linker gates Bg. The rates and populations are also
chosen such that r ¼ f(Bg) . r6, where f(Bg) denotes the frac-
tion of bound species Bg at equilibrium. As with the unary
reactions, we use a very large constant population Pt of
gates t such that r8 . Pt� r.

4

1 432 2 3 4

5
6

9

109643 5 94 5 6

7

10

11
8 12

95 6 10

3

5 876 9 121110

input A gate g

intermediate o gate t

waste wt output B output C

10

2 3 4

1

waste wg

+2

+4

A = <1 2 3 4> g = 2:[3 4]<5 6 9 10>
o = <3 4 5 6 9 10> t = 4:[5 6]<7 8>:[9 10]<11 12>
B = <5 6 7 8> wt = <3>[4 5 6 9 10]
C = <9 10 11 12> wg = <1>[2 3 4]

A + g ->{r2} wg + o o + t ->{r4} wt + B + C

Figure 14. DNA implementation of a production reaction
A�!r B þ C . The implementation is similar to that in figure
13, except that the translation gate t produces two output
strands instead of one.

10 Programming language for composable DNA circuits A. Phillips and L. Cardelli

 on 3 July 2009rsif.royalsocietypublishing.orgDownloaded from
f(Bg) denotes the fraction of bound species B. When the
species A is present, it can interact with the bound form
of species B to complete the reaction. The rates and
populations are chosen such that r ¼ f(Bg) . r6.

Figure 16 presents a more general translation from
chemical reactions to DNA molecules, based on the
approach presented in Soloveichik et al. (2008). The
translation is defined for unary and binary reactions,
but translations for higher order reactions can be
defined in a similar fashion. The translation is defined
as a collection of modules in the strand displacement
language, which take the populations of gates and buf-
fers as parameters. The populations are chosen so as to
implement accurately the corresponding reaction rates,
using the approach outlined in the previous examples.
The populations also take into account the fact that a
given species may be involved in multiple binary inter-
actions simultaneously and can therefore bind to
multiple different gates, affecting the equilibrium of
free and bound species. As an alternative to varying
the initial gate populations, we can also vary the
degree of complementarity of toeholds for each reaction,
as discussed in Soloveichik et al. (2008).

As an example, we consider the coupled chemical
reactions for the chaotic system of Willamowsky and
Rossle, which was used as a case study in Soloveichik
et al. (2008). The reactions for this system are summar-
ized in table 1, together with their translation to DNA
molecules. The translation is implemented using a set of
modules for unary and binary reactions, which are
defined in a similar fashion to the general modules pre-
sented in figure 16. The local domains used in each of
the modules ensure that the domains of different gates
do not interfere with each other. Expanded versions of
these modules are shown in figure 17. The expansion
is performed automatically by the compiler, as
described in §3.
J. R. Soc. Interface
The main species and reactions generated from the
DNA molecules are presented in figure 18. The reac-
tions are similar to those presented in Soloveichik
et al. (2008), except that there are two reversible reac-
tions instead of one for establishing an equilibrium
between species, linker gates and buffer strands. The
additional reactions will not affect the overall dynamics
of the system, provided they are effectively immediate.
According to figure 18, this will require the toehold
unbinding rates involved in all the equilibrium reactions
to be sufficiently rapid. In addition to the reactions rep-
resented in figure 18, a number of other reactions are
generated, which arise from the fact that the toeholds
of some of the intermediate outputs can bind to mul-
tiple gates. For example, toehold A3 of the intermediate
output ,A2 A3 I1 A1 J1 A1. can bind to three dis-
tinct gates, even though it can only displace strands
from one of these gates. This should not significantly
affect the overall dynamics, provided the toehold
unbinding rates are also fast. Nevertheless, it is

http://rsif.royalsocietypublishing.org/

A1 A2 A3

I1

A1

J1

A1

A3 I1

A2
A3

A1

A r1 A + A

J1

A2
A3

A1

A2 A3

I2

A1

A3 I2

A2
A2

A1A1 A2 A1

A + A r2 A

A2 A3B1 B2 A1

B + A r3

r4 r4

r6

r7

B + B

I3

B1

J3

B1

A3 I3

B2

B3

B1 J3

B2

B3

B1

C1 C2 C3

I1

C1

J1

C1

C3 I1

C2
C3

C2
C3

C1

C C + C

C + C

J1 C1

C2 C3

I2

C1

C I2

C2

C3

C1C1 C2 C1

C

C2 C3A1 A2 C1

A + C

B1 B2 B3

B

Gate g1 Gate t1

Linker Gate l2

Linker Gate l5

Linker Gate l7

Linker Gate l3

Gate t2

Gate t3

Gate g4

Gate t6

Gate t7

Gate g6

Pg1 * Pt *

A1A2

Buffer b2

Pl2 * Pt * Pb2 *

Pl7 * Pt * C1C2Pb7 *

Pt *Pg6 *

Pl3 * A1B2

Buffer b3

Buffer b5

Buffer b7

Pb2 *

C1A2Pb5 *

Pt *

Pg4 * Pl5*

Figure 17. DNA molecules obtained by expanding the mod-
ules of table 1.

X3X2X1

A1 A2 A3

I1

X11

IN

XN1

INA3 I1

X12

X13

X11 XN1

XN2

XN3

INB3 I1

X12

X13

X11 XN1

XN2

XN3

B2A1 A2 B1 B3

unaryN((A1, A2, A3), Pg, (X11, X12, X13) , ... , (XN1, XN2, XN3))

I1

X11

IN

XN1

species (P, X1, X2, X3)

(I1,..., IN)

(I1,..., IN)

B1A2

Pg* Pt*

Pt*Pl * Pb*

binaryN((A1, A2, A3), (B1, B2, B3), Pl, Pb, (X11, X12, X13) , ... , (XN1, XN2, XN3))

P*

species (P,X1,X2,X3) = P* <X1 X2 X3>

unaryN((A1,A2,A3),Pg,(X11,X12,X13),...,(XN1,XN2,XN3))=
 new (I1,...,IN)
 (Pg * A1:[A2 A3]<I1 X11 ... IN XN1>
 | Pt * A3:[I1 X11]<X12 X13>:...:[IN XN1]<XN2 XN3>)

binaryN((A1,A2,A3),(B1,B2,B3),Pl,Pb
 (X11,X12,X13),...,(XN1,XN2,XN3)) =
new (I1,...,IN)
(Pl * A1:[A2 B1]:[B2 B3]<I1 X11 ... IN XN1>
| Pb * <A2 B1>
| Pt * B3:[I1 X11]<X12 X13>:...:[IN XN1]<XN2 XN3>)

Figure 16. Translation from chemistry to DNA, based on the
approach presented in Soloveichik et al. (2008). The trans-
lation is defined as a collection of modules in the strand displa-
cement language, where each chemical species X is associated
with three distinct domains (X1,X2,X3). The species
module implements an initial population P of the species rep-
resented by domains (X1,X2,X3). The unaryN and
binaryN modules implement unary and binary reactions of
the form A�!ri X1 þ � � � þXN and Aþ B�!ri X1 þ � � � þ XN ,
respectively. The modules rely on a set of local domains
(I1, . . . ,IN) to limit interference between reactions. We
assume that populations Pg, Pl, Pb and Pt are large enough
to remain effectively constant, and that Pt is large enough
to implement reactions that are effectively immediate. The
populations Pg, Pl, Pb are passed as parameters to the mod-
ules, and are chosen to implement accurately the correspond-
ing reaction rates as follows. We let f(X) denote the fraction
of unbound species X and let f(Xg) denote the fraction of
species X bound to a gate g. These populations can be com-
puted beforehand, assuming that an equilibrium between
free and bound species is quickly reached. In the unary case,
r ¼ rA1

. Pg . f(A) and rA3
. Pt� r. In the binary case, r ¼

rB1
. f(B) . f(Ag) and rB3

. Pt, rA1
. Pl, rB1

. Pb, r2B1
, r2A1

� r.
The latter constraints ensure that all intermediate reactions
are fast enough with respect to r to be effectively ignored.

Table 1. DNA implementation of the chaotic chemical
system due to Willamowsky and Rossle, based on the
implementation of Soloveichik et al. (2008). The reaction
rates are defined as r1 ¼ 0.03, r2 ¼ r7 ¼ 5 � 104, r3 ¼ r5 ¼

105, r4 ¼ 0.01, r6 ¼ 0.0165. The implementation uses
modules unary0, unary2, binary0, binary1 and
binary2, which are defined in a similar fashion to the
general modules unaryN and binaryN presented in figure
16. The populations Pg1, . . . ,Pl7, Pb2, Pb3, Pb, Pb7
and the toehold binding and unbinding rates are chosen to
implement accurately the corresponding reaction rates. The
populations are passed as parameters to the modules, along
with the species A, B, C, where A ¼ (A1,A2,A3), B ¼
(B1,B2,B3) and C ¼ (C1,C2,C3).

no. chemistry DNA molecules

1 A�!r1 2A unary2(A,Pg1,A,A)
2 2A�!r2 A binary1(A,A,Pl2,Pb2,A)
3 B þ A�!r3 2B binary2(B,A,Pl3,Pb3,B,B)
4 B�!r4

unary0(B,Pg4)
5 Aþ C �!r5

binary0(A,C,Pl5,Pb5)
6 C �!r6 2C unary2(C,Pg6,C,C)
7 2C �!r7 C binary1(C,C,Pl7,Pb7,C))

Programming language for composable DNA circuits A. Phillips and L. Cardelli 11

 on 3 July 2009rsif.royalsocietypublishing.orgDownloaded from
important to take into account these factors when
determining toehold rates and gate populations.

As mentioned previously, the translations assume
that reaction gates are present in sufficiently large num-
bers so as to remain effectively constant over time.
Another way of ensuring constant gate populations is
to introduce a reservoir of inactive gates that become
active each time a gate is used. An example design is pre-
sented in figure 19. The advantage of this design is that
we have a more precise control over the gate populations,
and can use lower population numbers. If needed, we can
continually supply new inactive gates to ensure that the
active gate population is kept constant indefinitely.
J. R. Soc. Interface
Another issue that needs to be addressed is the fact
that buffer strands continually accumulate after each
execution of a bimolecular reaction. It should be possible
to engineer a more sophisticated collection of molecules

http://rsif.royalsocietypublishing.org/

http://rsif.royalsocietypublishing.org/

http://dx.doi.org/doi:10.1126/science.7973651
http://dx.doi.org/doi:10.1126/science.7973651
http://dx.doi.org/doi:10.1038/35106533
http://dx.doi.org/doi:10.1073/pnas.0535624100
http://dx.doi.org/doi:10.1038/nature02551
http://dx.doi.org/doi:10.1038/nature02551
http://dx.doi.org/doi:10.1093/nar/9.8.1905
http://dx.doi.org/doi:10.1093/nar/9.8.1905
http://dx.doi.org/doi:10.1007/s002360050125
http://dx.doi.org/doi:10.1016/j.tcs.2004.12.032
http://dx.doi.org/doi:10.1089/10665270152530818
http://dx.doi.org/doi:10.1016/S0304-3975(98)00039-5
http://dx.doi.org/doi:10.1016/S0304-3975(98)00039-5
http://research.microsoft.com/dna
http://research.microsoft.com/dna
http://dx.doi.org/doi:10.1093/comjnl/38.7.578
http://dx.doi.org/doi:10.1126/science.288.5469.1223
http://dx.doi.org/doi:10.1126/science.1132493

http://dx.doi.org/doi:10.1038/nnano.2007.225
http://dx.doi.org/doi:10.1038/nnano.2007.225
http://dx.doi.org/doi:10.1038/nature06451
http://dx.doi.org/doi:10.1023/A:1023928811651
http://dx.doi.org/doi:10.1038/35020524
http://dx.doi.org/doi:10.1038/35020524
http://dx.doi.org/doi:10.1126/science.1148532
http://dx.doi.org/doi:10.1126/science.1148532
http://dx.doi.org/doi:10.1093/nar/gkg595

	A programming language for composable DNA circuits
	INTRODUCTION
	RESULTS
	A language for DNA strand displacement
	Simple examples
	Main syntax and execution rules

	Case study: entropy-driven catalytic gate
	Case study: gate motif for large-scale circuits
	Case study: compiling chemical reactions to DNA

	METHODS
	Syntax of the strand displacement calculus
	Semantics of the strand displacement calculus
	Compiling DNA molecules to reactions
	Compiling to DNA sequences

	DISCUSSION
	References

