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Abstract. This paper presents an abstract machine for a variant of the
stochastic pi-calculus, in order to correctly model the stochastic sim-
ulation of biological processes. The abstract machine is proved sound
and complete with respect to the calculus, and then used as the basis
for implementing a stochastic simulator. The correctness of the machine
helps ensure that the simulator is correctly implemented, giving greater
confidence in the simulation results. A graphical representation for the
pi-calculus is also presented, as a potential front-end to the simulator.

1 Introduction

Process calculi have been seen traditionally as a theoretical framework for the
study of concurrent computation, or as a paradigm for more practical concur-
rent languages, or as a specification language for software and hardware systems
that are coded in more pragmatic ways. Therefore, the direct implementation of
process calculi for the purpose of execution has never been a high-priority enter-
prise. Recently, though, a range of process calculi have been adapted or freshly
developed for applications in biology, where highly concurrent processes are the
norm. In this application domain, process calculi do not act as a paradigm, but
as a direct way to describe systems. Therefore, there is a new interest in correct
implementation techniques for process calculi, particularly if a quantitative as-
pect can be added for the purpose of stochastic execution. This paper focuses on
implementation techniques for a variant of the stochastic pi-calculus, in order to
correctly model the stochastic simulation of biological processes.

The remainder of the paper is structured as follows. In Sect. 2 a variant
of the stochastic pi-calculus is described, along with a corresponding graphical
representation. In Sect. 3 an abstract machine for the stochastic pi-calculus is
presented, and in Sect. 4 the machine is proved sound and complete with respect
to the calculus. An implementation of the stochastic machine is described in
Sect. 5, and various simulation results are reported.

2 The Stochastic Pi-Calculus

The variant of the stochastic pi-calculus used in this paper is summarised in
Definitions 1, 2 and 3. The calculus is based largely on [1] and [2], but uses a



form of guarded replication presented in [3], which is easier to implement. Each
channel x is associated with a corresponding reaction rate given by rate(x),
and each reduction is labelled with a reaction rate, as in [2]. A corresponding
graphical representation is presented in Definitions 4, 5 and 6.

P, Q ::= νx P Restriction (1)
| P | Q Parallel (2)
| Σ Summation (3)
| !π.P Replication (4)

Σ ::= 0 Null (5)
| π.P + Σ Action (6)

π ::= x〈n〉 Output (7)
| x(m) Input, x 6= m (8)

Definition 1. Syntax of SPi

Q ≡ P
r−→ P ′ ≡ Q′ ⇒ Q

r−→ Q′ (9)
P

r−→ P ′ ⇒ νx P
r−→ νx P ′ (10)

P
r−→ P ′ ⇒ P | Q r−→ P ′ | Q (11)

x〈n〉.P + Σ | x(m).Q + Σ′ rate(x)−→ P | Q{n/m} (12)

Definition 2. Reduction in SPi

P | 0 ≡ P (13)
P | Q ≡ Q | P (14)

P | (Q | R) ≡ (P | Q) | R (15)
!π.P ≡ π.(P | !π.P ) (16)
νx0 ≡ 0 (17)

νx νy P ≡ νy νx P (18)
π.P +π′.P ′+Σ ≡ π′.P ′+π.P +Σ (19)

Σ≡Σ′ ⇒ π.P +Σ ≡ π.P +Σ′ (20)
x 6∈fn(P )⇒νx (P |Q) ≡ P | νx Q (21)

P ≡ P ′ ⇒ νx P ≡ νx P ′ (22)
P ≡ P ′ ⇒ P | Q ≡ P ′ | Q (23)
P ≡ P ′ ⇒ !π.P ≡ !π.P ′ (24)

P ≡P ′ ⇒ π.P +Σ ≡ π.P ′+Σ (25)

Definition 3. Structural congruence in SPi

A biological system can be modelled in the stochastic pi-calculus by rep-
resenting each component of the system as a calculus process, which precisely
describes what the component can do. According to Definition 1, the most basic
component is a summation Σ, which is a choice between zero or more output
x〈n〉 or input x(m) actions that the component can perform. Two components
P and Q can be combined together using parallel composition P | Q, and a
given component P can contain a restricted reaction channel νxP . In addition,
multiple copies of a given component π.P can be defined using replication !π.P .
Standard syntactic abbreviations are used, such as writing π for π.0 and π.P
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Definition 4. Graphical Syntax of SPi
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Definition 5. Graphical Shading in SPi
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Definition 6. Graphical Reduction in SPi

for π.P + 0. A corresponding graphical syntax is given in Definition 4, which is
isomorphic to the textual syntax. For convenience, the graphical notation x〈m〉
is used to represent a parallel output x〈n〉.

Two components in a biological system can react by performing complemen-
tary input and output actions on a common reaction channel. According to
Definition 2, a summation containing an output x〈n〉.P can react with a parallel
summation containing an input x(m).Q. The reaction occurs with rate(x), after
which the name n is bound to m in process Q (written Q{n/m}) and processes
P and Q{n/m} execute in parallel (12). Components can also react in parallel
with other components (11), inside a restriction (10), and up to re-ordering of
components (9). Components can be re-ordered according to the structural con-
gruence rules given in Definition 3. In particular, these rules allow a replicated
input !x(m).Q to spawn a new copy of Q by reacting with an output x〈n〉.P .
A corresponding definition of graphical reduction is given in Definition 6. The



graphical reduction rules are similar to the textual rules, and make use of a
definition of graphical structural congruence that is isomorphic to the textual
definition. However, instead of replacing one process with another, graphical re-
duction uses shading to represent the execution of successive processes. This is
analogous to highlighting states between successive transitions in a state ma-
chine. Shaded processes are described in Definition 5, and are used to represent
a process that is currently being executed. Note that the use of shading requires
an additional rule to allow reduction inside a summation.

By definition, a graphical process is a tree of nested processes. However,
links between summations in the tree can be easily encoded in order to represent
cyclic behaviour, where a link is a labelled arc with a double-headed arrow. Each
summation Σ with one or more inbound links is encoded as νx (x〈〉 | !x().Σ),
and a summation containing a link to Σ with label π is encoded as π.x〈〉+ Σ′,
where the scope of x is extended accordingly. Note that links can only be defined
between two summations that share a common root summation, in order to
guarantee mutual exclusion between the source and target of a link.
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Fig. 1. Interaction Map for Regulating Gene Expression by Positive Feedback [4]

The stochastic pi-calculus can be used to model the regulation of gene expres-
sion by positive feedback, based on [4]. According to Fig. 1, DNA for proteins A
and TF is transcribed to RNA for A and TF, which is then translated to pro-
teins A and TF, respectively. Protein A can bind to TF and then activate TF
by sending its protein tail. Active TF then unbinds from A and uses its newly
acquired tail to stimulate the production of A and TF, resulting in a positive
feedback loop. A pi-calculus model for this system is given in Fig. 2, together
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Fig. 2. Regulating Gene Expression by Positive Feedback [4]

with a corresponding graphical representation. The graphical model clearly il-
lustrates the behaviour of the DNA, RNA, A and TF proteins in the system,
and uses a single Proteins process to represent the basic functions of degrada-
tion, transcription and translation. For clarity, summations in the model can be
annotated with names, but these do not have any semantic meaning. The DNA
for a protein P can be transcribed to RNA using the transcribe channel, and
this RNA can be translated to protein P using the translate channel. Protein
A can bind with a protein TF by sending private u, send, and remove channels
on the bind channel. Once bound, A can send a protein tail to TF on the send



channel. After TF unbinds from A, it can use its newly acquired tail to activate
the DNA for A or TF , which will then transcribe RNA at a higher rate using
the transcribe′ channel, resulting in a positive feedback loop.

3 The Stochastic Pi-Machine

3.1 Approach

The Stochastic Pi-Machine (SPiM) is a formal description of how a stochastic
pi-calculus process can be executed. The machine is inspired by recent work
on abstract machines for process calculi [3,5] and uses a list syntax, which is
close to an implementation language. The SPi-Machine executes a given process
P by first encoding P into a list of summations with a number of top-level
private names. The machine then uses a stochastic selection algorithm based on
[6] to choose a particular channel x on which to perform a communication. The
procedure is repeated until no more communications are possible. A detailed
description of the SPi-Machine is given in the remainder of this section.

3.2 Encoding

In order to execute a given process P , the SPi-Machine first needs to encode
P into a suitable machine term. The set of machine terms is denoted by SPiM,
and individual machine terms V,U are defined using lists A,B. According to
Definition 7, a machine term V is a list with zero or more restricted names, and
a list A is either an empty list [] or a list containing one or more summations Σ.
Note that summations in SPiM are identical to summations in SPi.

The SPi-Machine encodes a given process P into a machine term using an
encoding function (P ). According to Definition 9, a process P is encoded by
adding it to an empty list [] using a construction operator (:). The construction
operator P : V adds a process P to an arbitrary machine term V , producing an
updated machine term as a result. According to Definition 8, if a process P is
added to a term νxV containing a private name x, then P is added to V and the
scope of x is extended to the top level, provided x is not known to P (30). Once
the scope of each private name has been extended in this way, the process P can
be added to the remaining list A. The null process 0 is not added to the list (31),
and the parallel composition process P | Q is split so that each parallel process
is added separately (32). The restriction process νy P is modified by replacing y
with a fresh name x, the scope of x is extended to the top level and the process
P{x/y} is added to the list (33). The replicated action !π.P is expanded to a
summation consisting of a single action, and the resulting summation is placed
at the head of the list (34). Finally, the non-empty summation π.P +Σ is placed
at the head of the list (35).

3.3 Execution

Once a process has been encoded to a machine term using the construction
operator, it can then be executed by the machine. In general, a machine term is



V, U ::= νx V Restriction (26)
p A List (27)

A, B ::= [] Empty (28)
p Σ ::A Summation (29)

Definition 7. Syntax of SPiM

n 6∈ fn(P ) ⇒ P : (νx V ) , νx (P : V ) (30)
0 : A , A (31)

(P | Q) : A , P : Q : A (32)
x 6∈ fn(P, A) ⇒ (νy P ) : A , νx (P{x/y} : A) (33)

!π.P : A , π.(P | !π.P ) ::A (34)
(π.P + Σ) : A , (π.P + Σ) ::A (35)

Definition 8. Construction in SPiM

(P ) , P : [] (36)

Definition 9. Encoding SPi to SPiM

a list of summations with a number of top-level private names:

νx1 νx2 ...νxN (Σ1 ::Σ2 :: ... ::ΣM :: [])

A given term is executed by the machine in steps, according to a labelled reduc-
tion relation r−→. The relation V

r−→ V ′ is true if the machine can transform a
term V into a term V ′ with rate r during a single execution step. According to
Definition 10, if a term V can reduce to V ′ with rate r then this reduction can
also take place if V contains a private name x (37). This rule allows the machine
to execute a list A with an arbitrary number of private names. The machine
executes a list A by first choosing the next channel x on which to perform a
communication, using the function Next(A). The machine then uses a selection
operator � to choose a summation x(m).P + Σ with an input on channel x and
another summation x〈n〉.Q + Σ′ with an output on x. The value n is then sent
along channel x and bound to m in process P . The summations Σ and Σ′ are
discarded, and the processes P{n/m} and Q are added to the remainder of the
list (38).

The selection operator � chooses a particular action from inside a list by
first moving a summation to the head of the list and then moving an action
to the front of the summation. The relation A � B is true if the list A can be
re-arranged to match list B. According to Definition 11, a list can be re-arranged
by bringing a summation to the head of the list (39) or by bringing an action to
the front of a summation (40), where A@B appends list B to list A. Note that



V
r−→ V ′ ⇒ νx V

r−→ νx V ′ (37)
������

x = Next(A)
∧A � (x(m).P + Σ) ::A′

∧A′ � (x〈n〉.Q + Σ′) ::A′′
⇒ A

rate(x)−→ P{n/m} : Q : A′′ (38)

Definition 10. Reduction in SPiM

A@Σ ::A′ � Σ ::A@A′ (39)
Σ ::A � (π′.P ′ + Σ′) ::A ⇒ (π.P + Σ) :: A � (π′.P ′ + π.P + Σ′) ::A (40)

Definition 11. Selection in SPiM

the selection operator only allows a single action inside a single summation to be
selected, leaving the remainder of the list unaltered. This prevents the contents of
the list from being permuted unnecessarily, resulting in a more efficient machine.

The next reaction channel x and the reaction delay τ are calculated using
the algorithm described in Definition 12. The algorithm is based on the Gillespie
algorithm [6], which uses a notion of channel activity in order to stochastically
select the next reaction channel. A similar notion of channel activity is defined
for the SPi-Machine, where Actx(A) denotes the activity of channel x in list A.
The activity corresponds to the number of possible combinations of inputs and
outputs on channel x in A, and is defined by:

Actx(A) = (Inx(A) ∗Outx(A))−Mixx(A)

where Inx(A) and Outx(A) are the number of unguarded inputs and outputs on
channel x in A, respectively, and Mixx(A) = the sum of Inx(Σi)×Outx(Σi) for
each summation Σi in A. The formula takes into account the fact that an input
and an output in the same summation cannot interact, by subtracting Mixx(A)
from the product of the number of inputs and outputs on x. Once the values x
and τ have been calculated, the machine increments the reaction time by delay τ
and randomly chooses one of the available reactions on x with equal probability,
using the selection operator. This is achieved by randomly choosing a number
n ∈ [1..Inx(A)] and selecting the nth input in A, followed by randomly selecting
an output from the remaining list in a similar fashion.

For improved efficiency, the machine can store a list of tuples for each channel
x in A, of the form:

x, Inx(A),Outx(A),Mixx(A), ax

After each reduction has been performed, it is only necessary to update the
values for those channels that were affected by the reduction, and then use



1. For all x ∈ fn(A) calculate ax = Actx(A) ∗ rate(x)
2. Store non-zero values of ax in a list (xµ, aµ), where µ ∈ 1...M .
3. Calculate a0 =

PM
ν=0 aν

4. Generate two random numbers n1,n2 ∈ [0, 1] and calculate τ, µ such that:

τ = (1/a0) ln(1/n1)

µ−1X

ν=1

aν < n2a0 ≤
µX

ν=1

aν

5. Next(A) = xµ and Delay(A) = τ .

Definition 12. Calculating Next(A) and Delay(A) according to Gillespie [6].

Definition 12 on the updated values to choose the next reaction channel and
calculate the delay.

4 Correctness of the Stochastic Pi-Machine

4.1 Approach

The correctness of the SPi-Machine is expressed in terms of five main properties:
safety, soundness, completeness, termination and duration. Safety ensures that
the machine does not produce any runtime errors, and Soundness ensures that
the machine can only perform valid execution steps. Completeness is a much
stronger property, which ensures that the machine can accurately execute all
possible behaviours of the calculus. Termination ensures that the machine does
not loop forever unnecessarily, and Duration ensures that each reduction in the
machine takes the same length of time as the corresponding reduction in the
calculus, and vice-versa. An outline of the main proofs is given in Appendix A.

4.2 Safety

Safety ensures that the machine does not produce any runtime errors when
executing a given term V . According to Theorem 1, if the machine reduces a
term V to V ′ with rate r, then V ′ will be a valid machine term.

Theorem 1. ∀V.V ∈ SPiM ∧ V
r−→ V ′ ⇒ V ′ ∈ SPiM

4.3 Soundness

Soundness ensures that each reduction in the machine corresponds to a valid
reduction in the calculus. In order to prove the soundness of the machine it is
necessary to define a decoding function [V ], which maps a given machine term



V to a corresponding calculus process. According to Definition 13, a term νxV
with a private name x is mapped to the decoded term [V ] with a private name
x (41). The null list is mapped to the null process (42), and a summation at the
head of a list is mapped to a summation in parallel with the decoded list (43).

[νx V ] , νx [V ] (41)
[[]] , 0 (42)

[Σ ::A] , Σ | [A] (43)

Definition 13. Decoding

Once a decoding from machine terms to calculus processes has been defined
in this way, it is possible to state and prove the soundness of the machine.
According to Theorem 2, if the machine can reduce a term V to V ′ with rate r,
then the calculus can perform a corresponding reduction with the same rate on
the decoding of V .

Theorem 2. ∀V.V ∈ SPiM ∧ V
r−→ V ′ ⇒ [V ]

r−→ [V ′]

4.4 Completeness

Completeness ensures that each reduction in the calculus can be matched by
a corresponding reduction in the machine, up to re-ordering of machine terms.
In order to prove the completeness of the machine it is necessary to define a
structural congruence relation V ≡ U , which allows a term V to be re-ordered
to match a term U . According to Definition 14, unused private names can be
discarded (44), private names can be re-ordered (45) and summations inside
a list can also be re-ordered (46). In addition, a list can be re-ordered inside
a restriction (47), part of a list can be re-ordered (48) and actions inside a
summation can be re-ordered (49).

νx [] ≡ [] (44)
νx νy V ≡ νy νx V (45)

A@B ≡ B@A (46)

A ≡ A′ ⇒ νx A ≡ νx A′ (47)
A ≡ A′ ⇒ A@B ≡ A′@B (48)
Σ ≡ Σ′ ⇒ Σ ::A ≡ Σ′ ::A (49)

Definition 14. Structural Congruence in SPiM



An important property of structural congruence is that congruent terms
should be able to perform corresponding reductions that preserve the congru-
ence relation. This property needs to be proved explicitly for the machine, since
structural congruence is not used in the definition of reduction. The omission is
deliberate, and avoids the need to examine all possible re-orderings of a term in
order to perform a reduction. As a result, the efficiency of the machine is signif-
icantly improved from O(!n) to O(n), where n is the number of summations in
the machine. According to Lemma 1, if the machine can reduce a term V to V ′

with rate r, then it can reduce any term that is congruent to V to a term that
is congruent to V ′, with the same rate.

Lemma 1. ∀V.V ∈ SPiM ∧ U ≡ V ∧ V
r−→ V ′ ⇒ ∃U ′.U

r−→ U ′ ∧ U ′ ≡ V ′

Once a structural congruence relation has been defined in this way, it is possible
to state and prove the completeness of the machine. According to Theorem 3,
if the calculus can reduce a process P to P ′ with rate r, then the machine can
perform a corresponding reduction with the same rate on the encoding of P , up
to structural congruence.

Theorem 3. ∀P.P ∈ SPi ∧ P
r−→ P ′ ⇒ (P )

r−→≡ (P ′)

4.5 Termination

Termination ensures that the machine stops executing if there are no more re-
ductions to be performed. This prevents a given simulation from looping forever
unnecessarily. According to Theorem 4, if a process P cannot reduce, then the
corresponding machine term cannot reduce either.

Theorem 4. ∀P.P ∈ SPi ∧ P 6−→ ⇒ (P ) 6−→

4.6 Duration

The Gillespie algorithm has been proved correct as a means of stochastically
selecting a reaction channel [6], and soundness and completeness both ensure
that the machine performs each reduction r−→ with the correct rate. However,
these properties are not sufficient to express the correctness of the stochastic
machine, as illustrated by the following example:

P1 , ( x〈n〉.P + x〈n〉.P ) | x(m).Q
P2 , x〈n〉.P | x(m).Q

In this example, both P1 and P2 can reduce to the same process P | Q{n/m},

with the same reduction
rate(x)−→ , yet the reduction is twice as fast in process P1

as it is in process P2. This is because two competing actions with exponential
distributions of rate r can be viewed as a single action with an exponential
distribution of rate 2r, as explained in [7,2]. In order to distinguish between such



processes, it is necessary to take into account the number of possible interactions
on a chosen channel x in a list A, i.e. the activity Actx(A) of x in A. This can
be achieved by defining a corresponding notion of channel activity Actx(P ) for
calculus processes, and ensuring that channel activity is preserved by decoding
and encoding, as described in Propositions 1 and 2 respectively:

Actx(P ) = (Inx(P ) ∗Outx(P ))−Mixx(P )

Proposition 1. ∀V ∈ SPiM.Actx(V ) = Actx([V ])

Proposition 2. ∀P ∈ SPi.Actx(P ) = Actx((P ))

This ensures that reactions in the machine have the same duration as reactions
in the calculus, and vice-versa.

5 Implementation

5.1 Approach

A stochastic simulator has been implemented in a functional language (OCaml),
based on the abstract machine specification. The simulator, also known as SPiM,
consists of a single binary executable, which reads in a source file and simulates
reactions for a given duration. The simulation results are stored in a log file
as a list of comma-separated values, which can be visualised using third-party
software. In addition, a polymorphic type system for channel communication
has been implemented based on [5], and a static type-checker accurately reports
syntax and type errors before a given source file is executed.

5.2 Data Types

The terms of the machine can be readily implemented as functional datatypes.
By definition, a term V is a list of summations with a number of top-level private
names νx1 ...νxN A. In practice, however, the privacy of these top-level names
does not need to be implemented explicitly, since each simulator will have its
own private address space for storing and manipulating names. Therefore, a
machine term can be implemented as a list of summations, where a summation
is a list of (action, process) pairs. A name is implemented as a (string, float)
pair, where the float corresponds to the reaction rate. The implementation also
allows constants and tuples to be sent and received over channels, using value
and pattern data types accordingly.

type process =
Null

| Parallel of process*process
| Restriction of name*process
| Replication of (action*process)
| Summation of (action*process) list

type term =
((action*process) list) list

type action =
Input of value*pattern

| Output of value*value



5.3 Encoding

The simulator executes a pi-calculus source file, written in a standard ascii syn-
tax, by first parsing the file to produce a corresponding process. The process is
then encoded to a term using a cons function to add the process to an empty
list. The cons function is a direct implementation of the construction operator
(:). In particular, a restriction process Restriction(n, p) is added to a term by
a generating a fresh name based on n, substituting n with this fresh name in p
using the bind function, and adding the resulting process to the list. The func-
tion fresh(n : name) uses a naming convention to guarantee that each generated
name is globally fresh for the duration of the simulation. This is achieved by
appending a global counter (such as a time stamp) to the name using a reserved
suffix, such as ∼. If the generated name is globally fresh then the restriction can
be brought to the top level according to Definition 8, which means that it does
not need to be explicitly represented by the machine.

let rec cons (p:process) (l:term) = match p with
Null -> l

| Parallel(p,p’) -> cons p (cons p’ l)
| Restriction(n,p) -> cons (bind (fresh n) n p) l
| Replication(a,p’) -> [a,Parallel(p’,p)]::l
| Summation(s) -> s::l

5.4 Execution

The implementation uses the function reduce(l : term) to perform a single ex-
ecution step on a term l. The function gillespie(l : term) returns a channel
inside the list that is able to communicate, along with the time elapsed. Both
of these values are calculated according to the stochastic algorithm in Defini-
tion 12. The function select(a : action)(l : term) randomly chooses an action
from inside the list l that matches the action a. The match is performed based
solely on the type of the action and the channel, so arbitrary constants are used
for the input pattern m0 and output value v0 in the arguments.

let reduce (l:term) =
let (x:value),(t:float) = gillespie l
in match select (Input(x,m0)) l with

Some((Input(x,m),p),s,l) -> (
match select (Output(x,v0)) l with

Some((Output(x’,v),p’),s’,l) ->
if x==x’
then Some(t,cons (bind v m p) (cons p’ l))
else None

| _ -> None )
| _ -> None

The simulator repeatedly applies the reduce function to the list until no more
reductions are possible, at which point the simulation terminates. After each



reduction step, the machine logs the time elapsed and the quantity of top-level
inputs and outputs on each channel. The results are stored in a file as a comma
separated list, which can be visualised using third party software. In order to
improve the efficiency of the machine, the reduce function is be modified to
keep track of the total number of inputs, outputs and mixed sums as described
in Sect. 3.

5.5 Simulation Results

The implementation has been used to simulate the regulation of gene expression
by positive feedback described in Sect. 2. As shown in Fig. 3 and in accordance
with [4], higher levels of Protein A are observed in the presence of the TF gene
and lower levels are observed when the TF gene is disabled.

Fig. 3. Protein A molecules v.s. time in presence (left) and absence (right) of TF

The implementation has also been used to simulate a wide variety of chemi-
cal reactions and biological systems, including enzymatic reactions, a circadian
clock, and a model of the cell cycle control in eucaryotes [8]. In addition, many
of the benchmark examples that were used to validate the Gillespie algorithm
[6] have been modelled as pi-calculus processes and correctly simulated in SPiM.
Details of simulation results are available from [9], together with a stable release
of SPiM for Windows, Linux and Mac OS X.

6 Related Work

The BioSPI system [4] is an existing implementation of a biochemical variant
of the stochastic π-calculus. The system executes a process by compiling it to
an FCP procedure, which is then executed by the FCP Logix platform [10].
Channel data structures are used to maintain stochastic information and syn-
chronize send and receive requests, in accordance with the Gillespie algorithm.



Unlike SPiM, there is no formal definition of an abstract machine and the im-
plementation is specific to FCP Logix. In contrast, SPiM is based on a general
purpose abstract machine that is not tied to a particular platform. This allows
for greater flexibility of implementation, and also results in increased efficiency.
In some cases the SPiM simulator performs up to 7 times faster than BioSPI,
such as for the circadian clock model described in [9]. In addition, according to
[4] BioSPI calculates the activity of a channel x in P by Inx(P ) ∗Outx(P ). This
assumes that there can never be both an input and an output on the same chan-
nel in the same summation. A special rate law is defined for homodimerization
reactions of the form Σ+x〈n〉.P +x(m).Q | Σ′+x〈n〉.P ′+x(m).Q′, but this does
not account for arbitrary combinations of input and output. Furthermore, due
to scope extrusion, it is not clear whether such arbitrary combinations can be
avoided statically, without limiting the expressiveness of the calculus. SPiM ad-
dresses this issue by giving a more general definition of channel activity, which
accounts for mixed inputs and outputs using Mixx(P ). Homodimerization re-
actions are also included in this definition, provided the reaction rate of the
corresponding channel x is halved in the model. It is also worth noting that,
unlike SPiM, the current BioSPI system does not implement a type system for
channel communication. The BioSPI system has also been extended to handle
membrane interactions [11].

Another implementation of the stochastic pi-calculus is the StoPi simulator
described in [2], where fully general sums are supported. A stochastic calculus
is formally defined, and the implementation architecture is also described in
detail, but the paper does not include an abstract machine that maps readily to
program code, or prove the correctness of the machine. An alternative stochastic
simulator is the PEPA system [12], which can also be used to simulate biological
processes. However, PEPA does not include a notion of name-passing, which is
important for modelling chemical bonding and is one of the main features of the
pi-calculus.

7 Conclusion

We have described an abstract machine for a basic stochastic process calculus,
and verified some of its properties. We hope that this will form a framework on
which to design and build implementations of richer stochastic process calculi,
and possibly of very different, biologically inspired calculi that share a stochastic
architecture. We also plan to incorporate a graphical front-end to the current
simulator, based on the graphical representation of the pi-calculus presented in
this paper. It can be argued that improving the reliability of simulations and
working toward a more user-friendly interface are two key objectives in the design
and implementation of next-generation simulators for Systems Biologists.
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A Proof Outline

The proofs in this appendix make use of the following notations:

IH⇒ , By Induction Hypothesis
(1)⇒ , By Rule (1)

lem 1⇒ , By Lemma 1



Lemma 2. (Selection Safety) ∀A.A ∈ SPiM ∧A � B ⇒ B ∈ SPiM

Proof. By induction on Definition 11 of selection in SPiM. ut

Lemma 3. (Construction Safety) ∀V.∀P.V ∈ SPiM ∧ P ∈ SPi ⇒ P : V ∈ SPiM

Proof. By induction on Definition 8 of construction in SPiM:

(30) x 6∈ fn(P )

∧(νx V ) ∈ SPiM ∧ P ∈ SPi

(26)⇒ V ∈ SPiM
IH⇒ P : V ∈ SPiM

(26)⇒ νx (P : V ) ∈ SPiM

(30)⇒ P : (νx V ) ∈ SPiM

(31) A ∈ SPiM ∧ 0 ∈ SPi

(31)⇒ 0 : A ∈ SPiM

(32) A ∈ SPiM ∧ (P | Q) ∈ SPi

(2)⇒ P ∈ SPi ∧Q ∈ SPi
IH⇒ Q : A ∈ SPiM
IH⇒ P : (Q : A) ∈ SPiM

(32)⇒ (P | Q) : A ∈ SPiM

(33) x 6∈ fn(P, A)

∧A ∈ SPiM ∧ (νy P ) ∈ SPi

(1)⇒ P ∈ SPi

⇒ P{x/y} ∈ SPi

IH⇒ P{x/y} : A ∈ SPiM

(26)⇒ νx (P{x/y} : A) ∈ SPiM

(33)⇒ (νy P ) : A ∈ SPiM

(34) A ∈ SPiM ∧ !π.P ∈ SPi

(16)⇒ π.(P | !π.P ) ∈ SPi

(29)⇒ π.(P | !π.P ) ::A ∈ SPiM

(34)⇒ !π.P : A ∈ SPiM

(35) A ∈ SPiM ∧ (π.P + Σ) ∈ SPi

(29)⇒ (π.P + Σ) ::A ∈ SPiM

(35)⇒ (π.P + Σ) : A ∈ SPiM ut

Theorem 5. (Reduction Safety) ∀V.V ∈ SPiM ∧ V
r−→ V ′ ⇒ V ′ ∈ SPiM

Proof. By Lemma 2, Lemma 3 and by induction on Definition 10 of reduction in SPiM:

(38) A ∈ SPiM

∧A � (x(m).P + Σ) ::A′

∧A′ � (x〈n〉.Q + Σ′) ::A′′

∧A
r−→ P{n/m} : Q : A′′

lem 2⇒ (x(m).P + Σ) ::A′ ∈ SPiM

(29)⇒ A′ ∈ SPiM ∧ P ∈ SPi
lem 2⇒ (x〈n〉.Q + Σ′) ::A′′ ∈ SPiM

(29)⇒ A′′ ∈ SPiM ∧Q ∈ SPi

lem 3⇒ Q : A′′ ∈ SPiM
lem 3⇒ P{n/m} : (Q : A′′) ∈ SPiM

(37) νx V ∈ SPiM

∧V
r−→ V ′ ∧ νx V

r−→ νx V ′

(26)⇒ V ∈ SPiM
IH⇒ V ′ ∈ SPiM

(26)⇒ νx V ′ ∈ SPiM ut



Lemma 4. (Decoding Soundness) ∀V.V ∈ SPiM ⇒ [V ] ∈ SPi

Proof. By induction on Definition 13 of decoding in SPiM. ut

Lemma 5. (Selection Soundness) ∀A.A ∈ SPiM ∧A � B ⇒ [A] ≡ [B]

Proof. By induction on Definition 11 of selection in SPiM. ut

Lemma 6.(Construction Soundness) ∀V.∀P.V ∈ SPiM∧P ∈ SPi ⇒ [P : V ] ≡ P | [V ]

Proof. By induction on Definition 8 of construction in SPiM:

(30) x 6∈ fn(P )

∧νx V ∈ SPiM ∧ P ∈ SPi
(26)⇒ V ∈ SPiM
IH⇒ [P : V ] ≡ P | [V ]

⇒ νx [P : V ] ≡ νx (P | [V ])

(21)⇒ νx [P : V ] ≡ P | νx [V ]

(41)⇒ [νx (P : V )] ≡ P | [νx V ]

(30)⇒ [P : (νx V )] ≡ P | [νx V ]

(31) A ∈ SPiM ∧ 0 ∈ SPi

(13)⇒ [A] ≡ 0 | [A]

(31)⇒ [0 : A] ≡ 0 | [A]

(32) A ∈ SPiM ∧ (P | Q) ∈ SPi

(2)⇒ P ∈ SPi ∧Q ∈ SPi
IH⇒ [Q : A] ≡ Q | [A]

IH⇒ [P : (Q : A)] ≡ P | (Q | [A])

(32)⇒ [(P | Q) : A] ≡ P | (Q | [A])

(15)⇒ [(P | Q) : A] ≡ (P | Q) | [A]

(33) x 6∈ fn(P, A)

∧A ∈ SPiM ∧ νy P ∈ SPi

(1)⇒ P ∈ SPi

⇒ P{x/y} ∈ SPi

IH⇒ [P{x/y} : A] ≡ P{x/y} | [A]

⇒ νn [P{x/y} : A] ≡ νx (P{x/y} | [A])

(21)⇒ νn [P{x/y} : A] ≡ νy P | [A]

(41)⇒ [νx (P{x/y} : A)] ≡ νy P | [A]

(33)⇒ [(νy P ) : A] ≡ νy P | [A]

(34) A ∈ SPiM ∧ !π.P ∈ SPi

(16)⇒ π.(P | !π.P ) ∈ SPi

(43)⇒ [π.(P | !π.P ) ::A] = π.(P | !π.P ) | [A]

(16)⇒ [π.(P | !π.P ) ::A] ≡ !π.P | [A]

(34)⇒ [!π.P : A] ≡ !π.P | [A]

(35) A ∈ SPiM ∧ π.P + Σ ∈ SPi

(29)⇒ (π.P + Σ) ::A ∈ SPiM

(43)⇒ [(π.P + Σ) ::A] = (π.P + Σ) | [A]

(35)⇒ [(π.P + Σ) : A] ≡ (π.P + Σ) | [A]

ut



Lemma 7. (Reduction Soundness) ∀V.V ∈ SPiM ∧ V
r−→ V ′ ⇒ [V ]

r−→ [V ′]

Proof. By Lemma 5, Lemma 6 and by induction on Definition 10 of reduction in SPiM:

(38) A ∈ SPiM

∧A � (x(m).P + Σ) ::A′

∧A′ � (x〈n〉.Q + Σ′) ::A′′

∧A
r−→ P{n/m} : Q : A′′

lem 5⇒ [A] ≡ [(x(m).P + Σ) ::A′]

lem 5⇒ [A′] ≡ [(x〈n〉.Q + Σ′) ::A′′]

(43)⇒ [A] ≡ (x(m).P + Σ) | [A′]

(43)⇒ [A′] ≡ (x〈n〉.Q + Σ′) | [A′′]

⇒ [A] ≡ (x(m).P +Σ) | (x〈n〉.Q+Σ′) | [A′′]

(12,11,9)⇒ [A]
r−→ P{n/m} | Q | [A′′]

lem 6⇒ [A]
r−→ P{n/m} | [Q : A′′]

lem 6⇒ [A]
r−→ [P{n/m} : Q : A′′]

(37) νx V ∈ SPiM

∧V
r−→ V ′

∧νx V
r−→ νx V ′

IH⇒ [V ]
r−→ [V ′]

(10)⇒ νx [V ]
r−→ νx [V ′]

(41)⇒ [νx V ]
r−→ [νx V ′] ut

Lemma 8. (Structural Reduction) ∀V.V ∈ SPiM ∧ U ≡ V ∧ V
r−→ V ′ ⇒ U

r−→≡ V ′

Proof. By induction on Definition 14 of structural congruence in SPiM. ut

Theorem 6. (Completeness) ∀P.P ∈ SPi ∧ P
r−→ P ′ ⇒ (P | R)

r−→≡ (P ′ | R).

Proof. By Lemma 8, Lemma 9 and by induction on Definition 2 of reduction in SPi:

(10) m 6∈ fn(P, R) ∧ P
r−→ P ′

∧(νn P )
r−→ (νn P ′)

⇒ P{m/n}
r−→ P ′

{m/n}

IH⇒ (P{m/n} | R)
r−→≡ (P ′

{m/n} | R)

(37)⇒ νm (P{m/n} | R)
r−→≡ νm (P ′

{m/n} | R)

(33)⇒ (νn P ) : R : []
r−→≡ (νn P ′) : R : []

(32)⇒ ((νn P ) | R) : []
r−→≡ ((νn P ′) | R) : []

(9) Q
r−→ Q′ ∧Q ≡ P

r−→ P ′ ≡ Q′

IH⇒ (P )
r−→≡ (P ′)

lem 9⇒ (P ) ≡ (Q) ∧ (P ′) ≡ (Q′)

lem 8⇒ (Q)
r−→≡ (Q′)

(11) P
r−→ P ′ ∧ (P | Q)

r−→ (P ′ | Q)

IH⇒ (P | Q)
r−→ (P ′ | Q)

(12) (x〈n〉.P + Σ) | (x(m).Q + Σ′)
r−→ P | Q{n/m}

(37,38)⇒ νz̃ ((x〈n〉.P + Σ) :: (x(m).Q + Σ′) ::C)
r−→ νz̃ (P : Q{n/m} : C)

def 8⇒ (x〈n〉.P + Σ) : (x(m).Q + Σ′) : R : []
r−→ P : Q{n/m} : R : []

(32)⇒ ((x〈n〉.P + Σ) | (x(m).Q + Σ′) | R) : []
r−→ (P | Q{n/m} | R) : [] ut



Lemma 9. (Structural Completeness) P ≡ Q ⇒ (P ) ≡ (Q)

Proof. By induction on Definition 3 of structural congruence in SPi, where (P ) = P : []

(13) 0 | P ≡ P

(31)⇒ 0 : (P : []) ≡ P : []

(32)⇒ (0 | P ) : [] ≡ P : []

(14) P | Q ≡ Q | P
(45,46,47)⇒ νx̃ νỹ A@B ≡ νỹ νx̃ B@A

def 8⇒ P : Q : [] ≡ Q : P : []

(32)⇒ (P | Q) : [] ≡ (Q | P ) : []

(15) P | (Q | R) ≡ (P | Q) | R
⇒ P : Q : R : [] = P : Q : R : []

(32)⇒ P : (Q | R) : [] ≡ (P | Q) : R : []

(32)⇒ (P | (Q | R)) : [] ≡ ((P | Q) | R) : []

(16) !π.P ≡ π.(P | !π.P )

(34)⇒ !π.P : [] = π.(P | !π.P ) :: []

(35)⇒ !π.P : [] = π.(P | !π.P ) : []

(17) νx0 ≡ 0

(44)⇒ νx [] ≡ []

(31)⇒ νx (0 : []) ≡ 0 : []

(33)⇒ (νx0) : [] ≡ 0 : []

(18) νx νy P ≡ νy νx P

(45)⇒ νx νy (P : []) ≡ νy νx (P : [])

(33)⇒ (νx νy P ) : [] ≡ (νy νx P ) : []

(19,20,25) Σ ≡ Σ′

(49)⇒ Σ :: [] ≡ Σ′ :: []

(35)⇒ Σ : [] ≡ Σ′ : []

(21) x 6∈ fn(P ) ∧ νx (P | Q) ≡ P | νx Q

(32)⇒ νx ((P | Q) : []) ≡ νx (P : Q : [])

(30)⇒ νx ((P | Q) : []) ≡ P : νx (Q : [])

(33)⇒ (νx (P | Q)) : [] ≡ P : (νx Q) : []

(32)⇒ (νx (P | Q)) : [] ≡ (P | νx Q) : []

(22) P ≡ P ′ ∧ νx P ≡ νx P ′

IH⇒ P : [] ≡ P ′ : []

(47)⇒ νx (P : []) ≡ νx (P : [])

(33)⇒ (νx P ) : [] ≡ (νx P ) : []

(23) P ≡ P ′ ∧A ≡ A′ ∧ P | Q ≡ P ′ | Q
IH⇒ P : [] ≡ P ′ : []

(46,47)⇒ νx̃ νỹ A@B ≡ νx̃ νỹ A′@B
def 8⇒ P : Q : [] ≡ P ′ : Q : []

(32)⇒ (P | Q) : [] ≡ (P ′ | Q) : []

(24) P ≡ P ′ ∧ !π.P ≡ !π.P ′

(25,23)⇒ π.(P | !π.P ) ≡ π.(P ′ | !π.P ′)

(49)⇒ π.(P | !π.P ) :: [] ≡ π.(P ′ | !π.P ′) :: []

(35)⇒ π.(P | !π.P ) : [] ≡ π.(P ′ | !π.P ′) : []

ut


