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Abstract

Rho GTP-binding proteins play a key role as molecular switches in many cellular activities. In response
to extracellular stimuli and with the help of regulators (GEF, GAP, Effector, GDI), these proteins serve as
switches that interact with their environment in a complex manner. Based on the structure of a published
ordinary differential equations (ODE) model, we first present a generic process model for the Rho GTP-
binding proteins, and compare it with the ODE model. We then extend the basic model to include the
behaviour of the GDI regulators and explore the parameter space for the extended model with respect to
biological data from the literature. We discuss the challenges this extension brings and the directions of
further research. In particular, we present techniques for modular representation and refinement of process
models, where, for example, different Rho proteins with different rates for regulator interactions can be
given as instances of the same parametric model.
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1. Introduction

The Rho GTP-binding proteins constitute a distinct family within the super-family of Ras-related small
GTPases with twenty-two identified mammalian members, including Rho, Rac and Cdc42 [16]. These
proteins serve as molecular switches in various subcellular activities, regulating a variety of cell functions,
including actin dependent processes such as cell adhesion, cell motility, cell shape changes and phagocytosis
[1]. When activated by the binding of GTP, these proteins transmit an incoming signal to downstream
effectors.

Rho GTP-binding proteins play an important role in phagocytosis because of their role in regulating
actin dependent protrusion [5] of the membrane around the internalised particles. Phagocytosis is a form of
endocytosis by which a cell engulfs micro-organisms, large edible particles and cellular debris. Phagocytosis
literally means ‘cell eating’. Single-celled organisms such as amoeba obtain food in this way. Phagocy-
tosis also occurs in multi-cellular organisms where, for example, macrophages and other white blood cells
(professional phagocytes) defend the body against invasions of harmful viruses, bacteria, cancerous body
cells, and other threats to health [1]. Phagocytosis and its sub-processes play a key role in host-pathogen
interactions, as the mechanisms involved in the recognition and intracellular degradation of these pathogens
by professional phagocytes are crucial for the induction of protective immunity.

Our long term goal, along these lines, is to provide a systems-level understanding of these cellular
processes by incrementally building more refined models reflecting their mechanistic behaviour. In this
paper, we use the stochastic π-calculus (see, e.g., [24]) to provide a compositional and scalable notation for
modelling the Rho GTP-binding proteins at the core of phagocytosis.
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We study Goryachev and Pokhilko’s paper [13] on an ordinary differential equation (ODE) analysis of
the Rho GTP-binding protein cycle, first in isolation and then with their regulators GEF and GAP. For this
purpose, we introduce an extension of the stochastic π-calculus which provides a more modular means for
extending and refining the models. With this extension to the calculus, our process model provides a simple
modular description of the Rho GTP-binding protein cycle, where the structure of the model naturally
follows the structure of the biological system. Using the Stochastic Pi Machine (SPiM) [21, 20] and the rates
of interaction described in [13], we provide simulations which precisely mimic the results given using ODEs.
Following [13], we also extend our model to include the effectors which interact with these proteins at the
membrane. Again, our results remain consistent with the results obtained from the ODE analysis. This
result provides an essential starting point for our investigation of the behaviour of the Rho GTP-binding
proteins using process models.

We further extend our model to include the interactions of the GTP-binding proteins with another class
of regulators called GDIs, which were not included in the ODE analysis of [13]. Our initial aim was to analyse
the two biological models described in the survey paper [8], but instead we introduce a hybrid model which
fits more closely with the current knowledge on these proteins. Based on the recent biological literature, we
use our model to compare and analyse the different views of the interactions of the GDIs with the Rho family
proteins. In order to compare these different views, we study the effect of varying the parameters of the
extended model with different initial quantities of the species of the model. We then provide a systematic
study of the rates of the extended model by using SPiM to explore the parameter space, and explain the
simulation behaviour with respect to data from the literature.

Because our model reflects the mechanistic behaviour of the Rho GTP-binding proteins, it can be used
to model different members of the Rho family proteins acting in the same biological process. As another
contribution of this paper, we introduce a technique on process models which allows to use them modularly,
for example, to include different members of the Rho family proteins with different interaction rates in the
same simulation as instances of the same parametrised model. Thus, this technique makes it possible to
easily include a model with a certain structure with different instances of rates in the same simulation.
Because cellular events such as Fc receptor-mediated phagocytosis involve different members of the Rho
family proteins, this technique is useful in modelling larger biological systems such as signalling cascades
where different members of Rho family proteins act in concert.

Our process model of Rho GTP-binding proteins provides a formal executable representation of these
proteins together with their regulators. Due to its compositionality, our model should thus stimulate a re-
search environment where models are modified and extended easily at will to perform biological experiments
in silico in order to guide the wet-lab experiments. In such a setting, wet-lab experiments then corroborate
and provide data for more accurate process models by adding more detail to certain components or by
extending the biological system being considered.

2. Rho GTP-binding Proteins and their Role in Fc Receptor-mediated Phagocytosis

Phagocytosis is the process whereby cells engulf large particles, usually over 0.5µm in diameter, by a
mechanism that is based on the local rearrangement of the actin cytoskeleton. Phagocytosis plays an essential
role in host defence against invading pathogens, and in clearance of cell corpses generated by programmed
cell death or apoptosis. Phagocytosis contributes to inflammation and the immune response [1].

Phagocytosis is a triggered process, often initiated by the interaction of particle-bound ligands (op-
sonins) with specific receptors on the cell membrane of ‘professional’ phagocytic white blood cells such
as macrophages, neutrophils and dendritic cells [6]. Among the variety of surface proteins dedicated to
phagocytosis, Fc receptors (FcRs) and receptors for complement fragments (Cr’s) mediate the clearance of
pathogens covered by the specific antibody or complement moiety respectively [15].

2.1. Fc Receptor-mediated Phagocytosis
In the context of Fc receptor-mediated phagocytosis, the signalling cascade is triggered by antibodies,

also called immunoglobulins, for example IgG, which protect the organism by binding to the surface of
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Figure 1: Rho GTP-binding protein cycle. Reproduced with permission from Macmillan Publishers Ltd: Nature [10], copyright
2002.

infectious micro-organisms to form a coat. In this situation, the tail region of each antibody molecule, called
the Fc region, is exposed on the exterior. This antibody coat is recognised by specific Fc receptors on the
surface of the cell. Their binding induces the phagocytic cell to extend pseudopods to form a phagosome
while proceeding with binding its ligands in a zipper-like fashion around the internalised particle [11].

As a result of FcR-Fc interaction on the exterior surface of the cell membrane, a protein tyrosine kinase
of the Src family is activated intracellularly. Following this, Src phosphorylates two tyrosine residues on the
receptor’s signalling subunits located on the internal tail of the Fc receptor. These tyrosine residues belong
to immunoreceptor tyrosine-based activation motifs, or ITAMs. Another protein tyrosine kinase, Syk, is
then recruited through its Src-homology 2 (SH2) domains by binding to the phosphorylated ITAMs. This
results in autophosphorylation and activation of Syk. Among other tasks, activated Syk is responsible for
the activation of the protein Vav [15], which then activates the Rho GTP-binding protein Rac. In a parallel
independent pathway, another Rho GTP-binding protein Cdc42 gets activated by an unknown GEF protein
[19]. Cdc42 and Rac then act at distinct stages to promote actin filament polymerisation and organisation at
the site of particle ingestion: Cdc42 and Rac control actin filament polymerisation through proteins WASP
(Wiskott-Aldrich Syndrome Protein) and WAVE, respectively, that bind to and stimulate the activity of
the Arp2/3 complex. Activation of Arp2/3 results in actin polymerisation and the extrusion of actin-based
protrusions around the particle. While Rac is generally responsible for the branching structure of actin
filaments, Cdc42 causes the actin to polymerise in a linear structure [26].

2.2. Rho GTP-binding Proteins in Fc Receptor-mediated Phagocytosis
The proteins Cdc42 and Rac mentioned above belong to the Rho GTP-binding protein family. These

proteins serve as molecular switches in various subcellular activities, regulating a variety of cell functions,
including actin organisation and cell shape, cell adhesion, cell motility, membrane trafficking and gene
expression [6, 3]. These proteins can be perceived as regulating the transmission of an incoming signal
further to some effector in a molecular module by cycling between inactive and active states, depending
on being GDP or GTP bound, respectively. As depicted in Figure 1, GDP/GTP cycling is regulated by
guanine nucleotide exchange factors (GEFs) that promote the GDP dissociation and GTP binding, whereas
GTPase-activating proteins (GAPs) have the opposite effect and stimulate the hydrolysis of Rho-GTP into
Rho-GDP. In the active GTP-bound state, Rho proteins interact with and activate downstream effectors, for
example, to control actin polymerisation in the context of Fc receptor mediated phagocytosis [16]. Although
the role of GDIs (Guanine nucleotide Dissociation Inhibitors) during phagocytosis or cell processes in general
is not totally clear, there is evidence that these proteins are responsible for multiple tasks in the regulation
of Rho GTP-binding proteins, including the inhibition of the GTP hydrolysis into GDP (see Section 4).
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Figure 2: The ODE model given in [13]. The diagram on the left depicts the chemical reactions underlying the ODEs for this
model. The rates that are used in [13] with respect to data collected from the literature are given on the right.

2.3. An ODE Model of Rho GTP-binding Proteins
In [13], Goryachev and Pokhilko give a computational model of the Rho GTP-binding proteins by means

of ordinary differential equations (ODE). The structure of their model is given in Figure 2. In the figure,
R denotes the Rho GTP-binding protein, whereas RD and RT denote its GDP and GTP bound forms
respectively. A and E denote GAP and GEF, respectively. Thus, RDE, for example, denotes the protein
complex formed by RD and E. The ODEs for this model given in [13] are as follows. 1

dRD/dt = k81.RDA− k18.RD.A + k31.RDE− k13.RD.E + k91.R.D− k19.RD + k21.RT

dRT/dt = k52.RTE− k25.RT.E + k92.R.T− k29.RT− k21.RT + k62.RTA− k26.RT.A

dRDE/dt = k13.RD.E− k31.RDE + k43.RE.D− k34.RDE + k53.RTE

dRE/dt = k34.RDE− k43.RE.D + k54.RTE− k45.RE.T + k94.R.E− k49.RE

dRTE/dt = k45.RE.T− k54.RTE + k25.RT.E− k52.RTE− k53.RTE

dRTA/dt = k26.RT.A− k62.RTA− k68.RTA + k76.RA.T− k67.RTA

dRA/dt = k67.RTA− k76.RA.T + k97.R.A− k79.RA + k87.RDA− k78.RA.D

dRDA/dt = k68.RTA + k78.RA.D− k87.RDA + k18.RD.A− k81.RDA

dR/dt = k29.RT− k92.R.T + k49.RE− k94.R.E + k19.RD− k91.R.D + k79.RA− k97.R.A

dE/dt = k31.RDE− k13.RD.E + k52.RTE− k25.RT.E + k49.RE− k94.R.E

dA/dt = k81.RDA− k18.RD.A + k62.RTA− k26.RT.A + k79.RA− k97.R.A

In this model, the authors study GTP-binding proteins in isolation, disregarding the GDIs. The ODE
model uses mainly the quantitative biochemical data on Cdc42p. This results in an explanation of the
experimentally observed rapid cycling of Rho GTP-binding proteins while having high activity. In this
paper, based on this ODE model, we give a process calculus model which compositionally builds and extends
the ODE model, and provide a comparison of the two models.

3. A Process Calculus Model

We compositionally build a process model of Rho GTP-binding proteins by treating the components of
the Rho GTP cycle as components of a stochastic π-calculus process (see, e.g., [24, 2]). For this purpose, we
introduce an extension of the stochastic π-calculus which provides a more modular means for the construction
of the models by allowing the association of stochastic weights to actions. By resorting to this new capability,
we first build a basic model, and then modularly extend it with regulators. At each stage, we provide
simulations of our models and compare our results with the corresponding ODE model [13].

1The ODE for dRDE/dt is slightly modified to correct a minor typo with respect to the one given in [13].
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3.1. Biological Processes as Computations
In the stochastic π-calculus, the basic building blocks are processes. Each process has a precise description

of what actions it can take. Once a biological system has been modelled using these basic components, we
can run a stochastic simulation on the model in order to display an evolution of the considered system over
time. In this paper, the simulations are performed using the Stochastic Pi Machine (SPiM) 2 [21], which
serves as a platform for implementing stochastic π-calculus processes and for running machine simulations.

When modelling biological processes in the stochastic π-calculus, as introduced in [24], it is sufficient to
associate each channel name with a fixed rate. In such a setting, each channel corresponds to a separate
interaction between two entities, and does not explicitly allow multiple interactions on the same channel
to occur at different rates. However, such an assumption limits the modularity of the modelling approach,
since it requires a new channel to be created for each variation in the interaction rate. In this subsection,
by adding a layer of abstraction that decouples the interaction rate from the ability to interact, we extend
the calculus such that actions are associated with stochastic weights. Thus, the extended calculus helps to
regulate the creation of channels while building models and, thereby, improves modularity.

The syntax of the stochastic π-calculus (SPi) with weights is shown in Definition 1. It is similar to the SPi
syntax presented in [21]. The reduction rules of the calculus are given in Definition 2. Each rule is labelled
with a corresponding rate that denotes the rate of a single reaction, which can be either a communication or
a delay. The rules are standard except for the communication rule (2), where the rate of the comminication
is given by the rate of the channel multiplied by the weights of the input and output actions.

We use a version of SPiM that implements the SPi calculus with weights, given in Definition 1, Definition 2
and Definition 3: a process P can choose, stochastically, between zero or more alternative behaviours. In the
language of SPiM, a choice of N processes is written as do P1 or ... or PN. A choice of only one process
is written as P1, while the empty choice is written as (). A parallel composition of N processes is written as
P1 | ... | PN. This constitutes the basic form of compositionality, which allows processes to be composed
incrementally in order to construct larger system models. A process P can also be given a name X with
parameter m, written let X(m) = P.

A process can perform a delay at rate r and then do P, written delay@r;P. The rate r is a real number
value denoting the rate of an exponential distribution, such that the average duration of the delay is 1/r.
A process can also send a value n on channel x with weight r1 and then do P1, written !x(n)*r1;P1, or it
can receive a value m on channel x with weight r2 and then do P2, written ?x(m)*r2;P2. With respect to
the reduction semantics of SPi given in Definition 2, if these complementary send and receive actions are
running in parallel, they can synchronise on the common channel x and evolve to P1 | P2{m:=n}, where
m is replaced by n in process P2. This allows messages to be exchanged from one process to another.
The weights r1, r2 give a measure of the average time it takes to complete the output and input actions,
respectively. In addition, each channel name x is associated with an underlying rate given by ρ(x). The
resulting rate of the interaction is given by ρ(x) times the weights r1 and r2. These weights decouple the
ability of two processes to interact on a given channel x from the rate of the interaction, which can change
over time depending on the evolution of the processes. If no weight is given then a default weight of 1 is
used. The operator new x@r:t P creates a fresh channel x of rate r to be used in the process P, where t
is the type of the channel. For example, the type chan(chan,chan) denotes a channel that can transmit
the names of two channels. When a process is prefixed with the declaration of a fresh channel, that channel
remains private to the process and does not conflict with any other channel.

In the case where a weight r is an integer, the process ?x(m)*r;Q can be viewed as a syntactic abbreviation
for a choice of r processes do ?x(m);Q or ... or ?x(m);Q, which is r times more likely to occur than the
single process ?x(m);Q. And similarly for the output process. This follows from the sum rule of stochastic
π-calculus, based on the fact that exponential distributions are closed under min: the min of two exponential
distributions is an exponential distribution whose rate is the sum of the rates. Moreover, we can generalise
integer weights to real-number weights, so that for example ?x(m)*2.5;Q represents a transition at 2.5 times
the rate of the single process ?x(m);Q.

2http://research.microsoft.com/spim/
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P,Q::= M Choice M::= () Null
| X(n) Instance | π; P Action
| P | Q Parallel | do π1;P1 or...or πN;PN Actions
| new x P Restriction

π::= ?x(m)*r Input
E::= {} Empty | !x(n)*r Output
| E,X(m) = P Definition,

fn(P) ⊆ m
| delay@r Delay

Definition 1. Syntax of SPi. Each channel x is associated with a rate ρ(x).

(1) do delay@r; P or ...
r−→ P

(2) (do !x(n)*r1; P1 or...)
| (do ?x(m)*r2; P2 or...)

ρ(x)·r1·r2−→ P1 | P2{m:=n}

(3) P
r−→P’ new x P

r−→ new x P’

(4) P
r−→P’ P | Q

r−→ P’ | Q

(5) Q≡P r−→P’≡Q’ Q
r−→ Q’

Definition 2. Reduction in SPi.

P | () ≡ P
P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R
X(m) = P X(n) ≡ P{m:=n}

new x () ≡ ()
new x new y P ≡ new y new x P

x/∈fn(P) new x (P | Q) ≡ P | new x Q

Definition 3. Structural Congruence Axioms in SPi. Structural congruence is defined as the least congru-
ence that satisfies these axioms. Processes in SPi are assumed to be equal up to renaming of bound names
and reordering of terms in a choice.

In Subsection 3.3, we give a comparison of the stochastic π-calculus with this extended calculus from
the point of view modularity. As an example for the modelling of chemical reactions using processes [24],
consider the situation where the biological species RD and E can interact to form an RDE complex, which

let RD() =
?bindE(e)*0.0054; RDE(e)

and RDE(e:chan) = !e*0.136; RD()
let E() = (
new e@1.0: chan()
!bindE(e); ERD(e) )

and ERD(e:chan) = ?e; E()

Figure 3: A SPiM encoding of the reaction RD + E r′
r RDE. The textual representation on the left is equivalent to the
graphical representation on the right, using the graphical representation of the SPiM language presented in [20].
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(i.) (ii.)

(iii.) (iv.)

Figure 4: Graphical representation of the evolution of the RD and E interaction model. Processes RD and E coexist and can
interact on channel bindE (i.). When they interact, E sends the private channel e, and RD receives it. This way, they evolve to
processes ERD(e) and RDE(e), respectively, which share the private channel e, representing a bond between two bio-chemical
species (ii.). By interacting on channel e, they evolve back to the processes E and RD, respectively (iii.). The SPiM plots of
a simulation of the process are shown in (iv.) The x-axis is the time in minutes and y-axis is the number of processes. The
simulation is started with 1000 RD and 1000 E.

can then split to form RD and E. We depict this as the reaction RD + E r′
r RDE . This reaction can be
read in Figure 2 as the arrow from RD to RDE together with the arrow for E (GEF). Following the results in
[13], we know that the binding reaction has rate 3 r = 0.0054µM−1min−1, whereas the unbinding has rate
r′ = 0.136 min−1. This system is coded in SPiM as in Figure 3, with processes RD, RDE, E, and ERD.

The first and second lines of the code state that the process RD can receive a channel e on channel bindE
at rate 0.0054, and then evolve to process RDE(e), which can send a message on channel e at rate 0.136 and
then evolve to RD. The remaining lines state that process E can send the private channel e on channel bindE
and then evolve to ERD(e), which can receive a message on channel e and then evolve to E. In contrast to
the chemical reaction model, instead of using a single process to represent the RDE complex, the calculus
uses two separate processes to represent the bound forms of RDE(e) and ERD(e), which synchronise on a
shared channel e in order to unbind.

In the graphical representation, the thickness of the lines is used to indicate the strength of the weights.
A normal thickness indicates a default weight of 1.0, while a dashed line indicates a weight between 0.1 and
1.0, and a dotted line indicates a weight less than 0.1.

Throughout the simulations presented in this paper, we have converted the mass action rates of [13]
to corresponding stochastic rates in the usual way, for use in the Gillespie algorithm [12] implemented in
SPiM. We have applied a scaling factor to the number of molecules and to the binary reaction rates. This
scaling factor is determined by the number of molecules that are sufficient for a meaningful and inexpensive
stochastic simulation (see Subsection 3.3).

Figure 4 shows a run of a cycle of this reaction in the style of the graphical representation of the SPiM
language. The system is represented as two processes that interact over shared channels, where dark color
nodes indicate actively running processes, and light color labels indicate the active channel on which the
next reaction will be performed. When we run a simulation of this system with initial amounts of 1000 RD
and 1000 E (RD0 = 1000 and E0 = 1000), we get the plot in Figure 4(iv.). We can read from this plot the
recovery time, that is, the time necessary for the system to reach a steady state, as approximately 2.1 mins.
At steady state, the activity of RDE is given by the ratio of bound RDE over the initial population RD0,
and is equal to 0.86. These two notions of recovery time and activity will be used in the remainder of the
paper.

3M is the unit of measurement for concentration, that is, the number of Moles (Avogadro’s number – 6.02 ∗ 1023) of solute
per litre of solution.
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i.
 

ii.
 

Figure 5: A graphical representation of modular construction of the interactions of Rho GTP-binding proteins with respect to
the ODE model in [13]. A basic model excluding the regulators GEF (E) and GAP (A) is extended first with GEF (i.) and then
with GAP (ii.).

3.2. Rho GTP-binding Proteins without GEF and GAP
As a first step towards building a model of Rho GTP-binding proteins, we consider these proteins in

isolation, disregarding the regulators GEF and GAP. This corresponds to the left-most graph in Figure 5.
In this graph, the reactions from R to RD and from R to RT are reversible, but the reaction from RT to

RD is in one direction only, since GTP molecules can hydrolyse to GDP molecules by the disassociation of a
phosphate group, but re-association of the phosphate group to GDP is not possible. Similar to the model in
[13], we do not include the interactions with the GTP and GDP molecules explicitly. Instead, we multiply
the reaction rate from R to RD by the number of GDP molecules (D), and similarly the reaction rate from
R to RT by the number of GTP molecules (T). This is acceptable because the number of GDP and GTP
molecules remains relatively constant over time, with concentrations of 500µM for GTP and 50µM for GDP,
as reported in the literature. The SPiM code for this model is given in the left column of Figure 8, where
D = 50.0 and T = 500.0. The graphical representation at the top is equivalent to the textual representation
at the bottom. The process R can evolve to RD or RT with the rates 0.033∗D and 0.1∗T, respectively. RD
can evolve to R with rate 0.02, and RT can evolve to R or RD with rate 0.02 in both cases. As with the
example in Subsection 3.1, the thickness of the lines is used to indicate the rates of the different reactions.

When we run a simulation using this code with 1000 R (R0 = 1000), we obtain the left-most plot in
Figure 6. We can then read from this plot that the recovery time, that is, the time necessary for the system
to reach stable state, is approximately 90 mins. At the stable state, the RT/R0 ratio is 0.5.

3.3. Rho GTP-binding Proteins with GEF and without GAP
The stochastic π-calculus, as in [24, 21], allows a biological model to be constructed in a modular fashion,

starting with a simplified description of individual components and progressively refining this description
with increasing levels of detail. For example, to construct a process model of Rho GTP (R) binding with

Figure 6: SPiM plots of simulations with the models depicted in Figures 8 and 10. The x-axis is the time in minutes and y-axis
is the number of processes.
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(i)
let R() = ?bindE(e); RE(e)

and RE(e:chan) = !e; R()

let E() = (

new e@1.074:chan

run !bindE(e); ER(e)

)

and ER(e:chan) = ?e; E()

(ii)
let R() = (

do delay@0.1*T; RT()

or ?bindE(e,eT); RE(e,eT)

)

and RE(e:chan,eT:chan) =

do delay@0.1*T; RTE(e,eT)

or !e; R()

and RT() = (

do delay@0.02; R()

or ?bindET(e,eT); RTE(e,eT)

)

and RTE(e:chan,eT:chan) =

do delay@0.02; RE(e,eT)

or !eT; RT()

let E() = (

new e@1.074:chan

new eT@76.8:chan

do !bindE(e,eT); ER(e,eT)

or !bindET(e,eT); ER(e,eT)

)

and ER(e:chan,eT:chan) =

do ?e; E()

or ?eT; E()

Figure 7: An example for the progressive refinement of a stochastic π-calculus model of Rho GTP binding with GEF. For each
of the models, the graphical representation on the left is equivalent to the textual representation on the right.

GEF (E),we can start with a simplified model of binding and unbinding of R and E:

R + E e
bindE RE (1)

This is modelled in stochastic π-calculus by defining a separate process for R and E as shown in Figure 7(i),
where channels bindE and e have the same rates as bindE and e in (1). The stochastic π-calculus model
allows the behaviour of Rho GTP to be modified independently of the behaviour of GEF, for example by
introducing new interactions between Rho GTP and other proteins, without modifying the behaviour of
GEF. However, the modularity of the approach is limited by the fact that any change in the GEF binding
or unbinding rates in the model for Rho GTP will require a corresponding change in the model for GEF.
For example, let us extend the model given with (1) such that there are reactions from R to RT and from
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i.
 

let R() =

do delay@0.033*D; RD()

or delay@0.1*T; RT()

and RD() =

delay@0.02; R()

and RT() =

do delay@0.02; R()

or delay@0.02; RD()

let R() = (

do delay@0.033*D; RD()

or delay@0.1*T; RT()

or ?bindE(e)*0.43; RE(e)

)

and RE(e:chan) =

do delay@0.033*D; RDE(e)

or delay@0.1*T; RTE(e)

or !e*1.074; R()

and RT() = (

do delay@0.02; R()

or delay@0.02; RD()

or ?bindE(e)*0.0075; RTE(e)

)

and RTE(e:chan) =

do delay@0.02; RDE(e)

or delay@0.02; RE(e)

or !e*76.8; RT()

and RD() = (

do delay@0.02; R()

or ?bindE(e)*0.0054; RDE(e)

)

and RDE(e:chan) =

do delay@6.0; RE(e)

or !e*0.136; RD()

let E() = (

new e@1.0:chan

run !bindE(e); ?e; E()

)

Figure 8: Compositional construction of the process model for the Rho GTP-binding proteins with GEF and without GAP

with respect to
i
 in Figure 5.

RE to RTE, with different binding and unbinding rates with respect to those of (1).

R + E e
bindE RE

R 0.02
0.1·T RT

RE 0.02
0.1·T RTE

RT + E eT
bindET RTE

In the corresponding stochastic π-calculus model of Figure 7(ii), we need to communicate two channels (e
and eT ) instead of one to model the different unbinding rates of Rho GTP from GEF. In addition, we need
to define two channels (bindE and bindET ) instead of one channel in order to model the different binding
rates.

In this view of the stochastic π-calculus, any change in the interaction rates between Rho GTP and GEF
will require a change in the behaviour of both models, which limits the modularity of the approach. The
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Figure 9: Graphs displaying the RT/R0 ratio as the output of the ODE [13] and process simulations, respectively, for the
models for Rho GTP-binding proteins with GEF and without GAP.

modularity of processes can be improved by decoupling the existence of an interaction from its rate. In the
following, we use the stochastic π-calculus with weights, introduced in Subsection 3.1, to exploit this idea
in order to gradually extend the models presented.

We extend the Rho GTP-binding protein process model, given in Subsection 3.2, to a process that also
models GEF regulation. This corresponds to the middle diagram in Figure 5 and to the process model
given in the last two columns of Figure 8. Here we have two interacting processes, one for the Rho GTP-
binding protein and one for GEF (E). The graphical representation at the top is equivalent to the textual
representation at the bottom.

As illustrated in this model, the use of weights allows us to write significantly more compact models.
In particular, we can define a molecule E that sends on a single channel bindE, and a molecule R that
receives on this channel at different rates, depending on whether it is bound to D or T. In the general
case this reduces the number of channels required in the system, since only a single channel is needed per
interaction, regardless of the rate, instead of requiring a separate channel for each interaction at a specific
rate. This also reflects the biological intuition of the model, since the ability of two molecules to interact is
often characterised by a single binding site, while the strength of the interaction depends on other factors
such as changes in the conformation of this site.

When we run a simulation using this code with 1000 R and 1000 E processes (R0 = 1000 and E0 = 1000),
we get the middle plot in Figure 6. We can then read from this plot that the recovery time, that is, the time
necessary for the system to reach stable state, is approximately 0.12 mins. At the stable state, the RT/R0

ratio is 0.87.
In order to compare our process model with the ODE model given in [13], we ran the SPiM simulations

on a range of initial number of molecules, where R0 and E0 range between 10−2µM and 106µM . In these
simulations, the rate values are given with the unit µM−1. Because of this, we encode 1µM of a species as 1
instance of the process in the model at the start of the simulation. For instance, when we start the simulation
with E0 = 1000, this corresponds to 1000µM in the ODE model. In order to be able to run simulations
when the initial concentration of species is too low for meaningful stochastic simulations or too high from
the point of view of computational resources, we do a scaling by means of a scaling factor. This scaling can
be seen to be performed on the underlying chemical reactions, that is, we divide the rates of the underlying
binary chemical reactions and multiply the initial concentrations of the species with a factoring constant
[27]. For instance, in order to run a simulation for the case where there are 10−2µM of R and 10−2µM of
E, we scale the rate values by a factor of 104, which allows to give the initial values as 10−2 ∗ 104 = 102. For
this purpose, we divide the rates of the interaction channels in the process model with our scaling factor,
e.g., 104.

The outcome of our SPiM simulations, reflecting the RT/R0 ratio at the stable state, are depicted as
the graph on the right-hand-side of Figure 9. The graph on the left-hand-side of Figure 9 is the outcome
of the ODE simulations taken from [13]. In the graphs for the ODE and process models, the values are
given in logarithms of initial concentrations and logarithms of initial process populations, respectively. For
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Figure 10: Compositional construction of the process model for the Rho GTP-binding proteins with GEF and GAP with

respect to
ii
 in Figure 5.

instance, the point in the plot where E0 = 4 and R0 = 2 is the case where the simulation is started with
104 = 10000 E processes and 102 = 100 R processes. We observe that the outcome of our simulations is
consistent with the outcome of the ODE simulations. In order to obtain this match between the different
models, the quantitative data consisting of the initial concentrations and rate values of the reactions had to
be carefully analysed. This turned out to be a challenging task which required a non-trivial interpretation
of the data given in [13] in terms of processes.

3.4. Rho GTP-binding Proteins with GEF and GAP

We extend the model in Subsection 3.3 as in Figure 5 ( ii. ), and obtain a process model for Rho GTP-
binding proteins with GEF and GAP. The graphical representation of this model is depicted in Figure 10
with three interacting processes: one for the Rho GTP-binding protein, which extends the model given in
the previous subsection, one for GEF (E) and one for GAP (A).

When we run a simulation using this code with 1000 R, 10 A and 1000 E processes (R0 = 1000, A0 = 10
and E0 = 1000), we get the right-most plot in Figure 6. We can then read from this plot that the recovery
time is approximately 0.5 mins. At the stable state, the RT/R0 ratio is 0.35.

In order to compare this model with the model in [13], we ran simulations on a range of initial number of
molecules, where R0 is 1000 and E0 ranges between 10−1µM and 104µM , and A0 ranges between 10−2µM
and 102µM . For some simulations, we performed a scaling as described for the simulations in Subsection
3.3.

The outcome of our simulations are depicted as the graph on the right-hand-side of Figure 11, where
the graph on the left-hand-side is the outcome of the ODE simulations taken from [13]. In the graphs for
the ODE and process models, the values are given in logarithms of initial concentrations and logarithms
of initial process populations, respectively. Again, the outcome of these simulations is consistent with the
outcome of the ODE simulations.
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Figure 11: Graphs displaying the RT/R0 ratio as the output of the ODE [13] and process simulations, respectively, for the
models for Rho GTP-binding proteins with GEF and GAP.

4. Extending the Model with Effectors and GDI

Besides the regulators GEF and GAP, the Rho GTP cycle depicted in Figure 1 is affected by interactions
with another regulator called GDI and also by interactions with effectors: some effectors for Rho GTP-
binding proteins, such as WASP, change their structural conformation and gain the ability to bind to other
proteins while they are associated with the active GTP-bound Rho protein attached to the membrane. In
the following, based on the model in [13], we first extend our model in a way which takes interactions
with effectors into consideration. Following this, we extend our model with GDIs (Guanine-nucleotide
Dissociation Inhibitors) which form a class of regulatory proteins for the Rho GTP cycle [7, 8, 9].

4.1. Extending the Model with Effectors
The biological function of the GTP-binding proteins is performed only by the active GTP-bound form

that binds and activates a broad range of effector proteins. By disregarding the role played by the GDIs, [13]
gives a model that extends the model in Subsection 3.4 with effectors. The model is obtained by extending
the model of the GTP-binding protein cycle with reactions that capture the behaviour of these proteins
together with the effectors: an effector protein complex forms a stable complex with GEF (E) at all times.
The binding of E to the RT results in the formation of an activated tripartite complex, consisting of RT,
E and the effector protein. In this model, M denotes this complex. Due to the lack of detailed data in the
literature, the authors suggest that such a representation provides a sufficiently abstract model of the actual
biological system. The resulting simplified model extends the model depicted in Figure 2 with the reactions

r1 : RT + E→ M r2 : M→ RT + E r3 : RD + M→ RT + M

where the rates of the reactions r1, r2, and r3 are estimated and set as 600µM−1.min−1, 18 min−1 and
0.6 µM−1.min−1, respectively. The authors argue that this model abstracts away from the actual biological
kinetics that would involve 54 more reaction rate constants because of the nine intermediate species formed
by different complexes of E with RD, RT or E together with an effector.

Using the reactions and rates given above, we extend the process model of Subsection 3.4. For a com-
parison with the model of [13], we ran simulations on a range of initial number of molecules, where R0 is
1000, E0 ranges between 10−1µM and 104µM , and A0 ranges between 10−2µM and 103µM .

The outcome of our simulations are depicted as the graph on the right-hand-side of Figure 12, where
the graph on the left-hand-side is the outcome of the ODE simulations taken from [13]. In the graphs for
the ODE and process models, the values are given in logarithms of initial concentrations and logarithms
of initial process populations, respectively. Again, the outcome of these simulations is consistent with the
outcome of the ODE simulations.
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4.2. Extending the Model with GDIs
GDIs were initially identified as down-regulators of GTP-binding proteins due to their ability to prevent

the dissociation of GDP from the GTP-binding proteins [7]. This view of GDIs rules out their binding
capability with the active GTP-bound form of Rho GTP-binding proteins [16, 14]. However, recent evidence
(see, e.g., [23, 7]) suggests that GDI do not only associate to Rho-GDP, but also to Rho-GTP (see Figure
13 in contrast to Figure 1), and the ability to bind to both Rho-GDP and Rho-GTP contributes to a crucial
regulatory mechanism with which GDIs serve as transport proteins, shuttling Rho family proteins between
cytosol and membrane in their active and inactive form (see, e.g., [7, 8, 9]). It is now believed that the
complementary structures of GTP-binding proteins and GDIs are crucial in this transport mechanism. When
associated to the membrane, GTP-binding proteins are anchored to the membrane by lipid modification on
their C-terminus. However, when GTP-binding proteins interact with GDIs, they establish a bond such
that the C-terminal domain of GDI binds both the C-terminus and the switch 2 region of the GTP-binding
protein, while the N-terminal domain of the GDI binds the switch 1 and switch 2 regions of the GTP-binding
protein. This interaction results in a blocking mechanism that prevents the anchoring of the GTP-binding
protein to the membrane, and thus the dissociation of GDP or GTP [7]. Thereby GDI prevents both the
activation of Rho proteins and their interaction with downstream effectors.

Along these lines, there are various models of the exact role of the GDI. We adopt a model which is
hybrid between the two models given in Figure 14 [8]. We describe this model with the following reactions:

r4 : RD + G → RDG

r6 : RT + G → RTG

r5 : RDG → RD + G

r7 : RTG → RT + G

During the interaction of the GTP-bound Rho protein with an effector, GTP hydrolysis facilitated by
a GAP protein terminates the signal by inducing the GTP hydrolysis. As a consequence Rho no longer
interacts with the effector. This allows GDI to bind GDP-bound Rho and extract Rho from the membrane
(reaction r4, 5 in Figure 14). A complex formed by GDP-bound Rho and GDI is then in the cytosol; a
displacement factor or signal at the membrane localises the complex proximal to a membrane compartment
(reaction r5, 1 in Figure 14). GDI might also extract the Rho protein from the membrane in its GTP-bound
form to either terminate the signal prematurely (reaction r6, 6 in Figure 14) or to redirect the Rho protein
to a distinct membrane within the cell (reaction r7, 9 in Figure 14) [23].

The reactions r4, r5, r6 and r7 above provide an abstraction of the interactions of GDIs with the GTP-
binding protein cycle in the actual biological system. It is possible to work with more complicated models:
for example, those involving reactions for the association of different combinations of R, RD and RT with
A and E together with G. Because of the evidence with respect to the protein structure of the GDIs which
suggests that these reactions have very low affinity [25], we work with a model which abstracts away from
such reactions.

We extend our model as depicted in Figure 15 to include the reactions for the GDI and obtain a process
model with the graphical representation depicted in Figure 16. In this model, there are four interacting

Figure 12: Graphs displaying the RT/R0 ratio as the output of the ODE [13] and process simulations, respectively, for the
models for Rho GTP-binding proteins with GEF, GAP and effectors.
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Figure 13: Rho GTP-binding protein cycle, where GDIs also bind to Rho-GTP. Adapted with permission from Macmillan
Publishers Ltd: Nature [10], copyright 2002.

processes: one for the Rho GTP-binding protein, one for GEF, one for GAP and one for GDI. The SPiM
code of this model is given in the Appendix and the ODEs for this model are given in Figure 22.

In [8, 18], it is reported that RhoGDIs can bind to different members of the Rho GTPase family, also
depending on being in vitro or in vivo. For instance, RhoGDIα can bind to RhoA, RhoB, Rac1, Rac2 and
Cdc42 both in vitro and in vivo, whereas RhoGDIβ may bind several of these GTPases in vitro although not
all of these complexes have been detected in vivo. In [9, 7], it is also reported that GDIs are outnumbered
by GEF and GAP regulators. Furthermore, the molar amount of GDI is in excess of any particular Rho
protein, but roughly equal to the total levels of the RhoA, Rac1 and Cdc42 Rho proteins in these cells.
In human neutrophils, RhoA, Rac1/Rac2 and Cdc42 are also equimolar with overall GDI levels, and exist
largely as cytosolic GDI complexes.

By resorting to this data on the quantity of GDI molecules in the cell, we ran simulations on our model
in order to see the effect of varying number of GDIs on the Rho GTP cycle while remaining in the high
activity regime of initial concentrations for the R, E and A molecules. This corresponds to transition regime
from light to dark on the plot given on the right-hand-side in Figure 11. For instance, when we consider
the initial number of processes as R0 and E0 are 1000, and A0 is 10, we observe that the RT/R0 ratio at the
steady state is 0.35. The outcome of 8 simulations, where R0 = 1000, E0 = 1000, A0 = 10 and G0 is varied
for the values 0, 10, 30, 60, 100, 300, 600 and 1000, are shown in Figure 17. There, the rate parameters for
the reactions r4, r5, r6 and r7 are set to 1.0.

As demonstrated by these simulations, our model remains consistent with the two roles that GDIs are
thought to play: (i.) GDI molecules keep the Rho proteins in the cytosol, preventing their interaction with
other binding partners. (ii.) GDI shuttle Rho proteins between the membrane and the cytosol. These two
roles are captured by our model because in the simulations we observe that when G are bound to RT or
RD, these processes are not available for any further interaction with any other species of the model, as
they would be in the cytosol in the cell. In order to interact with the effectors on the membrane they need
to be shuttled back to membrane by G which is modelled by unbinding of RDG and RTG complexes. As a
consequnce of these two roles, the emergent inhibitory role is also being observed as the decreasing activity
when we run simulations with more G processes as demonstrated in Figure 17.

4.3. Parameter Exploration for the GDI reactions
As stated in Section 2, GTP-binding proteins interact with GDIs by establishing a bond such that the

C-terminal domain of GDI binds both the C-terminus and the switch 2 region of the GTP-binding protein,
while the N-terminal domain of the GDI binds the switch 1 and switch 2 regions of the GTP-binding protein.
This interaction results in a blocking mechanism that prevents the anchoring of the GTP-binding protein to
the membrane. In [22], it is reported that deleting certain numbers of amino acids from the C-terminal of
GDIs affect their binding affinity. Because of this, the authors argue that it is tempting to anticipate proteins
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Figure 14: Two different models, given in [8], for the regulation of Rho family GTP-binding proteins by RhoGDI molecules.
We give a model hybrid between these two models.

related to GDI to demonstrate distinct functional specifities due to differences in the C-terminal. Along
these lines, RhoGDIα and RhoGDIβ have been observed to have different binding affinities for different Rho
proteins in vivo and in vitro experiements [8]. Futhermore, in [8], it is also reported that phosphorylation of

 

Figure 15: A graphical representation of the extension of the model depicted in Figure 5 with GDI (G).
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Figure 16: The graphical representation of the model with GDIs, extending the model depicted in Figure 10.

both the GDIs and the Rho GTP-binding proteins plays a regulatory role on the affinity of the interactions
between Rho proteins and GDIs.

In this subsection, in order to see the effect of different rate constants modelling different affinities of
GDIs, we vary the rate parameters of the reactions r4, r5, r6 and r7 in our model between 10−4 and 104.
For this purpose, we first ran simulations with 600 G (GDI) processes. In these simulations, we set the
parameters of the reactions r4 and r5 to one of 10−4, 100 and 104 which results in 9 cases. We then observe
the behaviour of the RT/R0 ratio when the rates of the reactions r6 and r7 are varied between 10−4 and 104

with an order of magnitude of 1. We get the graphs in Figure 18, displaying the RT/R0 ratio with varying
rate parameters at these 9 × 9 × 9 number of simulations. We then ran simulations with 300 G processes,
however from the symmetric point of view: we set the parameters of the reactions r6 and r7 to one of 10−4,
100 and 104 which results in 9 cases, where the rates of the reactions r4 and r5 are varied between 10−4 and
104 with an order of magnitude of 1. For these simulations, we get the graphs in Figure 19, displaying the
RT/R0 at these 9× 9× 9 number of simulations.

In the first set of simulations, at the steady state we observe a plateau at 0.1 for the cases where r4 ≥ r5
with the exception of the case where r4 = 10−4, r5 = 10−4, as depicted in Figure 18. A mechanistic
explanation of these simulations is as follows: the value of RT/R0 remains constant at approximately 0.1,
which corresponds to a steady state of 100 RT. In fact, if we set R0 = 400 and G0 = 0 we also obtain the
same steady state, suggesting that all of the GDI (G) proteins are bound in the plateau region. Indeed, on
closer examination of the individual simulations we do observe that almost all GDI proteins are bound to
Rho, either in the RD or RT form. Since there are 600 GDI proteins in the system, this means that only
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Figure 17: SPiM plots of simulations with the model which extends GTP-binding protein cycle with GDI and effectors. The
x-axis is the time in minutes and y-axis is the number of processes. In all the simulations, R0 and E0 are 1000; A0 is 10. From
left to right, the G0 value is 0, 10, 30, 60, 100, 300, 600 and 1000.

400 Rho proteins remain, resulting in a steady state of about 100 RT, with the rest of the Rho proteins in
different states.

r4 = 10−4, r5 = 10−4 r4 = 10−4, r5 = 1.0

r4 = 1.0, r5 = 104

Figure 18: The result of the simulations with respect to RT/R0 ratio at the z-axis, where R0 and E0 are set to 1000. A0 is 10
and G0 is 600. The x and y-axis are the parameters for the reactions r6 and r7 varying between 10−4 and 104. For the case
where r4 = 10−4 and r5 = 104, we observe a plot similar to those on the left above. We observe a plateau at 0.1, as in the
right-most plot, for the cases where r4 = 1.0, r5 = 1.0; r4 = 104, r5 = 104; r4 = 104, r5 = 1.0; r4 = 104, r5 = 10−4 and r4 = 1.0,
r5 = 10−4.

18



r6 = 10−4, r7 = 10−4 r6 = 10−4, r7 = 1.0

r6 = 1.0, r7 = 104

Figure 19: The result of the simulations with respect to RT/R0 ratio at the z-axis, where R0 and E0 are set to 1000. A0 is 10
and G0 is 300. The x and y-axis are the parameters for the reactions r4 and r5 varying between 10−4 and 104. For the case
where r6 = 10−4 and r7 = 104, we observe a plot similar to those on the left above. We observe a plateau at 0.2, as in the
right-most plot, for the cases where r6 = 1.0, r7 = 10−4; r6 = 1.0, r7 = 1.0; r6 = 104, r7 = 10−4; r6 = 104, r7 = 1.0 and r6 = 104,
r7 = 104.

The cases with a plateau where r4 ≥ r5 are those where the binding rate r4 is sufficiently high to shift
the steady state such that all the available G processes become bound. For instance, if r4 = r5 = 1, the
equilibrium of the RD - RDG reaction is shifted in favour of RDG (due to the larger numbers of RD molecules),
and (almost all of) the GDIs end up in a bound state, regardless of the values of r6 and r7. If the latter
two rates are low, then most of the GDI bind to RD. However, the remaining cases where r4 = r5 = 10−4

and where r4 < r5, we do not observe this plateau because r4 is too low in comparison to the rates of the
rest of the system in order to bind all the G processes. Then, reaching the steady state at 0.1 requires the
regulation of the system by r6 and r7. In that case, the steady state at 0.1 is reached when r6 is sufficiently
high with respect to r7.

The second set of simulations reflect the same situation from a symmetric point of view, as depicted in
Figure 19. In these simulations, we observe a plateau for the cases where r6 ≥ r7 with the exception of the
case where r6 = 10−4, r7 = 10−4. However, in these latter simulations, the plateau is at 0.2 in contrast to
the plateau at 0.1 in the first set of simulations. This is because of the 300 G processes at the beginning
of the simulations in contrast to 600 G processes in the first set of simulations. From this symmetric point
of view, the cases with a plateau where r6 ≥ r7 are those where the binding rate of r6 is sufficiently high
to shift the steady state such that all the available G become bound. As the rate of r6 increases relative to
r7 and r4, more of the GDI become bound to RT, but without affecting the overall levels of free RT in the
system. Similar to the case in the first set of simulations where r4 = 10−4, in the case where r6 = 10−4, in
order to obtain the steady state level of RT at 0.2, the system needs to be regulated by r4 and r5 such that
r4 is sufficiently high with respect to r5.

The rates r4, r5, r6 and r7 together determine the effectiveness of GDI in removing Rho from the system,
and therefore in decreasing the overall activity of RT. However, depending on the relative rates of r4 and r5
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Figure 20: The result of the simulations with respect to RT/R0 ratio at the z-axis, where R0 and E0 are set to 1000. A0 is
10 and G0 is 300. In the simulations on the left-hand-side, the reactions r6 and r7 are removed from the system, and on the
right-hand-side, the reactions r4 and r5 are removed. The x and y-axis are the parameters for the reactions r4 and r5 on the
left, and for the reactions r6 and r7 on the right, varying between 10−4 and 104.

in comparison to the relative rates of r6 and r7, and vice versa, Rho can be removed from the system (that
is, shuttled from the membrane to the cytosol) as RT or RD. Indeed, when both r4 and r6 are sufficiently
low, we do not observe a decrease in the RT/R0 ratio. This observation supports the view on the regulation
of the affinity of Rho and GDI interactions by phosphorylation of these proteins. This is because different
phosphorylation conditions may result in different affinities of GDI to Rho-GTP and Rho-GDP. In order
to test this view, we performed simulations where we removed the reactions r4 and r5 or we removed the
reactions r6 and r7 by setting their rates to 0. As a result of these simulations, depicted in Figure 20, for
the case where r6 = r7 = 0, we observe a behaviour similar to those in Figure 19 where r6 is sufficiently low.
Similarly, for the case where r4 = r5 = 0, we observe a behaviour similar to those in Figure 18 where r4 is
sufficiently low. These observations support the view that binding of GDI to RT and RD to extract these
proteins from the membrane is sensitive to regulation of their interaction affinities.

To conclude, our model captures the behaviour of the GDI at the membrane binding to Rho proteins to
perform their inhibitory role by extracting Rho proteins from the Rho GDP-GTP cycle, and the simultaneous
shuttling behaviour of Rho by GDI. This is because extracted Rho can be considered to be in the cytosol
and delivered to remote membranes inside the cell. Our results indicate that in our model as long as the
association rates are sufficiently high with respect to the disassociation rates, the inhibitory role of GDI is
not hampered. However, by varying the relative rates of Rho-GDP, GDI association and Rho-GTP, GDI
association, it is possible to observe a modification in the relative concentrations of RDG and RTG.

5. A Modular View of Interactions

The Rho family of GTP-binding proteins have 22 members in humans. In cellular events such as phago-
cytosis, some of these proteins act together regulating different parts of the event. In fact, in biological
systems, there are often classes of biochemical species which share the same structure in their interactions
with their partners. For example, the Rho GTP-binding proteins Rac and Cdc42 act in parallel as molecular
switches at different stages of Fc receptor-mediated phagocytosis (see Section 2). The interactions of these
GTP-binding proteins with their effectors are regulated by classes of GEF, GAP and GDI, however with
possibly different rates.

It is desirable to represent the interactions of such classes of species with their partner classes of species
in a single modular model, which can be instantiated by its parameters to simulate different members of
a class of species. For instance, consider the hypothetical model depicted in Figure 21: in this model, a
class A of species has n members that have different interaction affinities with another class B of species.
Here, we can consider A to be different members of the Rho GTP-binding proteins and B as a collection of
different GEF and GAP proteins with varying affinities to different Rho. In the following, we introduce a
technique to represent such a model modularly, such that each member of a class of species can be given as
an instance of a process expression that we call affinity map.
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−→a =


a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm



Figure 21: A graphical representation of two classes of species that can interact with each other and the matrix representation
of their interaction channels.

Definition 4. Let A = {A1, . . . , An} and B = {B1, . . . , Bm} be two classes of species such that each Ai ∈ A
can be bound to at most one Bj ∈ B at any given time. Each Ai and Bj can bind by interacting on the channel
aij, as depicted in Figure 21, with a rate rij ≥ 0 and they can unbind with a rate tij ≥ 0. Let −→a be the matrix
depicted in Figure 21 and let each xij be a variable for each aij. The affinity map of A and B is defined as
follows, where we use −→x as an abbreviation for the expression x11:chan(chan), . . . , xnm:chan(chan), and
a0 and e0 are channels with rate 0.0.

new e0@0.0:chan()
let A(−→x ) = (

new e11@t11:chan() new e12@t12:chan() . . . new e1m@t1m:chan()
new e21@t21:chan() new e22@t22:chan() . . . new e2m@t2m:chan()
. . .
new en1@tn1:chan() new en2@tn2:chan() . . . new enm@tnm:chan()

do !x11(e11); Ab(e11, e0, . . . , e0︸ ︷︷ ︸
(n−1)×

) or . . . or !x1m(e1m); Ab(e1m, e0, . . . , e0︸ ︷︷ ︸
(n−1)×

)

or !x21(e21); Ab(e0,e21,...,e0) or . . . or !x1m(e2m); Ab(e0,e2m,...,e0)
. . .
or !xn1(en1); Ab( e0, . . . , e0︸ ︷︷ ︸

(n−1)×

, en1) or . . . or !xnm(enm); Ab( e0, . . . , e0︸ ︷︷ ︸
(n−1)×

, enm))

and Ab(e1:chan, . . . , en:chan) = do !e1; A(−→x ) or . . . or !en; A(−→x )

let B(−→x ) =
do ?x11(e); Bb(e, e0, . . . , e0︸ ︷︷ ︸

(m−1)×

) or . . . or ?xn1(e); Bb(e, e0, . . . , e0︸ ︷︷ ︸
(m−1)×

)

or ?x12(e); Bb(e0,e,...,e0) or . . . or ?xn2(e); Bb(e0,e,...,e0)
. . .
or ?x1m(e); Bb( e0, . . . , e0︸ ︷︷ ︸

(m−1)×

, e) or . . . or ?xnm(e); Bb( e0, . . . , e0︸ ︷︷ ︸
(m−1)×

, e)

and Bb(e1:chan, . . . , em:chan) = do ?e1; B(−→x ) or . . . or ?em; B(−→x )

new a11@r11:chan(chan) . . . new a1m@r1m:chan(chan)
new a21@r21:chan(chan) . . . new a2m@r2m:chan(chan)
. . .
new an1@rn1:chan(chan) . . . new anm@rnm:chan(chan)
new a0@0.0:chan(chan)

Affinity maps provide a modular view of classes of interacting species. By instantiating affinity maps,
we can provide more refined models for different members of a class of species, and in a simulation use only
specific binding capabilities of these members. For this purpose, we introduce the notion of projection, which
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serves to isolate members of a class of species and their binding capabilities, relevant to the simulation being
considered.

Definition 5. The i-row-projection of a matrix −→a , denoted by −→a i, is the matrix obtained from −→a by
replacing all the elements that are not in the i-th row with a0. The j-column-projection of a matrix −→a ,
denoted by −→a j, is the matrix obtained from −→a by replacing all the elements that are not in the j-th column
with a0.

Proposition 6. Let A(−→x ) and B(−→x ) be defined as in the affinity map of A = {A1, . . . , An} and B =

{B1, . . . , Bm} in Definition 4. Then A(−→ai ) and B(
−→
aj) are equivalent to the following expressions with respect

to the semantics of stochastic π-calculus, implemented in SPiM.

A(−→a i) = ( new ei1@ti1:chan() new ei2@ti2:chan() . . . new eim@tim:chan()
do !ai1(ei1); !ei1; A(−→a i) or . . . or !aim(eim); !eim; A(−→a i) )

B(−→a j) = do ?a1j(e); ?e; B(−→a j) or . . . or ?anj(e); ?e; B(−→a j)

Proof. Proof by induction on n and m: the rate of the channel a0 is 0.0. When the channels in the affinity
map are instantiated with this channel, processes that interact by these channels do not have an effect on
the stochastic behaviour of the system, because they are equivalent to zero process (). Thus, expressions
with this channel and their continuations can be removed. This results in the expressions given above.

By using this idea, we can describe, for instance, species A1 in Figure 21 as A(−→a 1), and species B2 as
B(−→a 2).

6. Discussion

We have given a process model of the Rho GTP-binding protein cycle, and run simulations of our model
using the SPiM tool [21]. Our model closely follows Goryachev and Pokhilko’s paper [13], which provides
an ODE analysis of the Rho GTP-binding protein cycle, both in isolation and with effectors. The use of
process algebra techniques to model and simulate biological systems, and the comparison with the ODE
analysis is not new, see for example [17, 4]. Our results do however provide an essential calibration between
our process-algebra techniques and the ODE analysis for the basic model of the Rho GTP-binding protein
cycle. Moreover, the extension that we have introduced to the stochastic π-calculus provides a more modular
means for extending and refining the models. With the initial calibration of our model, we now have the
freedom to exploit the compositionality of the process-algebra approach to study more refined systems by
extending our basic model. Although the ODE approach can also be extended, we believe the extension is
less natural and ultimately will not scale to large biological systems.

In this paper, we have extended our basic model to capture the effect of the GDIs on the Rho GTP-
binding protein cycle. For this purpose, we use the biological models described in the literature in a way
which better reflects the current knowledge on GDIs [7, 8, 9], in contrast to the former view of these proteins
[16, 14]. In order to obtain a quantitative analysis of the extended model by means of simulations, we have
varied the initial number of species and rate parameters, also by taking the biological literature on GDIs into
consideration. An analysis of the parameter space with respect to the extended model required extending
the SPiM tool with parameter exploration capabilities. Further development of the SPiM tool with such
parameter exploration capabilities is a topic of ongoing work, directly influenced by the work presented in
this paper.

Rho GTP-binding proteins serve as molecular switches in various cellular activities, including phagocy-
tosis. Our long-term goal is to use the model of this paper as a generic model for these proteins which can be
compositionally plugged into larger models. By gradually extending the model and moving between levels
of abstractions, we hope to eventually deliver models for larger biological systems, such as phagocytosis,
where several Rho proteins are essential. Another topic of ongoing investigation is exploiting the biological
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dRD/dt = k81.RDA− k18.RD.A + k31.RDE− k13.RD.E + k91.R.D− k19.RD + k21.RT+r5.RDG− r4.RD.G

dRT/dt = k52.RTE− k25.RT.E + k92.R.T− k29.RT− k21.RT + k62.RTA− k26.RT.A+r7.RTG− r6.RT.G

dRDE/dt = k13.RD.E− k31.RDE + k43.RE.D− k34.RDE + k53.RTE

dRE/dt = k34.RDE− k43.RE.D + k54.RTE− k45.RE.T + k94.R.E− k49.RE

dRTE/dt = k45.RE.T− k54.RTE + k25.RT.E− k52.RTE− k53.RTE

dRTA/dt = k26.RT.A− k62.RTA− k68.RTA + k76.RA.T− k67.RTA

dRA/dt = k67.RTA− k76.RA.T + k97.R.A− k79.RA + k87.RDA− k78.RA.D

dRDA/dt = k68.RTA + k78.RA.D− k87.RDA + k18.RD.A− k81.RDA

dR/dt = k29.RT− k92.R.T + k49.RE− k94.R.E + k19.RD− k91.R.D + k79.RA− k97.R.A

dE/dt = k31.RDE− k13.RD.E + k52.RTE− k25.RT.E + k49.RE− k94.R.E

dA/dt = k81.RDA− k18.RD.A + k62.RTA− k26.RT.A + k79.RA− k97.R.A

dG/dt = r5.RDG + r7.RTG− r4.RD.G− r6.RT.G

dRDG/dt = r4.RD.G− r5.RDG

dRTG/dt = r6.RT.G− r7.RTG

Figure 22: ODEs for the model extended with GDIs. The shaded parts are the those which are added to the ODEs of [13],
given in Section 2.3.

data available in the literature to obtain more detailed models from the point of view biological hypothesis
generation. Our ultimate goal is to benefit from models constructed this way, by iterating between biological
feedback and extensive computer simulations, in the development of useful systems biology tools as well as
novel biological hypotheses.
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of Engineering Senior Fellowship. Kahramanoğulları acknowledges support of the UK Biotechnology and
Biological Sciences Research Council through the Centre for Integrative Systems Biology at Imperial College
(grant BB/C519670/1).

A. Program code for the model with GDIs in Fig. 16.

directive sample 40.0 1000
directive plot
RDA(a); RTA(a); RA(a); RD();
R(); RT(); RDE(e); RE(e); RTE(e)

val D = 50.0 val T = 500.0

new bindA@1.0:chan(chan)
new bindE@1.0:chan(chan)
new bindG@1.0:chan(chan)

let R() = (
do delay@0.033*D; RD()
or delay@0.1*T; RT()
or ?bindA(a); RA(a)
or ?bindE(e)*0.43; RE(e)

)
and RA(a:chan) =
do delay@0.1*D; RDA(a)

or delay@0.0085*T; RTA(a)
or !a*500.0; R()

and RE(e:chan) =
do delay@0.033*D; RDE(e)
or delay@0.1*T; RTE(e)
or !e*1.074; R()

and RT() = (
do delay@0.02; R()
or delay@0.02; RD()
or ?bindA(a); RTA(a)
or ?bindE(e)*0.0075; RTE(e)
or ?bindG(g); RTG(g)

)
and RTG(g:chan) = !g; RT()
and RTA(a:chan) =
do delay@0.0002; RA(a)
or delay@2104.0; RDA(a)
or !a*3.0; RT()

and RTE(e:chan) =
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do delay@0.02; RDE(e)
or delay@0.02; RE(e)
or !e*76.8; RT()

and RD() = (
do delay@0.02; R()
or ?bindA(a)*1.0; RDA(a)
or ?bindE(e)*0.0054; RDE(e)
or ?bindG(g); RDG(g)

)
and RDG(g:chan) = !g; RD()
and RDA(a:chan) =
do delay@0.02; RA(a)
or !a*500.0; RD()

and RDE(e:chan) =
do delay@6.0; RE(e)
or !e*0.136; RD()

let A() = (
new a@1.0:chan
run !bindA(a); ?a; A()

)
let E() = (
new e@1.0:chan
run !bindE(e); ?e; E()

)
let G() = (
new g@1.0:chan
run !bindG(g); ?g; G()

)
run 1000 of R()
run 10 of A()
run 1000 of E()
run 300 of G()

References

[1] Bruce Alberts, Alexander Johnson, Peter Walter, Julian Lewis, Martin Raff, and Keith Roberts. Molecular Biology of the
Cell, Fifth Edition. Garland Science, 2008.

[2] Ralf Blossey, Luca Cardelli, and Andrew Phillips. A compositional approach to the stochastic dynamics of gene networks.
Transactions in Computational Systems Biology, 3939:99–122, 2006.

[3] Xose R. Bustelo, Vincent Sauzeau, and Inmaculada M. Berenjeno. GTP-binding proteins of the Rho/Rac family: regula-
tion, effectors and function in vivo. BioEssays, 29:356–370, 2007.

[4] Luca Cardelli. On process rate semantics. Theoretical Computer Science, 391:190–215, 2008.
[5] Luca Cardelli, Emmanuelle Caron, Philippa Gardner, Ozan Kahramanoğulları, and Andrew Phillips. A process model
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