
A Graphical Representation for the Stochastic
Pi-calculus

Andrew Phillips and Luca Cardelli

Microsoft Research,
7 JJ Thomson Avenue

Cambridge, UK
{v-anphil,luca}@microsoft.com

Abstract. This paper presents a graphical representation for the sto-
chastic pi-calculus, which builds on previous formal and informal nota-
tions. The graphical representation is used to model a Mapk signalling
cascade and an evolved gene network. One of the main benefits of the
representation is its ability to clearly highlight the existence of cycles,
which are a key aspect of many biological systems. Another advantage is
its ability to animate interactions between biological system components,
in order to clarify the overall system function. The paper also shows how
the graphical representation can be used as a front end to a stochastic
simulator for the pi-calculus, in order to allow the direct simulation of
graphical models. This complements the existing textual interface of the
simulator, with a view to making modelling and simulation of biological
systems more accessible to non computer scientists.

1 Introduction

The stochastic pi-calculus has been used to model and simulate a range of bio-
logical systems [6,13,14]. One of the main benefits of the calculus is its ability to
model independent system components, which can then be composed in order
to predict emergent system behaviour. The calculus is mathematically precise,
which makes it amenable to a range of analysis techniques, including type sys-
tems, behavioural equivalences and model checking. However, the mathematical
syntax of the calculus, together with the subtleties of its stochastic reduction
semantics, can sometimes limit the accessibility of the model to a wider audi-
ence. In such cases, it can be useful to present a graphical view of the calculus to
complement its textual notation. From our experience, such an alternative rep-
resentation would be particularly welcomed by experimental systems biologists.

This paper presents a graphical representation for the stochastic pi-calculus,
building on a number of existing formal and informal notations. The paper is
structured as follows. Section 2 presents a variant of the stochastic pi-calculus
that supports internal transitions and recursive definitions. From our experience,
such constructs are useful for modelling biological systems at a more abstract
level. Section 3 presents a graphical representation for the stochastic pi-calculus,
together with a graphical execution model. The representation is designed to

highlight the existence of cycles, which are a key feature of many biological
systems. The execution model can be used to animate the interactions between
biological system components, in order to clarify the overall system function.
Section 4 describes how the graphical representation can be used to model a
Mapk signalling cascade [5] and an evolved gene network [2]. Finally, Section 5
shows how the graphical representation can be used as a front end to a stochastic
simulator for the pi-calculus, in order to allow the direct simulation of graphical
models. This complements the existing textual interface to the simulator, with a
view to making modelling and simulation of biological systems more accessible
to non computer scientists.

2 The Stochastic Pi-calculus

P, Q ::= νx P Restriction
| P | Q Parallel
| Σ Summation
| X(n) Instance

Γ ::= ∅ Empty
| X(m) , P, Γ Definition

Σ ::= 0 Null
| π.P + Σ Action

π ::= ?x(m) Input
| !x(n) Output
| τr Delay

Definition 1. Syntax of SPi

!x(n).P + Σ | ?x(m).Q + Σ′ rate(x)−→ P | Q{n/m} (1)

τr.P + Σ
r−→ P (2)

P
r−→ P ′ ⇒ P | Q r−→ P ′ | Q (3)

P
r−→ P ′ ⇒ νx P

r−→ νx P ′ (4)
Q ≡ P

r−→ P ′ ≡ Q′ ⇒ Q
r−→ Q′ (5)

Definition 2. Reduction in SPi

P | 0 ≡ P (6)
P | Q ≡ Q | P (7)

P | (Q | R) ≡ (P | Q) | R (8)
νx0 ≡ 0 (9)

νx νy P ≡ νy νx P (10)
π.P +π′.P ′+Σ ≡ π′.P ′+π.P +Σ (11)

x 6∈fn(P)⇒νx (P |Q) ≡ P | νx Q (12)
X(m),P ⇒ X(n) ≡ P{n/m} (13)

P ≡ P ′ ⇒ νx P ≡ νx P ′ (14)
P ≡ P ′ ⇒ P | Q ≡ P ′ | Q (15)

P ≡P ′ ⇒ π.P +Σ ≡ π.P ′+Σ (16)
Σ≡Σ′ ⇒ π.P +Σ ≡ π.P +Σ′ (17)

Definition 3. Structural Congruence in SPi

The variant of the stochastic pi-calculus used in this paper is summarised in
Definitions 1, 2 and 3. The calculus supports internal transitions and recursive
definitions, as presented in [8,15]. Recursive definitions have been argued in [14]
to be a more practical programming abstraction for biological systems than
the basic replication semantics of the pi-calculus. In this paper, we also show
how internal transitions labelled with a stochastic delay can provide a useful
programming abstraction. Stochastic behaviour is incorporated into the calculus
by associating each channel x with a corresponding reaction rate given by rate(x)
and labelling each reduction with a reaction rate r as in [12]. In addition, each
internal transition τ is associated with a reaction rate r. A given process of
the calculus is assumed to execute in the presence of a finite environment Γ ,
which contains a number of top-level definitions. For each process X(n) there is
assumed to be a corresponding definition of the form X(m) , P with fn(P) ⊆ m,
as described in [8,15].

The variant of the stochastic pi-calculus presented above has been used as
the basis for the current version of the SPiM programming language [11]. The
language also allows a process P to be of the form:

let X1(m1) = P1 and . . . and XN (mN) = PN in Q

which can be used to define mutually recursive processes at arbitrary levels of
nesting. This gives rise to a more scalable and modular syntax, which is essential
for programming large systems. A process of this form can be encoded into
the calculus by expanding the scope of each definition to the top level, adding
parameters to each top-level definition X(m) , P to ensure that fn(P) ⊆ m,
and renaming process definitions where necessary to ensure that all top-level
definitions are distinct. The transformations are based on standard encodings
presented in [16,8,15].

3 Graphical Representation

A graphical representation for the stochastic pi-calculus can be defined with the
help of a corresponding graphical calculus, as described in Definitions 4 and 5.
The syntax of the graphical calculus corresponds to a normal form, in which
each summation or guarded parallel composition (prefixed by an action π) is
associated with a separate definition. Each definition can also contain a number
of restricted channels.

Definition 6 describes how the definitions of the graphical calculus can be
displayed. A collection of mutually recursive definitions

X1(m1) , C1, . . . , XN (mN) , CN

is displayed as a directed graph with nodes X1 . . . XN and with edges between
these nodes. Each definition X(m) , C is displayed as a node X with zero or
more edges to subsequent nodes in the graph. If C is of the form

X(m) , νx1 . . . νxM (π1.X1(n1) + . . . + πN .XN (nN))

P, Q ::= νx P Restriction
| P | Q Parallel
| X(n) Instance

π ::= ?x(m) Input
| !x(n) Output
| τr Delay

Definition 4. Syntax of Processes in GSPi

Γ ::= ∅ Empty
| X(m) , C, Γ Definition

C ::= νx C Restriction
| Σ Summation
| Π Composition

Σ ::= 0 Null
| π.X(n) + Σ Action

Π ::= X(n) Instance
| Π | Π Parallel

Definition 5. Syntax of Definitions in GSPi

then each edge from node X to node Xi is labelled with an action πi and denotes
an alternative execution path in the system. The node X is represented as an
ellipse with name X, inside a bubble labelled with the restricted names x1 . . . xM .
Alternatively, if C is of the form

X(m) , νx1 . . . νxM (X1(n1) | . . . | XN (nN))

then each edge from node X to node Xi denotes a concurrent execution path
in the system. The node X is represented as a solid rectangle, inside a bubble
labelled with the restricted names x1 . . . xM .

In both cases, the head of each edge leading to a node Xi is labelled with a
substitution {ni/mi}, where mi represents the formal parameters of the definition
Xi and ni represents the parameter instantiations. Mappings in the substitution
that correspond to the identity function are not shown, and if ni = mi then
the substitution is omitted altogether. Interestingly, most of the chemical and
biological systems we have encountered can be modelled using mutually recursive
definitions for which the parameter instantiations of each definition are equal to
the formal parameters. This gives rise to graphical models in which there are no
substitution labels on any of the edges. Examples of these chemical and biological
system models can be found at [11] together with their corresponding graphical
representation. Section 4 highlights two of our more recent models.

In order to obtain a more compact representation of definitions, one can also
envisage an interactive navigation environment, in which disjoint graphs can be
displayed separately or collapsed to a single node by clicking on the graph. Such
features are crucial for the scalability of a graphical representation, since they
allow a user to visualise parts of the system in a modular fashion, rather than
trying to visualise the entire system at once.

X(m) , νx1 . . . νxM (π1.X1(n1) + . . . + πN .XN (nN))

X

π

X

π

X

N 1

1 N

 x1...xM

 {nN/mN} {n1/m1}

X(m) , νx1 . . . νxM (X1(n1) | . . . | XN (nN)) X X 1 N

 x1...xM

 {n1/m1} {nN/mN}

Definition 6. Graphical Display of Definitions in GSPi

X(n)
X

{n/m}

νx1 . . . νxM (P1 | . . . | PN)

 x1...xM

P P 1 N

Definition 7. Graphical Display of Processes in GSPi

Definition 7 describes how the processes of the graphical calculus can be dis-
played. An instance X(n) of a definition X(m) , C is displayed as a highlighted
node X, labelled with the substitution {n/m}. A collection of parallel processes
P1, . . . PN with a number of restricted channels x1, . . . , xM is displayed as a
bubble around the processes, labelled with the names of the channels. This is
reminiscent of previous graphical representations for restriction [8] and is useful
for visualising the formation of a complex between two processes. The use of
restriction to model complexation was first described in [14], where a complex
of two processes P and Q is modelled as a restriction νx (P | Q). The restricted
name x represents a private channel on which the two processes can synchronise
in order to split the complex. The graphical notation highlights the formation
of the complex by grouping P and Q inside a common boundary labelled with
the name of the channel x. In addition, the graphical representation can more
accurately reflect the scope of restricted channels through the use of overlapping
boundaries. For example, a restriction νx1 νx2 (P1 | P2 | P3) where x1 6∈ fn(P3)
and x2 6∈ fn(P1) can be displayed as:

 x1
P P 1 3

P 2 x2

An alternative to drawing a boundary around nodes that share a restricted
channel is to draw a dotted line between the nodes, labelled with the channel
name. A line connecting two nodes represents the formation of a bond between
these nodes, resulting in a more compact representation that is still relatively
intuitive.

In general, there are a number of complementary ways to display a graphical
process. For example, instead of just displaying the node X labelled with a
substitution {n/m}, the entire graph of nodes connected to X can be reproduced.
The graph can be updated as subsequent definitions are instantiated, allowing
successive nodes to be highlighted in the style of state machines. Note that after
each parallel composition a new copy of the graph is spawned. This ensures
that only a single node in a given graph can be highlighted at a given instant.
Alternatively, the substitution labels can all be placed on the same graph, where
each substitution corresponds to a token in the style of Petri Nets [10]. In this
representation a new token is produced after each parallel composition, and
tokens can move around the graph concurrently. Note that care must also be
taken to rename restricted channels in order to avoid name clashes.

By definition, the set of graphical processes GSPi corresponds to a normal
form for the set of processes SPi, such that GSPi ⊂ SPi. As a result, reduction
in GSPi can be defined using reduction in SPi. According to Proposition 1, if a
process in the set GSPi can reduce then the resulting process is also in the set
GSPi, up to structural congruence. The proof is by induction on the definition
of reduction in SPi, where each summation or guarded parallel composition is
associated with a separate definition.

Proposition 1. ∀P ∈ GSPi.P r−→ P ′ ⇒ ∃P ′′ ∈ GSPi.P ′ ≡ P ′′

A dynamic representation of the current state of a process can be obtained by
displaying the graphical syntax after each reduction step. This can be used to vi-
sualise the interactions between biological system components, in order to clarify
the overall system function or to allow for graphical system debugging. Similarly,
the rules for structural congruence can be used to re-arrange the processes of the
graphical calculus, in order to re-arrange the corresponding graph. The graphical
representation has a number of advantages over its textual counterpart. Firstly,
it clearly illustrates the connectivity between process definitions through the use
of labelled arcs. In particular, these arcs highlight the existence of cycles, which
are a key feature of many biological systems. The representation also resembles
standard representations of state machines, in which the current active state is
highlighted. By definition, each highlighted node can perform a transition to a
subsequent node in the graph, which will in turn be highlighted. This successive
highlighting of nodes can be used to visualise the execution trace of a model, for
both tutorial and debugging purposes.

4 Biological Examples

4.1 Mapk Cascade

The graphical stochastic pi-calculus can be used to model the system described
in [5], which studies the ultrasensitivity of the mitogen-activated protein kinase
(Mapk) cascade. The system was described using a set of reaction equations,
which were then converted to ordinary differential equations. These equations
were solved numerically and the response curves for the MAPK cascade were
shown to be steeply sigmoidal. The overall function of the system is illustrated
as follows:

E1 (input)

KKK*KKK

E2

KK KK-PPKK-P

KK-Pase

K K-PP (output)K-P

K-Pase

The input E1 acts as an enzyme to drive the transformation of KKK to
KKK*, which in turn drives the transformation of KK to KK-P to KK-PP,
which in turn drives the transformation of K to K-P to K-PP, completing the
cascade.

Based on the reaction equations described in the paper, we developed the
corresponding pi-calculus model illustrated in Fig. 1. The model represents the
enzymatic reaction between an enzyme E and a substrate K in two stages. First,
the enzyme binds to the substrate with a given rate a, after which the enzyme
can either unbind with rate d, or transform the substrate to a product P with
rate k. This can be written using the reaction equation:

E + K d�
a E·K →k E + P

A reaction of this form is modelled in the pi-calculus by defining separate
processes for the enzyme and the substrate. The enzyme E is modelled as a
process E(a) with private channels d and k. The enzyme can first bind with
a substrate by performing an output on a, sending the channels d and k. The
bound enzyme can then either unbind by performing an input on d, or react by
performing an input on k:

E(a) , νd νk !a(d, k).(?d.E(a) + ?k.E(a))

The substrate K is modelled as a process K(a). The substrate can first bind
with an enzyme by performing an input on a, receiving the channels d and k.
The bound substrate can then either unbind by performing an output on d, or
react by performing an output on k to produce a product P ():

K(a) , ?a(d, k).(!d.K(a) + !k.P ())

For example, the process E1 in Fig. 1 is an enzyme that can interact on a1 and
the process KKK is a substrate that can interact on a1 to produce a product

?a9(d,k)

K_P K_PP

!k

?a10(k,d)!d

?a7(d,k)

K

!k

?a8(k,d)!d

?a5(d,k)

KK_P

!k

?a6(k,d)!d

?a3(d,k)

KK

!k

?a4(k,d)!d

?a1(d,k)

KKK KKKst

!k

?a2(k,d)!d

 ?d5

!a1(d1,k1)

 ?d3

!a3(d3,k3)

?k5

?k3

!a5(d5,k5)

KK_PP

 ?d9

 ?d7

!a7(d7,k7)

?k9

?k7

!a9(d9,k9)

 d5,k5,d3,k3

 d9,k9,d7,k7

E1
?d1
?k1

!a2(d2,k2)

E2
?d2
?k2

KPase

!a10(d10,k10)

?d10
?k10

!a8(d8,k8)

?d8
?k8

 d8,k8,
d10,k10

 d4,k4,
d6,k6

KKPase

!a6(d6,k6)

?d6
?k6

!a4(d4,k4)

?d4
?k4

d2,
k2

d1,
k1

x100

x100

x100

Fig. 1. Graphical model and simulation results for the Mapk Cascade [5]. The results
were obtained with all rates set to 1.0, starting with 1 of each enzyme and 100 of each
substrate.

KKKst. Note that KKKst is itself an enzyme that can interact on both a3

and a5. The remaining enzymes and substrates in Fig. 1 are defined in a similar
fashion.

The model was simulated in SPiM, where the corresponding code is given
in Appendix A. The code is given for reference only, since the graphical model
in Fig. 1 is a complete description of the system. The graphical representation
highlights the cyclic nature of the cascade, and shows the relationship between
the different states of each substrate. A graphical debugging trace is available
from [11], which shows a cartoon sequence of reactions for the model. This helps
clarify the behaviour of the model, in order to check that it does indeed reflect
the behaviour of the system. Such graphical traces are particularly valuable for
developing and debugging complex models in the stochastic pi-calculus.

The simulation results for the model are presented in Fig. 1. The results
highlight the increase in signal response as the cascade is traversed from KKK,
to KK to K, in accordance with the predictions of [5]. From our simulations we
have been able to demonstrate that the overall system response is highly robust
to changes in reactions rates. Even when all of the rates were set to a nominal
value of 1.0, the system response profile was preserved. More detailed simulation
results are available from [11].

4.2 Evolved Gene Network

The graphical stochastic pi-calculus can also be used to model one of the systems
described in [2], which shows how gene networks can be evolved in silico to
perform specific functions. Unlike the Mapk example, in this system the number
of components changes dynamically, since new proteins can be produced and
degraded over time. The system was evolved to perform the basic function of a
bistable switch, which resulted in the following gene network:

+A

 a

A B

B

 b b A+

A

In this network, the genes a and b can produce proteins A and B respectively,
with a constitutive transcription rate. Proteins A and B can bind irreversibly to
produce the complex AB, which can eventually degrade. Protein A can also bind
reversibly to gene b, in order to inhibit the transcription of B. The corresponding
pi-calculus model of this system is described in Fig. 2, and the model code
is given in Appendix A. The stochastic simulation results illustrate that the
system does indeed behave as a bistable switch. Initially, if A binds to b then
production of A stabilises at a high level, since B is produced at a much lower
rate. Alternatively, if A binds to B then production of B stabilises at a high
level, since each subsequent A that is produced immediately binds to B and is
degraded. Further simulation results of the system are also available from [11],

including various responses to input pulses, which match the results presented
in [2]. A cartoon execution trace of the system is also available.

B

degradeB?bind(u)

transcribeA

a

A A/B

degradeAB

degradeA

A/b

?u!inhibit(u)

!bind(u)

transcribeB

?inhibit(u)

!u

b b/A

transcribeB’

 u

B/A

Fig. 2. Graphical model and simulation results for an Evolved Gene Network [2]. The
results were obtained with the rates given in Appendix A, starting with a single gene
for a and b.

5 Graph Generation

A process of the graphical stochastic pi-calculus can be visualised by export-
ing to an open graph syntax known as DOT [3]. DOT is a textual syntax for
representing directed graphs, which can be rendered using the Graphviz DOT
layout engine. A symbolic core syntax for DOT graphs is described in Defini-
tion 8, where labels are optional and represent arbitrary strings. An encoding
(Γ)I for generating a DOT graph from a process environment Γ is presented
in Definition 9, where I represents a node identifier. The encoding maps each
definition X to a corresponding node with identifier X. This allows mutually
recursive definitions to be encoded compositionally, since the layout engine can

G ::= I[label] Labelled node with id I

| I
label−→label J Labelled edge from node I to node J

| G; G′ Sequence of graph declarations

Definition 8. Syntax of DOT Graphs

(∅)I , ∅
(X(m) , C, Γ)I , (C)X ; (Γ)I

(νx1 . . . νxN C)I , I[x1, . . . , xN]; (C)I

X(m) , C ⇒ (X(n))I , I −→{n/m} X

X(m) , C ⇒ (X(n) | Π)I , I −→{n/m} X; (Π)I

(0)I , ∅
X(m) , C ⇒ (π.X(n) + Σ)I , I

π−→{n/m} X; (Σ)I

Definition 9. Encoding a Graphical Process Environment into a DOT Graph

link edges to nodes based on their identifiers. The encoding is proved sound with
respect to the DOT syntax, as stated in Proposition 2, where GSPiΓ is the set
of process environments of the graphical calculus. (the proof is straightforward).

Proposition 2. ∀Γ.Γ ∈ GSPiΓ ⇒ (Γ)I ∈ DOT

The way in which nodes, edges and labels are displayed can be customised for
a given DOT graph. A node I that corresponds to a summation is displayed as
an ellipse around the identifier I, whereas a node that corresponds to a parallel
composition is displayed as a solid rectangle. A labelled node I[l] is displayed as
a bubble around the node I, labelled with l. An edge I

l−→h J from a node I
to a node J is displayed as a directed arc from I to J , with the label l at the
midpoint of the arc and the label h at the head of the arc.

The encoding has been used to implement a graph generating tool, which
produces a DOT graph from a given source file written in the SPiM language.
For space reasons, the graphs in this paper were produced manually, but they
closely resemble the generated graphs produced by the tool. Examples of gen-
erated graphs are available from [11]. A corresponding encoding can also be
defined for generating a graph from an arbitrary process of the graphical cal-
culus. The encoding adds environment labels to nodes and spawns new copies
of graphs where appropriate. The encoding also connects nodes that share re-
stricted channels by a dotted line, labelled with the names of the channels.

Finally, an abstract machine has been defined for the stochastic pi-calculus
with recursion and internal transitions, based on the abstract machine presented
in [12]. The abstract machine can be used to implement a simulator for the

calculus, based on the current implementation available from [11]. The encoding
from graphical processes to DOT graphs can also be adapted to generate a
graph from a given machine term. In a future version of the simulator we plan to
generate a DOT graph after each execution step, in order to render a graphical
debugger for visualising the current state of a simulation.

6 Related Work and Conclusion

This paper presents a graphical representation for the stochastic pi-calculus,
which is used to model a Mapk signalling cascade and an evolved gene network.
One of the main benefits of the representation is its ability to clearly highlight
the existence of cycles, which are a key aspect of many biological systems. An-
other advantage is its ability to animate interactions between biological system
components, in order to clarify the overall system function and to debug changes
in the system.

Pioneering work on Statecharts [4] highlighted the need for a scalable, self-
contained graphical representation of concurrent systems. More recent work pro-
posed a synchronous variant to Statecharts, in which concurrent processes can
synchronise on shared labels [1]. Our graphical representation uses a similar
principle, in contrast with foundational work on graphical representations for
the pi-calculus that rely on more elaborate rules for graph re-writing [7]. Graph-
ical representations are still very much an issue in modern-day computing. In
particular, [9] describes an automata-based representation for the pi-calculus,
in which each state of the system is represented as a node in the graph of an
automaton. In this paper we adopt a less ambitious but perhaps more scalable
approach, which allows new copies of a graph to be generated on demand. From
a biological perspective, each new copy represents a new molecule or compo-
nent, whose internal behaviour is described by a separate graph. Molecules can
interact by synchronising on common channels and can also degrade, after which
the corresponding graph is deleted. Preliminary informal ideas on a graphical
representation for the stochastic pi-calculus were previously presented in [12].
This paper formalises and extends these ideas to produce a novel representation,
in which different node types are used to distinguish between stochastic choice
and parallel composition.

There are numerous areas for future work. The graphical representation ex-
ploits the fact that, within a collection of mutually recursive definitions, the
arguments applied to a definition are often the same as the formal parameters.
This observation was based on experience in modelling a range of biological
systems, but was not obvious a priori. In general, it would be interesting to
investigate which design patterns occur most frequently in various types of bi-
ological systems, in order to improve modelling and visualisation techniques. In
the short term, we plan to use our existing graph generation tool to implement
a graphical debugger for the SPiM simulator. In addition, it would be interest-
ing to develop a tool for drawing graphical models, which could automatically
generate the corresponding pi-calculus code. This ongoing research on graphical

interfaces can be used to complement the existing textual interface to the sim-
ulator, with a view to making modelling and simulation of biological systems
more accessible to non computer scientists.1

References

1. Ch. Andre. Synccharts: A visual representation of reactive behaviors. research
report tr95-52, University of Nice, Sophia Antipolis, 1995.

2. Paul Francois and Vincent Hakim. Design of genetic networks with specified func-
tions by evolution in silico. volume 101, pages 580–585, 2004.

3. Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Software-Practice and Experience,
1-5, 1999.

4. David Harel. Statecharts : A Visual Formalism for Complex Systems. Sci. Comput.
Prog., 8:231–274, 1987.

5. Chi-Ying F. Huang and Jr. James E. Ferrel. Ultrasensitivity of the mitogen-
activated protein cascade. volume 93, pages 10078–10083, 1996.

6. Paola Lecca and Corrado Priami. Cell cycle control in eukaryotes: a biospi model.
In BioConcur’03. ENTCS, 2003.

7. Robin Milner. Pi-nets: A graphical form of π-calculus. In ESOP’94, pages 26–42.
8. Robin Milner. Communicating and Mobile Systems: the π-Calculus. May 1999.
9. Ugo Montanari and Marco Pistore. History-dependent automata: An introduction.

volume 3465, 2005.
10. Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Bonn: Institut für

Instrumentelle Mathematik, Schriften des IIM Nr. 2, 1962. Second Edition:, New
York: Griffiss Air Force Base, Technical Report RADC-TR-65–377, Vol.1, 1966,
Pages: Suppl. 1, English translation.

11. Andrew Phillips. The Stochastic Pi-Machine. Available from
http://www.doc.ic.ac.uk/˜anp/spim/.

12. Andrew Phillips and Luca Cardelli. A correct abstract machine for the stochastic
pi-calculus. In Bioconcur’04. ENTCS, August 2004.

13. C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of a stochastic
name-passing calculus to representation and simulation of molecular processes.
Information Processing Letters, 2001. In press.

14. A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of bio-
chemical processes using the pi- calculus process algebra. In R. B. Altman, A. K.
Dunker, L. Hunter, and T. E. Klein, editors, Pacific Symposium on Biocomputing,
volume 6, pages 459–470, Singapore, 2001. World Scientific Press.

15. Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

16. David N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD
thesis, June 1996. CST-126-96 (also published as ECS-LFCS-96-345).

1 Many thanks to Giuseppe Castagna, James Margetson and Leonard Goldstein for
their useful suggestions and comments on this work.

A Program Code

Dec ::= new x{@r}:t Channel Declaration
| type n = t Type Declaration
| val m = v Value Declaration
| run P Process Declaration
| let D1 and . . . and DN Definitions, N ≥ 1

D ::= X(m1, . . . ,mN) = P Definition, N ≥ 0

P ::= () Null Process
| (P1 | . . . | PM) Parallel, M ≥ 2
| X(v1, . . . ,vN) Instantiation, N ≥ 0
| π{; P} Action
| do π1{; P1} or . . . or πM{; PM} Choice, M ≥ 2
| (Dec1 . . . DecN P) Declarations, N ≥ 0

π ::= !x {(v1, . . . ,vN)} Output, N ≥ 0
| ?x {(m1, . . . ,mN)} Input, N ≥ 0
| delay@r Delay

Fig. 3. The Stochastic Pi Language

val transcribeA = 0.20 val degradeA = 0.002
val transcribeB = 0.37 val degradeB = 0.002
val transcribeB’ = 0.027 val degradeAB = 0.53
new bind@0.72:chan new inhibit@0.19:chan(chan)
let a() = delay@transcribeA; (A() | a())
and A() = (

new u@0.42:chan
do delay@degradeA
or !bind; A_B()
or !inhibit(u); A_b(u)

)
and A_b(u:chan) = ?u; A()
and A_B() = delay@degradeAB
let b() =

do delay@transcribeB; (B() | b())
or ?inhibit(u); b_A(u)

and b_A(u:chan) =
do !u; b()
or delay@transcribeB’; B(); b_A(u)

and B() = do delay@degradeB or ?bind
run (a() | b())

Fig. 4. Program Code for Evolved Gene Network

let E1() = (
new k1@rk1:chan new d1@rd1:chan
!a1(d1,k1); do ?d1; E1() or ?k1; E1()

)
let E2() = (

new k2@rk2:chan new d2@rd2:chan
!a2(d2,k2); do ?d2; E2() or ?k2; E2()

)
let KKK() = ?a1(d,k); KKK_E(d,k)
and KKK_E(d:chan,k:chan) = do !d; KKK() or !k; KKKst()
and KKKst() = (

new d3@rd3:chan new k3@rk3:chan
new d5@rd5:chan new k5@rk5:chan
do ?a2(k,d); KKK_E(d,k)
or !a3(d3,k3); (do ?d3; KKKst() or ?k3; KKKst())
or !a5(d5,k5); (do ?d5; KKKst() or ?k5; KKKst())

)
let KK() = ?a3(d,k); KK_E(d,k)
and KK_E(d:chan,k:chan) = do !d; KK() or !k; KK_P()
and KK_P() = do ?a4(k,d); KK_E(d,k) or ?a5(d,k); KK_P_E(d,k)
and KK_P_E(d:chan,k:chan) = do !d; KK_P() or !k; KK_PP()
and KK_PP() = (

new d7@rd7:chan new k7@rk7:chan
new d9@rd9:chan new k9@rk9:chan
do ?a6(k,d); KK_P_E(d,k)
or !a7(d7,k7); (do ?d7; KK_PP() or ?k7; KK_PP())
or !a9(d9,k9); (do ?d9; KK_PP() or ?k9; KK_PP())

)
let K() = ?a7(d,k); K_E(d,k)
and K_E(d:chan,k:chan) = do !d; K() or !k; K_P()
and K_P() = do ?a8(k,d); K_E(d,k) or ?a9(d,k); K_P_E(d,k)
and K_P_E(d:chan,k:chan) = do !d; K_P() or !k; K_PP()
and K_PP() = ?a10(k,d); K_P_E(d,k)

let KKPase() = (
new d4@rd4:chan new k4@rk4:chan
new d6@rd6:chan new k6@rk6:chan
do !a4(d4,k4); (do ?d4; KKPase() or ?k4; KKPase())
or !a6(d6,k6); (do ?d6; KKPase() or ?k6; KKPase())

)
let KPase() = (

new d8@rd8:chan new k8@rk8:chan
new d10@rd10:chan new k10@rk10:chan
do !a8(d8,k8); (do ?d8; KPase() or ?k8; KPase())
or !a10(d10,k10); (do ?d10; KPase() or ?k10; KPase())

)
run 100 of (KKK() | KK() | K())
run (E2() | KKPase() | KPase() | E1())

Fig. 5. Program Code for Mapk Cascade

